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In their quest to get a better understanding of how the atmosphere behaves, scientists are getting

more and more of their information from air samples taken from high flying aircraft. Because of

the increasing influence of man-made pollutants and their potential ultimate impact, there is

urgent need to understand the detailed chemistry and dynamics. The highest priority is to get in

situ measurements at altitudes above 73 kft to over 80 kft especially within 12 degrees of the

Equator. The most useful information comes from relative correlations between the different

concentrations of chemical species that are observed; this dictates that each sample be subject to

several different simultaneous measurements (the sample must be analysed aboard the aircraft

immediately while fresh). As a minimum soundings are required:

a.) from the tropopause to a minimum of 83 lift

b.) at latitudes including the both the tropics and mid latitudes.

c.) several repetitions in a time scale that is short compared to the seasonal variations

(i.e., about 1 month).

To obtain useful ensembles of concentrations the soundings must be taken at many specified

locations in the upper atmosphere, at specific times dictated by science opportunity. While

instrument settling times require the air platform to traverse maximum altitude for at least 30

minutes at the selected location (the minimum acceptable), more useful ensemble information is

gained by traversing maximum altitude along the entire path from base to the selected location

(this is preferred).

These science priorities have driven the requirements summarized in Table I for a new

atmospheric science aircraft (1). The aircraft will be unmanned because:

a.) the science mission now appears achievable by a remotely piloted aircraft

b.) the extreme altitudes and distances over water are more hazardous to a pilot than the

mission should warrant

c.) the weight of pilot and associated life support equipment equals or exceeds the payload,

to the extent that unmanned operation can reduce aircraft size, weight, and cost.

This new aircraft is a primary goal of NASA's Environmental Research Aircraft and Sensor

Technology (ERAST) Program being carried out by NASA and four builders of high altitude

unmanned aircraft (the ERAST Alliance).



As Table I indicates, unusual performance capability is needed for this aircraft. A payload

capacity of several hundred lbs is needed to carry all the instruments (the 150 kg specification is

not a nominal value but represents a minimum below which scientific utility is compromised),

and it has to fly far enough to reach the location of interest from base (at least 1000 km range is

needed, but more is better). Because of the limited opportunities that are available for

atmospheric observations, the aircraft is expected to be able to fly at any time of the day during

any season, from any developed airfield worldwide.

Table I Atmospheric Science Aircraft Requirements

MissionProfile

A: MinimumAcceptable
B: Preferred

100kft-

80kft -

60kft-

MissionAltitude 83,000ft.
OperationalRadius 1000km
PayloadWeight 150kg
PayloadElectricalPower 1.5kWe
PayloadThermalControl 1.5kWt @25C
PayloadAccommodation Accessto UndisturbedFreeStream
Enduranceat MissionAltitude A: minutes B: hours
AirspeedRanqe 0.4 < M < 0.85
OperationalConstraints

CrosswindCapability
Deployment

r

B

Can operateinmoderateturbulence.
Operationin ambientair temperaturesto -100C.
Takeoff& landinginmoderatecrosswinds(min.15knots)
To remotebaseof operationsat airfieldsworldwide

The vehicle must also be low cost so that it can be maintained and operated for the science

community within today's budget limits. That means its systems should be based on industry-

supported, current production, commercially available hardware to the maximum extent possible.

New technology development must be limited to only the most critical components, relying

mainly on adaptations of existing hardware transferred from other applications. No mean feat,

since this aircraft is expected to routinely fly higher than any subsonic aircraft has previously

flown in order to collect the data. A subsonic (not supersonic) aircraft is required because some

of the most important chemical species sampled are so delicate that they are destroyed by the

aerodynamic heating and shock associated with supersonic flight.

That presents a challenge -- while there are many aircraft available that fly slowly at low

altitudes, and there are high performance aircraft that can fly over 80,000 ft at supersonic speeds

(very high power is required but jet engines are capable) there are no aircraft presently available
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that fly higher than about 73 kft subsonically. Because of Nature's exponential lapse of ambient

density and pressure with altitude (as reflected in Fig. 1) the dynamic pressure available to a

subsonic aircraft at > 80 kft altitude is limited; there is not enough to sustain wing loadings

beyond the range 15-25 psf. Unable to utilize shock waves to maintain wing loading, an aircraft

designed for the atmospheric science mission must therefore be lightweight with wing loading

more like a sailplane than a powered aircraft.
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The biggest challenge is propulsion--especially problematic since the cardinal rule for new aircraft

success is to avoid propulsion development if at all possible. Because of the limited dynamic

pressure available to a subsonic aircraft at > 80 kft, the relative lack of inlet pre- compression

dictates that turbomachinery, not forward speed, must be employed to supply the intake

pressurization required for air breathing engines.

The additional turbomachinery makes a heavy propulsion system. To operate at > 80 kft several

stages of compression are required to ingest and compress the low density ambient air into

useable combustion medium / working fluid. Half an atmosphere is typically required to sustain

combustion in a turbine engine, while reciprocating engines need slightly over 1 atm to develop

rated power. As Fig. 1 shows, the combustion air supply for either engine will need to sustain

overall pressure ratios (OPR's) greater than 40 to 1 in order to develop rated power at 85 kft.

Since power is proportial to mass flow, maintaining rated power at progressively higher altitudes

translates to exponentially increasing flow volumes, and correspondingly enlarged capture areas

as the OPR is increased. The weight growth is correspondingly nonlinear. Since the ingested air

gets heated as it is compressed, raising OPR also generates additional heat loads which must be

dealt with.



The density lapse also reduces heat transfer, which makes thermal rejection increasingly

problematic with altitude. Any fixed size body (aircraft wing, inlet, compressor impeller, heat

exchanger etc.) that traverses from sea level to 80 kft will experience a five fold decrease in

Reynolds number (Re), while convective heat transfer drops more than ten fold. For powerplant

heat exchangers this produces conflicting trends: more powerplant heat rejection as the

compression heat load rises, versus the rapidly diminishing heat transfer available at higher

altitudes. Fig. 2 shows how a typical aircraft engine coolant heat exchanger's weight and frontal

area must increase in order to reject the same heat load compared to a sea level unit the calculation

takes into account the colder air temperatures at altitude.
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The net result is that, for subsonic flight, a high altitude propulsion unit is significantly larger and

heavier for the same output compared to a low altitude unit. To complicate matters further, the

high altitude aircraft needs to have a more powerful propulsion unit because it must go faster at

altitude in order to support its own weight (maintain wing loading). As a result, the propulsion

system will claim a greater fraction of the airplane's gross weight. This trend unfortunately runs

counter to the airplane's ability to carry the weight.

Given these drawbacks, a non airbreathing propulsion system might be considered since it is not

subject to the same limitations (no need to breathe and process ambient air). However, if it is

combustion driven (such as rockets or expander engines) the airplane needs to carry oxidizer as

well as fuel. The non airbreathing engine may not weigh very much but it consumes its
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propellants in flight at a very rapid rate (oxidiser mass flow is typically four to five times fuel

flow) so that propellent mass becomes a large fraction of aircraft weight, and flight duration will

be limited compared to air breathing systems. As the propellants are consumed in flight,

however, the aircraft will become progressively lighter, theoretically allowing higher altitudes

than achievable with air breathing propulsion. The maximum altitude depends on the engine's

specific propellant consumption, which must be low enough that the desired altitude is reached

before all propellents are consumed. Studies carried out by NASA Ames in support of ERAST

(1) showed that a specific propellant consumption less than 4.5 lb/HP-hr has to be realized in

order for an RPA to fly a single excursion from sea level takeoff to 35 minutes at 80 kft. Fig. 3

compares the trajectories achievable for propulsion based on some hypthetical non-airbreathing

expander engines versus the heavier but less thirsty airbreathing (turbocharged reciprocating

engine) powerplant. Since known combustion expander engines have significantly higher

consumption rates (6 - 12 lb/HP-hr), and since the atmospheric science mission needs duration

and range beyond a single excursion, the
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Fig. 3 Trajectories, Air Breathing vs. Non Air Breathing

combustion driven non airbreathing machine is precluded from further consideration (unless a

specialized expander engine with lower spc were developed).

A non air-breathing system that does not consume propellant might be of interest. For example a

solar electric aircraft has been shown capable of climbing to appreciable altitudes when its flight

is timed to coincide with sunlight availability (the current record is 50 kft set by the

Aerovironment Pathfinder in 1995; flights beyond 70 kft are presently anticipated for this

aircraft (2)), and future developments in energy storage technology may herald an unlimited



durationflight dependingon the locationandtimeof year. However,thediurnal variationand
diffuse natureof sunlight imposesrestrictionson the latitude, seasonand time of day a solar
aircraft canbe flown andrender it unableto carry appreciablepayloads(the solar array only
developsaboutten useablewattspersquareft of wing area)in anaircraftof reasonablephysical
size. Thereforethe solaraircraft isnot suitedfor thisparticularmission.

Becauseof the rangeand payloadrequiredfor the atmosphericsciencemission, air breathing
propulsion is still the logical choice. Mission studiesconductedby Ames (1), supportedby
propulsionsystemstudiesat Lewis, haveshownthat a prototypeaircraft constructedof modem
structuralmaterialsand equippedwith a high altitude specific OPR engineshouldbe able to
achieve85kft cruisealtitude.

Themostlikely candidatesfor theERASTaircraft were a.) turbine engines and b.) turbocharged

reciprocating engines. At 85 lift the distinction between the two becomes somewhat blurred

since the turbocharged IC could be considered as a specialized varient of a turbine engine whose

combustor is replaced by an reciprocating engine core. It is of course the turbine engine which

has in most cases surpassed the reciprocating engine and enabled present day high altitude flight

performance to be achieved, including supersonic flight. Some turbine-powered aircraft (see

Table II) have demonstrated subsonic flight that approaches the desired altitudes and one of

Table II Previous High Altitude Subsonic Aircraft

Aircraft Original Purpose Altitude Propulsion Science Platform
Destination (and year flown) Record System Used Availability

WB-57 highaltitude 65,876 ft. Bristol NCAR
strategic 8/29/55 =Olympus" atmospheric

bomber (1949) turbojet science

ER-2 highaltituderec- 73,200 ft. GE-F118 NASA atmospheric
onnaissance (1955) 8/4/95 turbofan science

AQM91M high altitude >81,000 ft. GE-J97-3 military only,
Compass reconnaissance Sept. 1969 turbojet no longer exists

Arrow (1969)

Grob Egrett high altitude science 53,055 ft. Garrett TPE331 DoEatmospheric
aircraft (1988) 9/1/88 turboprop science

Boeing high altitude science 67,028 ft. 2 stage turbo- military only,
Condor reconnaissance 2/15/89 charged spark no longer exists

(1989) ignition engine

Grob
Strato 2C

atmospheric
science

(1995)

60,867 ft.
8/4/95

3 stage turbo-
charged spark
ignition engine

DLR (Germany)
atmospheric

science

them, the Viet Nam era AQM91 Compass Arrow spyplane, arguably demonstrated that

capability more than 25 years ago (3). Powered by a special design turbojet engine (the General

Electric J97, shown in Fig. 4), Compass Arrow could achieve > 80 kft flying at M = 0.83



WaSLS = 66.2 Ibm/s

OPRsLs = 11.5

FnM=.83@80k = 184 Ibf

SFCM=.83@80k= 1.298

Weightdry = 694 Ib

Fig. 4 General Electric J97 Turbojet

airspeed (the minimum speed giving enough inlet precompression to keep the combustor lit at

that altitude). Proposals to develop a new variant of this aircraft using J97 hardware left over

from the original Compass Arrow program have been considered by NASA. There remain

twenty-four J97 pre-production prototype units (not fully qualified) which were surplussed to

NASA following the Air Force's decision not to pursue system acquisition; these are in storage at

Ames Research Center.

The advantage of gas turbine power is that the high specific power (HP / lb) which it can develop

allows high speeds and relatively high wing loading to be maintained, which reduces the aircraft's

susceptibility to winds and turbulence at lower altitudes and makes for shorter flight times to

conduct the mission. The disadvantages are higher fuel consumption (less range) and

the exponential thrust lapse that occurs with altitude. As the air density drops the turbine engine

will ingest correspondingly smaller amounts of air resulting in less power and less thrust; this

eventually leads to combustor flameout. Fig. 5 (solid line) shows a power lapse curve typical of

turbine engines illustrating this trend. As an example, the Compass Arrow's turbojet engine,

capable of over 5,000 pounds of thrust at sea level, would produce only 184 pounds of thrust at

80,000 ft (Mach no. = 0.85) and would be operating on the verge of flameout.

It would be possible to design and develop a new jet engine specifically for higher altitudes

(85,000 feet) using present day materials and turbine technology. It would need to incorporate

a high pressure ratio compressor (25:1 to 35:1) and wide chord blades (to minimize Re effects),

and probably a stabilized pilot flame combustor (perhaps using a secondary fuel such as

hydrogen) to prevent flameout at high altitudes. The design would have more turbomachinery

stages and larger flow area (wheel diameters) than the J97, resulting in a higher OPR, and some

appreciable thrust, at 85,000 ft. However, as Fig. 5 also illustrates (dashed lines and shaded
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region), this engine would be larger and heavier than the J97. Preliminary design of such a small

turbojet, capable of subsonic flight up up to about 90 kft (Fig. 6), has been investigated.

WaSLS = 86.6 Ibm/s

OPR = 30

Fngok = 120 Ibf

SFCg0k = .815

Wt = 902 Ibm

63" r 1

Fig. 6 Very High Altitude Turbojet Preliminary Design for ERAST

Development of this specialized design (or any new design for that matter) would be expensive

(for example, the J97 engine cost approximately $60M to develop during the mid 1960's; a sum

roughly equivalent to $300M today). Because of the costs, development of a new jet engine is

usually not undertaken unless there is a large market anticipated. The atmospheric science

aircraft market is tiny; therefore the only turbine engine available for ERAST would be a J97 unit

rebuilt from the remaining inventory of prototype hardware that never became a manufacturer-

supported product.

The other alternative is a propeller driven unit powered by a turbocharged reciprocating engine.



These have long been considered attractive power plants for subsonic flight at high altitudes. As

Fig. 7 illustrates, a propeller provides high propulsive efficiency because of its large capture area,

which in turn enables high altitude flight at slower airspeeds and reduced fuel consumption.

A diagram oft_he three stage system characterized for ERAST is shown in Fig. 8. Because there
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is an existing technology base of mass-produced automotive and general aviation hardware that

can be adapted for this purpose, it is possible to develop a turbocharged power plant with its

core engine and turbocharger/intercooler system at much lower cost than a jet engine. Several

multiple stage turbo/supercharging systems have already been demonstrated either in high altitude

flight or in altitude test chambers. Table III provides a summary of the test and flight capabilities

and accomplishments of these systems to date.

The reciprocating engine type that develops the most horsepower for the least weight at 80 kft is

the "old fashioned" spark ignited gasoline engine, with multiple stages of turbocharging to

pressurize the intake manifold to sea level values. What gives the gasoline engine its edge is that,

of all internal combustion engines, it bums a nearly stochiometric fuel air mixture; that is, it

actually bums most of the air it ingests. Fig. 9 illustrates the impact of specific air consumption

on turbomachinery sizing. Because stochiometric combustion minimizes specific air

consumption, spark ignition engines require smaller turbomachinery to pressurize the core

engine's induction air than diesel engines of equivalent shaft power, and significantly smaller size

than gas turbine engines. The spark ignited engine's exhaust gases are



TEALRAIN

Condor

Strato2C

RaptorD2

PerseusB/
Theseus

Altus

Developer

Thermo
Mechanical
Systems
(TMS)

Boeing
Teledyne
Continental
Motors

Grow
IABG/
DLR

Scaled
Composites/
TMS

Aurora

Flight
Sciences

G,A.

Aero/
TMS

Table III TurbochargedReciprocatingEngines

Core

Engine
Used

3 Cylinder
Drake
36.6cid

6 Cylinder
Continental
350cid

6Cylinder
Continental
550cid

4 Cylinder
ROTAX
74cid

4 Cylinder
ROTAX
74 cid

4 Cylinder
ROTAX
74 cid

No.of
Stages/
Turbo
Mf'r.

3 Stages/
TMS

2 Stages/
Teledyne
Continental

3 Stages/
IABG/P+W/
Garrett

2 Stages/
"]'MS

3 Stages/
Garrett

2Stages/
I-MS

RatedHP
Demo@

RatedAIt.

70HP
@65kft
Feb.1982

182HP
@67kft
Feb.1989

400 HP
@78kft
Dec.1994

103HP
@54kft
Jan. 1996

73 HP
@59kft
May1994

103HP
@54kft
Jan.1996

Highest
Recorded

GroundTest
Performance

47HP
@90 kft
Mar.1982

datanot
available

308 HP
@82kft
Apr.1995

47 HP
@70kft
Jan.1996

73 HP
@59kft
May1994

47 HP
@70kft
Jan.1996

Highest
Altitude

Achieved
in Flight

Ground
demo
only

67,028ft.
Feb.1989

60, 876ft.
Aug.1995

Not flown
yet

20,000ft.
Mar1996

Not flown

yet

also hot enough (1400 - 1500oF) to have enough enthalpy to provide the turbocharger

compressor work required for intake pressurization. As altitude increases and ambient pressure

decreases, the increasing pressure ratio across the turbocharger turbines increases enthalpy

extraction, roughly balancing the increased compressor loading.

Although the induction air flow for this engine is low, intercoolers must be used between

compressor stages to remove the heat of compression (otherwise the engine would detonate).

Heat rejection is complicated by the need to cool both core engine and intercoolers which must be

coupled into the air stream. On a per horsepower basis the overall airflow is roughly equivalent

to that of a gas turbine, but only the induction air (a tiny fraction) is compressed. The rest

passes directly through the heat exchangers.

The turbocharged propeller powerplant is more complicated than a jet. In addition to the

reciprocating core engine and turbocharger units, it has an air induction and exhaust system,

thermal management systems (with associated radiators, fluid hoses and couplings to reject heat

from the engine, one or two intercoolers and an aftercooler), an outside air inlet/duct system with

controlled exit doors to provide cooling air for the thermal management system, a drivetrain

subsystem consisting of a multi-speed gear box and variable pitch variable speed propeller, and a

coordinated propeller, throttle and waste gate control that matches propeller loads, engine

demand and turbocharger air supply. Operational reliability of a system consisting of so many

interconnected elements is a significant issue. Historically, turbocharged piston aero engines have
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required regular maintenance over operating intervals measured in tens of hours, and complete

overhauls after hundreds of hours. This contrasts with modem turbine engines, where

maintenance is performed after hundreds of hours operation, and thousands of hours between

overhauls.

ambient air

ambient air

ambient air exhaust

LP turl_
clm_jer

Fig. 8 Three Stage Turbocharged Powerplant for ERAST

Nevertheless the fundamental powerplant weight and performance trends discussed previously

favor the turbocharged propeller unit. This can best be illustrated by comparing selected

propulsion unit designs at 80 and 90 Eft altitude, and considering the propulsion unit's weight

(including drivetrains, propellers and heat exchangers), its delivered thrust in the flight regime

indicated (chosen to best advantage for each type), and the thrust specific fuel consumption

(TSFC) that results. The comparison presented in Table IV includes in addition to the small

turbojet and turbocharged piston engine design concepts which were characterized for ERAST,

data for both the J97 and the German Strato 2C's turbocharged powerplant (4,5), which was

successfully demonstrated to 85 kft in an altitude chamber. The data show that while a

turbocharged propeller unit will be slightly heavier on a per lb of thrust basis than a turbojet at 80

kft, its TFSC will be less. If the comparison is repeated at 90 kft, however, the mrbocharged

unit enjoys both better specific weight and better TSFC.

11



Table IV Turbojets vs. Turbocharged Ic Engine

Powerplant/PropulsionSystem
(inletrecovery= 1.0)

@80 kft

J97 turbojet@M = 0.83

J97turbojet@M = 0.8

Newturbojet@0.5<M<0.85

Strato2C (3stageTCSI) @M--0.5

80K ERAST3 stageTCSI @M=0.4

@90kft

Newturbojet@0.5<M < 0.85

90KERAST3stageTCSI @M=0.4

Uninstalled
Weight

Including
Propeller

715Ibm

715Ibm

Delivered
Thrust

184Ibf

Flameout

Specific
Weight

3.9 Ibm/Ibf

..°

Specific
Consumption

1.3 Ibrn/hrper Ibf

920Ibm

2457Ibm

587Ibm

190Ibf

360Ibf

91Ibf

4.8 Ibm/Ibf

6.8 Ibm/Ibf

6.5 Ibm/Ibf

0.8 Ibm/hrper Ibf

0.44Ibrn/hrper Ibf

0.44 Ibrn/hrper Ibf

920 Ibm

667Ibm

120Ibf

9OIbf

7.7 Ibm/Ibf

7.4 Ibm/Ibf

0.8 Ibm/hrper Ibf

0.44Ibm/hrper Ibf

Although the turbocharged engine may exceed a gas turbine's altitude potential in low speed

flight, its service ceiling in an aircraft is still ultimately limited by the increased size and weight of

the (ever more complicated)turbomachinery and heat exchangers (weight, frontal area and drag)

required to maintain performance at altitude. Fig. 10 shows the overall weight trends that result

for turbocharged spark ignited powerplants. Weight growth is nonlinear - at altitudes approaching

90 kft the power plant will be too heavy to be carded by the wing loading available (the no fly

zone.)

In 1996 the EKAST Alliance began a process to define the prototype of a remotely piloted

science aircraft which will flight demonstrate the science mission capability summarized in Table

I. This aircraft, known as HADur (for High Altitude Duration), will be propeller driven powered

by turbocharged spark ignited engines. The Alliance selected this form of propulsion because:

a.) the Ames and Lewis mission / propulsion studies indicated a propeller driven aircraft

powered by turbocharged spark ignited engines can meet the Table I requirements, and may

be able to achieve slightly higher cruise altitudes than other candidates.

b.) most of the industry partners' experience is with this form of propulsion

c.) a mission specific propulsion unit could be developed within the time and budget
constraints of ERAST.
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Since no other user community has requirements equivalent to the atmospheric science needs, the
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>80 lift subsonic propulsion capability will have to be developed entirely within NASA's limited

resources. Fortunately there is a technology base of commercially available hardware for the

turbocharged propeller powerplant, and the most critical components have recent hardware

heritage that can be directly utilized.

Present development is focussed on a three stage turbocharged powerplant using the four

cylinder ROTAX 912 engine core. This low cost aero engine is in current production, has

factory technical support available, and due to the excellent reputation for durability it has

already developed, enjoys widespread use among RPA and experimental "homebuilt" aircraft

builders. The three stage turbocharger system is being developed by ThermoMechanical Systems

(TMS) of Canoga Park CA, a small company with considerable previous background in

turbocharger development and engine installations.

It was TMS who, under the formerly classified TEAL RAIN RPA technology development

program that preceeded Condor in the early 1980's, successfully demonstrated operation of a

three stage turbocharged (45 cid 3 cylinder) experimental engine producing 55 HP at 90 kfl

simulated altitude in a dynamometer equipped mechanically exhausted chamber (6). TMS later

applied the intermediate pressure and high pressure stage hardware from TEAL RAIN to a

ROTAX 912 core engine for demonstration of a two stage turbocharged engine for small high

altitude long endurance (HALE) vehicles under the Ballistic Missile Defense Organization's

RAPTOR program (an effort to develop HALE RPA's for launch detection of land mobile

missiles; the Raptor aircraft and TMS hardware were transferred to NASA's ERAST program in

1995 as BMDO attention was shifted away from airborne surveillance systems to terminal

defense). Further development eventually resulted in the two stage system producing 100 HP

at 54 kft lapsing to 62 HP at 70 kft in the dynamometer altitude chamber.

TMS is now extending the Raptor engine to higher altitudes by adding the original TEAL

RAINIow pressure stage, suitably modified to accommodate the ROTAX core engine's airflow

requirements. TMS is now integrating the core engine and three turbochargers with the intent of

producing, in the TMS chamber, a demonstration of at least 80 HP at 80 kfl, a performance goal

that directly addresses the science aircraft propulsion requirements. Fig. 11 is a photograph of

the test article.
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Fig. 11 Three Stage Turbocharged ROTAX 912 in TMS Chamber

This demonstration will be an important milestone but will not immediately result in a high

altitude flight since the test article is a breadboard demonstration of critical hardware not the

entire propulsion unit which has yet to be developed. Work that remains includes the balance of

plant (inlets, exits, and ducts, heat exchangers, automatic controls etc.) and propeller/drivetrain

development. Some of this work is already underway. High altitude low Reynolds number air

cooled heat exchangers are presently being researched by NASA Lewis and a consortium of five

heat exchanger manufactures led by the Ohio State University Research Foundation. Nacelle and

inlet aerodynamics are being researched by groups at NASA and Old Dominion University.

Definition of the 80 kft propeller has also begun between NASA and the Alliance partners.

Drivetrain and propeller development is considered a unique challenge since at altitude the

propeller operates in a low Rn high tip Mach no. regime. In traversing the altitudes from sea

level to >80 kft it will, in spite of variable pitch, be subject to speed variations greater than 2 x --

as a result there will most likely be a multiple ratio reduction drive from the powerplant.

After all this propulsion hardware has been developed and ground tested to ensure it "works as

advertised" it will be eventually integrated into the HADur airframe design leading to the ultimate

objective of the ERAST propulsion development: flight demonstration of science mission

capability.

REFERENCES

1. Report of the Environmental Research Aircraft and Sensor Technology (ERA.ST)Program

Leadership Team, "A Review of Remotely Piloted Aircraft (RPA)Technology Required for High

Altitude Civil Science Missions", National Aeronautics and Space Administration, Washington

DC March 1996

2. M. Dornheim, "Solar Powered Aircraft Exceeds 50,000 Ft.", Aviation Week and Space

Technology, Sept. 18, 1995

15



3. W. Wagner and W. Sloan, "Fireflies and Other UAV's", Teledyne Ryan Aeronautical Co. San

Diego CA, June 1993

4. H. Tonksotter "The Strato 2C Propulsion System; A Low Cost Approach for a High Altitude

Long Endurance Aircraft", Industrieanlagen-Betriebsgesellschaft mbH, March 1994

5. Anon, "STRATO 2C Technical Description" Deutsche Forschungsanstalt fur Luft und

Raumfarht (DLR), November 1993

6. J. Harp, "Turbocharger System Development and Propulsion System Testing", TMS Report

No. SR-36, prepared for Developmental Sciences Inc. under Contract No. DSI-80-TR-SC-05-A,

ThermoMechanical Systems, Canoga Park CA May 1982 (declassified Mar 1994)

16





Form Approved
REPORT DOCUMENTATION PAGE OMBNo. 0704-0188

Public ml_ _ _ this collKtion d Infoernati_ is m_ to avera0e 1 hou¢per r_mlOOnse,knckJdb_the time for r_'N_ng instructions,=_tmrchingaKist/ng da_ source.
gatheringand rnalntainlngthe data needed, and completingand reviewingthe collectionol inforrnalton..S_ _.c_ts regardingth_ burdenes;ima=e or any other aspect of this
collectionol informalk)n, Including suggestionsfor reducingthisburden, to Washingtco HeadquartorsServcss, Directoratelor Inlormat=onOperatiocs and Rq:ortlk 1215 Jeffan_on
Davis Highway, Suite 1204, _, VA 22202-4302. and to the Office ot Managem_1 and Budget. Paperwork Reductio_Proje¢l (0704-0188), Wanh_gton, DC 20503.

1. AGENCY USE ONLY (Leave b/an/C) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

October 1996 Technical Memorandum

4. TITLE AND SuIwrITLE 5. FUNDING NUMBERS

Propulsion Selection for 85kft Remotely Piloted Atmospheric Science Aircraft

e. AUTHOR(S)

David J. Bents, Ted Mockler, Jaime Maldonado, Andrew Hahn, John Cyrus, Paul

Schmitz, Jim Harp, and Joseph King

7. PERFORMINGORGANIZATIONNAME(S)AND ADORESS(ES)

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

WU-537-10-20

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-10390

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TM- 107302

11. SUPPLEMENTARY NOTES

Prepared for AUVS196 sponsored by the Association for Unmanned Vehicle Systems, Orlando, Florida, July 16-19, 1996. David J.

Bents, Ted Mockler, and Jalme Maldonado, NASA Lewis Research Center; Andrew Hahn, NASA Ames Research Center; Moffett Field

Callfomia 94035; John Cyrus, Naval Air Warfare Center, Warmlnster, Pennsylvania 18974--0591; Paul Schmitz, Power Computing

Solutions Inc., Cleveland, Ohio 44111; Jim Harp and Joseph King, ThennoMechanical Systems Inc., Canoga Park, California 91303.
Responsible person, David J. Bent.s, organization code 5440, (216) 433-6135.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 07
This publicadon is available from the NASA Center for AeroSpace Information, (301) 621-0390.

12b. DISTRIBUTION CODE

13. ABSTRACT (Max/mum 200 words)

This paper describes how a 3 stage turbocharged gasoline engine was selected to power NASA's atmospheric science

unmanned aircraft now under development. The airplane, whose purpose is to fly sampling instruments through targeted

regions of the upper atmosphere at the exact location and time (season, time of day) where the most interesting chemisa'y

is taking place, must have a round trip range exceeding 1000 kin, carry a payload of about 500 lb to altitudes exceeding 80

kft over the site, and be able to remain above that altitude for at least 30 minutes before returning to base. This is a

subsonic aircraft (the aerodynamic heating and shock associated with supersonic flight could easily destroy the chemical

species that are being sampled) and it must be constructed so it will operate out of small airfields at primitive remote sites

worldwide, under varying climate and weather conditions. Finally it must be low cost, since less than $50 M is available

for its development. These requirements put severe constraints on the aircraft design (for example, wing loading in the

vicinity of 10 psf) and have in turn limited the propulsion choices to already-existing hardware, or limited adaptations of

existing hardware. The only candidate that could emerge under these circumstances was a propeUer driven aircraft

powered by spark ignited (SO gasoline engines, whose intake pressurization is accomplished by multiple stages of turbo-

charging and intercooling. Fortunately the turbocharged SI powerplant, owing to its rich automotive heritage and earlier

intensive aero powerplant development during WWII, enjoys in addition to its potentially low development costs some

subtle physical advantages (arising from its near-stechiometric combustion) that may make it smaUer and fighter than

either a turbine engine or a diesel for these altitudes. Just as fortunately, the NASA/industry team developing this aircraft

includes the same people who built multi-stage turbocharged SI powerplants for unmanned military spyplanes in the early

1980's. Now adapting hardware developed for reconaissance at 65-70 lift to the interests of atmospheric science at 80-90

kft, their efforts should yield an aero powerplant that pushes the altitude limits of subsonic air breathing propulsion.
14. SUBJECT TERMS

High altitude; Subsonic aircraft; Aeropropulsion; Atmospheric science

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

115. NUMBER OF PAGES

18

16. PRICE CODE

A03

20. UMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI SId. 7.39-18
298-102


