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Abstract--Unsteady flowfields of a two-dimensional oscillating airfoil are calculated using an implicit,
fiinite-difference, Navier-Stokes numerical scheme. Five widely used turbulence models are used with the
numerical scheme to assess the accuracy and suitability of the models for simulating the retreating blade

stall of helicopter rotor in forward flight. Three unsteady flow conditions corresponding to an essentially
attached flow, light-stall, and deep-stall cases of an oscillating NACA 0015 wing experiment were chosen
as test cases for computations. Results of unsteady airloads hysteresis curves, harmonics of unsteady

pressures, and instantaneous flowfield patterns are presented. Some effects of grid density, time-step size.
and numerical dissipation on the unsteady solutions relevant to the evaluation of turbulence models are
examined. Comparison of unsteady airloads with experimental data show that all models tested are
deficient in some sense and no single model predicts airloads consistently and in agreement with

experiment for the three flow regimes. The chief findings are that the simple algebraic model based on
the renormalization group theory (RNG) offers some improvement over the Baldwin--Lomax model in
all flow regimes with nearly same computational cost. The one-equation models provide significant
improvement over the algebraic and the half-equalion models but have their own limitations. The
Baldwin Barth model overpredicts separation and underpredicts reattachment. In contrast, the

Spalart--Allmaras model underprediets separation and overpredicts reattaehment.

INTRODUCTION

The term "dynamic stall" is usually referred to the unsteady separation and stall phenomena of

aerodynamic bodies or lifting surfaces that are forced to execute time-dependent (unsteady) motion,

oscillatory or otherwise. It is a complex fluid dynamic phenomenon of practical importance and

occurs on maneuvering flight vehicles, retreating blades of helicopter rotors, wind turbine blades,

and compressor cascades. The dynamic stall phenomena often lead to the initiation of stall flutter.

As summarized in extensive reviews by McCroskey [!, 2] and Carr [3], the majority of the work

on this fundamental fluid dynamic problem is devoted to the case of airfoils oscillating with

moderate amplitude in a uniform freestream. When the airfoil reaches fairly high angles of attack

during the oscillatory cycle, past the static stall angle limit, the generated unsteady flowfield is

characterized by massive separation and large-scale vortical structures. One important difference

between this flowfield structure and that generated by the static stall is the large hysteresis in the

unsteady separation and reattachment process. The maximum values of lift, drag, and pitching-

moment coefficients can greatly exceed their static counterparts, and not even the qualitative

behavior of these can be reproduced by neglecting the unsteady motion of the body surface.

One of the reasons why the flowfield associated with dynamic stall is more difficult to analyze

than the static stall is of its dependence on a much larger number of parameters. The important

ones are the airfoil shape, Mach number, reduced frequency or pitch rate, amplitude of oscillations,

type of motion (ramp or oscillatory), Reynolds number, three-dimensional effects, and wind tunnel

effects. To date most of the research in this area has been performed for the simpler model problems

of two-dimensional oscillating airfoils. Most of what is understood about the characteristics and

various regimes of dynamic stall has essentially come from experimental observations, which are

mostly two-dimensional. Attempts to calculate the quantitative effects of dynamic stall abound in

the literature [3-1 1]. The purely laminar case is assumed to have been solved [5, 6], although recent

studies [12] show small-scale details of possible importance. However, the laminar calculations have
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not been validated with experiments (for the lack of availability of purely laminar data). The flows
with turbulent boundary layer have not yet been successfully solved.

The weak link in the computational and theoretical methods for an accurate simulation of these

unsteady flowfieids is the turbulence modeling. Of course, the transitional nature of the boundary
layer is almost always neglected; instead the flow is approximated to be either completely laminar

or completely turbulent on the airfoil surface. Such an approximation may not be correct if the
flowfield is dominated by leading-edge separation. In any case, a reasonably good turbulence model

must be used to accurately calculate the nonequilibrium nature of the separated turbulent boundary

layer and the associated unsteady time-lag features. Simple eddy viscosity models, such as the

Baldwin-Lomax model [13], have been found to be inadequate. The objective of this investigation
is to identify a reasonably accurate and robust turbulence model. Several turbulence models that

are in use in most Computational Fluid Dynamics (CFD) codes for the computation of steady-state
flows are considered for evaluation. It should be noted that Refs [7 10] have considered a similar
exercise.

The five turbulence models considered are the Baidwin-Lomax (B-L) algebraic model [13], the

Renormalization Group theory (RNG) based algebraic model [14], the half-equation Johnson-King

(J-K) model [15, 16], and the one-equation models of Baldwin-Barth (B-B) [17] and
Spalart-Allmaras (S-A) [18]. The performance of these models is evaluated for accuracy and
robustness by using them to calculate the unsteady, two-dimensional, viscous, flowfields of an

oscillating NACA 0015 airfoil. The parameters of grid size, numerical dissipation, and time-step
size was varied to arrive at a set of these parameters for accuracy and robustness. The accuracy

is validated by comparison with oscillating wing experimental data [19] measured at the U.S. Army

Aeroflightdynamics Directorate at the NASA Ames Research Center. The eventual objective of this

study is to identify a turbulence model that calculates accurately the flow physics of unsteady

boundary layer, its separation and reattachment process, and that is appropriate for modeling the
three-dimensional retreating blade stall of a helicopter rotor in forward flight.

GOVERNING EQUATIONS

The governing equations considered are the Reynolds-averaged, two-dimensional,

Navier-Stokes equations in strong conservation-law form. These can be written in a generalized

body-conforming curvilinear coordinate system (_, r/, r) as follows [20]:

!

_0 + c_¢_e + _,b" = _e (c_ + _.g) (l)

where ¢ = ¢(x,y, t), r/ = r/(x,y, t), and r = t. Here (x,y, t) is the inertial coordinate system; x is
in the streamwise direction and y is normal to it. Also, Q is the vector of conserved flow variables;

and i6 are the inviscid flux vectors. These are given by

1 pu
0-=71 ,

_=1
J

pU

puU + GP

pvU + ¢yp

(e +p)U - _,p

, 1_= 1
J

pV

pu V + rlxp

pl" V + qyp

(e + p)V - q,p

The vectors ,_ and _ are the viscous stress vectors in the _ and r/directions, respectively. The viscous

terms may be retained in both directions to resolve massive separation and these are considered
in the thin layer approximation. For example, the vector in the t1-direction is written as

1

0

limj u, + (/a/3)m2G

/lml vr/+ (kt/3)m2q,

t_ml m3 + (la /3)rn2m4
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Here

m, = q] + q>2

m2 = qxu, + qyv,

m3 = _(u:+v2)/2+pr(i-i)\Oqj

m 4= qxu + qyV

Also, U and V are the contravariant velocity components. The terms _x, _., qx, qj,, _,, and q, are
the coordinate transformation metrics and J is the Jacobian of the transformation [20].

In the above equations, all geometrical dimensions are normalized with the airfoil chord c, the
Cartesian velocity components u and v are scaled by the freestream sound speed a_, and the time

t is normalized as tc/a_; p is the static pressure normalized by p_a_; p is the density normalized
p_a_, a is theby free-stream density p_ ; e is the total energy per unit volume normalized with 2 .

speed of sound; Re is the Reynolds number; Pr is the Prandtl number; 7 is the ratio of specific heats;
and p is the viscosity coefficient normalized by its free-stream value. The pressure is related to the

density and total energy through the equation of state for an ideal gas given by,

P = (7 - 1)[e - p(u 2 + v2)/2] (2)

Finally, the rotational speed of the airfoil, co, is obtained from the type of motion prescribed
as co = d_/dt. The reduced frequency parameter is defined as either k = 5w/2U_, or nfc/U_ where

f is the frequency of oscillation and U_ is the free-stream velocity. Then
co = ,_q(2kU_./c)cos[(2kU__/c)t] for _(t)= c_0+ _l sin(cot) where _0 is the mean angle of oscillation

and 7_ is the amplitude of pitch.

NUMERICAL SCHEME

The governing equations are solved using a finite-difference, implicit, approximately factored
Beam-Warming numerical algorithm [20]. The viscous terms are treated implicitly and they are

retained in both 4- and q-directions and in a thin layer approximation form. The approximately

factored algorithm is given by

II + h [6_ _'_i - Re-'3_ 57I_j+ (Dimp)i]}p{ I "at- h [6. l_j - Re-I_ ]_j .jff(Dim p)j] }pA_i, j

= - At {{_,.j - OT,j + [6_ _j + 6j_.j] - [6__,"4 + 6,g,"4] + G O_j} (3)

Here 6 is the central difference operator and h is the time-step factor that determines whether the

algorithm is first- or second-order time accurate. The time index is denoted by n and

AQ,"; = (_),"f' - 0,,".j). The explicit inviscid fluxes are given by E;j, ['_,jand -_.j, _;,.j are the explicit
viscous fluxes. The quantities, _1, B,/f,/, and lq in equation (3) are flux Jacobian matrices obtained
from the linearization of the left hand side and D_mpand GD are the implicit and explicit dissipation

terms. A Jameson-type [21], blended second and fourth order numerical dissipation, based on the

computed pressure field, is used to suppress high frequency numerical oscillations. For subsonic
shock free solutions, only the fourth-order dissipation is used, while for transonic solutions the

second-order dissipation is activated in the vicinity of shocks where the pressure jump has steep

gradients. Both implicit and explicit dissipation terms are scaled by the spectral radius. For the

accuracy of calculated solutions, the added dissipation coefficients are kept as small as possible.
The errors introduced by the linearization and approximate factorization of the left hand side

of the numerical algorithm may be minimized by performing Newton subiterations at each

time-step during the unsteady calculations. The approximation to Q" +_ at each subiteration is the

quantity Qp. When p/> 2, during a given level of subiteration to convergence, O p = O_ + _,but when
p = 1 and no subiterations are performed 0 p = 0", and 0 p+j = Q" + _- In the present study, the

numerical experiments have demonstrated that because of the small time-steps used, the Newton
subiterations are not required. It was also found that the two time-level numerical scheme does

not increase the accuracy of the unsteady calculations.

In the normal practice of the thin layer approximation for viscous terms, only the terms in the
normal direction (normal to the solid surface) are retained because of the large flow gradients in
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that direction. Retaining the viscous terms in both directions and in their thin layer form was found

to be slightly beneficial for the deep-stall cases, perhaps because of massive separation. For the
light-stall case, however, the calculations performed retaining first the viscous terms for the

r/-direction alone and then the terms for both _- and r/-directions showed very little difference

between the solutions. Therefore, the light-stall calculations are performed by retaining the viscous

terms only in r/-direction. The computational cost was not significantly increased for doing this
for both the directions. Also, the numerical experiments have demonstrated that implicit treatment

of the streamwise viscous term, M of equation (3), does not contribute to the accuracy of the
solution but results in increased computational cost. Therefore, implicit treatment of the streamwise
viscous term is not used in the present study.

Body-fitted C-type computational grids are used in all calculations. These are generated using
a hyperbolic grid generator. The grids are clustered at the body surface in the normal direction,
leading edge, and trailing edge regions. The spacing of the first grid point at the surface in the

normal direction is 0.00002 chord and this translates to a y÷ = O (1) at the mid-chord of the airfoil.

The grid boundaries are located at 15 chords in all directions. Although most of the results

presented are generated using one grid of size 361 x 71 with 271 points on the airfoil in the

chordwise direction and the remaining in the wake region, three other grids of size 181 x 71,

671 x 71, and 361 x 141 have also been used to study the effect of grid size on the solution accuracy.

In all cases, the grids are designed to have at least 25 points in the boundary layer.
Boundary conditions are updated explicitly. For subsonic inflow-outflow, the flow variables at

the boundaries are evaluated using one-dimensional Riemann invariant extrapolation. On the

airfoil surface the velocities are set equal to the surface velocity. The density and pressure are

evaluated from extrapolation from its interior neighboring grid point. For C-type grids used in this
study averaging of the flow variables at the wake cut is used.

TURBULENCE MODELS

All flows computed in this study are assumed to have fully turbulent boundary layer on both

upper and lower surfaces of the airfoil by neglecting the laminar and transitional boundary layer.
In the experiments of Piziali [19], with which all present calculations are compared, the boundary
layer is tripped in the leading-edge region. (The experimentalist has performed several checks to

assertain that the boundary layer downstream of the trip is fully turbulent.) For turbulent viscous
flows, the non-dimensional viscosity p in the viscous flux vectors is calculated as the sum total of

the laminar and turbulent viscosity. It is the determination of this turbulent viscosity that is of
special significance and the focal point of this study. As mentioned before, five different turbulence

models are used for calculating turbulent eddy viscosity and the unsteady flowfield of an oscillating
NACA 0015 airfoil. The results are used to evaluate their performance. The details of the

formulation of these models are presented elsewhere [13 18]. However, the following paragraphs
describe briefly the salient features of these models and the specific versions used in the present
investigation.

Baldwin-Lomax (B-L) model

This is a two-layer, zero-equation (algebraic) model. It is patterned after Cebeci-Smith model

[22] and introduces a modification that eliminates the need to search for the edge of the boundary
layer to determine the length scale. It is the most commonly used turbulence model available in

most of the CFD codes. Its strength and weakness are well known in CFD community; it predicts

accurately the steady flows with little or no separation and performs poorly if there is large
separation, either shock-induced or otherwise. It uses an inner and outer layer formulation for

determining the turbulent viscosity with a smooth transition that spreads over the two regions. It
uses a classical mixing-length hypothesis for the inner layer with a van Driest damping function

to force the eddy viscosity at the wall to zero. In the outer layer, the length scale is fixed by the
location where the product of distance from the solid wall and vorticity reaches a maximum in the

boundary layer. The KlebanolTs intermittency factor is used to drive the eddy viscosity to zero

in the outer flow away from the wall. Some of the constants of the theory are determined by
correlating with experimental data. The details of the theory are described in Ref. [13].
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RNG model

Another algebraic eddy viscosity model was proposed recently, for the closure of the Reynolds
averaged Navier-Stokes equations, based on the Renormalization Group (RNG) theory of

turbulence [14]. The algebraic model, although free from uncertainties related to the experimental

determination of empirical modeling constants, still requires specification of an integral length-scale
of turbulence, similar to the B-L model, which reduces the generality of the model. In this model

the integral scale is assumed to be proportional to the boundary layer thickness 6, and the eddy

viscosity is obtained as in Ref. [14] from

viii + Hf 5 /1v : _- l_b_y+0.2_)-4-C¢}l '/3 (4)

where v = v_+ v_, the subscripts t and ! refer to the turbulent and laminar components, respectively.

Also, 6 is the boundary layer thickness and it is determined from 6 = 1.2 Yt/2, where Y_2 is the
normal distance from the wall at which the vorticity function F(y) (see Ref. [13]) attains its half

amplitude [16]. H is the Heaviside step function and 4) is the dissipation function. The parameter
6 = 0.0192 corresponding to the von Karman constant x = 0.372, and the parameter Cc = 75. The

turbulent eddy viscosity is then obtained by solving equation (4) at every point in the computational
domain. In estimating the eddy viscosity with this model in this study, the model is applied only

to the suction side of the airfoil (upper surface) while the pressure side (having attached flow) and

wake regions are computed with the B-L model. Application of the model to both upper and lower
surfaces essentially gave the same results as the one obtained by applying for only upper surface;

so the latter was used.

Johnson-King (J-K) model

The above two models, viz., the B-L and RNG models, are termed equilibrium models meaning

that the eddy viscosity instantaneously adjusts to the local flow without any history effects. The
next three models presented are called non-equilibrium models in which the calculated eddy

viscosity accounts for the upstream history of the flow.
From the time Johnson and King first introduced their half-equation turbulence model [15], there

have been several modifications to improve their original model for separated flows [9]. In the

present application to unsteady flows, the original version of this model is used [15] and is briefly

described in the following paragraphs.
The Johnson King model [15] takes into account the convection and diffusion effects on the

Reynolds shear stress -u'w" in the streamwise direction. The eddy viscosity is given by

vt = %[1-exp( - vt'']]%/_l (5)

where v_,, v_ describe the eddy viscosity variation in the inner and outer part of the boundary layer.
The inner eddy viscosity is computed as

v,, = D2xy_/(- u'w')m,x

D = 1 - e -tr/A+) (6)

where the constant A + = 15. The outer eddy viscosity is given by

% = a(x)[O.O168Ue 6*y] (7)

where 6" is the boundary layer displacement thickness, y is the Klebanoff's intermittency function

given by 7 = [1 + 5.5(y/6)6] -t, and a(x) is obtained from the solution of an ordinary differential

equation which describes the development of -u'W'lm,x along the path of the maximum shear
stress. The effects of convection and diffusion on the Reynolds shear stress development are

accounted from the solution of the following ordinary differential equation

,- 2 _a-2, 1 -- + 1 - (8)

m at6 0.7-- m
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Here Cdir and a, are modeling constants /_m is the maximum average mean velocity and

g = [--U'Wml -'_2, and

Also, Lm is the dissipation length evaluated as

Lrn --- 0.40y for

Lm =0.096 for

go. = [- U'W')m,o.]-"2

ym/(5 _ 0.225

ym/(} _ 0.225 (9)

The boundary layer thickness, 6, is determined in the same way as explained in the discussion of

the RNG model. The equilibrium shear stress geq in equation (8) is determined from the following
equilibrium eddy viscosity distribution

Vt0,eq/J

/
vt,,_q= D-xyx/ ( _ u "w ')m.eq

v,0xq = 0.0168Ue6"7 (10)

where U_ is the velocity at the edge of the boundary layer.

An implicit Euler method is used for the numerical solution of equation (8), and the maximum

shear stress at each iteration level is updated as follows

1

_(x) "+' = _r(x)" v'_'°+ (11)

It should be noted that the unsteady term is neglected in the above formulation. Solutions with

the Johnson-King turbulence model are obtained as follows. First a convergent solution using the

Baldwin Lomax turbulence model for the entire flowfield is obtained. Then the Johnson-King
model is applied only to the upper surface of the airfoil as using it for both the surfaces did not
change the results. To initiate the solution a(x) in equation (7) is set unity and it is allowed to

change according to equation (I 1). It should be noted that the Johnson-King model reduces to
the Cebeci-Smith model [22] when a(x) is identically equal to one.

One-equation models

The B L and the RNG models are equilibrium models, in which the production is identically
equal to the dissipation. The J-K model is an improvement over the equilibrium turbulence models

because it accounts for the evolution of the maximum shear stress through the solution of an

ordinary differential equation (ODE). It, therefore, attempts to calculate the non-equilibrium

turbulent boundary layer. The validity of the models discussed thus far is limited and questionable

when applied to a flow environment consisting of unsteady separated flow with multiple shear
layers.

Recently, several one-equation models have been developed for use in place of these lower-order

turbulence models. In the present investigation two such models are considered for investigation.

These are the Baldwin Barth [17] and Spalart AIImaras [18] models. The primary advantage of
these models is that they do not require the evaluation of flow-dependent length scales, such as

the boundary layer thickness. The validity of these models for steady flows has been demonstrated,

but only in a limited sense. In the present investigation these models are tested for several unsteady
attached and separated flows over oscillating airfoil.

Baldwin-Barth (B-B) model

This one-equation model [I 7] is derived from the simplified form of the k -_ model equations.
It solves a partial differential equation for the modified turbulent Reynolds number v/_v from

D (VRT)Dt- (c'-'f2 - c'/ )_ +(v + v"]W(v/_v )-/(Vv,).er,/V(V"T ) (12)

This equation solves for the field quantity R-r=k2/vc =/?Tf3(/_v), named turbulent Reynolds
number. The turbulent Reynolds number is related to the eddy viscosity as
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where

-- _ (C_2 -- CQ

O'_

vt= c,(vRT)DID2

]A t = pV t

f. = Di D2

Di = i -- exp(-y+/A+)

D_ = 1 - exp(-y+tA +)

(13)

f20'+) c" ( G''_( I + ){ " Y_ID2( 1=--+ I-_-_,j\K- _- D, D2 x/_lD2+ _-gexp(--Y +/A+)D2
C_ 2

+_fexp(--y+/A_ )D|)}

Here y+ = u_y/v and u=is the skin friction velocity. The constants used for the B-B model are the

same as in their original paper [17] and are given by:

x=0.41, c,,=!.2, c, =2.0 G=0.09, A +=26, Af=10.

This model is applied to the entire flowfield to compute the eddy viscosity.

Spalart-Allmaras (S-A) model

The second one-equation model used in the present investigation is the Spalart-Allmaras (S-A)

model [18]. This model requires the solution of a transport partial differential equation for the

turbulent eddy viscosity. This equation was constructed using empirical criteria and arguments
from dimensional analysis. It has many similarities with the B-B model. The S-A model also has

a provision for transition onset at any specified location, although the present investigation treats
the boundary layer as turbulent on the entire surface. The eddy viscosity is obtained from the

solution of the following partial differential equation.

[ -1 _Di; _ Cbl(1 --fz)Sf'+-IV "((v +f)Vf)+Cb2(V_)2] - c..,f,, cb'c ]Vv-]2+f, AU 2 (14)

where

( oJ_r

ft, = ct, gt exp k - ct2 _-i [d2

f2 = ct3 exp( - ct4X 2)

gt = rain(0.1, AU/m_Ax)

+ g_ d_])

(15)

where X = 9/v and cot_ is used here to denote the vorticity on the wall at the boundary layer trip

point. The constants of this model have been chosen the same as in the original reference [18], and
the transition location was set at the airfoil leading edge. The model constants are:

cbt=0.1355 Cb2=0.622 O'=2/3 Cwl=Cbl/l_2"+(l'q-Cb2)/_ e..2 =2.0

[ 1 "_- C6w3 "_1/6

c,3=0.3 K=0.41 f"=gk_)

V t

g=r +c,,2(r6-r), r-S_2d 2 cH=l.O c_2=2.0 c,3=I.l c_4=2.0
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The computational costs vary widely for these models. The relative costs for these five turbulence

models is discussed at the end of Results Section.

RESULTS AND DISCUSSION

This paper describes an attempt to evaluate five widely used turbulence models in calculating

the unsteady, two-dimensional flowfields of an oscillating NACA 0015 wing spanning a wind tunnel

wall and an end plate. The test cases considered for the calculation correspond to the wind tunnel

conditions of an experiment of a NACA 0015 oscillating wing conducted in the 7 x l0 foot wind

tunnel of the U.S. Army Aeroflightdynamics Directorate, located at the NASA Ames Research

Center [19]. The flow conditions of the experiment are as follows: free-stream Mach Number,

M_ =0.29 and Reynolds number, Re = 1.95 x 106 based on the chord of the wing and free-stream

speed. Four mean angles of _t0 = 4 °, I I °, 15 °, and IT are considered with an amplitude of pitch

of :q = _+4.2 ° around the mean angle and a reduced frequency, k = 0.1. The instantaneous angle

of attack of the wing is given by _(t) = _t0 + :t, sin(o)t).

In the experiments of Piziali [19], separate two-dimensional and three-dimensional data was

measured on a rectangular wing of aspect ratio five. Two-dimensional data was measured on the

wing that spanned the wind tunnel wall and an end plate that replaced the tip cap. The midspan

section at which the two-dimensional data was measured was found to be free from the cross-flow

effects and was nearly two-dimensional. Several independent checks were made by the experimen-

talist to assertain that this is true, including tuft survey, surface pressure measurements at several

spanwise stations, and oil flow visualization.

The present calculations are done for free-air conditions and, therefore, the wind tunnel walls

are not included in the calculations. The unsteady calculations for oscillating airfoils are usually

started from the steady state solution at the lowest angle of attack of the pitch cycle. However,

to check the accuracy of the solution method, steady-state solutions were calculated for several

angles of attack in a time-accurate manner. Figure 1 shows sample results of steady surface

pressures for ct = 13 _[Fig. I(a)] and 17 _' [Fig. I(b)] compared with experiments. The [3- L turbulence

model yielded satisfactory surface pressures for the case of _t -- l l' where the flow is essentially

6 -

4 -

-Cp 2 -

0 "

-2 (a)

I _= 13°

- - - B-L _ N-S results

,_ -- J-KJ _

I I l I I I I l I I I

8 - !
it (I = 17 °
II

6 - It
II

o
._2 I I i I I I I I I l I

0 .2 .4 .6 .8 1.0
X

Fig. I. Quasi-steady surface pressure distributions of NACA 0015 airfoil compared to experiments at flow
conditions of M_=0.29; Re = 1.95 x 106; (a) _ = 13; (b) _ = 17°.
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Table 1. Quasi-steady airloads

Mean angle

Tu_._ ads

model

B-L model

J-K model

B-B model

Experiments
(Pizlali)

ct : 13" a : 17°

CI Cd Cm CI Cd Cm

1.401 0.0209 0.0148 1.624 0.0559 0.0267

1.175 0.0254 0.0371 1.093 0.0664 0.0391

1.13 0.0295 0.0329 0.7466 0.1276 -0.0119

1.15 0.0331 0.028 0.65-1.18 0.151 -0.028

attached (not shown here). For the mildly separated case of ct = 13° and the massively separated

cases of _ = 15 and 17:, the B-L model predicted surface pressures that had higher leading-edge

suction peaks and milder separation. It gave higher lift and lower drag values. Therefore more
accurate turbulence models were needed to predict satisfactory airloads. As seen in Fig. I, the J-K

model is able to predict the surface pressures more accurately than the B-L algebraic model at these
conditions. Although not shown here, the B- B one-equation model fared as good at 13° and slightly

better at IT than the J K model in predicting the overall quasi-steady airloads. The airfoil is

completely stalled at the :t = 17c angle of attack condition.
Table 1 lists the calculated force coefficients for these two quasi-steady flow conditions and the

experimental measurements. The airloads are calculated by integrating the surface pressures.
Therefore, the drag coefficient shown is that due only to pressure drag. Due to the nature of

unsteady flow, particularly when the flow is massively separated, the calculated airloads are

time-averaged both in experiments and computations. Therefore, the data presented for the
coefficients of lift (C_), drag (Cd), and pitching-moment about quarter-chord (Cm) are time-aver-

aged over a large period of time. The experimental value is also time-averaged and was read-off
from Ref. [19]. Examination of these airloads indicates that at the lower angle of _ = 13_, the J-K
and B-B models did better in predicting the overall airloads than the B L model, although these

models failed to predict the drag and pitching moment accurately. At the stalled condition of
ct = IT the flow was highly unsteady. The results are in poor agreement with each other and with

experiment, although the agreement with experiments improved as the models got more sophisti-
cated from B-L to B B models.

The discussion of unsteady results is divided into three flow regimes, viz., (a) attached flow

corresponding to :t0 = 4'_; (b) light-stall case corresponding to ct0 = 11_; and (c) deep-stall cases
corresponding to _0 = 15 and 17°. In the computational procedure, the quasi-steady solution at the

lowest angle of the pitch cycle is calculated first for each of the flow condition, and then the airfoil
is made to execute pitching oscillations rotating about its quarter-chord point from this lowest

angle. The evolution of unsteady flow is monitored. Typically, time periodic response of the flow
was obtained after the second oscillation cycle. Most of the results presented in the following

paragraphs were calculated using 361 × 71 grid with 10,000 constant time-steps per oscillating

cycle. This number of time-steps per cycle corresponds to a nondimensional time-step of
At = 0.0108, based on c and a_. An explicit dissipation coefficient of _=0.05 was used. The grid

size, Ce, and the time-step size At were chosen after a parametric study of these quantities using
the J-K turbulence model. A set of values of these parameters was identified which was found to

be optimum from the point of solution accuracy and robustness. A detailed discussion of this study

is presented later in the section on light-stall.

(a) Unsteady attached flow: _(t) = 4:'+ 4.2 ° sin(cot)
This flow condition essentially serves to validate the accuracy of the flow solver in calculating

unsteady attached flow. Figure 2 presents a comparison of the calculated unsteady airloads
obtained with different turbulence models to the experimental data. _9 In all the comparisons
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Fig. 2. Comparison of calculated unsteady airloads hysteresis of oscillating airfoil for different turbulence

models with experiments. M, =0.29, k = 0.1, Re = 1.95 × 106, and _((t)= 4:+ 4,2 sin(o,_t).
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presented in this study, the computations are compared to only unsteady loads hysteresis. A detailed

surface pressure comparisons was not possible because of lack of availability of experimental

surface pressure data. The experimental loads data has been averaged over 20 oscillating cycles
but the results from calculations are not averaged but were found to be repeatable beyond the

second cycle. The calculated loads and moments with different turbulence models compare

favorably with each other for lift and pressure drag, but the pitching-moment appears to be
more sensitive. The RNG, J-K, and S-A models yield relatively good comparison among

themselves and with experimental data for lift, drag, and pitching-moment. It has been found that

small differences in the surface pressure distributions, particularly in the trailing edge region, appear

to produce large difference in the lift and pitching moment for the B-B model. Although, the flow

is essentially attached for this flow condition, the B-B model shows some delay in boundary layer
recovery in the trailing edge region during the downstroke and hence has poor comparison with

experiments and also with loads predicted by other models. The B-L model also performs poorly

in predicting the lift and pitching-moment for different reasons. It consistently predicts higher lift
and lower pitching-moments compared to the rest of the models. It must be pointed out that the

scales used in presenting the airloads in Fig. 2 are expanded to bring out the differences clearly
for various turbulence models, but in the scales used for airloads in the rest of the study, the results

are well within the range of experimental scatter and the differences for the various turbulence
models. The trends of the calculated results in Fig. 2 are such that if the results are tilted slightly,

they perhaps agree better with experiments. As observed by McCroskey and Pucci [23] in their

experiments with NACA 0012 oscillating wing, such a trend can be attributed to wind tunnel wall
interference effects.

Figure 3 shows the details of unsteady pressure distributions by harmonic components, where

the decomposition of Cp is according to Cp = C_ + Cp_, sin(_t) + Cp,c cos(e_t) + Cp2 sin(2_ot + q_2)

with _b2as the phase-shift. In order to stretch out the leading-edge region of the airfoil, the various
harmonics are plotted against v/_. Such a representation brings out the variations and discrepancies

with linear theory better. Note that the differences seen in the lift and pitching-moment hysteresis

curves for B-L and B B models in Fig. 2 relatively translate into small differences in the mean and

quadrature components in Fig. 3. No experimental pressure data was available for comparison with
these results, but comparison of the four components with measurements of Ref. [23] for the NACA

0012 oscillating airfoil for attached unsteady flow case show similar behavior for all components.
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(b) Light-stall case: _(t) = 1 ! + 4.2 '_sin(_t)

Figures 4-9 show the results for the light-stall case for _0 = 11. In order to determine the

optimum values of time-step, At, the explicit numerical dissipation coefficient, Ee, and grid size
required for a reasonably accurate solution, parametric calculations have been performed. The J-K

turbulence model is used for these studies. The above parameters are varied one at a time while

keeping the others constant. For example, Fig. 4 presents results of unsteady airloads hysteresis

for three values of At for a 361 × 71 grid and _e = 0.05 and compared to experimental data. In these

calculations, a constant time-step At = 0.0108 is used which corresponds to using 10,000 time-steps

per cycle. Similarly, a value of time-step = 0.0216 corresponds to 5000 time-steps per cycle. The

maximum number of time-steps used in the present calculations is 20,000 time-steps per cycle for

deep-stall cases. This contrasts with 50,000 to 100,000 time-steps per cycle used by other
investigators [I 0, 11] in similar studies. The large number of time-steps in these investigations was

dictated by the numerical stability of their solution method. Obviously such calculations become

prohibitively expensive when extended to three-dimensions. As seen in Fig. 4, a time-step of

At = 0.0108 corresponding to 10,000 time-steps per cycle is a good compromise, and this is the

number used for calculating most of the cases presented in this study.

The numerical results presented in Fig. 5 show that the unsteady airloads and pitching-moment

are very sensitive to the dissipation coefficient ¢_. The unsteady flowfields are calculated using a

At = 0.0108 on a 361 x 71 grid with J K turbulence model. For the four values of ce used, the
upstroke results of lift, drag, and pitching-moment are nearly the same. Differences are seen for

the downstroke. The explicit numerical dissipation apparently alters the boundary layer separation
at the highest angle of attack around the peak of upstroke and also the reattachment process of

boundary layer during downstroke. The evaluation and the selection of an optimal value of _ is

done by comparing with unsteady airloads determined from experiments [19]. For example, a value

of 0.02 for _ appears to be too small as it delays reattachment, as is evident from Fig. 5(a). Also,

this value of _ produces nonphysical oscillatory airloads for the retreating part of the oscillating

cycle for mean angles exceeding I !'. On the other hand, a value that exceeds 0.05 seems to produce

premature reattachment, although it appears to give better agreement for drag and pitching-mo-

ment hysteresis during the downstroke. Choosing an optimal value of _e is therefore subjected to

some degree of uncertainty. The uncertainties associated with the selection of _¢ are comparable

to the differences produced duc to variations in turbulence models. This is particularly true for the
retreating part of the cycle. Based on these arguments, a value of _, = 0.05 is chosen as a reference
value for the rest of the calculations.

Figure 6 presents the unsteady airloads results calculated on different grids. Again, the J--K

model is used along with _e = 0.05 and At = 0.0108 for these calculations. The grids used in this

study have the same wall spacing of the first grid point in the normal direction and the grid

boundaries are located at the same distance from the airfoil. As noted before, a typical value of

y+ for these grids is O(1) at the midchord and there are approx. 25 points in the boundary layer.

The streamwise grid resolution is varied for grids having 181 x 71,361 × 71, and 671 × 71 points
keeping the normal distribution same. The comparison of results in Fig. 6 shows sensitivity of the

numerical solution to the grids used. A close inspection of these results shows that the 361 x 71-

and 671 × 71-points grids give nearly identical results. The indication of nearly grid independency

with at least 361 points in the streamwise direction is perhaps adequate for purposes of evaluating
turbulence models.

Further examination of results presented in Fig. 6 indicates that the assessment of spatial grid

resolution for the normal direction from grids 361 × 71 and 361 × 141 is less satisfactorily resolved.

Although the grids have the same normal spacing of the first grid point at the wall as indicated

above, its distribution in the near-wall region in the boundary layer and separated flow regions are

quite different. This produces significant changes in q and Cm on the downstroke as seen in Fig.

6(a) and Fig. 6(c). This suggests that although the 361-point grid in the _ direction is adequate to
give grid-independence solution, the results from the 361 × 71 and 361 x 141 grids show that the

71-points grid in the _/direction is not yielding a fully grid-converged solution. In fact, the differences

between the solutions from these two grids are no greater than the differences produced by various
turbulence models.
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For a central-differenced numerical scheme, the explicit numerical dissipation coefficient _c has

to be adjusted for each grid for accuracy. This is particularly true for unsteady flowfield calculations.

In contrast, the steady flowfield simulations are not as sensitive to the range of ct. used here.

Therefore, it is not surprising that even a finer grid in the normal direction has produced poor results

for these unsteady flows because of a single value of (_ used for all the grids. It appears that from
among the grids used here, the individual grids having 361 x 71 and 671 x 71 points are welt

matched with a dissipation coefficient of (_ = 0.05 to produce acceptable results. In fact. the

differences produced in the airloads by various grids are comparable to the difference seen for a
given grid using different turbulence models. It may be worth mentioning that alternative to using

a central-difference numerical scheme with added dissipation is to use a self-dissipative upwind-

difference method [24, 25]. Such methods are found to be less sensitive to grid variation.

A similar result of grid-sensitive study using the B B model is presented in Fig. 7 for the same

grids. These results are also calculated using the same values of At and c_ as those in Fig. 6. The

unsteady airloads here show less sensitivity to the grid size. As seen, the drag and pitching-moment
have better agreement with experiment for both upstroke and downstroke, but the lift on the

downstroke has very poor agreement with experiment indicating that the flow reattachment is not

complete until alter the upstroke begins, which is attributable to the property of turbulence model.

From these two grid refinement studies, the 361 x 71 grid was chosen as the optimum grid for a
given value of At = 0.0108 and _ = 0.05 and this grid is used for all further results presented.

Using the above mentioned arguements for selecting reasonable values for At, c_, and the 316 x 71

points grid, unsteady flowfield solutions are calculated using the five turbulence models. Figure 8

presents the unsteady airloads results from these solutions. Comparison of results for different

turbulence models reveal that every model behaves differently. The chief characteristic of all these
solutions is that all models produce trailing-edge separation. The B-L model (not shown in this

figure) produces the least separation. The lift, drag, and pitching-moment hysteresis curves for this

model are distinctly different from the rest of the solutions and, in particular, the lift and

pitching-moment are in poor agreement with experiment. The lift hysteresis curves for the J-K,
RNG, and S A models are in good agreement with experiments, although the RNG model has

slightly higher lift during the upstroke. In general, all models, except the B-L model, show good

agreement with each other and with experiment for the unsteady airloads for the upstroke part

of the cycle. As seen here, no one model has perfect agreement with experiment for all airloads.

The B-B model shows a very slow recovery process once the boundary layer is separated and the

reattachment is not complete until after the downstroke is complete and the upstroke begins.
Therefore, the lift stays very low until the upstroke begins. Although not apparent in the drag curve,

this is also seen clearly in the pitching-moment curve towards the end of downstroke.
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TheRNGandJ-K modelsproducenearlythesameextentof separationwhichismuchlarger
thanwhatthe B-B modelproduces.Theyalsoappearto havesimilarflow recoveryin the
downstrokemuchbetterthan the B-B model.Bothmodelspredictverysimilardragand
pitching-momentthatareinpooragreementwithexperimentforthedownstroke.TheS-Amodel
producesseparationsimilarinextentto theB--Bmodel,buthasgoodflowrecoveryjustlikethe
J K model.Thelift hysteresisfor thismodelis ingoodagreementwithexperiment,liketheJ-K
model,andthedragandpitching-momentareinbetteragreementwithexperimentthantheJ-K
modelbutnot asgoodastheB-B model.All themodelsexcepttheB-B modelpredictpoor
pitching-moments.The B-B model produces nearly the right amount of separation and, that is the

reason, it predicts pitching-moment correctly including its cusp-like behavior at the end of upstroke.
The hump-like behavior at the end of downstroke is the result of poor boundary layer recovery
due to slow reattachment as discussed before. In general, all models predict the unsteady airloads

reasonably well for the upstroke and they all behave differently during the downstroke. The B-B
model is the only model that predicts the pitching-moment in closer agreement with experimental

data except for the part at the end of downstroke but nicely recovers as the upstroke begins. No

leading edge separation initiating dynamic stall vortex was observed for this airfoil with any of the

turbulence models.
The NACA 0015 airfoil under investigation here, produces an unsteady flowfield separation

initially in the trailing edge region of the upper surface of the airfoil. As the airfoil pitches up,

during the upstroke of the oscillating cycle, the separation point moves upstream towards the
leading edge increasing the extent of separation. The dynamic stall vortex is initiated within the

separated flow region. Such an observation has been also made in a recent study of oscillating
NACA 0015 airfoil by Ko and McCroskey [27]. This feature appears to be in contrast to the
observations made for the NACA 0012 airfoil in similar oscillating environment. It is well

documented for NACA 0012 airfoil by McCroskey et al. [23] and Chandrasekhara et al. [26] that

the dynamic stall vortex is initiated by the leading edge separation under similar conditions. The

phenomenon appears the same for this NACA 0012 airfoil whether the boundary layer is tripped
in the leading edge region or not. The difference between the two airfoils is the difference in their

leading edge curvature. Therefore, the reason for the attached flow scenario for NACA 0015 airfoil
is the slow accelaration of flow around the leading edge region compared to NACA 0012 airfoil

at the same flow conditions.
There are also differences due to the compressibility for the two airfoils. It has been observed

in the studies of Ref. [26] that shock waves are produced in the leading edge region for NACA
0012 airfoil when the airfoil is pitched to angles exceeding 14° during the upstroke of the oscillatory

cycle for M, greater than 0.3. These shocklets in the leading edge region trigger flow separation
and initiate the formation of a leading edge dynamic stall vortex which will subsequently dominate

the flow during the rest of the oscillatory cycle. In constrast, there is no evidence from either

experiments or computations of the presence of shocks or boundary layer separation in the leading

edge region for the NACA 0015 airfoil. The only place where separation originates for this airfoil
is in the trailing edge region. This observation holds true even for results presented later for larger

mean angle cases.
Figure 9 shows the harmonic components of unsteady pressures calculated for this light-stall case

using the J K and B-B models. All four parts of this figure are different from those of the preceding
attached flow case for % = 4° shown in Fig. 3. The large changes seen in these curves can be

attributed to the nonlinear behavior of the flow at this mean angle of ct0 = I 1°. The two models

predict very similar mean and in-phase components. But the very different pitching-moments

produced by the two models is apparent in the out-of-phase component.

(c) Deep-stall cases: _(t) = 15° + 4.2 ° sin(cot) and ct(t) = 17° + 4.2 ° sin(cot)

In contrast to the light-stall with mild trailing-edge separation seen for ct0 = 11° case, the deep-stall

cases for 7o = 15 and 17"j are dominated by massive flow separation and highly nonlinear flow

behavior. The boundary layer separation that originates in the trailing-edge region, during the

upstroke of the oscillatory cycle, continues to spread upstream as the airfoil motion changes
to downstroke. The unsteady flow behavior in this regime is characterized by the shedding of a

large vortex-like structure during the downstroke of the cycle. This structure convects over the
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upper surface of the airfoil and leaves the trailing edge before the downstroke part of the oscillatory

cycle is completed. As a result, unsteady airloads far in excess of the static counterpart are generated

during the upstroke and large amounts of hysteresis occur during the remainder of the cycle. The
scale of the viscous-inviscid interaction zone is also large, producing a viscous layer thickness of

the order of the airfoil chord, particularly during the vortex shedding process.

Figure 10 shows the calculated lift, drag, and pitching-moment hysteresis loops for the ct0 = 15°
case using different turbulence models. The results are also compared to experimental data. For
reference, the B-L results are also shown for this case. Examination of individual curves reveals

the following behavior. The lift hysteresis is in general agreement with calculations for all

turbulence models except for the B-L model which shows an oscillatory-type behavior for the loads

during downstroke. All models show very good agreement with each other and with the experiment

for the upstroke lift curve. There are differences in the size of the dynamic stall vortex produced
by each model and its convection downstream. Nevertheless, there are only minor differences in

the downstroke lift curves for these models. As before, the B-B model shows clearly that it is slow

in the recovery and reattachment process. As a result, the lift stays lower compared to the

experimental value and the recovery is not complete until the airfoil changes its attitude from
downstroke to upstroke motion.

Reasonably good agreement of lift curves with experiment is not an indication to how the drag

and pitching-moment are predicted. Unlike the light-stall results for drag and pitching-moment of
Fig. 8, the deep-stall case shows a steep increase in drag and (negative) pitching-moment towards

the end of upstroke of the oscillatory cycle. The J-K model which predicted good lift and drag
curves for mean angles of % = 4 and 11° also shows good agreement here for lift hysteresis with

experiment, but predicts less than satisfactory drag and pitching-moment hysteresis curves.

Examination of instantaneous particle flow pictures of flow for different airfoil positions during
the downstroke reveals that the dynamic stall vortex leaves the surface much sooner for the J-K

model than what other models predict. Except for the B-L and J-K models, all other models have

good qualitative agreement of drag and pitching-moment hysteresis with experiment as shown in
Fig. i0.

The behavior of the instantaneous surface pressures during the oscillatory cycle is shown in

Fig. 11 for the upper surface of the airfoil for the B-B model. As seen in this figure, the leading-edge
suction peak continues to rise through the upstroke without stall. The peak angle of attack at the

end of upstroke is 19.2 _'. This angle is about 6_ above the static stall angle for this airfoil, and the

unsteady effects extend the dynamic lift beyond the static stall angle. The leading-edge suction peak
suddenly collapses immediately after the airfoil starts the downstroke, as revealed by the surface

pressure distributions. Another revealing feature of this plot is that the vortex shedding phenom-
enon manifests itself in the pressure distributions on the downstroke.

The harmonic components of the unsteady pressures for the B-B model are presented in

Fig. 12. Three of the four components are very different from those of the light-stall case presented

in Fig. 9 and also of the unseparated flow presented in Fig. 3. Only the mean-component is
qualitatively similar in shape to Fig. 9(a). The in-phase, out-of-phase, and the second harmonic

components are all changed due to massive separation and the presence of a large-scale dynamic
stall vortex. The growth of the second harmonic indicates the flow to be highly nonlinear.

The various turbulence models produce different sizes of dynamic stall vortex and separated flow.
An examination of the loci of the flow reversal point (x_) on the upper surface of the airfoil,

presented in Fig. 13, shows the extent of reversed flow to vary widely at any given instant of the
oscillatory cycle. The B-L model produces the smallest extent of reversed flow over most of the

cycle whereas the B-B model produces the largest extent of reversed flow. The position indicating

0° phase denotes the mean angle of oscillation. It is apparent from this figure that the B-B model

completes the recovery process on the upstroke only when it reaches approximately the mean angle.
For the large part of the cycle, from 15° upstroke to 15° downstroke, the RNG, B-B, and S-A

models predict nearly the same extent of reversed flow. The massive reversed flow regions clearly
increase the unsteady-lag effects.

Figure 14 shows a four-part figure of the instantaneous snapshot of the flowfield during the
oscillatory cycle computed by the B-B model. The evolution of the flow depicted clearly identifies

the dynamic stall vortex and the extent of flow separation. The flow which separates in the
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trailing-edge region during the upstroke cycle continues to increase in extent by moving the flow

reversal point, S, upstream towards the leading-edge region as the airfoil continues to be pitched
up. As seen in these snapshots, the dynamic stall vortex has peaked in its size around 17°

downstroke and from then on it prepares to shed by moving the flow reversal point away from
the leading edge.

Another way of demonstrating the performance of the various turbulence models is through the

examination of instantaneous flow pictures at any given phase in the oscillatory cycle. For example,
Fig. 15 shows instantaneous streamline particle flow pictures for all turbulence models correspond-

ing to the instant when the airfoil is at 16 '_ on the downstroke. The three models, RNG, B-B, and

S-A have very similar dynamic stall vortex structures at this instant. The B-L model has a complex

pattern with primary and secondary vortices, whereas the J-K model has already shed the primary

vortex at this time. All models produce multiple vortices at slightly different times during the
downstroke. The B-L model also produces a small bubble in the leading edge region, identified

as S I, when the airfoil has reached 14.5 '_in the upstroke. This bubble stays distinctly separate from

the region containing the dynamic stall vortex and eventually merges with this at about 15°

downstroke. The locus of the reverse flow points shown in Fig. 13 is for the point marked S in
Fig. 15(a).

The instantaneous streamline pictures of Fig. 15 are used only for qualitative comparison of
different turbulence models. In fact, such a representation of flow appears to be misleading as it

does not depict the correct picture of the unsteady flow compared to streaklines pattern. Such a
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Fig. 11. Calculated unsteady surface pressures during an oscillatory cycle for the flow conditions of

Fig. 10 using the B-B turbulence model.
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Fig. 14. Instantaneous streamline patterns at four different time instants during the oscillatory cycle for

the B B turbulence model and for the flow conditions of Fig. 10.
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Fig. 15. Comparison of instantaneous streamline patterns for different turbulence models at 16 °

downstroke during the oscillatory cycle for the flow conditions of Fig. 10.
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Fig. 16 Instantaneous streakline pattern for flow at 16 downstroke using the Baldwin Barth model and
for the flow conditions of Fig 15

streakline pattern is generated by releasing particle elements at various locations in the flowfield

and subsequently convected with local flow similar to the experimental flow visualization studies.
Two hundred time frames of flowfield data were saved from the second oscillatory cycle and

streaklines were constructed using the UFAT [28] program. Figure 16 shows a view of the streakline

pattern of the flow picture shown in Fig. 15(d) at 16_'downstroke for the B B model. As seen here,

the flow pattern and the details shown by the streaklines are phenomenally different compared to
Fig. 15(d). The large-scale dynamic-stall vortex (VI), the pairing of vortices downstream of

trailing-edge (V2), and a diffused pair of vortices further downstream of this (V3) is something that

is not apparent from the instantaneous streamline patterns of Fig. 15(d). Therefore, it is necessary

to be cautious in interpreting instantaneous steamline patterns of unsteady flowfield.

A second case of deep-stall considered is for the mean angle of % : 17 , This flow was calculated

using both 10,000 and 20,000 time-steps per oscillatory cycle. It appears that for this deep-stall case
at least 15,000 time-steps are needed to capture the important details of the flow. The results of

unsteady airloads presented in Fig. 17 are calculated using 20,000 time-steps. Comparison of

calculations with experiments show that all models predict the lift hysteresis fairly accurately,
although the RNG and the J-K models show oscillatory behavior during the downstroke. The

flowfield on the airfoil for the downstroke part of the cycle is very complicated. The calculated

results are slightly shifted from the experimental data and every model predicts separation at a

different instant on the upstroke. Nevertheless, they all reproduce the details of the lift hysteresis

correctly. The J-K model predicts C'_ and C_ loops that are incorrect both for the upstroke and
downstroke. Although the S A model has the right trends for drag and pitching-moment, it

produces separation too early, with the result it underpredicts the peak drag and pitching-moments.

The B-B model calculates all the three components fairly accurately. The RNG model has good

predictions for the upstroke but has oscillatory behavior for the downstroke. Although the

hysteresis curves predicted by the B B model are slightly shifted from the experimental data, it has
demonstrated superior performance for this flow condition in predicting all unsteady airloads

correctly.

The B-L model is the most commonly used of all the models in computational methods and is

the least expensive computationally. The RNG model closely follows it and is about 3% more

expensive. The B-B model is the most expensive of the models used here and costs about 22% more

than B-L model. The J-K and S A models are respectively 9 and 18% more expensive than B L
model. The B-L model accounts for 12.3% of the total CPU of the numerical code. For the

turbulence model part alone, the B-B model is about 2.5 times more expensive compared to the
B-L model.

CONCLUSIONS

The unsteady, two-dimensional flowfield of an oscillating NACA 0015 airfoil is calculated using

an implicit, finite-difference numerical method for the solution of the Navier-Stokes equations with

an intent to evaluate the accuracy of five widely used turbulence models to calculate the unsteady

separated flows of dynamic stall. Several unsteady flow conditions corresponding to attached flow,
light-stall, and deep-stall cases of an oscillating wing experiment were chosen as test cases for

calculations. First a combination of grid, time-step size, and an explicit dissipation coefficient (_)

was selected based on the accuracy of solution and robustness of numerical code. The uncertainties
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associated with the selection of _e and grid clustering in the r/direction were found to be comparable

to the differences among various turbulence models. All calculations were performed with one set

of these selected parameters.

The unsteady attached flow calculated with the RNG, the J-K, and the S-A models has good
agreement with experiments for lift, drag, and pitching-moment hysteresis. The B-L model

performs poorly. The B-B model also predicts lift and pitching-moment hysteresis poorly for this

attached flow case, but it has superior performance for other cases involving flow separation.

The light- and deep-stall results are mixed. Not even one turbulence model predicts results that

are consistent and in agreement with experiments over the three flow regimes. For the light-stall
case, the RNG, the J-K, and the S A models overpredict the extent of separation and therefore

the airloads have good agreement only for the upstroke. They have a good qualitative agreement

for lift and drag hysteresis for downstroke, but they fail to predict pitching-moments correctly. The

B-B model predicts lower lift than experiment for the downstroke because of slow flow recovery.
But the drag and pitching-moment are better predicted than other models. For deep-stall cases,

the RNG, the B-B, and S A models all predict qualitatively correct airloads hysteresis, although

the RNG model yields oscillatory solution during the downstroke for the extreme deep-stall case.

For the J-K model, on the other hand, the results of drag and pitching-moment hysteresis are not

even qualitatively correct for the downstroke.

Overall, the one-equation models provide significant improvement over the algebraic and
half-equation models. The RNG model provides some improvement over the B-L model for nearly

the same computational cost. Among the models considered here, the B-B model is the most
expensive and costs about 1.22 times the B L model. The B-L model accounts for 12.3% of the

total CPU time of the flow solver. Finally, visualization of unsteady flowfield by streaklines is more

cumbersome but better and is consistent with the flow visualization experiments.
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