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ABS'TRACT: The durability and damage tolerance of laminated composites are critical

design considerations for airframe composite structures. Therefore, the ability to model

damage initiation and growth and predict the life of laminated composites is necessary to

achieve structurally efficient and economical designs. The purpose of this research is to

experimentally verify the application of a continuum damage model to predict progressive

damage development in a toughened material system. Damage due to monotonic and

ten_,ion-tension fatigue was documented for IM7/5260 graphite/bismaleimide laminates.
Crack density and delamination surface area were used to calculate matrix cracking and

delamination internal state variables to predict stiffness loss in unnotched laminates. A

damage dependent finite element code predicted the stiffness loss for notched laminates

with good agreement to experimental data. It was concluded that the continuum damage

model can adequately predict matrix damage progression in notched and unnotched lami-

nates as a function of loading history and laminate stacking sequence.
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INTRODUCTION

E('AUS|:. OF IHFAR light weight and high specific stiffness, laminated con-
tinuous fiber-reinfi_rced composite materials are being used in some primary

load bearing components in aircraft structures. However, when subjected to high
service loads, environmental attack, impact, or a combination of any or all of the
above, laminated composite materials develop damage. As the service load or the
time in service increases, damage develops and grows, becoming more severe,
and could eventually lead to catastrophic failure.

There are four main types of damage. These are matrix cracking, fiber-matrix
interface debonding, delamination, and fiber fracture. Usually, matrix cracking
and fiber-matrix interface debonding are the first forms of damage to occur, fol-

lowed by delamination, and finally fiber fracture resulting in catastrophic failure.
While matrix cracking is usually arrested at the fibers or adjacent plies, it will
result in a redistribution of load to the surrounding regions. As a result, these
surrounding regions contain stress fields which are favorable to the initiation and
propagation of additional damage. During the accumulation of subcritical dam-
age, changes in material stiffness and strength results in the load redistribution
until the principle load-carrying plies are unable to support the load, in which
case, catastrophic failure occurs.

The initiation and propagation of damage is one of the problems in using lami-
nated continuous fiber composite structures. To address durability and damage
tolerance requirements, damage must be modelled and methods developed to pre-
dict the residual strength and life of composite structures. For example, one of the

most complicated structural configurations is that of built-up laminated compos-
ite structures connected by mechanical fasteners such as rivets. These laminates

with fastener holes develop local damage that cannot be easily treated using stress
concentration factors. Another example is the non-visible damage that develops
during foreign object impacts and ground handling accidents. Current methods
for treating these local damage details are empirical and very conservative.
Therefore, an accurate model of the damage initiation and propagation will en-
hance current analysis and design capabilities thus leading to improvements in
structural efficiency.

Many damage progression models are being developed to model damage and

predict life. An example of the type of microcrack damage that is currently being
studied by damage models is shown by the X-ray radiograph in Figure I. This
damage is both stacking sequence dependent and loading history dependent. An
overview of damage resulting from fatigue loading in composites has been pre-
sented by Reifsnider [1,2]. Some researchers have tried to model this damage by
considering each crack as an internal boundary and the stress or displacement
fields are obtained either in closed form or numerically, such as in finite ele-

ments. This approach works well as long as there are a relatively small number
of cracks. Talug and Reifsnider [3] have obtained finite difference approximate

solutions to equilibrium equations to solve for interlaminar stresses in composite
laminates. The "damage tolerance/fail safety methodology" developed by O'Brien
141 is an engineering approach to ensuring adequate durability and damage toler-
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Figure 1. Tension-tension fatigue damage in e notched [0145/- 45/90], IM715260 laminate,
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ante by treating only delaminalion onset and the subsequent delamination accu-
mulation through the laminate thickness. Chang [51 developed a progressive
damage model Ior notched composite laminates subjected to monotonic tensile
loading. This particular model assesses the damage and predicts the ultimate ten-
sile strength in laminates with arbitrary ply-orientations via an iterative combina-
lion of stress analysis and failure analysis. Chamis 16] studied structural charac-
teristics such as natural frequencies and buckling loads and the corresponding

mode shapes during progressive fracture of angle-plied polymer matrix compos-
ites. This study concluded that the individual nature of the structural change was
dependent on laminate configuration, fiber orientation, and the boundary condi-
tions. The model proposed by Talreja [7-9] incorporates internal state variables
(ISVs) for matrix cracks and delaminations and exhibits ply stacking sequence
dependence. The ISVs are strain-like quantities which represent the damage as
volume averaged quantities, i.e., a continuous medium.

The treatment of a damaged volume of material as a continuous medium and

the representation of the damage with averaged quantities was first proposed by
Kachanov [10] in 1958 and is referred to as continuum damage mechanics. From
continuum damage mechanics has evolved the continuum damage model devel-
oped by Allen and Harris 111-16]. This damage model utilizes ISVs and is phe-
nomenological; however, it is formulated at the ply and sublaminate level and
therelbre accounts lor the influence of stacking sequence and geometry.

The goal of the research presented in this paper is to apply the Allen and Harris
model to a toughened matrix composite system and to experimentally verify the
current predictive capability of the model. The IM7/5260 material system was
selected for characterization because the 5260 bismaleimide is a candidate

elevated temperature polymer for the next generation supersonic transport air-
plane. Both cross-ply and quasi-isotropic laminates were investigated in un-
notched and open-hole specimen configurations. Tension-tension fatigue loading
was used to initiate and propagate damage at several different constant amplitude
stress levels. No new mathematical models were developed for this study. This
investigation was intended to be an interrogation of the suitability of the
mechanics framework and the current capabilities of the model to predict damage
growth in laminated composites.

THE ALLEN AND HARRIS MODEL

The damage model of Allen and Harris [II- 16] was developed to model the be-
havior of microcrack damage in a brittle epoxy material system by predicting
stiffness loss and damage-dependent ply level stresses in a laminate. A summary
of the model can be found in the literature [17]. The model, which neglects edge
effects, uses internal state variables to represent the local deformation effects of

various modes of damage. Loading history dependence is modelled by ISV dam-
age growth laws. The progression of damage is predicted by an iterative and in-
cremental procedure outlined in the flowchart shown in Figure 2. This entire pro-
gressive failure analysis scheme has been implemented into the NASA
Computational Mechanics Testbed (COMET) [18]. The first block of Figure 2 is
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Figure 2. Progressive failure analysis scheme.
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a description of the information needed as model input. A FORTRAN code con-
sisting of the damage dependent constitutive model and a damage growth law for

matrix cracking was incorporated into a classical lamination theory analysis to
produce effective lamina and laminate properties for unnotched laminates. The

program is called FLAMSTR (Fatigue LAMinate STRess) [19] and makes up the
first constitutive module. The fourth block is a damage dependent finite element
analysis code [18] from which the second constitutive module performs a ply
level elemental stress analysis and simulates damage growth via damage growth
laws for each element. Updating the damage state, block seven, for notched lami-
nates is the result of the damage evolution calculations in block six. For un-

notched laminates, only the first constitutive model is needed to update the
damage state.

MATHEMATICAL FRAMEWORK FOR DAMAGE
DEPENDENT LAMINATION MODEL

The damage model represents each mode of microcrack damage by the volume
averaged dyadic product of the crack face displacement, u,, and the crack face
normal, n,, as originally defined by Vakulenko and Kachanov [10l,

'loL,, = _ u_n_ds {i)
l,

where o_,j is the second order tensor internal state variable, s, is the crack surtace
area, and VL is the local representative volume, i.e., all stresses, strains, and ISVs

are averaged over a local volume element. This product can be interpreted as ad-
ditional strains incurred by the material as a result of the internal damage. The
local ply level damage-dependent stress-strain relationship is given by 112[,

o,,_ = {ff,,_,l_,, - ot_,h (2}

where o,j, are the locally averaged components of stress, {2,,k, is the ply level
transformed stiffness matrix, _,, are the locally averaged components of strain,
and OLk,,are the components of the internal state variable. From here on out, the
locally averaged subscript, L. will be dropped and all quantities are considcred
locally avcraged unless specified otherwise. This ply level stress-strain relation-

ship can be implemented directly into lamination theory. The laminate equations
are constructed by assuming that the Kirchoff-L_we hypothcsis may be modilied
to include the effects of jump displacements u:', v_', and wf' as wcll as jump rota-
tions 137 and _b,° for the ith delaminated interface. Therclbre, thc displacement
field in the x, ); and z directions is defined as [12]

u(.r,y,z) = U"(X,y) -- Z[[3 ° + H(z - z,)/3_'] + Hlz - z,)uf'

v(x.y,z) = v"(x.y) - zl_b ° + H(z - z,)_b_'] + tt(z - z,)v_' (3_

w(x,y,z) = w"(x,y) + H(Z - z,)w_'
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where the superscripts o imply undamaged midsurface quantities, and H(z - z_)
is the Heavyside step function. Locally averaging the displacement field provides
the means to obtain the locally averaged comlxments of strain as 112,20]

_" - az

,_1_oo,,I_" = 21a >, + _.r

(4)

which can be substituted back into the ply level damage-dependent stress-strain
relationship [Equation (2)]. The laminate midplane forces and moments per unit
width of region V,. in the laminate are given by [20]

N IN_ = ay dz
g,y o - t12 Oz

. IMy = oy zdz
M,,, d -,_2 o,

(5)

Therefi)re, the resulting laminate equations are [12]

n

INI = _ 101,(z, - :.,-,)lc'l
,{: I

- _ IQI,(,.,
,{=1
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-5
1.:1

(7)

where [Q]h is the undamaged transfi_rnled modulus of the kth ply in the lami-

nate, zA is the z-ccn_rdinate of the kth ply interlace, _° are the locally averaged

midsurlace strains, and _ are the locally averaged midsurface rotations. Finally,
[Q* I, are the averaged transformed stiffness matrices related to the ith delami-

nated ply interface, and the superscripts D and M represent delamination and

matrix cracking, respectively.

From Equation (I), there are nine components of the internal state variable fi_r

any mode of damage. However, most of these components are zero. For intraply

matrix cracks the resulting non-zero damage variables are c_g, oct, and o_,_.

Since each ply has in-plane symmetry, a_ is negligible compared to the other

components [12,21]. Delamination internal state variables are also defined by

volume averaged displacements. Interface displacements, u f', vf', and w? at the

ith delamination sites are represented by or°,, or°,, and ao respectively. Delami-

nation induced rotations about the x and v axes, ¢_' and 3_', are represented by

¢_f, and crt,',, respectively. All other components are zero [12,211.

Mode i Matrix Crack Growth Law

A damage growth law has been developed tor mode I matrix cracks. _r_,

where the displacement of the crack face is in a direction parallel to the crack

face normal, i.e., perpendicular to the plane formed by the ply. The m_vde ! strain

energy release rate is calculated from the lblhnving equation 119,21],

Oc_

G, = VLC,,.(e,i - c_) as (8)
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where &_'_/as is a linear function of the local ply stresses and describes the

change in the internal state variable lbr a certain change in crack surface area,
and can be written as

as - (dpara)(o2_) (9)

where dpara is a material dependent parameter 119] which must be determined
experimentally. Thcrefi)re, the damage growth law fi_r uniaxial cyclic loading is
given by 116,191

_Ot' At Af22 _(_ 22

aN Os
kG_ (I0)

where k and "qare experimentally determined material dependent parameters, N
is the number of load cycles, and G, is the mode ! strain energy release rate tbr
the ply of interest.

Mode ! Delamination Empirical Formulation

The following relationship 112] provides an empirical formula with which to
calculate the internal state variable due to delamination

,9o_Y

C]6_

(II)

where E_o is the undamaged experimental stiffness and E* is the moduli of the
sublaminates formed by delamination I22,23]. Furthermore, n is the total
number of plies, So is the delamination surface area, S is the total surface area,
and Or and _,n are the transformed stiffnesses of the plies above and below the
delamination formed by regions of delamination at the midplane.

MODELS FOR DAMAGE GROWTH

The material IM7/5260 was chosen to experimentally verify the continuum
damage model. Unlike the brittle material, AS4/3502 used to develop the model,
IM7/5260 has a toughened resin, and it was thought that this material would test
the applicability of the model to a toughened matrix composite. The experimental

procedure was designed based upon the data needed to successfully use the
model.

Three material parameters, dpara, k, and r/, must be determined experimen-
tally. The calculations involved in determining the model parameters have been
previously published in detail 119,241. The material parameters can be shown to
be determined from the mode I internal state variable, _. This was accom-

plished by subjecting 10/90d01, laminates to tension-tension fatigue 1241 with
maximum stress levels at 30% ultimate stress. Edge replicas and X-rays were
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used to measure crack surface area and determine crack density in the 9(I degree
plies. The ply level transverse and shear moduli were determined from unidirec-
tional and [45/-4512, laminates [251. The internal state variable, ot22. was

calculated for each crack density measurement utilizing the following equations
115,191

Q

2i-

ot22- 7r" (12)
-- 1 C2222

m " C2,22(2m - I)2(2n - 1)2 + C,2,z (2n - l) 4

where 0 is the force per unit length applied transverse to the 90 degree fibers, 2/
and I/2_ are the layer thickness and crack density, respectively, and 0/2? is
basically the local stress (o2) in the 90 degree plies. C222ais the transverse modu-
lus, Ct212 is the shear modulus, and m and n are the number of iterations. Fur-

thermore, dc_Sds is obtained by plotting o_2 as a function of crack surface area
(Figure 3). This results in the following equations 1241

a22 = -1.57 x 10-' + (2.91 x IO-')(s) + (1.22 x IO-_)(s 2) (14)

dot22
-2.91 × 10-4+ (2.45 × lO-S)(s) (15)ds

where s is the crack surface area. Referring to Equation (9), the first material pa-
rameter, dpara, was found as the slope of det_2/ds vs. the local stress in the 90
degree plies, o2.

Plotting _22 as a function of the number of cycles (Figure 4) resulted in the fi_l-
lowing equations 1241

_z2 = -4.81 X 10 -6 + (3.49 X 10-9)N - (4.77 x 10-S)N 2 (16)

d_2,
- 3.49 x 10 -_ - (9.54 x IO-'S)N (17)

dN

Furthermore, the mode I ply level strain energy release rate, G, could be
calculated as

(18)
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since dcr2Jds and 02 are known cwer the given number of cycles. The ply thick-

ness, t. is actually the thickness of the consecutive ninety degree plies, i.e., t is

equal to two times the thickness of one ply for a [0/90,/0], laminate, whereas t

is equal to the thickness of one ply in a [0/90/0], laminate. Finally, rearranging

the damage growth law [Equation (10)] to the fi_rm

ds dot2ffdN

dN dol2Jds
- kGp (19)

from Equations (15) and (17) (dot,JdN)l(dcx2Jds) was plotted as a function of the

mode l strain energy release rate, G_. A power curve was fit to the plotted data

and, as a result, the final material parameters, k and _ were obtained. The param-

eters were then used in a fatigue laminate stress program (FLAMSTR) [19] utiliz-

ing the damage-dependent lamination theory to predict reductions in stiffness due

only to mode I matrix cracking for unnotched composite laminates.

Other contributors to stiffness loss are delamination damage and matrix crack-

ing due to shear. The following general equation can be used to predict reduc-

tions in stiffness for any laminate [21]

E, AE M ,5E ° &E s

E,o- 1 E,o E,o E,o (20)

where AE M, &E °, and AE s refer to the change in stiffness due to mode I matrix

cracking, delamination, and matrix cracking in the 45 degree plies, respectively.

However, we assume the stiffness loss due to the 45 degree ply matrix cracks is

negligible and therefore ignore it primarily because previous work 124] showed

the effects of these 45 degree ply cracks to be small compared to other modes of

damage. Furthermore, based on results from a separate study [26], plastic strain

in these laminates was negligible at the applied stress levels. Delamination, on

the other hand has a dominant effect. We define AE°/E,o by the fbllowing equa-

tion for any number of delamination sites as [21]

,aE o
'TE, o ,=I

(21)

where

Q,_, + _,_,

Q,,, - 2 (22)

which, by substituting Equation (11) into Equation (21). can be reduced to

- I - E.o]_S l
(23)
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The use of Equation (23), which is identical to O'Brien's equation for stiffness of
a partially delaminated laminate 122], requires the experimental determination of
the delamination area So. As such, the model is only correlative for delamination

damage. Furthermore, the computation of E* must be made on the basis of
whether the delamination is an edge delamination versus a local delamination
that initiates at a matrix crack [27].

MATERIALS AND EXPERIMENTAL PROCEDURE

As previously mentioned, the material chosen to experimentally verify the con-
tinuum damage model was IM7/5260 graphite/bismaleimide laminates. Cross-
ply and quasi-isotropic laminates were cut into 2.54 cm x 25.4 cm (1 " x 10")
coupons. The layups used were [0/90,/0],, [0/9031,, [0/45/-45/901,, and
190/-45/45/0], notched and unnotched. The notched laminates had a 6.35 mm
(I/4 inch) hole drilled in the center. Each laminate was subjected to tension-

tension fatigue up to 100,000 cycles at a frequency of 5 Hz and a stress ratio of
0.1. Six specimens of each layup were fatigued such that three specimens were fa-
tigued at maximum load levels of 30% of ultimate failure load and three more at
65 %. In situ edge replicas and X-ray radiographs to characterize damage were
taken throughout the testing so that the specimen did not have to be removed from
the load frame. A Direct Current Displacement Transducer (DCDT) with a 4"
gage length was secured to the specimen and remained secured and untouched for
the entire test. The fatigue loading was stopped periodically to collect edge rep-
licas and X-rays, and to monotonically load the specimen for strain measure-
ments.

EXPERIMENTAL CHARACTERIZATION

To experimentally verify the model, experimental stiffness loss directly cor-
relating to damage accumulation was compared to model predictions. The fol-
lowing procedure was used to document stiffness loss and characterize damage.
The function of the DCDT was to measure increases in strain due to damage ac-

cumulation over a 4" gage length. Initial strain measurements as well as edge
replicas and X-rays were taken to ensure no initial damage and establish the ini-
tial undamaged stiffness. Periodic strain measurements, edge replicas, and X-rays
showed a degrading trend in stiffness with damage accumulation. The in situ
edge replicas and X-ray radiographs provided a direct and accurate correlation
between damage accumulation and stiffness loss. The edge replicas and X-ray
radiographs provided the means to measure matrix crack and delamination sur-
face areas. At the end of the test, the specimens were monotonically loaded to

failure. Comparing these failure loads with the failure loads of the undamaged
specimens provides the residual strength at 100,000 cycles for a given fatigue
stress level.

EXPERIMENTAL VERIFICATION OF MODEL

The material parameters, dpara, k, and r/, are determined from the mode I
matrix crack surface area. The unnotched [0/90d01, laminates provided this in-
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formation since the matrix cracks in the 90 degree plies are strictly mode I and
no cracks accumulate in the 0 degree plies. The crack surface area as a function
of fatigue cycles was measured from the edge replicas and the X-ray radiographs
[24]. From there, the matrix crack internal state variables were calculated and

used to determine the material parameters as mentioned previously in the section
_Models for Damage Growth." The parameters are then used in the mode I matrix

crack growth law to compare stiffness loss predictions due only to mode I matrix
cracking to the experimental stiffness loss of the other notched and unnotched

laminates. For those laminates with delaminations, the stiffness degradation was
greater. The delamination surface area and delamination locations, as determined
from the X-ray radiographs and the edge replicas, respectively, were used in con-
junction with Equation (24) to provide a prediction of stiffness loss due to
delamination.

RESULTS

The analysis of the experimental data provided the following material parame-
ters:

dpara = 8.8686 x 10-7/Ib

k = 1.1695
in 2

r/ = 5.5109

These parameters were then used, via the mode I matrix cracking growth law, in
a fatigue laminate stress program (FLAMSTR) 119] and a damage dependent
finite element code installed in the COMET [181 to predict reductions in stiffness
due only to mode I matrix cracking illustrated in Figure 5 for 10/90_1, laminates.

These predictions are illustrated in Figure 6 where we see that the predicted re-
ductions in stiffness are in close agreement with the experimental stiffness loss
due solely to mode I matrix cracking in the 90 degree plies of the 10/90,1, lami-
nates. Not only are these two distinct trends predicted from two different constant
amplitude maximum stress levels, but the predicted trends follow the experimen-
tal data very well. The X-ray radiographs in Figure 5 exactly correlate with one
data point in Figure 6 for each constant amplitude maximum stress level, and two

separate trends in stiffness loss were observed for two separate damage states.
If delamination is also considered, damage-dependent empirical formulas may

be used to determine the predicted reductions in stiffness due to delamination.

The [0/45/-45/901, laminates suffered edge delamination primarily at the
-45/90 interface. A comparison of the delamination surface area with measured

stiffness loss at 100,000 cycles is illustrated in Figure 7. The experimentally
measured delamination surface areas were used in Equation (24) to predict
stiffness loss due to delamination growth. The experimental results with their
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Figure 5. Loading history effect on mode I matrix cracking in [0/90_], IM7/5260 at 100,000

cycles.
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predictions for laminates subjected to 50% and 60% of ultimate load are shown
in Figures 8 and 9. A graphical comparison of these two loading histories is
shown in Figure 10. Once again, the model predicted greater stiffness loss for a
greater maximum stress level. Furthermore, as was expected, stiffness loss in
these laminates was not greatly affected by the mode I matrix cracking alone.

To further verify the delamination empirical formula for stiffness loss, Equa-
tion (24) was applied to a different stacking sequence. A comparison of the dif-
lerent stacking sequence is illustrated in Figure il where the arrows indicate loca-
tions of primary local and edge delaminations for the [90/-45/45/0], and
[0/45/-45/901, layups, respectively. The X-ray radiographs in Figure I1 show a
distinct difference in the damage state and a larger reduction in stiffness per
delamination surface area for the 190/-45/45/0], laminate. Figure 12 is the ex-
perimental and predicted stiffness loss of a [90/-45/45/0], laminate. Close atten-
tion should be paid here to the difference between E* for edge delamination vs.
local delamination [271.

The analysis of the notched laminates yielded good results as well. An illustra-
tion of the damage commonly seen in a notched laminate for two different stack-
ing sequences is shown in Figure 13. Initially, one would expect the matrix crack
in the zero degree ply adjacent to the hole (axial split) to have a significant effect
in reducing the stress concentration at the notch• This would increase the global
displacements of the laminate prior to failure. A damage dependent finite element
code [181 within the NASA COMET was used to calculate mode I matrix crack-

ing damage variables, laminate stresses and strains, and far field displacements.
The finite element mesh in Figure 14 is a quarter section of the notched laminate.
The finite element code predicts the damage stale in each element as a function
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of the local element stresses. An iterative procedure is used to calculate the ele-

ment damage-dependent properties and associated load redistribution throughout
the finite element model. The analytical far field displacements calculated over a

4" gage length are compared to the experimental stiffness loss in Figure 15. This
figure illustrates the ability of the code to predict separate trends in stiffness re-

ductions due to mode I matrix cracking for different constant amplitude stress
levels and layups for a spatially varying damage state. Edge and local dclamina-
tions were also figured into the predictions and were found to have very little ef-
fect, especially con)pared to the mode ! matrix cracking of the axial split lbr the
10/90d, laminate. This is attributed to the small delamination surface areas as

well as the fact that the difference between E* and E,o is small. The comparison
of the two laminates given in Figures 13and 15 confirms the ability of this model
to predict damage growth as a function of the laminate stacking sequence. The
10/90,1, laminate has more severe axial splitting, i.e., more mode I nlatrix crack-

ing, thus the predicted loss in stiffness due to mode 1 matrix cracking is larger.
The reductions in stiffness are greater lbr this laminate because more load is
translcrrcd away fronl the stress concentration at the hole.

CONCLUSIONS

The damage model originally developed by Allen and Harris was applied to the
IM7/5260 toughened matrix material system. Experimental verification of the

model was established by comparing the stiffness loss of cross-ply and quasi-
isotropic laminates with and without open holes for tension thtigue Ioadings. The
nlodcl has predictive capability for intraply matrix cracks and correlative capa-
bility lot dclanlinations. The model successfully predictcd both the effects of
laminate stacking sequence and loading history on damage gr(wcth and stiffness
loss. The ability of the model to predict damage growth in the open hole speci-
mens was particularly encouraging. This illustrates that the model is appropriate
tbr spatially varying damage and not confined to uniform damage that typically
develops in the gage length of an unnotched uniaxial test specimen. The spatial
variation in damage is treated through the tinitc element discretization since the

damage is assumed to be uniform within an element. The empirical formulae tot
delamination prtwided trends in stiffness loss that agreed with the experimental
trends, it should be noted here, however, the predictive capability of this model
would increase dramatically if delamination growth laws were available rathcr
than the empirical relations which need the extent of the delanlination to be
specified rather than predicted.

eli k I

dpara

E*

NOMENCI,ATURE

two times crack density
ply level stiffness tensor

nlaterial paranletcr-slope of d_Vds vs. local ply
slrcss

axial stiffness of a lanlinate complctcly delanlinatcd
along ()lie OF inore interlaces
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