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FINAL REPORT for NAG 3-1796

The numerical simulation of the internal heat transfer

phenomena occurring during anti-icing or de-icing of a

layered aircraft or rotor blade with an electrothermal heat

source has been a subject of intense research by University

of Toledo faculty and graduate students since 1980. The

present grant involved an experimental study to determine

the convective heat transfer coefficient from castings made

from ice-roughened flat plates. The convective heat

transfer coefficient between accreted ice and the

surrounding environment has long been known to be the key

parameter in the energy balance that predicts the continued

transient growth and shape of the resulting ice. This

effort was initiated by the inability of the current ice

prediction codes to accurately model glaze ice shapes. This

was an intense effort in which University of Toledo faculty

members and a doctoral student constructed the necessary

models and ran wind tunnel tests using electrothermal

heaters to measure the convective heat transfer

coefficients. In a previous final report, 63 publications

related to the work done by the University of Toledo de-

icing group were listed. The present final report lists

below the three publications resulting from the current

work, which are available in the open literature. In

addition, the final Ph.D. dissertation is attached. All of

this material has been provided to the grant technical

monitor.
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Values for the heat transfer coefficient from different ice roughened

surfaces in parallel and accelerated flows were experimentally sought for use in

de-icing computer codes. Aluminum castings of different ice accretions in an

icing wind tunnel were obtained from which heat transfer models were

constructed. Each model was a large composite of heat flux gages to which

heat was supplied from the bottom using themofoil heating elements. The heat

supplied to each gage was allowed to convect upward from the rough surface to

an air stream in a dry wind tunnel. Other heat losses were eliminated and each

gage was insulated from surrounding ones. Average values of the heat transfer

coefficient were computed from an energy balance for each gage with the

known electrical power of the heating elements.

Results were obtained for local Reynolds numbers ranging from 5.3X104

to l ,3X106, and for tilt angles of 0 ° , 14 °,23 °,32 °,and 41 ° . The results were in

general qualitative agreement with those of uniform roughness with the different

behaviors being more drastic in the case of stochastic roughness. The Stanton

iv



number for random roughness was higher than that for uniform roughness and

was directly proportional to both roughness element height and area increase

and inversely proportional to spacing. The effect of free-stream velocity

diminished at high enough Reynolds number and the Stanton numbers

collapsed onto a single curve. Acceleration caused Stanton number to start at

lower values close to the leading edge, Stanton numbers then increased as the

flow accelerated along each tilted model. In the fully rough region and for

parallel and mildly accelerated flows, up to 23 °, Stanton number was a function

of Reynolds number only and followed a power law. The multiplier and the

exponent of Reynolds number in this power law were found to correlate well
w

with the newly defined parameter, Index of Random Roughness, and the

roughness height, respectively.
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