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Optical correlation of images with
signal-dependent noise using
constrained-modulation filter devices

John D. Downie

Images with signal-dependent noise present challenges beyond those of images with additive white or

colored signal-independent noise in terms of designing the optimal 4-f correlation filter that maximizes

correlation-peak signal-to-noise ratio, or combinations of correlation-peak metrics. Determining the

proper design becomes more difficult when the filter is to be implemented on a constrained-modulation

spatial light modulator device. The design issues involved for updatable optical filters for images with

signal-dependent film-grain noise and speckle noise are examined. It is shown that although design of

the optimal linear filter in the Fourier domain is impossible for images with signal-dependent noise,

proper nonlinear preprocessing of the images allows the application of previously developed design rules

for optimal filters to be implemented on constrained-modulation devices. Thus the nonlinear preprocess-

ing becomes necessary for correlation in optical systems with current spatial light modulator technology.

These results are illustrated with computer simulations of images with signal-dependent noise correlated

with binary, phase-only filters and ternary-phase-amplitude filters.

1. Introduction

It is well known that many optical image-noise sources
are signal-dependent in nature. 1,2 However, much
of the work concerned with the correlation of noisy

images and the design of filters for implementation in
optical correlators has generally assumed that any
image noise is additive and signal independent.
Recently there has been some interest shown in the
correlation of images with signal-dependent noise
(SDN) for pattern detection and recognition purposes.
For example, Morris has analyzed the correlation
process for Poisson point process models and shown
the ability to make efficient use of a small number of
photons to make accurate classification decisions. 3,4
In other recent work, Javidi et al. have investigated
the situation of a target object located among disjoint
noise and determined the optimum receiver for pat-
tern recognition based on maximum likelihood tech-
niques. •_ Recently, Downie and Walkup have consid-
ered the SDN models associated with the phenomena

of film-grain noise and speckle and analyzed the
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correlation performance of images degraded with
these noise types. 6 The measure of performance

addressed there was the signal-to-noise ratio (SNR) of
the correlation-peak value, and two approaches or

filter designs for the processing of images with SDN
were studied. The first approach was to design the
optimal linear filter to operate on the image with
SDN, and the second approach was to preprocess the

noisy image nonlinearly to make the noise signal
independent in nature, and then correlate the trans-

formed image with its classical matched filter. The
work of Ref. 6 was concerned with the optimal filter

designs without regard to their implementation.
Because the optimal frequency-domain filters were,

in general, complex valued, it was implicitly assumed
that the correlation operation would be performed
digitally or that holographic filters could be con-
structed to encode the full complex designs.

In this paper the implementation of optimal filters
designed for images with SDN on spatial light modu-
lators (SLM's) of constrained-modulation capability

in an updatable optical correlator is addressed. The
two approaches discussed above are again considered,
and focus is turned to whether the optimal versions of
these filters that can be encoded in the coding domain
of the SLM device in the filter plane can be determined.
The remainder of this paper is divided into three
sections. In Section 2 the models of film-grain noise
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and speckle are considered and the optimal complex
filters that maximize the correlation-peak SNR are
presented. The technique ofpreprocessingan image
with SDN by the use of a nonlinear variance-
stabilizing algorithm and then correlating it with a
classical matched filter is also discussed. In Section

3, a previously developed algorithm for designing

constrained-modulation filters for images with signal-
independent noise {SIN) is discussed, and its applica-
tion to the problem of images with SDN is considered.
It is shown that, although the algorithm is readily
applicable to the variance-stabilizing approach, it
cannot be simply applied to the design of linear
constrained-modulation filters for images with SDN.
However, two realizable optical systems that allow
the straightforward implementation of filters for
images with SDN are briefly discussed. A summary
and some conclusions are given in Section 4.

2. Correlation of Images with Signal-Dependent Noise

A. Image-Noise Models and Optimal Filters

For the purposes of this paper, two different noise
models are considered to illustrate design issues
involved with constrained-modulation filters for im-

ages with SDN. The first is the case of film-grain
image noise. Images captured on photographic film,
especially in relatively low-light conditions, have been
found to suffer from noise with spatially varying
second-order statistics that are dependent on the
local signal intensity._._ With one-dimensional nota-
tion for convenience, if s(x) is the original object
film-density distribution, then the observed density
image rfg(x) is often modeled as

rf_(x) = s(x) + KsP(x)nl(x), (1)

where 0 < p < 1, nl(x) represents a random noise
process and K is a constant that we assume is equal to
1.0 from now on without limitation to the analysis.
The second term in Eq. ( 1 ) represents the noise that is
clearly dependent on the signal strength. Although
not necessary, for convenience we assume that nl(x) is
white noise. The powerp is commonly held to bep =
0.5 for film-grain noise, _,_but we treat it generally for
now.

The second noise model analyzed is that of speckle.
Laser speckle noise occurs during imaging with spa-
tially coherent light when the object of interest has a
random surface roughness of the order of a wave-
length, and the imaging system cannot resolve the
microscale of the object's roughness. This type of
speckle pattern is also referred to as Gaussian speckle
because the complex amplitude of the image is a
circular complex Gaussian process, which produces
an intensity distribution with a negative exponential
probability density function, v An image model that
has been widely used to describe speckle images is the
multiplicative model,

r,p(X) = Ks(x)n_p(x), (2)

where rsp(x) is the noisy speckle image, s(x) is the

object intensity function, nsp(X) is the noise function,
and K is a proportionality factor dependent on system
parameters.S _o We again assume that K is equal to 1
without loss of generality. It should be noted that

Eq. (2) is strictly true only for spatially uniform areas
of the object and is a less accurate model for image
regions that contain spatial details smaller than the
resolution of the coherent system. 11 However, we

assume that Eq. (2) represents a reasonable model for
speckle images in the analysis of the correlation of

such images for pattern-recognition purposes. As-
suming the model of Eq. 2 and negative exponential

statistics for nsp(X,y), {i.e., the probability density

function of n_v(x) equals exp[-nsp(X)]}, it is easy to
show that both the mean and the standard deviation

of r,p(X, y) are proportional to s(x, y), which clearly
makes the noise signal dependent in nature.

For pattern recognition and detection, we are inter-

ested in the correlation peak of a noisy image r(x), as
given in Eq. (1) or Eq. (2), with a reference function or
space-domain filter, h(x). Given a signal s(x) that is
centered, the central pixel in the correlation function
c(x) is denoted as co and can be written as

co = f r(x)h(x)dx. (3:_

Because we intend to implement correlations opti-
cally, we can also often express co in the Fourier
domain as

co = f R(u)H*(u)du, (4)

where R(u) is the Fourier transform of r(x) and H(u)
is the Fourier-plane filter, which is, of course, the
Fourier transform of h(x). The correlation perfor-
mance quantity of interest is the SNR of c0, defined as

IE[c0]t
SNR = var[co----]- (5)

The expressions for the correlation-peak SNR for
both film-grain images and speckle images were
derived in Ref. 6. For the case of film-grain noise, we
have

f S(u)H*(u)du '2

SNRr_ = (16)

f P.l(u) IG(u) _ H(u)[2du

where S(u ) is the Fourier transform ofs(x), G(u) is the

Fourier transform of sp(x), P,_(u) is the power spec-
tral density ofn_lx), and ® represents the convolution
operation. For images with speckle noise, the SNR
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result is

f S(u)H*(u)du 2

SNRs, = (7)

f IS(u) ® H(u)12du

The result in Eq. (7) assumes that the speckle noise
nsp(x) is spatially uncorrelated. In the general case,
n_p(x) may actually be colored, but the simpler model
employed here is sufficient for our purposes of compar-
ing the two approaches. Both Eqs. (6) and (7) are
written in the Fourier domain because, in an optical
correlator, we design H(u) to be placed in the Fourier
plane of a 4-f system. In this case we wish to design
H(u) to maximize the correlation-peak SNR. How-
ever, by inspection of Eqs. (6) and (7), we find that it is
impractical to solve for the filter H(u) to maximize
those expressions because of the convolution terms in
the denominators.

To avoid this problem, we can use Parseval's

theorem and the Power theorem to rewrite Eqs. (6)
and (7) in the spatial domain and then solve for the
optimal space-domain filter h(x) in each case. For
images with film-grain noise, the result is

s(x)

hfg(X) - s2p(x) - s 1 2p(x). (8)

Assuming thatp = 0.5, we can simplify Eq. (8) to

hfg(x) = s°(x) = b(x), (9)

where b(x} is the silhouette ors(x), i.e.,

1, s(x) > 0b(x) = 0, otherwise" (10)

For speckle images, the optimal filter is

t ,b(x) s_ s(x) > 0 (11)

hsp(X) = s(x) - (0, otherwise

The filters given in Eqs. (9) and (11) are optimal in
the sense that they will maximize the SNR of the
central correlation peak for images with film-grain
noise and speckle noise, respectively. This implies
that all other filter designs will necessarily pro-
duce SNR values less than or equal to those of these
filters. Thus the classical matched filter, i.e.,
hmf(X ) = S(X) or Hmf(U ) = S(u), will also be inferior in
this sense. We note that the filters given in Eqs. (9)
and ill) are not optimized for other correlation
metrics such as discrimination.

B. Variance-Stabilizing Method

The second approach to dealing with the correlation
of images with SDN is motivated by previous work by
researchers working in the field of image processing

and restoration. There it was found that by the use
of the proper nonlinear transformations, images with
SDN could first be converted into images with
SIN. 2,12,13 Then traditional si_,mal-processing tech-
niques designed for SIN could be applied to the
transformed image for enhancement or restoration.14

In a like manner, in this section the application of
variance-stabilizing transformations to images with
film-grain and speckle SDN and their subsequent
correlation for target-recognition purposes are dis-
cussed. After transformation, the images will have
SIN properties, and thus the optimal filter to apply
for correlation is the classical matched filter designed
for the transformed signal.

As above, let r(x) represent a noisy image with
SDN. For a given x, let the mean value of r(x) be
denoted as txr with standard deviation _r. Because
the noise is signal dependent, the standard deviation
of r(x) is a known function of the mean value, and so
we can write

ar = D(t_r), (112)

where D(.) represents the signal-dependence function-
ality of at. According to previous work, '2,'3 we can
transform the noisy image r(x) in a pointwise fashion
into another function y(x) such that y(x) will contain
statistically SIN (i.e., constant-variance noise) over a
wide range of image values. This nonlinear transfor-
mation is expressed as

y = g(r) = K ) (13)

for an arbitrary constant K. Strictly speaking, Eq.
(13) will produce SIN only if or r <:'_ _.tr, although it has
been found to work well even when this condition is

significantly relaxed, such as with speckle noise.t5
For images with film-grain noise modeled in Eq. (1),

it is straightforward to show that the proper transfor-
mation to apply to the noisy image is

K
y(x) - r t P(x). (14)

a,,l(1 -p)

Assuming thatp = 0.5, we then obtain the result

2K
y(x) = -- rt 2(x),

O'n I

(15)

and thus the proper preprocessing transformation to
apply to images with film-grain noise is the square-
root operation in order to make the noise signal
independent.

The transformation for images with speckle noise
is also obtained with Eqs. (12) and (13). Letting the
observed speckle image be represented as given in Eq.
(2) with n_p(x) having a negative exponential probabil-
ity density function, we find that the proper transfor-
mation in this case becomes

y(x) = K ln[r(x)}. (16)
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Of course the logarithmic transformation also makes
the noise additive as well as signal independent.

Given the image-transformation algorithms of Eqs.
(15) and (16), the second approach for pattern recogni-
tion by the correlation of images suffering film-grain
or speckle SDN is thus a two-step process. We first
nonlinearly transform the noisy input image r(x) into
y(x) with statistically white, constant-variance noise.
The optimal filter for this type of image is of course
the classical matched filter. Thus we create a

matched filter for the transformed signal and corre-
late y(x) with it. The matched filter for the trans-
formed signal is found by the simple substitution of
s(x) for r(x) in either Eq. (15} or Eq. (16). For
film-grain images, the classical filter for the trans-
formed image is

h'fg(x) = s L _(x), (17)

where we have set the constants in front to 1.0 for

convenience. The prime symbol denotes that this is
the matched filter for the transformed signal. For

speckle images, the classical filter is

ln[s(x)], s(x) > 0
h'sp(x) = [0, otherwise'

(18)

Theoretical results that compare the correlation

peak SNR performances for the two approaches to the
detection of images with film-grain and speckle SDN
have been derived previously. 6 For film-grain im-
ages, the variance-stabilization approach always yields
a peak SNR value 6 dB higher than that of the
optimal linear filter, regardless of the object function.
The comparison is object dependent for speckle im-

ages, but it has been found that the variance-
stabilization approach usually is again significantly
superior. For a quantitative comparison, the SNR
results for the gray-scale object in Fig. 1 were calcu-
lated. Table 1 contains the results for the optimal
linear filter, the classical matched filter (derived
assuming SIN) applied directly to the image with
SDN, and the variance-stabilization approach in which

Fig. 1. 64 × 64 pixel image of an eyebolt with 256 gray levels used

for simulations.

Table I. SNR (dB) for Complex Filters Designed for Image with SDN

Type of Noise hopt(X) a hmf(X) b h,pt(X) c

Film grain ((_,_ = 5.0i 32.5 32.1 38.5

Speckle 24.7 22.7 35.2

"Optimal linear filter for SDN.
bClassical matched filter for SIN.

"Filter matched to transformed image,

the image is preprocessed and then correlated with
the matched filter for the transformed object. The
last approach is clearly the best for performance in
terms of SNR. We note that the optimal linear
filters for film-grain noise and speckle indeed produce
better SNR's than the classical matched filter for the

original object, but the improvements are fairly small
for this object.

3. Constrained Modulation Filters for Images with
Signal-Dependent Noise

The filter designs presented in Eqs. (9) and (11) (for
the optimal linear filter) and Eqs. (17) and (18) (for
the nonlinear image-transformation approach) are
given as purely mathematical functions, without limi-
tations to the filter values in either the space or the

frequency domains. However, to implement the cor-
relation process optically, we must obviously consider
the modulation capabilities of the SLM in the fre-
quency domain that encodes the filter function. At
this point we assume the implementation of a
VanderLugt, or 4-f, optical correlator. Currently
available updatable SLM's all have constrained-
modulation characteristics, leading to filter types
such as binary-phase-only filters 16 (BPOF's), phase-
only filters, 17 and ternary phase-amplitude filters is
(TPAF's), among others. Thus we have to consider
how to map optimally the desired filter function as
expressed with full complex values onto the SLM with
distinct modulation constraints in a way that maxi-
mizes or minimizes the performance criterion of
interest. This problem has been previously ad-
dressed for situations that include the presence of

additive colored signal-independent image noise, nota-
bly in the papers by Juday 1_and Laude and R6fr6gier. 2°
Juday examined a generalized correlation metric that
involved a designer-defined balance between peak
intensity, SNR, and peak-to-correlation energy.
Laude and R6fr6gier extended the analysis to the
design of optimal trade-off filters (OTOF's) involving
those metrics to compare better the performance of
different types of coding-domain SLM's. In both
studies and with different mathematical approaches,
the optimal filters encoded in the domain of the SLM
were found to result from first designing the optimal
fully complex filter and then taking the Euclidean
projection of that optimal complex filter onto the
coding domain. If H+(u) is the optimal complex
filter, then the optimal realizable filter is given by

H(u ) = P[yH +(u)exp(id))] (19)
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where d) is a variable that is searched (over a 2v
range) to find the optimal design, _ is a scale factor

that may also need to be searched, depending on the
coding domain, and P[ ] represents the projection
operation. Thus the important general result of

these previous studies is that the optimal filter value
at pixel u is found by the choice of the realizable SLM

value that is closest to the optimal complex filter
value. This Euclidean distance minimization is of

course performed in the frequency domain of the
filter, as the filter is to be used in the Fourier plane of

the optical correlator.
The question then arises as to whether we can

apply the same design rule to the design of filters for

images with SDN such as film-grain noise or speckle
noise. We are interested in studying the implemen-
tation of both approaches developed, i.e., the optimal

linear filters that correlate with the images with SDN
and the transformation technique in which we trans-
form the noisy image and correlate it with the
matched filter for the transformed object function.

Let us first consider the second approach. After
applying the proper transformation to the image r(x)

with SDN, we obtain in general

y(x) = s'(x) + n(x), (20)

where n(x) is now signal independent. For example,
for speckle images we have

y(x) = ln[s(x)] + ln[nsp(x)], (21)

and for film-grain images we have

nl(x)

y(x) = Is(x)] 1/2 + _, (22)

using the image models of Eqs. (1) and (2). Assum-
ing in general that n(x) in Eq. (20) is colored noise, the

optimal Fourier plane filter to apply is of course the
classical matched filter,

S'(u)
H+(u) - Pn(u ) , (23)

where S '(u) is the Fourier transform ofs'(x) and Pn(U)
is the noise power spectral density. Regarding Eqs.

(20) and (23), it is clear that these are the same
conditions of additive, SIN that were assumed in the

earlier studies of constrained-modulation filter design.
Thus the same design approach of Euclidean projec-
tion will also be optimal here to maximize the peak
SNR. The necessary design steps are as follows:

(1) Transform the object s(x) to produce s'(x)
according to the proper transformation rule.

(2) Calculate the optimal complex filter to maxi-
mize the SNR as in Eq. (23).

(3) Calculate the optimal constrained-modulation
filter according to the minimum Euclidean distance
rule as in Eq. (20).

Of course this same basic algorithm also applies for a
generalized metric including SNR, or an optimal
trade-off between the SNR and another performance
criterion.

Now we consider the first approach. We have

already found the optimal filter functions in the space
domain for maximizing SNR when correlating di-

rectly with the images with SDN, e.g., hrg(X) and
hsp(x). Thus we obviously also know the optimal
complex frequency-domain filters simply by Fourier
transforming the space-domain filters. The ques-
tion is then whether we can apply the minimum
Euclidean distance principle to this filter to obtain the
optimal constrained-modulation filter. First recall
the expressions for SNR expressed in the frequency
domain as given by Eqs. (6) and (7), for film-grain
noise and speckle noise, respectively. These expres-
sions are rewritten as discrete summations for conve-
nience as

N 2

_, S(u)H*(u)
ti=l

SNPwg = N N

U=I

, (24)

.=_ S(u)H*(u) 2

SNRsp = u=l_ v=l_S(u - v)H(v) 2' (25)

where H(.) is any filter in general. Of course we
know the forms of the general complex filters that
maximize Eqs. (24) and (25) by having solved for them
in the space domain. With convolutions in the de-
nominators, these two equations clearly do not match
in form with the corresponding expression for SNR,
assuming SIN, which is given by

_=_S(u)H*(u) 2

SNRsIN = N

_, Pn(u)IH(u)12
u=l

(26)

Thus we can make the following qualitative argu-
ment that the minimum Euclidean distance design
rule does not necessarily apply to filters designed for
images with SDN: In Eq. (26) (SIN case), we see that
the denominator is essentially a summation over u of
the weighted values of the squared modulus of H(u).
The numerator is a similar weighted summation.
Because the numerators are identical in Eqs. (24)-
(26), we consider only the denominators now. In the
case of SIN in Eq. (26), it makes intuitive sense that
minimizing each term of the summation by Euclidean
projection of H+(u) to find a realizable H(u) will also
minimize the entire denominator. However, in Eqs.
(24) and (25) for the cases of images with SDN, we
have convolution terms in the denominator. For
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these equations it is not possible to say that minimiz-
ing the distance of each pixel of H(v) to H+(v)
independently through Euclidean projection will mini-
mize the whole denominator, as each term in the

summation over u is dependent on every filter pixel
value H(v). Thus it is highly unlikely that the simple
Euclidean projection algorithm will work for filters
designed to correlate with images with SDN because
the mean square error (SNR denominator) is depen-
dent on the choice of H(v) in a highly nontrivial way
through the convolution.

As an example, consider the results for BPOF
designs for the bolt image, assumed to be corrupted
by film-grain and speckle noise, presented in Table 2.
This table lists the SNR values of three BPOF's,
which were designed with the Euclidean projection
technique from the optimal linear filter for the object
with SDN, the classical matched filter that assumes
SIN, and the matched filter to the transformed
variance-stabilized image. We know that the com-
plex-valued optimal linear filters, as expressed in Eqs.
(9) and (11), produce higher SNR values than the
classical matched filter does when applied to images
with film-grain noise and speckle, respectively. Yet

the BPOF versions of hfg(x) and h_p(X) actually yield
lower SNR's than the BPOF versions of hmf(X) do,
and thus they cannot be optimal. In particular, the
BPOF made from hso(x) produces a peak SNR that is
more than 14 dB lower than the BPOF made from

hmf(x). This does not imply that the latter BPOF
version ofhmf(X) is optimal for either film-grain noise
or speckle, only that binarizing the optimal linear
filter according to the minimum Euclidean distance
rule does not work with filters designed for SDN.
In fact, we do not know how to design the optimal
constrained-modulation frequency-domain filter for
images with SDN. On the other hand, the BPOF

versions of h_(x) and h'_p(x), which are the filters
matched to the transformed image, can indeed be
designed with the projection algorithm. These
BPOF's clearly produce correlation peaks with higher
SNR than either of the other designs and are evidence
that the variance stabilization of images with SDN is
highly beneficial before the correlation process is
performed.

Similar results for OTOF's 21 balancing SNR and
optical efficiency for TPAF designs are presented in
Figs. 2 and 3, which again point out the superiority of
the image transformation technique and the nonopti-
mality of the constrained-modulation version of the
optimal complex linear filter. We obtain these opti-
mal trade-off curves by varying the scale factor

Table 2. SNR (dB) for BPOF's Designed for Bolt with SDN _

Type of Noise hopt(X ) hmf(X) hopt(x )

Film grain (an_ = 5.0) 21.6 24.1 29.7

Speckle 0.88 15.2 27.2

aOriginal complex filters are optimal linear filter for SDN

[hopt(X)], classical matched filter for SIN [hmdx)], and filter matched

to transformed image [h_pt(X )}.
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Fig. 2. Optimal trade-offcurves for SNR versus peak intensity for

TPAF's designed for the bolt image with film-grain SDN. TPAFfg

is designed from h fg(x), TPAFmf is designed from hint(x), and TPAF(g

is designed from big(X).

given in Eq. (19) and where H +(u) was defined in turn

as the Fourier transform of hfg(x), hmf(X), and h_g(X) in
Fig. 2 and hsp(x), hint(x), and h'_p(x) in Fig. 3. The
results show that for most values of peak intensity, it
is possible to design a ternary filter from hmf(x) that
has better SNR performance than the best ternary

filter made from the optimal linear filter hopt(X ).

Furthermore, the TPAF's designed from the variance-
stabilized image-matched filters hopt(X ) outperform
both other filter types.

We again note that although the minimum Euclid-
ean distance design rule does not necessarily work
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Fig. 3. Optimal trade-offcurves for SNR versus peak intensity for

TPAF's designed for the bolt image with speckle SDN. TPAFsp is

designed from h,p(X), TPAFmr is designed from h_f(x), and TAPFgp

is designed from h;p(x I.
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with designing filters for images with SDN (whereas
it does work for the transformed images with SIN),
we have no way of determining the optimal filter in
the coding domain of the SLM. That is, we know
what is not the optimal filter, but we do not know
what is the optimal filter. This is a strong argument
for preprocessing the images with the proper transfor-
mation to make the noise signal independent if one
plans to correlate images with SDN in an optical
correlator with a constrained-modulation SLM in the
filter plane.

However, there are at least two cases for which it is

possible to implement the optimal linear filters for
images with SDN in an optical system, and those are
the joint-transform correlator 22 (JTC) and the spatial-
domain acousto-optic correlator. 23 This is because,
in these systems, the filter is actually encoded in the
space domain as a reference function. Because we

calculated the optimal filters hf_(x) and hsp(X) in the
space domain as real functions, they can be easily
implemented on most types of SLM. In fact, the

filter for film-grain images, hfg(X), is especially easy
because it is a binary function that is the silhouette of
the object, as given in Eq. (9). The filter for speckle
images, hsp(x), requires continuous gray-scale trans-
mission to implement, but if the available gray levels
are limited, we can easily find the optimal constrained-
modulation filter h(x) by applying the minimum
Euclidean distance algorithm in the space domain.
This becomes clear when a direct analogy is made of
the SNR equation for speckle images in the space
domain to Eq. (28) for images with SIN in the

frequency domain. Thus, although it is impossible
to find the optimal filter H(u) for speckle images for
implementation on a constrained-modulation SLM in

the Fourier plane of a 4-f correlator, it is relatively
simple to calculate the optimal reference function
h(x) for implementation on a constrained-modulation
SLM in the input plane of a JTC or in an acousto-
optic template-matching correlator.

4. Summary

We have studied the design of optical correlation
filters for application to images corrupted with SDN.
In particular, the design of filters for implementation
on constrained-modulation SLM's in an optical corre-
lator system was addressed. As examples, SDN was

analyzed as modeled by film-grain noise and speckle
noise and two different approaches for their treat-
ment in the correlation process were studied. The
minimum Euclidean distance design rule, which was
previously developed by other researchers for general
correlation metrics that assumed additive, signal-
independent image noise, was reviewed. We found
that we can apply the same mapping algorithm to

those complex filters designed with the second ap-
proach, in which the image is nonlinearly trans-
formed to have SIN. This is because the conditions

are then the same as those assumed during the
derivation of the minimum Euclidean distance rule.

However, we found that we cannot simply apply that

mapping rule to the complex optimal linear filters

(approach 1) that maximize SNR when correlating
directly with the images with SDN. Qualitatively,
this is because the mean square error of the correla-
tion peak contains a convolution involving the Fourier-
plane filter, and minimizing the mean square error
cannot be accomplished by simple projection of the
optimal complex filter onto the coding domain. We
are not able to determine the optimal realizable
Fourier-plane filter in this situation, but are able to
say only that the design rule that works for images
with SIN does not produce optimal filters for images
with SDN. The conclusion is that the nonlinear

transformation preprocessing step must be applied to
images with SDN that are to be correlated in an
optical system with currently available SLM's, at
least if peak SNR is part of the measured correlation
metric. Only in this way can one design a filter that
is known to be optimal for the defined metric. Two

examples of BPOF and TPAF designs that confirmed
this point were presented.

Finally, we noted that it is possible to implement
the filters optimally for images with SDN (approach
1) in a constrained optical system if the filter is
encoded in the spatial domain, such as in a JTC or an
acousto-optic correlator. In that case we can indeed
apply the minimum Euclidean distance rule to the
design of spatial-domain filters that maximize SNR or
OTOF's that balance the SNR with another correla-

tion metric, such as optical efficiency. However,
even in this case the nonlinear image transformation
approach will probably provide superior performance
and should be carefully considered.
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