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ABSTRACT

In order to develop an extensive envelope of test conditions for NASA's space-based Droplet

Combustion Experiment (DCE) as well those droplet experiments which can be performed using a drop tower,

the transient vaporization and combustion of methanol and n-heptane droplets were simulated using a fully

time-dependent, spherically sjnnmetric droplet combustion model recently developed at Princeton University.
The transient vaporization of methanol and n-heptane was modeled to characterize the instantaneous gas

phase composition surrounding the droplet prior to the introduction of an ignition source. The results for

methanol�air showed that the entire gas phase surrounding a 2 mm methanol droplet deployed in zero-g

quickly falls outside the lean flammability limit. The gas phase surrounding an identically-sized n-heptane
droplet, on the other hand, remains flammable. The combustion of methanol was then modeled considering a

detailed gas phase chemical kinetic mechanism (168 steps, 26 species) and the effect of the dissolution of

flame-generated water into the liquid droplet. These results were used to determine the critical ignition

diameter required to achieve quasi-steady droplet combustion in a given oxidizing environment. For droplet

diameters greater than the critical ignition diameter, the model predicted a finite diameter at which the flame

would extinguish. These extinction diameters were found to vary significantly with initial droplet diameter.
This phenomenon appears to be unique to the transient heat transfer, mass transfer and chemical kinetics of

the system and thus has not been reported elsewhere to date. The extinction diameter was also shown to vary

significantly with the liquid phase Lewis number since the amount of water present in the droplet at extinction

is largely governed by the rate at which water is transported into the droplet via mass diffusion. Finally, the

numerical results for n-heptane combustion were obtained using both 2 step and 96 step semi-emperical

chemical kinetic mechanisms. Neither mechanism exhibited the variation of extinction diameter with initial
diameter.

INTRODUCTION

Isolated droplet combustion has been the subject of extensive experimental and

theoretical investigations for more than 40 years. In the mid-1950's, theoretical

developments [1, 2] led to the first general formulation for describing the burning

characteristics of droplets, the so-called 'd2-1aw '. This quasi-steady, one-dimensional model

incorporated a number of limiting assumptions such as the thin flame-sheet approximation

(infinite chemical kinetic rates), temperature-independent thermo-physieal and transport

properties, constant uniform droplet temperature, and unity Lewis number. The qualitative

behavior of the 'd2-1aw ' formulation has been found to be essentially correct and, provided

that appropriate selections for transport parameters are assumed, the burning rate of the
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droplets can be predicted reasonably well. Experiments on spherically=symmetric droplet

burning do, however, reveal qualitatively different behavior than 'dLlaw' predictions,

indicating weaknesses in the assumptions of the analysis. Recent advances in asymptotic

analyses with reduced chemistry [3-7] and time-dependent numerical approaches [8-18] have

produced increasingly refined descriptions of temperature-dependent transport and chemical

kinetic effects on burning rate, flame-standoff, flame temperature, droplet ignition, and

droplet extinction, as well as other phenomena. Yet, much remains to be understood and

advanced through additional experiments and further refinements in models, particularly

concerning the transient nature and detailed structure of these phenomena.

Experimentally, drop towers have been successfully utilized to create microgravity
environments wherein the effects of natural and forced convection can be minimized such that

sphero-symmetric droplet combustion can be studied. These experiments are limited, however,

to those sized droplets which can be grown, deployed, ignited, burned, and extinguished in the

drop-time available. NASA Lewis Research Center, for example, has two drop towers which

result in 2.2 seconds and 5.0 seconds of microgravity. In order to significantly extend the time

available to study the combustion of an isolated liquid droplet, the space-based Droplet

Combustion Experiment (DCE) is currently under development at.NASA. In this experiment,

single, isolated methanol and n-heptane droplets of up to 5 mm will be burned in

nitrogen/oxygen and helium/oxygen environments at several ambient pressures and oxygen
indices.

In order to develop an extensive envelope of test conditions for those experiments

which can only be performed in space as well as those experiments which could be performed

using the aforementioned drop towers, the combustion and vaporization of methanol and n-

heptane droplets was simulated using a fully time=dependent, sphero-symmetric droplet

combustion model recently developed at Princeton University. [8= 18] The numerical model [8,

9], conceptually shown in Fig. 1, is generically formulated such that various levels of sub-

model approximations for physical and chemical processes can be incorporated in both time

and spatially dependent terms (See Fig. 2). These sub=models range from semi=empirical/

experimental correlations to extensive, temperature dependent databases for thermochemistry,

complex chemical kinetics, and detailed molecular transport. The numerical model is capable

of predicting time=dependent ignition, burning rate, flame standoff, and extinction phenomena,

in addition to other parameters such as the critical ignition diameter (not previously addressed

using either asymptotic or numerical methods) and the evolving chemical structure of the

flame. To date, the numerical model has compared favorably with results fl'om limited droplet

combustion experiments conducted in the NASA-LeRC 2.2 second drop tower. The

predictive capabilities of the model can, however, be substantially refined as more drop tower
data become available for further validation studies.

In the following sections, the results of numerical modeling which was performed in

conjunction with ground=based experiments in drop towers at NASA-LeRC and bench-scale

experiments at Princeton University [14, 18] are presented. These results were successful in



generating extensive experimental test envelopes for future drop tower and space-based

combustion experiments with methanol droplets in He,/O 2 oxidizing environments and with n-

heptane droplets in He/O2 and N2/O 2 environments. Of particular importance in developing

these envelopes was the numerical computation of the following parameters:

• critical ignition diameter,

• total burn time, and

• extinction diameter.

These parameters will be described in detail below. For the methanol computations, a detailed

gas-phase chemical kinetic mechanism which consisted of 26 species and 168 reactions was

considered. In addition, the effect of water dissolution into the liquid droplet was considered

in the methanol modeling. For the n-heptane studies, a 96 step semi-empirical gas-phase

chemical kinetic mechanism was considered and compared with earlier results which utilized a

semi-empirical, three-step mechanism.

TRANSIENT VAPORIZATION OF METHANOL

AND N-HEPTANE DROPLETS [17]

Any ignition device utilized in a microgravity droplet combustion experiment has two

primary requirements. Obviously, the first requirement of the device is that it must be capable

of igniting the droplet. The second requirement is that the device must cause minimum

disturbance of the droplet. This requirement suggests a device which achieves ignition with

the lowest possible energy and deposits this energy symmetrically. While much work has been

done in the past to understand the interactions between an ignition source (a spark, for

instance) and a droplet [19], little was understood about the instantaneous evolution of the gas

phase surrounding a droplet after deployment into the microgravity environment. Indeed, prior

to this investigation, it was unclear whether it was possible to achieve pure gas phase ignition

in the region surrounding a droplet, or if was always necessary to supply additional energy to

the droplet surface to raise the droplet surface temperature thereby increasing the mass fraction

of fuel in the gas phase.

Table 1. Combustion and Flammability Data for N-Heptane and Methanol

N - Heptane Methanol
Heat of Vaporization [¢al/g] 76.5 262.5
Stoichiometric FueFO2 Mass Fraction 0.284 0.667
Lean Flammability Limit [Vole/o, Air, I Atm] 1.1% 6.7%
Flash Temperature [°C] - 4 11.5

The fact that methanol and n-heptane have flash temperatures of 11.5 °C and -4 °C

respectively would suggest the possibility of achieving pure gas phase ignition in the region

surrounding such droplets deployed in air at 25 °C (See Table 1). However, experiments [10,

18] have shown that, under the same experimental conditions, methanol droplets are much

more difficult to ignite than n-heptane droplets. In order to explain these experimental



observationsand, if possible, determine the optimum location and energy content for a

microgravity droplet ignition device, the numerical model described above was used to

simulate the transient vaporization process of liquid methanol and n-heptane droplets after

deployment into microgravity environments.

The modeling results have indicated that, although, methanol has a flash temperature of

11.5 °C, it would be extremely difficult to achieve pure gas phase ignition of a methanol

droplet in the 1 mm size range deployed in air. As the definition of the flash temperature

would suggest, initially a 25 °C droplet is surrounded by a thin layer of fuel/air mixture which

is within the lean flammability limit of methanol/air. The results show that in short time

periods after deployment the mere divergence of the flow field results in a finite gas phase
location at which the gas mixture falls below its lean flammability limit. Due to the

stoichiometry of the methanol/air system, this location is at most one radius from the droplet

surface. Moreover, as the droplet vaporizes, the high latent heat of vaporization of methanol

causes the surface temperature to rapidly drop. The gas phase location of the lean flammability

limit thus moves closer to the droplet surface. After only several seconds, the droplet surface

temperature falls below the flash temperature, at which time the entire gas phase surrounding

the droplet is outside the lean flammability limit.

Figures 3a and 3b show the calculated droplet surface temperature and the gas phase

location of the lean flammability limit for 25 °C droplets of methanol and n-heptane

instantaneously immersed in atmospheric pressure air at 25 °C. These results suggest that only

a precisely timed and located ignition source would be able to achieve pure gas phase ignition

for the methanol/air system. An ignition source located outside the locus of flammable mixture

would require an ignition energy much greater than the minimum gas phase ignition energy as

additional energy would have to be diffusionally or radiatively supplied to raise the droplet

surface temperature.

The results for n-heptane (see Figs. 3a and 3b) show precisely why it is less difficult to

ignite n-heptane droplets than methanol droplets. Firstly, the stoichiometry of the n-

heptanegair system results in a lean limit locus which is much further from the droplet surface

than for the methanol/air system. Furthermore, while the vaporization of an n-heptane droplet

does cause its surface temperature to drop, it does so at a much slower rate since its latent heat

of vaporization (see Table 1) is roughly 1/4 that of methanol. These results suggest that, since

the gas phase surrounding an n-heptane droplet remains flammable at distances of 3 radii from

the droplet surface, pure gas phase ignition may be realizable for the n-heptane/air system.

Ignition of methanol droplets in 50% oxygen-helium mixtures at atmospheric pressure

has been achieved in 2.2 second tower experiments using sparks. The discharge of a sparks

aboard spacecraR is, however, undesirable since such electrical discharges result in substantial

electromagnetic noise which can adversely affect spacecraft instrumentation. In addition,

Shaw et.al [19] have shown that substantial relative motion of the gas phase relative to the

droplet can be induced by sparks. It has thus been proposed that a hot wire ignition system be
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developed for the DCE. To date, ground-based experiments suggested that methanol hot wire

ignition was apparently constrained by the vaporization effects described above. Specifically,

in order to ignite a methanol droplet it was necessary to place the hot wire very close to the
droplet surface. Extrapolation of these observations to microgravity conditions is not possible
and no drop tower data are presently available to demonstrate hot wire ignition of methanol

droplets in helium-oxygen mixtures.

It should also be recognized that if the hot wire must be placed within 1 radius from

the methanol droplet surface, it will be difficult to isolate the wire from the flame once a steady

state flame develops since for methanol droplets the flame is located between 2 and 4 radii

from the droplet surface. This situation is undesirable from several standpoints, such as

limiting the hot wire lifetime, and contaminating the experiment via heat loss to the wires from
the flame. Moreover, attempts to quickly retract the hot wire array will cause drag- induced

convection in the vicinity of the droplet. While n-heptane droplets have been successfully

ignited using the hot wire technique (in support of the above analysis), the steady-state flame

standoff ratio of n-heptane is substantially greater than that of methanol. Thus, the issue of the

proximity of the hot wire to the flame must still be addressed.

METHANOL DROPLET COMBUSTION

Methanol is a fuel for which considerable details for thermo-physical and thermo-

chemical parameters are already known. The elementary detailed chemical kinetic mechanism

for methanol oxidation is probably the most developed and tested of any liquid fuel oxidation

mechanism and the species and reactions involved are relatively simplistic in comparison to

those required for describing the oxidation of other hydrocarbons [20, 21]. The thermo-

chemical and thermo-physical properties of the fuel, its combustion intermediates and products

[22, 23], vapor-pressure characteristics [24], and the dissolution characteristics of combustion

products/intermediates in methanol [25] are relatively well known. Furthermore, methanol
bums without the complicating phenomena of soot formation [20, 21]. Details of the kinetic

mechanism and elementary rate parameters are continuing to evolve [26-32] at a rapid pace.

In the present work, a 168 reaction, 26 species kinetic model [9, 10, 26-28] was utilized in the
numerical model. This chemical kinetic mechanism does not incorporate the pressure-

dependent mechanistic effects studied more recently [29-32]. Model modifications to include
such advances are in progress [18] and will be the subject of additional refinements for

comparison with data obtained from future bench, drop tower, and space-based experiments.

Methanol droplet combustion exhibits particularly interesting characteristics because a
number of the combustion products and intermediates, notably water and formaldehyde, are

highly soluble in the fuel [10, 14, 33-36]. Various calculations have been performed and

compared with the experimental data generated in the NASA-Lewis 2.2 second drop tower

[10] and with ground-based droplet burning experiments [11, 14] which show evidence of

product dissolution in the fuel droplet during combustion. Results of extensive numerical

modeling of methanol combustion will be discussed below.
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Droplet l_nition

The d2 law of droplet combustion will predict the gasification rate of a liquid droplet

with reasonable accuracy for instances in which the chemical reaction time is much shorter

than the characteristic flow time of the system. Similarly, the d2 law of droplet vaporization

will predict the gasification rate of a liquid droplet accurately for the case of chemically frozen

flow, i.e. for instances in which the characteristic time for chemical reaction is much longer

than the characteristic flow time for the system. In realistic droplet combustion/vaporization

situations, the preceding situations do not always exist. Figure 4 is a schematic representation

of all possible steady state solutions of droplet combustion and vaporization plotted as a

function of the system Dahmk6hler number. This figure is the so-called droplet S-curve.

[37] The Dahmk6hler number is a ratio of the system flow time to the chemical reaction time

where the characteristic flow time is merely the droplet radius squared divided by the mass

diffusivity of the fuel. Therefore, the droplet S-curve suggests that, given a certain set of initial

conditions, there will exist a minimum droplet diameter, below which the development of

steady state droplet combustion is not possible. This diameter will be referred to as the critical

ignition diameter. The critical ignition diameter corresponds to the lower turning point on the

S-curve of Fig. 4 which occurs at the ignition Dahmk6hler number, D I.

While extensive theoretical studies have been performed to identify D I using asymptotic

techniques [37], such approaches cannot fully consider the effects of dynamics in crossing the

limiting conditions. It is now possible to solve the fully-transient system numerically with

detailed chemistry and molecular transport. The physical system represented by the numerical

model is shown schematically in Fig. 5, while typical numerical results utilizing a sphero-

symmetric ignition sub-model are shown in Fig. 6. A symmetric ignition process (Fig. 5a) was

approximated by establishing a finite spherical shell of high temperature surrounding the

methanol droplet [Fig. 6a]. Compared to likely experimental configurations, this. "ignition

source" is situated closer to the droplet surface and features a more disperse energy

distribution than either sparks or hot-wires. The computed droplet heating and ignition times

are considerably shorter than the experimentally observed value. (This has been taken into

account in the experimental design). However, the predictions allow conservative estimates of

critical ignition diameter to be obtained, and the ensuing combustion phenomena (Figs. 5b-Sd,

6b-6d) to be studied.

Shortly after the introduction of the ignition source, the droplet begins to vaporize

vigorously. Additional fuel vapor accumulates near the surface and diffuses outward, mixing

with the ambient oxidizer. As the droplet continues to vaporize, the hot vapor-oxidizer

mixture near the droplet surface begins to react (note the oxygen depletion near thedrop

surface in Fig. 6b), and a partially-premixed flame structure develops. Transition to a fully-

developed diffusion flame surrounding the drop depends on the strength of the ignition energy,



the evolvingheatrelease,and the dynamics of this transition, which are in turn influenced by

the initial droplet diameter, oxygen index, diluent species, and ambient pressure.

Quasi-steady droplet combustion and vaporization as described by the d2 law predicts a

constant droplet gasification rate ( time rate of change of d2 with respect to time) whose value

depends on the Dahmk6hler number (see Fig. 4). The fully-transient numerical model used in

the present investigation calculates an instantaneous gasification rate which continuously

evolves during the ignition, steady combustion, and extinction conditions described in the

preceding section. Figure 7 shows calculated instantaneous gasification rate vs. time for

droplets with initial diameters ranging from 575 to 1500 microns deployed in a 35% 02/65%

He mixture at 0.5 atm and fixed ignition energy content. Referring to the 1500 micron case of

Fig 7, the gasification rate initially increases well above the rate which characterizes sustained

burning because of the localized energy of ignition and heat release from the partiaUy-premixed

reaction. The gasification rate then approaches a relatively constant value which roughly

corresponds to that predicted by the d2 law of droplet combustion. After a time period which

constitutes the majority of the droplet burn time, the gasification rate suddenly drops as the

flame extinguishes. As the residual enthalpy in the flame dissipates, the gasification rate

approaches that predicted by the d2 law of droplet vaporization.

Figure 7 shows that an initial droplet size is found below which transition to sustained

burning does not occur, and the stimulated gasification rate subsides to the vaporization rate at

ambient temperature. As initial diameter is further increased, conditions are found for which

partial transition to diffusive sustained burning occurs. However, combustion prematurely

ceases. Finally, as the initial drop diameter is further increased, sustained burning is achieved,

and the combustion continues until droplet burning extinction conditions are reached. The

underlying physical phenomena governing the transition from non-burning to sustained burning

states will be discussed in the following section. Figure 8 shows that similar ignition transitions

are predicted when the initial droplet diameter is held constant and the oxygen index is varied.

For a given initial diameter, an oxygen index can be found below which any realistic amount of

ignition energy fails to establish sustained burning. As oxygen index is increased, partial

transition to sustained burning occurs. With further increases, sustained burning is finally
achieved.

By performing extensive similar numerical experiments, critical ignition diameter

criteria as a function of oxygen index, inert diluent, and ambient pressure were determined

(Figure 9). The test envelope for droplet combustion experiments is defined such that

sustained burning should be achieved for a majority of the test points within the envelope and

the initial drop diameter is from two to three times the critical ignition diameter.

Droplet Extinction

As sustained droplet burning continues [see Figs. 5c, 6c], the droplet size continuously

regresses resulting in a decreasing Dahmk6hler number. Eventually, a droplet diameter is



reached for-which the characteristic system flow time [r2/D] becomes the same order as the

characteristic chemical time. As this occurs, substantial leakage of both fuel and oxidizer

through the reaction zone occurs [See Figure 6d], the gas-phase radical pool precipitously

decays, the flame temperature drops, the burning rate is dramatically reduced, and the droplet

becomes extinguished. This state corresponds to the extinction Dahmk6hler number, D E [see

Fig 4]. The droplet diameter at this state is referred to as the extinction diameter. Figures 7

and 8 clearly show that the numerical model predicts an abrupt change in gasification rate

which occurs at a finite diameter. Accordingly, the model was used to numerically determine

an extinction condition as a function of initial droplet size, inert diluent, oxygen index, and

ambient pressure.

From an experimental point of view, it is desirable to choose operating conditions

which result in extinction droplet diameters of 200 microns or greater. At extinction diameters

less than 200 microns, the dynamics of flame extinguishment are difficult to experimentally

observe, and the numerical calculations show that, although gas phase chemistry has been

"extinguished", vigorous droplet gasification may continue due to residual enthalpy in the

extinguished gas phase surrounding the droplet. At extinction diameters larger than about 200

microns, the residual enthalpy results in minimal reductions in the drop diameter from that at

extinction, and the experimentally observed droplet diameter is an accurate parameter for

indicating the extinction condition.

Larger, more well-defined extinction diameters can be achieved experimentally for

droplet combustion in general, and for methanol and n-heptane specifically, by utilizing helium

rather than nitrogen as the inert [10, 14]. The combination of higher thermal conductivity (to

increase the droplet burning rate) and higher thermal diffusivity for helium (to increase the

reactant leakage and thus decrease the flame temperature) result in much larger extinction

diameters than for similar conditions with nitrogen as diluent. In the experimental results

shown in Figures 10a-b, methanol droplets burning in oxygen-helium environments displayed

higher burning rates than for corresponding oxygen-nitrogen systems. After the droplet

surface regressed to a diameter of 400 microns, the flame extinguished, causing a drastic

reduction in the burning rate. The average extinction diameter for this condition was found to

be 350 microns which was in good agreement with the computational results (Table 2).

Table 2. Methanol Parameter Comparisons for 1.5mm inital droplet diameter

in 50°/die/50% 0 2 at I attn. pressure. [From Ref. 10]

Ext_riment Model 'd2--law'

Burning Rate [mm2/s] 1.3 1.4 1.8
Flame Standoff Ratio 3.5 3.1 5.4

Extinction Diameter [micron] 350 300 Cannot Predict

These methanol droplet experiments (Figs. lOa-b), as well as others conducted with

nitrogen as diluent, display non-'d2-1aw ' gasification behavior due to diffusive transport to and

subsequent condensation of flame-generated products and intermediates on the fuel droplet
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surface [10, 14, 31]. These phenomena modify the burning rate of the droplet, similar to what

was proposed earlier for alcohol vaporization in moist environments [36]. Ground-based pool-

burning experiments [34] in air (atmospheric pressure) and freely-falling droplet combustion

experiments on small droplets in both ambient temperature oxygen [14, 16, 35] and in hot

post-combustion gases from oxygen-rich flames in nitrogen [37] (atmospheric pressure) show

that substantial water absorption and dissolution occurs at the droplet surface. The pure

oxygen, cold environment experiments also show that formaldehyde is absorbed by and

dissolved into the liquid phase. Figure 11 shows the results of freely-falling droplet

experiments wherein methanol droplets were collected, quenched, and analyzed [14]. In these

experiments, the time history of the droplet water and formaldehyde content was determined

by placing a cooled probe at different vertical locations in the droplet trajectory. Also,

suspended droplet experiments were performed wherein methanol/water mixture droplets were

burned to extinction at which time they were sampled to determine the water content at

extinction [14]. The results showed that when the initial water content varied from 20-50%

the measured water content at extinction remained relatively constant (78-86%). These results

are summarized in Table 3.

Table 3. Suspend Methanol/Water Droplet Results [From Ref. 14]

_20 (_oncentrdtion Final H20 Concentration
20.0 % 7_ 5:2 %

30.1% 81 ± 2%

40.2 % 81 + 2 %

49.8 % 84 5:2 %

49.8 % 86 + 2 %

In order to investigate the experimentally-observed effect of the dissolution of flame-

generated products on the combustion of methanol droplets, the numerical model described

above was formulated to include the dissolution of water into the methanol droplet [10, 14, 18,

38]. Since the total amount of formaldehyde observed was negligible compared to the water,

the dissolution of formaldehyde was not considered in this first study. Numerical calculations

show that water absorption and dissolution first increases the surface concentration of water,

resulting in increased droplet surface temperatures. Eventually, water is re-vaporized at the

droplet surface as well as diffused into the droplet interior. Numerical results clearly show that

this re-vaporization of water results in a decrease in heat release and thus a decrease in flame

temperature [10, 14, 18, 38]. This decrease in flame temperature decreases the Dahmkrhler

number and, thus, promotes extinction. Recent asymptotic calculations also support this

conclusion [7]. It should be noted here that both pool burning in air and free-falling droplet

experiments in ambient temperature, pure oxygen with n-heptane as fuel display negligible

product and intermediate absorption during the combustion period [14, 35].

The total amount of water absorbed by a methanol droplet ultimately depends on the

mass transport of water into the methanol droplet. Since the model described in this

investigation is sphere-symmetric, one-dimensional, and the temperature variation within the
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droplet was found to be small, a single parameter was sufficient to specify the mass diffusivity

of water in methanol. Accordingly, a liquid phase Lewis number was defined as follows:

Thermal Diffusivity of CH3OH Droplet

Mass Diffusivity of H20 into CH3OH

(_pCp)_

Figure 12 shows the instantaneous total integrated amount of water present in the liquid phase

aRer ignition for various values of the liquid Lewis number. A droplet with a liquid Lewis

number much greater than unity will undergo very little water dissolution over its lifetime. In

this case, assuming equilibrium conditions at the gas-liquid interface, a thin boundary layer of

water will develop in the liquid droplet near the surface as diffusion of water inward is slow.

Conversely, a low liquid Lewis number promotes water dissolution as water absorbed at the

surface readily diffuses inward.

Figure 13 is a plot of calculated extinction diameter as a function of liquid Lewis

number. As the above arguments would suggest, decreasing the liquid Lewis number results in

an increase in the total amount of water dissolved which, when re-vaporized, decreases the

flame temperature which, in turn, promotes extinction [18, 38]. In terms of known properties,

the Lewis number for the liquid methanol/water system is about 45 at room temperature [39].

As Fig 12 would suggest, the high Lewis number of the methanol/water system should result in

little overall water dissolution over the droplet lifetime. However, the "effective" Lewis

number may be considerably smaller if internal liquid phase circulations are present. Such

circulations can be induced by gas phase convection relative to the droplet during combustion,

and by the experimental initial droplet growth and deployment techniques which are utilized.

Figure 13 shows that as the "effective" Lewis number approaches that defined by the liquid

properties themselves, the derived extinction diameter becomes independent of Lewis number.

The numerical results of Fig. 12 could, in theory, be used to determine the "effective"

liquid Lewis number that was present in the experiments which were used to generate the data

in Fig. 11. There are, however, major differences between the sphere symmetric numerical

model and any data obtained in a freely-falling droplet apparatus. Not only are internal

circulations present due to the forced convection on the droplet, but, the rate at which flame

produced water arrives at the droplet surface may differ significantly from the sphere

symmetric ease. Similar arguments can be applied to the suspended droplet results presented

in Table 3 wherein free-convection was present. In space-based or drop tower based

mierogravity experiments, internal circulation may also be present in the droplet as a result of

the deployment technique. However, since free and forced convection are minimal, the one-

dimensional, spherical flame will result in purely diffusional transport of water to the droplet

surface. Therefore, the numerical model will still be valid if an appropriate "effective" Lewis

number can be determined which takes into account the enhanced internal mass transfer due to

internal droplet circulation.
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Figure 14 compares asymptotic and numerical predictions of extinction diameter for

ambient temperature, helium-oxygen conditions at one atmosphere pressure. The asymptotic

results (dotted lines) are shown for two different assumed concentrations of absorbed water at

the droplet surface. The numerical results (unconnected data points) were calculated for

different initial diameters (numbers adjacent to data points, in microns) and two different

oxygen indices (25% and 35%). The numerical results, thus, predict that for a given pressure,

oxygen index, and liquid-phase Lewis number, the extinction diameter is not a constant, but

rather, varies with the initial diameter. The results Show that for initial diameters less than

approximately 3 times the critical ignition diameter, the droplets extinguish prematurely. In

fact, the extinction diameter decreases with increasing initial diameter until the initial diameter

is increased to approximately 3 times the critical ignition diameter. At initial diameters greater

than approximately 3 times the critical ignition diameter, the extinction diameter is predicted to

increase, but only slightly. This is shown graphically in Fig. 15 where extinction diameter is

plotted vs. initial diameter.

These results appear to be predominantly due a continuous evolution of the flame

structure, as well as the effect of water absorption/dissolution at the droplet surface. No

similar behavior has been described in the literature previously. No experimental data are

available to either support or refute these predictions. Figs. 7 and 8 show that for each

condition, the macroscopic property of droplet gasification rate reaches a value which is

nearly constant for an extended period of time in agreement with experiment. However, the

numerical modeling results also show that even while a macroscopic property such as the

gasification rate may appear to be quasi-steady, the underlying processes of chemistry and

transport may be continuosly evolving. Earlier finite chemistry studies predict that with

decreasing DahmkOhler number, the rate of leakage through the flame zone increases resulting

in a decrease in flame temperature. The present numerical study suggests that not only does

the flame temperature vary with droplet diameter, but the entire flame structure contiuously

evolves throughout the droplet lifetime. Figure 16 shows the continuous time evolution of the

gas phase heat release profile for the 575, 675, and 1500 micron initial diameter cases of Fig.

7. The figure shows that for the 575 and 675 micron droplets the heat release is exothermic

everywhere in the gas phase for the entire droplet lifetime. For the 1500 micron droplet, there

exists significant endothermicity between the droplet and the flame for the first full second of

the droplet lifetime. During the latter stages of the droplet lifetime, the heat release profile

becomes exothermic everywhere in the gas phase, and in fact, appears similar to that of the

smaller droplets which extinguished prematurely. In summary, these results have shown that

for methanol, the weU validated, yet conceptually simple chemical kinetic oxidation mechanism

coupled with the fully-transient numerical model has resulted in the prediction of an entire

regime of droplets which ignite, but extinguish early. As will be discussed below, the semi-

empirical mechanism of Warnatz which was used for n-heptane calculations did not exhibit this

phenomenon.
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The minimum extinction diameter determined from numerical calculations for a

particular ambient pressure and oxygen index was utilized to determine the experimental test

envelope for future drop tower and space-based experiments (see discussions below).

NORMAL ALKANE DROPLET COMBUSTION

Normal-heptane and n-decane have been utilized in many prior droplet burning studies,

both in earth's gravitational field [e.g. 40] and in drop towers [e.g. 13, 41-44]. Under

microgravity droplet combustion conditions, both exhibit significant soot formation and

accumulation (by thermophoresis) within the surrounding diffusion flame [13, 42, 45]. The

"sootshell" thus formed and the soot agglomerate densities within it are strongly influenced by

ambient pressure, oxygen indices, and diluent species [11, 14], as well as by initial droplet size

[45] and relative gas/droplet convection [43]. Associated with the formation and presence of

the sootshell, is a reduced droplet gasification rate that can be as much as 40% lower than

observed in early drop tower measurements at similar drop sizes (no sootshells present). The

burning rate data increase with increasing relative gas/droplet convection rate [14, 43], and

recent experiments [11] show that, contrary to classical theory, the gasification rate is

increased significantly by pressure reduction (through reduced sooting). No fundamental

theory has been conclusively established for these effects, but it has been suggested that

radiation losses from the sootshell, changes in the temperature-averaged transport properties,

and changes in gas-phase volume flux due to soot formation are possible sources of effects

which change both the surface gasification rate and flame position [ 11, 14, 15].

Over some ranges of experimental parameters, droplet disruption and dismemberment

is also observed to occur early in the droplet burning history [14, 42, 43], while over other

ranges of conditions, droplet extinction is observed to occur. Speculations for the mechanisms

which produce disruption are:

• deposition of high-molecular-weight soot precursor intermediates in the liquid phase,

resulting in multi-component droplet gasification behavior [42, 46],

• collapse of the diffusion flame structure into the soot shell, causing intense

disturbances from the soot shell ignition,

• soot deposition at the liquid surface, and,

• critical electrostatic charge accumulation in the soot shell and/or droplet surface [47].

Recent experiments at one-g suggest that deposition of high molecular weight components is

insignificant [14, 34], and a clear explanation of the disruption phenomena remains to be
established.

Unfortunately, thermo-physical, thermo..chemical, and chemical kinetic properties for

these alkanes are not very well defined [8, 12]. For example, experimental values of thermo-

physical parameters for n-heptane have been determined only at low temperatures. While

theoretical evaluations based on ideal gas properties exist, calculated and experimental

parameters are in significant disagreement. (See Table 4). In the present work, experimental

values were utilized where available [48] and supplemented with theoretical estimations
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assuming ideal gas properties. Transport and thermochemical data were estimated by using

TRANSPORT PACKAGE and CHEMKIN codes [22, 23].

Table 4. Heat capacity for n-heptane vapor [kJ/kgK].

T IKI Ext_erimental Theo_
300 2.263 1.665

400 2.720 . 2.107

500 3.410 2.510
1000 Unavailable 3.811

1500 Unavailable 4.445

More importantly, the detailed kinetic mechanisms for large alkanes are only

qualitatively understood [20, 21]. A 96 step semi-empirical mechanism has been proposed by

Warnatz for predicting laminar pre-mixed flame propagation [49] for n-heptane-air flames, and
this work has formed the basis for several studies on diffusion flames and reduced' model

development [50, 3-5]. The principal empiricism in the Warnatz model is the description of n-

heptyl radical decomposition into the unlikely products of CH3 + 2 C3H6 (in fixed ratio) rather

than the expected mixture of 13-scission products, C2H4, C2H5, C3H6, C4H8, CH3, and C5HI0

[20], which are, in fact, evidenced in n-heptane-air diffusion flame structures [51] and flow

reactors [52]. More complex detailed kinetic mechanisms have been developed for

autoignition studies in engines (up to 5000 reaction steps), but these mechanisms involve

considerable uncertainty and low and intermediate oxidation chemistry of little relevance in

diffusion flames. In the present study, a 2 step semi-empirical mechanism was used along with

as the 96 step Warnatz mechanism described above.

Rate ratio asymptotic methods have also been utilized extensively to predict flame

structure and extinction diameter for n-heptane droplet combustion in nitrogen [3-6]. An

assumed, minimal set of detailed reactions for the oxidation of n-heptane was used to produce

a two, three, or four step reduced mechanism by the systematic application of partial-

equilibrium and steady-state assumptions. Using the derived mechanisms, the structure of

spherically symmetric diffusion flames around an n-heptane droplet have been analyzed using

rate-ratio asymptoties. The outer transport zones were described by the classical flame-sheet

analysis. The inner structure consisted of a thin fuel-consumption layer on the rich side of the

flame where fuel and H radical consumption occur and some CO and water are produced, and

a broader but still thin oxidation layer on the lean side where the remaining H 2 and CO are

oxidized. In addition to varying the complexities as to how the outer oxidation zone is

structured, the work has considered two options as to how n-heptyl radicals are converted to

CO and H2:

a) n-heptyl radicals pyrolyze to propene and methyl radicals with subsequent reactions

of these species forming CO and H2;

b) n-heptyl radicals pyrolyze to ethene and methyl radicals with subsequent reactions of

these species to CO and H 2.
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In each case, the theory identifies a scalar dissipation rate, related to the droplet

diameter appropriate for droplet burning. From the analysis, the variations in flame

temperature and in species concentrations with the stoichiometric scalar dissipation rate Xst

were obtained. Since extinction occurs where Xst reaches a maximum, the extinction

diameters for n-heptane droplets were estimated from the results for different pressures and

ambient oxygen concentrations. Figure 17 shows the results of the most recent work [5] in

which a four step reduced kinetic analysis was performed and compared with those for earlier

two- and three-step approximations, and the assumption of propene formation. While the two

step mechanism is suggested to yield the most realistic predictions of extinction diameter, it

also is noted to produce oversimplified flame structure. It is observed that these analyses and

those performed numerically all show the same qualitative function behavior of extinction

diameter with oxygen indices and pressure. However, quantitatively, the various theoretical

approaches produce values of dext for the same conditions that vary by approximately a factor

of two or more. Similar discrepancies are found when nitrogen diluent is replaced by helium.

These quantitative differences are likely to only be further resolved by improved definition of

an appropriate kinetic model for n-heptane kinetics for droplet combustion and validating

experimental measurements of the extinction diameter.

Table 5. Semi-empirical kinetic data for n-heptane.

C7H16 + 7.502 _ 7CO + 8H20

kob = 2x1014lnC7H16][O2]exp(-40/gT)

CO + 0.50 2 +-_CO 2

kob,f = 1014"6[CO] [H20]0"5 [O2]0"25exp(-40/RT)

kob,b = 5x 108[CO2]0"25exp(-40/RT)

As a first approach to numerically predicting n-heptane droplet combustion parameters,

computations were performed using 2 step semi-empirical kinetics with reversible CO/CO,

chemistry (See Table 5). Numerical constants in the kinetic mechanism were adjusted to

reproduce suspended droplet extinction diameter data [53] of n-heptane at low pressure (no

soot formation). These results are summarized in Table 6.

Calculations similar to those described in the previous section for methanol were then

performed to determine the burning characteristics of isolated n-heptane droplets under various

ambient pressures, oxygen indices, and diluent. Critical ignition diameters were determined for

helium and nitrogen diluents by varying the ignition energy (the location of the ignition

temperature distribution relative to the droplet surface, the maximum temperature, and the

energy content of the thermal wave), and initial droplet diameter.
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Table 6. Extinction diameter for n-heptane droplets.

Yo Pressure Experimental Calculated
.232 125 ton" 0.34 nun 0.34 mm

.232 100 torr 0.42 mm 0.46 mm

.230 275 tort 0.59 mm 0.65 mm

.253 175 torr 0.29 mm 0.35 nun

.253 150 torr 0.37 mm 0.45 nun

As in the case of methanol droplets at the critical ignition diameter, the combination of

the thermal energy transport to the ambient environment and that absorbed by the vaporization
processes deplete the ignition energy from the flammable regions at a rate more rapid than the
critical chemical heat release rates required for ignition. As oxygen index is decreased, the
amount of energy required to achieve ignition increases, and at a limiting oxygen index, no

ignition energy can be found which will initiate droplet combustion. As expected, the critical
ignition diameter was considerably increased by substitution of helium for nitrogen diluent and
by reducing the pressure (Fig. 18). However, extinction conditions were also shi_ed to higher

oxygen indices by diluent substitution. Numerical calculations were also performed for n-

heptane droplets to determine extinction diameter as a function of ambient conditions and inert

diluent. Calculated extinction diameters are shown in Fig. 19.

No significant variation of extinction diameter with initial diameter was observed using

the 2 step semi-empirical kinetic mechanism. Indeed, the transition phenomena from transient
to sustained burning which was observed for methanol was not observed for these n-heptane

calculations. This is not surprising, given the lack of detailed kinetics and the high activation

energy for the overall conversion ofn-heptane to carbon monoxide and water.

Next, the numerical model was modified to include the full semi-empirical, 96-step n-

heptane oxidation mechanism of Warnatz [49]. This chemical mechanism effectively calculated

quasi-steady gasification rate, temperature and species profiles and predicted finite extinction
diameters. However, the additional detail provided by this mechanism was still not sufficient

to predict the transition phenomena which was observed for methanol. A closer examination
of the mechanism reveals that the only route for breakdown of the C7H16 is via attack by
radicals O, OH, and H. Moreover, since initially there exists only fuel, oxidizer, and inert in

the gas phase, the only initial source of radicals in this mechanism is via oxygen dissociation.

Indeed, ignition was not obtained for any initial conditions when the O2+M--,O+O+M reaction
was surpressed. In short, while this mechanism may be adequate for steady state analyses in

which a radical pool already exists, it does contain sufficient detail to capture the detailed
ignition phenomena.
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EXPERIMENTAL TEST ENVELOPE FOR GROUND AND

SPACE-BASED EXPERIMENTS

In this section, the insights gained from the experimental, computational and

asymptotic studies are combined to define test matrix envelopes for future ground-based and

space-based experiments on n-heptane in helium-oxygen, n-heptane in nitrogen-oxygen, and

methanol in helium-oxygen droplet combustion. The order in which these envelopes are

presented reflects the current status of engineering developments on testing n-heptane and

methanol experimental systems for 5.0 second drop tower and space-based experiments.

It is important to conduct all experiments under conditions of reduced sooting. While

methanol droplets never soot, there are three methods which can be used to reduce sooting

during n-heptane microgravity droplet combustion. The first method is to use reduced oxygen

concentrations, which lowers the flame temperature and therefore the rate of fuel pyrolysis.

Pressure reduction has also been found to curtail the production of soot [54]. Finally, the

replacement of nitrogen with helium as the inert further reduces the sooting propensity of the

droplets [11, 14]. Ground-based suspended droplet studies were utilized to determine the

interactions of ambient pressure, diluent substitution, and oxygen index which suppress sooting

for n-heptane droplet combustion [11, 14]. The limiting sooting condition was defined as that

which resulted in burning rates near those for the non-sooting conditions. Comparison of

suspended droplet results with 2.2 second tower experiments were performed to validate the

extrapolation of ground-based data to microgravity conditions.

The critical ignition and extinction diameters, as numerically calculated above, in large

measure determine the appropriate envelope of conditions over which microgravity droplet

burning experiments can be conducted. The range in oxygen concentrations that can be

studied is determined by ignition [lower limit] and sooting [upper limit] limitations. The lower

limit for the initial droplet size that can be used is bounded by the restrictions on the critical

ignition diameter and by the minimum diameter required for production of low residual

velocities induced by droplet deployment. The smallest initial diameter which can be studied

utilizing the droplet generation and deployment mechanisms currently proposed for DCE is

lmm. For droplets smaller than this diameter, the deployment mechanism has been found to

impart unacceptable residual motion to the free droplet. Residual droplet motion scales

approximately with the droplet mass. Finally, measured extinction diameters less than

approximately 0.2 tara will be difficult to characterize due to the rapidity with which continued

gasification will occur from residual gas enthalpy at extinction. Figures 20-28 display the

composite regions where successful experiments for each of the noted fuel/diluent/ambient

pressure conditions could be performed.

From the studies in the 5.0 second drop tower, the particular ranges of initial

conditions shown in these figures can be related to test-time requirements. A unique feature of

the DCE project is that the experimental methodology produces the highest degree of

spherically symmetric conditions (spherical droplet with low relative drop/gas velocity). The
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requiredtime for eachof the necessary engineering procedures (estimated from 5.0 second

drop tower experiments using n-heptane droplets) is listed in Table 7.

Insufficient drop tower studies have been performed to identify these same parameters

for methanol droplets. The parameters for growth and deployment of methanol droplets are

therefore based on the above data. Using these data along with the calculated burning rates

and extinction diameters, the required observation times for test conditions within any of the

above test envelopes were estimated. Figure 29 presents a typical result of such calculations

which were also used to define the appropriate test venue. It should be noted here that the

limiting diameter of 1.56 nun for 5.0 second drop tower tests on n-heptane droplets in helium

at one atmosphere pressure, coupled with the 1 mm lower bound for droplet initial size

represents an insufficient range for parametric investigations for evaluating spherically

symmetric droplet combustion characteristics. It is important that a droplet combustion

experiment display a quasi-steady burning regime prior to the Occurrence of extinction.

Furthermore, extinction at large diameters (> 200 microns) is desired because it assures that

continued vaporization (from the residual enthalpy in the droplet and the surrounding gas) will

have a negligible effect.

Table 7. Engineering function times. [From Ref. 14]

Droplet Growth Stretch Deploy Total

Diameter Time Time &Ignition Time

[mml [Secondsl
1.0 0 0.32 0.73 0.32 1.37
1.50 0.62 0.79 0.32 1.73
1.75 0.83 0.82 0.32 1.97
2.00 1.12 0.85 0.32 2.29
2.50 2.12 0.94 0.32 3.28
3.00 3.33 1.03 0.32 4.68
4.00 7.59 1.20 0.32 9.11

Finally, a series of numerical experiments were conducted to determine the effect of the

uncertainty in operating conditions on the observable experimental data. Table 8 is a summary

of the results of these calculations which were performed by perturbing the oxygen content,

ambient pressure, and relative humidity of a baseline condition consisting of a 1.5 mm

methanol droplet deployed in a 30% 02/70% He oxidizing environment at 1 Arm. The results

indicated that, at this condition, a :1: 1% uncertainty in oxygen content corresponds to an

uncertainties of 60 K, 0.04 mm2/s, and 60 micron, respectively, in flame temperature,

gasification rate, and extinction diameter. These results suggest that the oxygen index be

known to within at most :!:0.5% uncertainty.
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Table 8. Operating condition uncertainty calculations. Baseline condition: CH3OH/30% O21 70% He,

1 Arm, d o -- 1500 micron.

at t = 1.Os

Oxygen Gasification Flame Flame Extinction

Index Rate Temperature Standoff Diameter
_L.mm2/sl IK] [df/_dL]_ fmi_on]

29.0 1.068 1551 "3.6_ 296

29.5 1.078 1564 3.60 278

30.0 1.090 1581 3.49 269
30.5 1.097 1597 3.50 252

31.0 1.105 1610 3.50 240

Relative Gasification Flame Flame Extinction

Humidity Rate Temperature Standoff Diameter

fo/ol __2/s l gq ld#LL m.[mLc_2
0.0 1.090 1581 3.4_ 269

10.0 1.088 1584 3.49 270

Ambient Gasification Flame Flame Extinction

Pressure Rate Temperature Standoff Diameter

..L._2/sl lg] [d#LL_
0.95 1.088 1572 3.49 277

1.00 1.090 1581 3.49 269

1.05 1.090 1589 3.51 251

SUMMARY AND CONCLUSIONS

The transient vaporization and combustion of methanol and n-heptane droplets were

simulated using a fully time-dependent, spherically symmetric droplet combustion model which

was recently developed at Princeton University. The results of this study were successfully

utilized to generate an extensive envelope of test conditions for NASA's space-based Droplet

Combustion Experiment. Moreover, the extensive numerical computations required for this

study have yielded interesting and previously unreported droplet combustion phenomena.

Namely, the conceptually simple yet substantially validated gas phase chemical kinetics of

methanol have provided sufficient detail to observe a continuously evolving flame structure as

well as family of burning droplets which ignite but prematurely extinguish. Conversely, the

semi-empirical n-heptane chemical kinetic mechanisms used in this study produced no such

results. Further drop tower and space-based testing will be performed in the near future

which, along with continuing numerical and analytical efforts will further our understanding of

these phenomena.
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Physical Process Schematic for Sphere-symmetric Droplet Burning. a)
Deployment of Droplet & Ignition Source; b) Droplet Ignition and Unsteady
Burning; c) Quasi-steady Burning; d) Droplet Extinction.
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Square of Droplet Diameter as Function of Time; b) Transient Behavior of
Gasification Rate. (From Re£ 10).
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Numerically Calculated Critical Ignition Diameter as a Function of Oxygen
indexand Ambient Pressure for N-Heptane Droplet Combustion. a) In
Nitrogen-Oxygen Mixtures; b) In Helium-Oxygen Mixtures. (From Ref 12).



Figure 19. Numerically Calculated Extinction Diameter as a Function of Oxygen index and
Ambient Pressure for N-Heptane Droplet Combustion. a) In Nitrogen-Oxygen
Mixtures; b) In Helium-Oxygen Mixtures. (From Ref. 12).
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