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Abstract

A method to incorporate passive microwave remote sensing measurements within a

spatially distributed snow hydrology model to provide estimates of the spatial distribution

of snow water equivalent (SWE) as a function of time is implemented. The passive

microwave remote sensing measurements are at 25 km resolution. However, in mountain

regions the spatial variability of SWE over a 25 km footprint is large due to topographic

influences. On the other hand, the snow hydrology model has built-in topographic

information and the capability to estimate SWE at a 1 km resolution. In our work, the

snow hydrology SWE estimates are updated and corrected using SSM/I passive microwave

remote sensing measurements. The method is applied to the Upper Rio Grande River

Basin in the mountains of Colorado. The change in prediction of SWE from hydrology

modeling with and without updating is compared with measurements from two SNOTEL

sites in and near the basin. The results indicate that the method incorporating the remote

sensing measurements into the hydrology model is able to more closely estimate the

temporal evolution of the measured Values of SWE as a function of time.

1. Introduction

Mountain seasonal snowpacks provide much of the potable water supply in many

areas, particularly the western United States. These mountain snowpacks exhibit high

spatial variability in their properties, especially snow water equivalent (SWE), which is an

important variable in hydrology and water resources engineering. The total water content

of the snow and its spatial distribution determine the amount and timing of snow meltwater

available for water supply and hydropower generation. The development of a method to

estimate spatial distributions of snow properties such as SWE at a 1 km spatial resolution

will provide information useful to snow melt prediction.

The estimation of distributed SWE, however, remains a challenge due to the high

variability of this quantity over small distances. Point measurements of snow properties,

such as the SNOTEL (SNOwpack TELemetry) measurements of SWE are sparsely

distributed and not representative of the parameter spatial variability. This makes it difficult

to obtain a sufficiently accurate estimate of the water volume available in the snowpack and
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to incorporatethesemeasurementsintobasin-scalespatiallydistributedhydrologymodels
whichoperateonaspatialgrid of resolution1km or less.

Satelliteremotesensingappearstohavethepotentialfor overcomingthisdeficiency
dueto its inherentability to measurespatialaveragesof snowproperties.By their nature,

satelliteremotesensingmeasurementscanprovidespatialestimatesof snowpropertiesand

aresuitedas inputsto spatiallydistributedhydrologicmodels. Therehasbeenprevious
successin usingsatellite remotesensingmeasurementsfor the determinationof snow

properties. The mostsuccessfulhasbeenthe delineationof snow coveredarea(SCA)

usingeither visible (Dozier andMarks, 1987)or microwave(JosbergerandBeauvillain,

1989)satellite measurements.The estimationof liquid water in the snowpackusing
microwaveradarmeasurementshasalsoshownsomesuccesswhencomparedwith field

measurements(ShiandDozier, 1995). Thecapabilitiesof satellitederivedSCA within a

snowhydrolt_gymodelhasbeenshown(i.e., Rango,1988). More informationon snow

remotesensingandits applicationswithin snowhydrology modelscanbe found in the
recentreviewsof Rango(1993),Engman(1995),andBalesandHarrington(1995).

Passivemicrowaveremotesensingshouldalsobeableto provide informationon

other snow properties. The receivedmicrowavesignal from the earth's surface is

dependentonsnowpropertiessuchasgrainsize,temperature,depth,anddensity. Unlike

the useof SCA within hydrology models,lesshasbeendone in fully exploiting this

informationwith a snowhydrology model. Rangoet al. (1989)andChanget al. (1991)

haveexploredtheuseof passivemicrowaveremotesensingmeasurementsto obtainbasin-

wideestimatesof SWE. Examinationsof therelationbetweensnowpropertiesandpassive
microwavebrightnesstemperatureshavebeenundertaken(seefor exampleHallikainenand

Jolma,1992;Wanget al., 1992),but therelationshipis not directandestimationo'f snow

propertiesremainsdifficult. Oneof thedifficulties in implementinga directestimation

techniquefor snowpropertiesis the many-to-oneinverseproblemencounteredin going

from the measuredmicrowave brightnesstemperaturesto the snowpackproperties.
Another problem is the difference in spatial resolutionbetweena spatially distributed

hydrology model (1 km, or less)andthe footprint resolutionof the passivemicrowave

measurements(25 km). Thus, these previous algorithms retrieve averaged snow
parametersoverthe25km footprint.

To tackle theseproblemswe usea methodthat combinesseveralelements:a

spatiallydistributedsnowhydrologymodel,a snow-microwaveradiative transfermodel,

and a parameterestimationtechniquewith error minimizing steepestdescentgradient
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search. The spatial hydrology model operatesat a 1 km pixel resolution using point

meteorological measurementsas forcings and outputs snowpackparametersat this

resolution. Basedon thesnowpropertyoutputs,a microwavescatteringmodelis usedto

determine the brightnesstemperaturesfor each pixel. The 1 km pixel estimatesare
integratedto thefootprintmeasurementresolutionandcomparedwith themeasuredSSM/I

brightnesstemperatures.The adjustedbrightnesstemperaturesaredisaggregatedto the

pixel levelandinvertedto give newsnowparametersusedasupdatinginputsto thesnow

hydrologymodel. Thehydrologymodelcontinuesrunninguntil thenextupdate.

To test this method,we apply it to a hydrological basin in the mountainsof

Colorado. The estimatesof the temporalevolutionof SWEarecomparedto SNOTEL
groundtruthmeasurementsat twosites.

2. Methodology

The methodology outlined in the introduction section consists of combining several

sources of information to provide the best estimate of the snowpack state parameters as

possible. We use a spatially distributed snow hydrology model and microwave satellite

measurements. These are linked by a snow-microwave scattering model and a parameter

estimation technique. In this section the new algorithm is outlined with each component

discussed in greater detail in the next section. The procedure used in obtaining the spatial

snow water equivalent estimates is given in the flow chart of Figure 1. Each step is

denoted by a letter in the flow chart and corresponds to the lettered description below.

a) The spatial data files are input to the snow hydrology model to determine the pixel

characteristics of the model grid at 1 km resolution. The hourly point meteorological

station information is used to drive the energy balance component of the snow hydrology

model. These measurements consist of air temperature, dew point temperature, surface

pressure, precipitation, cloud cover, and wind speed. These forcing variables are needed

as input for each pixel and are adjusted for each pixel based on its topographic

characteristics.

b) Net energy fluxes are calculated for each pixel using the snowpack surface energy

balance model which operates at a 1 km spatial resolution. The output from the snow



hydrology model is snowdepth,density,grainsize,andtemperature.Theseparameters
aredeterminedfor eachpixelonanhourlybasis.

c) At theendof eachday, thefour outputsnowpackparametersaresavedfor useasinput
to theremotesensing-electromagneticscatteringmodel. Theend-of-dayvaluescoincide
with thenighttimesatellitemeasurementsused.

d) Basedon the snowpackparametersobtainedfrom the snow hydrology model, the
brightnesstemperatureestimatesat 1km spatialresolutionaremade.This is donefor 19

and37GHz for bothverticalandhorizontalpolarizations.Eachis integratedto the25km
scaleto matchthescaleof thesatellitemeasurements.

e) SSM/I measurements,with a resolutionof 25 km, are usedto comparewith those

obtainedfrom the models. Theareaof coverageis determinedfor eachremotesensing
measurement;this is theoverlapbetweenthespatialdomainof themodelsandthefield of
viewof thesensormeasurements.

f) Thedifferencesbetweenthespatiallyaveragedsimulatedbrightnesstemperaturesand
thosemeasuredby thesensoraredeterminedfor eachcoveragearea.Thedifferencesare

uniformly distributedbackto eachindividual pixel in therespectivecoveragearea. Each

pixel is adjustedby thesamedifferenceso that theaveragevalueof thepixel brightness
temperatures for the coverage area equals the values obtained from the SSM/I
measurements.

g) Snowparametersatthepixel (1 km)scalearedeterminedfrom theadjustedbrightness
temperaturesthroughinversion. The updatedsnow parametersarereturnedto thesnow

hydrology modelwhich movesforwardin time until thenext availablenighttimesensor

observation,whereupontheprocessrepeatsitself.

Our algorithmis asystematiccombinationof hydrologymodelandremotesensing
measurements.The remotesensingmeasurementsare usedto updateandcorrect the

hydrology model prediction. On the other hand, the hydrology model constrainsthe

parameterinversionfrom theremotesensingmeasurements.This solvesthemany-to-one
inverseproblemin remotesensing,asthehydrologymodelgivesa priori estimates of the

snow parameter inversion. In addition, this algorithm gives snow parameter products at 1

km resolution as well as the temporal evolution of snow parameters.

The available data is discussed in the next section. Due to a lack of ground truth,

we implement this algorithm only for selected points where measurements of snow water

equivalent are available. This is used to validate the algorithm and demonstrate that the



algorithmhasthepotentialto providesnowparameterestiatesat the 1km pixel resolution.

Thus,wehavenot implementedthe25km integrationof step(e)andall of step(f).

3. Data Characteristics

The basin chosen for the application of the technique is the upper portion of the Rio

Grande River in the mountains of Colorado. The basin is defined by the streamgauge at

Del Notre, Colorado and has an area of 3419 km 2 with an elevation range of 2432--4215

m. This basin has been used for previous snow-remote sensing studies (e.g., Rango et al.,

1989; Chang et al., 1991). The location of the basin is shown in Figure 2..We use the

1992-1993 snow year for the application. We employ several data types in the

implementation and validation of the new algorithm: hydrology inputs, remote sensing

measurements, and ground truth. These are discussed below and listed in Table 1.

A. Hydrology model inputs

The data used to run the hydrology model consists of topographic and weather data.

The basin topographical characteristics are determined from 30 arc-second digital elevation

model (DEM) output, which gives an approximate pixel resolution of 1 km and defines the

spatial grid of the hydrology model. The basin area and its topographic representation are

determined from the DEM and shown in Figure 3. From the DEM file, pixel elevation is

determined, and slope, aspect, and shading characteristics of the pixels are calculated.

The forest cover plays an important role in the energy and mass balances of the

snowpack through the reduction of shortwave radiation and wind speed, and the

interception of snowfall by the forest canopy. Thus it is important to include forest cover

information in the snow hydrology model. Pixel forest cover was determined from the

Land Use and Land Cover digital files from the U.S. Geological Survey (USGS, 1990),

which uses a classification scheme developed by Anderson et al. (1976). The land use

pixels, with 200 m resolution, are aggregated to the DEM pixel scale (1 km) and used to

determine whether each hydrology model pixel is open, forested, or some fraction thereof.

The snow hydrology model uses meteorological inputs to determine the

precipitation characteristics as well as drive the snowpack surface energy balance. Hourly

point meteorological measurements from the National Weather Service are used in

conjunction with a distribution scheme based on the topography to provide spatial inputs to



the snow hydrology model. Theseconsist of air temperature,wind speed,relative

humidity, cloudcover,and precipitation. Informationfrom additional sitesthat record

daily precipitation totals is also used. Additionally, U.S. Geological Survey daily

streamflowvaluesat theoutletof thebasinareusedto estimatethevolumeof precipitation
over thebasin.

B. Satellite remote sensing measurements

Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave

Imager (SSM/I) brightness temperatures are obtained from the Distributed Active Archive

Center (DAAC) at the Marshall Space Flight Center. The SSM/I measures microwave

emission at four frequencies: 19, 22, 37 and 85 GHz with dual-polarization, except at 22

GHz, which is vertical only. More information on this sensor can be found in Hollinger et

al. (1990). We selected the F8 satellite, using the brightness temperature measurements at

the 19 and 37 GHz frequencies with horizontal and vertical polarizations, providing four

different measurements for each footprint. Each day with measurements over the basin is

determined. The nighttime measurements are saved and the daytime measurements are

discarded due to the possibility of small amounts of liquid water present in the snowpack as

a result of slight surface melting during the day, which re-freezes at night.

While the orbit of the satellite is sun-synchronous, providing approximately the

same time of coverage over the basin, there are some days for which there is no satellite

coverage of the basin. Additionally the footprint positions vary slightly from day to day.

This means that the relationship between the satellite footprint that covers a pixel and the

pixel snow properties is not constant since the distribution of pixels within the footprint

changes. The change in footprint location for a SNOTEL pixel (#4) over four consecutive

days is shown in Figure 4. This effect must be taken into account when attempting to relate

pixel values of snow properties with the brightness temperature measurements of the

satellite footprint and will be discussed further in a later section.

C. Ground truth measurements for algorithm validation

The SNOTEL measurement network records daily SWE values at selected points

throughout the mountains of the western United States. Six of these stations are located

within or very near the Upper Rio Grande basin for the year of study. Their names,

locations, and elevations are listed in Table 2 and their locations with respect to the basin

shown in Figure 3 (as indicated by an 'X'). The stations are all in the upper area of the



basin wherethe snowamountsare larger and measurementsmore important. For this

study, theSNOTEL valuesaretakenasrepresentingtheSWEfor the 1km pixel within

which it lies. Thesemeasurementsrepresentthegroundtruthto evaluatetheperformance

of andvalidatethealgorithm.

4. Implementation of Methodology

The basic idea of combining snow hydrology information with passive microwave

remote sensing measurements through parameter estimation techniques was outlined in a

previous section. There are several ways of implementing the three major components of

this algorithm. Several different types of snow hydrology models and microwave radiative

transfer models are available. Additionally there are several possible approaches to the

parameter estimation procedure of error minimization. We have chosen the following ways

to implement the three components previously discussed.

A. Snow hydrology model

The snow model contains several components: accumulation, snow surface energy

balance, and internal snowpack physics. Snowmelt runoff is not currently considered

since we investigate only the accumulation portion of the snow season. The model

operates on a spatial grid of resolution approximately 1 km as determined by the DEM.

Hourly meteorological inputs are input to the snow hydrology model to drive the

accumulation and surface energy balance components. These inputs are adjusted for each

model pixel using an elevation relationship such as air temperature lapse rate,

dT,/dz = constant.

The variables describing the snowpack for use in the radiative transfer model are

snow depth d, snowpack temperature Ts, grain size (radius) g,, and fractional volume f_.

These four variables are referred to as the snowpack state variables S. Each pixel within

the spatially distributed snow hydrology model will have its own set S. The snow

hydrology model maintains two related snowpack state variables: snow density p_ and

snow water equivalent W. These are related to the parameters in S by

and

p_ = 0.91f,, (1)



W = p,.d, (2)

where 0.91 is the assumed density of ice (g .cm 3) and W is in cm. These state variables

evolve over time as a function of the mass and energy balances as discussed below.

The model operates over a discrete time step At, during which the snowpack water

equivalent evolves according to

w(t + at)= w(t)+ P- M- E, (3)

where P is snowfall, M is melt, and E is the loss due to sublimation, all in units of cm.

The accumulation component of the model, P, is based on point precipitation and

temperature records in the area, to determine the amount that falls and whether it falls as

rain or snow. The precipitation/elevation relationship is adjusted using the SNOTEL data

by adjusting the total volume of precipitation at the point. The total annual volume of

precipitation over the basin is adjusted using the streamflow measurements.

Following Marks (1988) we use a two-layer snowpack model, which consists of an

"active layer" from which melt is produced, and a secondary layer which contains the

remainder of the snow. The active layer is chosen to have a depth of I0 cm, thus capturing

most of the depth of solar radiation penetration (approximately 90 percent), while not

requiring an unduly large amount of heat to initiate melt conditions. The melt from the

active layer is

M= e.-Q.c , (4)
L,.

where L m = 79.7 cal. g_ is the latent heat of melt (the amount of energy required to

transform ice to water), Q, is the net energy flux into the snowpack, and Qcc is the cold

content o'f the active layer, representing the amount of heat necessary to raise its

temperature to O°C. If Qcc > Q,,, then no melt occurs. Since the model only considers the

accumulation and ablation process, the meltwater is immediately removed from the

snowpack without any routing, and the possibility of the meltwater refreezing in the pack is

not considered.

The snowpack cold content is



I0

= -c, wr,, (5)

where Cs = 0.5 cal. g-I. deg-i is the snowpack specific heat. If the net energy into the

snowpack is great enough to raise the snowpack temperature to 0°C (Q,, 2 Q_c) then melt

will be produced according to (4). If no melt is produced, the updated snowpack

temperature is

Ts(t + At)= Q" + Ts(t ) .
c,w

(6)

The mass loss due to sublimation is calculated as

e =e" , (7)
L_

where Qe is the latent heat transfer from the energy balance and L, = 677 cal. g_ is the

latent heat of sublimation (the amount of energy required to transform ice to vapor).

The net energy flux at the surface, Q,, is given by

Q.=Q_ +QI+Qh +Q., (8)

where the fluxes Q,, Q_, Qh, Q, are respectively shortwave, longwave, sensible, and latent

heat. The ground-to-snowpack and the precipitation-to-snowpack heat transfers are small

relative to the other terms of (8) and are thus omitted.

The equations used to estimate the components of the snow surface energy balance

are based on the point model from Marks (1988). However, it has been generalized to a

spatial model incorporating the topography and forest cover characteristics of the basin.

This includes accounting for the topographical and vegetative effects on solar and longwave

radiation. More information on the computation of the different components in the surface

energy balance (Equation 8) is in Appendix A. SWE outputs are compared with the

SNOTEL stations to determine that they are reasonably close.

The snowpack physics algorithms, which describe the evolution of snowpack

properties such as snow grain size and density are taken from the SNTHERM model of
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Jordan (1991). The snow metamorphism is driven by the outputs from the energy and

mass balances previously discussed. The algorithms are simplified to operate for a one-

layer snowpack; there is no variability in the vertical direction.

The equation for the evolution of snow grain size is

gs(t+At)=O. 14 g2 At+gs(t) ' (9)
4gs(t)

where g2 is an empirical constant with a value of 4.0 x 10-sin 2 •s -I .

There are two components in the snow compaction process: destructive

metamorphism and overburden. Destructive metamorphism is important initially when

snow density is less than 0.15 g.cm 3. For dry snow, the empirical function used for

compaction is

1 3_.
-_--_-t m =--2.778 X 10 .-6 XC3 XC, X exp[-0.04(273.15- T)], (10)

where c4 is 1 for dry snow (the case here) and

c 3 = 1 if

c3 = exp[---46..(p s - 0.15)] if

After snow has undergone its initial settling stage, densification proceeds at a slower rate

determined mainly by compaction due to snow overburden pressure Ps such that

I OAz P, exp[_cs(273.15_T)lexp(_c6.p,) (11)

where /7o is a viscosity coefficient for snow and c5 and c6 are constants based on

observational evidence. The compaction rate is thus the combination of these two terms.

As the depth changes but the water equivalent does not (no melt), the density of the

snowpack will also change.

The final output of four snowpack parameters for the microwave scattering model

is: d snow depth, T, snowpack average temperature, g_ snowpack average grain size, and
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f, snowpack average fractional volume, S={d, T,, g,,f_}. These four snowpack

parameters serve as the link between the microwave scattering model and the snow

hydrology model.

Figure 5 shows the comparison between the hydrology model output SWE and the

measured SWE for two SNOTEL stations: #2 which is a high elevation station and #4

which is a low elevation station. The model is able to reproduce the snowfall events, but is

usually not able to accurately reproduce the amounts. This is due to the simple scheme

used to determine snowfall amounts in a topographically complex area. This is where the

incorporation of information from passive microwave remote sensing measurements can

improve SWE estimates.

To demonstrate the evolution of these parameters in time, simulation outputs from

the hydrology model for all four snow parameters at station #2 (Figure 6a--d) and station #4

(Figure 7a-d) are shown. In both cases the depth increases whenever there is a snowfall

event, then decreases as the snow compacts. Snowpack temperature stays low until the

end of March, when it starts to increase as the melt season approaches. Grain radius and

fractional volume both follow nearly the same shape of curve. This is due to the averaging

of the snowpack properties to one layer. These values increase as the snowpack

metamorphoses, until a new snowfall event, which reduces the average snowpack value by

introducing fresh snow, which has smaller grain sizes and is less dense.

B. Snow-microwave radiative transfer

In passive microwave remote sensing the microwave emission from the ground

surface is measured. This radiation is attenuated by the snowpack as a function of its

temperature, depth, density, and grain size, as well as liquid water. To avoid the

complications due to liquid water in the snowpack we use only nighttime measurements,

when the snowpack has re-frozen, and do not continue the snow simulation into the melt

season. From the snow hydrology model of the previous section, we have estimates of the

four snowpack parameters S at the pixel scale. The brightness temperatures at this l km

scale can be estimated using a microwave scattering model. Thus, from the model we have

the brightness temperature vector T b = {Tb,_v, Th,_,,, Th,,v, Th,,, ,}, where 19 and 37

represent the frequency in GHz and V and H the vertical and horizontal polarization.

The model used to simulate the microwave interaction with the snowpack is the

dense medium radiative transfer (DMRT) model (Tsang 1987, 1992). Unlike the

traditional radiative transfer models, the DMRT takes into account the dependency of
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scattering upon relative particle positions. This is important in a dense medium such as

snow. The model incorporates a particle size distribution using a modified gamma

distribution. Thus a medium containing particles of different sizes, such as snow, can be

accounted for. The model accounts for scattering by particles as well as the interaction at

the snow/soil interface and the snow/air interface. The equations describing the model are

presented below. Additional details on the model and its implementation are in Tsang et al.

(1992).

We consider thermal emission from a layer of dielectric particles of permittivity G

embedded in a background medium of permittivity e overlaying a homogeneous half-space

of dielectric medium of permittivity e 2 (see Figure 8). Note for the case of snow, the

background permittivity e is e0 of free space and the particle permittivity G will be that of

ice. The particle sizes obey a size distribution n(g) which is the number of particles per

unit volume with radii between g and g + dg. The medium is of uniform temperature T.

Then the dense media radiative equation for passive remote sensing assumes the following

matrix form, for 0 < 0 < to:

3  ;a,f in o'r'(o,dl.-_

8 .,o
(12)

where

(13)

and IV, Ih are the vertical and horizontal specific intensities, respectively. Also in (12),

C= KhK'2/(X'-k2), K h is Boltzman's constant, ,;t. is the free space wavelength, K' is the

real part of the effective wave number in region 1, k is the free space wave number, _ is

the albedo, and _" = 2Ira(K) is the extinction rate of the specific intensity. In (12)

where

p(o,o,)=[p,,(o,0')p,:(o,o')]
Lp2,(o,o') p2dO,O')J

(14)

p,z(O,O')= 2sin 20sin 20'+cos: Ocos 20' (15)
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p,2(O,O') = cos-' 0 (16)

p2,(O, 0') = cod O' (17)

(o o')P22 ' = 1. (18)

For 0 < 0 < rr/2 , the boundary conditions for (12) at the air-snow interface, z = O, are

and

Z_(z= o,_-- o)= e_(oK(z=o,o)

1h(z=o,_r-o)= &(o)th(z=O,O),

(19)

(20)

and for the snow-ground interface, z = -d, they are

and

Z,(z=-d,o) = ,%(OK(z=-d,_-o)+(l- G(o))c L

lh(z=-d,O)= Rh_(O)lh(z=-d,_-O)+(l- Rh,(O))CT_,

(21)

(22)

where Rv, Rh, R,_, and Rh_ are reflectivities.

After (12) is solved subject to the boundary conditions of (19)-(22), the brightness

temperatures in the direction 0o, where 00 =sin-J(K'sinO/k) is related to 0 by Snell's

law, in region 0 for vertical and horizontal polarizations are given by

Esot,oo,]__Ir(1-t_'(O))Iv(z=O'O)l(Oo TL(t =o,o)j (23)

The differences between the dense medium theory and the conventional radiative

transfer theory are the calculations of K, the extinction rate _', and the albedo _ in terms

of the physical parameters of the medium, which are represented by G and the size

distribution n(g). These parameters are determined by using approximations of the Dyson

and Bethe-Salpeter equations. The cross pair distribution functions of multiple particle

sizes are calculated through the Percus-Yevick approximation (Percus and Yevick, 1958;
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Baxter, 1970) that expresses the correlations of particle positions in terms of the size

distribution n(g).

Also it is necessary to consider the effects of surface roughness in the Fresnel

reflectivities, especially when the snowpack is thin. Following Wang et al. (1983) we use

two polarization mixing parameters, one for each interface. For the upper boundary, the

air-snow interface, z = O,

and

_(0)= [(l- Q)rv(0)+Qr.(0)]

Rh(O)=[(1-Q)G(O)+QG(O)],

(24)

(25)

where Q is the mixing fraction between the two reflection polarizations for the snow-air

interface and r v and rh are the Fresnel reflectivities with effective propagation constant K

determined by

and

Ik2 - m I

cos 0 - K'(k 2 K "2sin 2 O)_"

r_(o/--_.oso+-V_ _'_s_n_

rh(O): K'cos0-(k 2- K'" sin" 0) _"

(26)

(27)

In the lower boundary, at the snow-ground interface, z = -d,

and

with

_.(0/=[(_-Q.)_v.(o)+e._,.(o)] (2s_

Rh, (O)=[(l-Q,)rh, (0)+ Q_G, (0)], (29)
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and

E2ko2 c°SO-Co Kf e2 ko_'\Co -K'2sin 2 0) 24

C2k02cos0+ K'( C2 k 2 _ K,2 sin 2 0] 8

E0 L E0 0 )

K'c°sO-I C2 k°2- K'2 sin21,Co O) _

K'c°sO+(C'-ko2\Co -K'-' sin2 O) _'

(30)

(31)

where ko is the free space wave number.

In this study we use a Rayleigh size distribution of snow particles (West et al.,

1993) represented by

rcfg exp( rcg2 ]n(g)= 16(g)5 _ 4(g)2 ,
(32)

where (g) is the mean radius and f is the fractional volume of all the particles. The

fractional volume and the mean radius are defined by

.,..4_" 3 - - -

f= Jo-Tg n(g)dg (33)

(g) = SO gn(g)dg

So n(g)dg
(34)

The advantage of the Rayleigh size distribution is that there are only two parameters: f

fractional volume, and (g) mean grain size.

The medium input physical parameters of the dense medium radiative transfer

equations using the Rayleigh size distribution include the previous vector of four snowpack

parameters from the hydrology model S and a set of fixed parameters describing the

electromagnetic properties of the dense medium, F, necessary to implement the DMRT.
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This fixedsetF consistsof:

1)thecomplexpermittivityof theparticles:e,,_ = (3.2 + i0.00025)e o and

e,.,, = (3.2 + i0.001)e0, for 19 and 37 GHz respectively,

2) the permittivity of the ground surface, eg,

3) the ground surface temperature Tg,

4) the two previously described polarization reflectivity mixing parameters, Q and

Q_, and

5) the maximum grain size in the grain size distribution of (32), g,_.

It is necessary to estimate some of the physical parameters of the scattering model,

such as the emissivity of the soil and its initial temperature. This is done by calibration,

using the microwave brightness temperature measurements for October, right before any

snow has fallen and is covering the ground. This provides a calibration for soil properties,

which affect the microwave brightness temperatures throughout the year, although much

less as the snow season progresses and the snowpack becomes deeper. This allows for the

estimation of eg, Tg, and the roughness mixing parameters, Q and Q_.

Additionally, the determination of snow microwave properties through calibration is

necessary. The maximum and minimum limits need to be set for the snow particle size

distribution. The minimum value is based on the initial grain size used for fresh snow.

The maximum value evolves through time, just as the shape of the particle distribution

evolves through time. The hydrology model grain size (g) is taken as the distribution

mean. The upper limit must be periodically re-established since as the mean grain size from

the hydrology model evolves (Equation 9), the snow grain size distribution evolves with

the upper limit increasing as well. The need to update is based on visual inspection of the

snow grain size output from the model, see Figures 6c and 7c. The fixed parameter vector

From these parameters, the brightness temperatures of vertical and horizontal

polarization at specified frequencies and observation angles can be calculated from the

above equations. Using the snow parameter output, the brightness temperatures at 19 and

37 GHz for vertical and horizontal polarizations are obtained at the 1 km pixel scale. The

efficient, approximate representation of the snow microwave radiative transfer model is

described in Appendix B using a neural network representation.
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C. Remote sensing data that overlap a pixel

At the end of each day for which there is basin coverage from the sensor, the

DMRT is used to estimate the four microwave brightness temperatures from the four

snowpack parameters at pixel resolution (1 km). The pixel brightness temperatures are

then averaged to the footprint scale (25 km) for each measurement. The difference between

the pixel integrated brightness temperatures and SSM/I measured brightness temperatures is

distributed back to the pixels from which these adjusted l km brightness temperatures can

be used to obtain adjusted snowpack parameters.

The critical point in the previously described procedure is in going from the 1 km

scale to the 25 km scale and then back to the 1 km scale. The remote sensing

measurements cover approximately a 25 km area and thus represent a spatial average of

snow properties that may be quite heterogeneous. Depending on the location of the pixel

with respect to the center of the footprint, the pixel-to-footprint measurement relationship

can vary from day to day.

To examine the possible fluctuations in remote sensing measurements due to

footprint position, we compared SNOTEL sites with brightness temperatures assigned to a

pixel based on the degree of coverage. The was examined as well in Wilson et al. (1996).

Figure 9a shows the brightness temperatures for a coverage area with radius of 12.5 km,

the actual footprint size. Figure 9b shows the brightness temperatures using a coverage

radius of 4.0 km from the footprint center. As the pixel of interest becomes nearer to the

center of the footprint, it should be more closely related to the footprint measurement.

From the figures we see that the amount of fluctuation is reduced as the distance from pixel

to footprint center is reduced, showing more clearly the expected trend of decreasing

brightness temperatures with increasing snow depth. This method is employed in

determining what measurements to use in the updating procedure.

5. Results

The implementation shown in Figure 1 is now demonstrated. A comparison

between the two methods of determining SWE is made. The first method is the distributed

snow hydrology model run independently of the remote sensing information, relying only

on the topographic information and point meteorological measurements. The second

method is using the snow hydrology model, but replacing the parameter outputs with the
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updatedsetbasedon theremotesensingbrightnesstemperatures.To determinehow well

the combinedmodel performs comparedto usingonly the spatially distributed snow
hydrologymodel,weexaminetheresultsof theSWEcurvesfrom thetwo methodsattwo
SNOTEL sites(#2and#4). The comparison is made for the snow season of 1992-1993.

The simulation starts on October 1, 1992, which is the first day of the hydrologic water

year. The SNOTEL measurements are taken as the ground-truth for each site, representing

the 1 km pixel within which it lies.

The snow hydrology model is run first, independently of any remote sensing

information, solely on the point meteorological forcings. Then the simulation is started

with the remote sensing updating scheme. We start the updating when the SWE is greater

than 5 cm so that the scattering of the microwave emission by the snow is significant. An

update is made every five days. Linear interpolation is used between the brightness

temperature observations that are used based on the previously discussed coverage

criterion. In the time interval between updates, the two methods will follow each other

since the SWE curves are dependent only on the precipitation estimates during the

accumulation period. The methods will diverge only at the updating steps.

The first station examined is station #4. It is a lower elevation station at 2860 m

with smaller amounts of snow and maximum SWE of 15 cm. Its snow accumulation

season begins later in the season than much of the basin. The results of the comparison are

shown in Figure 10. We also include in the figure the measured SNOTEL SWE. One of

the brightness temperature measurements, 37H, is included for reference. However, we

have used all four brightness temperature measurements for the inversion of the snow

parameters. Table 2 show the values for the fixed parameter vector F for this station.

Since significant snow accumulation does not develop at this station until late

December, the updating with remote sensing measurements is not started until December

28. Improvement is obtained from using the updating procedure. Not every point is closer

to the SNOTEL measurements than that obtained by the snow hydrology model alone, but

more often it is closer. The updating is able to help compensate for poor snowfall estimates

in the snow hydrology model, such as Day 110. The results in the figure indicate that the

hydrology model with remote sensing updating is generally closer to the SNOTEL ground

truth.

Another test simulation is done for a high elevation station, #2, at 3420 m with

larger amounts of snow and a SWE maximum of 40 cm. Note that a change in elevation of

500 m between stations 2 and 4 gives a corresponding change in SWE of over 100%,
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highlighting the spatialvariability of SWE in this region. The comparisonresultsare

shownin Figure i 1. Againan improvementis obtainedfrom usingtheupdatingscheme.

Theresultsin thefigureindicatethatthehydrologymodelwith remotesensingupdatingis
generallycloserto theSNOTELgroundtruth.

Between Day 70 and 75 a drastic drop is observedin measuredbrightness

temperature.This is mostprobablydue to the developmentof largegrain sizesfrom a

small melt event;theSNOTELmeasurementdropstemporarilyduring this time. This is

oneinstancewhereit is importantto recalibratetheDMRT, changingtheuppergrainsize

limit in thedistribution. In general,every 15days(after3 updatingevents)theupperlimit
of thegrain size g,_= is recalibrated. Table 2 also shows values of the fixed parameter

vector F for this site. The main difference is in the evolution of the grain size as evidenced

by the differences in upper limit to the grain size distribution. The incorporation of the

upper limit in the grain size distribution as a parameter in the neural network to avoid this

recalibration is under research.

6. Conclusions

A method to combine passive microwave remote sensing measurements within a

spatially distributed snow hydrology model to estimate the time evolution and spatial

distribution of snow parameters has been presented. The method combines the information

contained within the satellite microwave measurements with that obtained from the spatially

distributed snow hydrology model. A spatially distributed snow hydrology model that

uses spatial topographic inputs and point meteorological measurements to force the energy

balance is combined with the SNTHERM model to obtain the four snowpack parameters

for passive microwave remote sensing: snowpack density, depth, temperature, and grain

size at a 1 km scale. The brightness temperatures for these 1 km snow parameters are

estimated using the dense medium radiative transfer model. These are compared with the

25 km resolution satellite measurements and the differences distributed back to the 1 km

scale brightness temperatures. The adjusted snowpack parameters are determined by

inverting the DMRT.

The approach has enabled us to handle the two difficulties previously discussed:

differences in spatial scale between the spatially distributed snow hydrology model (1 km)

and remote sensing measurements (25 km), and the non-uniqueness of the inversion of the
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remotesensingmeasurements.By implementingthe 1km resolutionhydrologymodelwe
areableto relatethe 1km to the25km resolutionSSM/I measurementswith theDMRT

andsomeestimationtechniques.Inversionof the adjustedpixel brightnesstemperatures

providestheadjustedsnowparametersat the1km scaleto updatethesnowhydrologystate

variables. Analysis of the satellitefootprints is undertakento determineeffectivepixel

SWErelationshipswithdegreeof footprintcoverageto thatpixel.

The approachis demonstratedfor two SNOTEL sites, making a comparison

betweenthecasewith only thesnowhydrologymodelandthecasethatincludesremote

sensingupdating. In eachcasetherewasoverallimprovementin theability of themodelto

reproducetheSNOTELSWEmeasurementswhentheremotesensingmeasurementswere
included.

This methodologyshowspromisingresultsin improving snowwaterequivalent

amountsfrom snowhydrologymodels. This methodcanbeeasilyextendedto all pixels

within thebasinto mapsnowpropertiessuchasSWE. Additional remotelysensedtypes

of information suchassnow coveredareacanbe incorporatedwithin this framework.

Bayesianupdatingtechniques,which can providebetterestimationarecurrently under

investigation(Daviset al., 1995).

Appendix A

In this appendixtheequationsusedto estimatethe different componentsof the

snow surfaceenergyfluxes (Equation8) arepresented. Theseare for shortwaveand

longwaveradiation,andlatentandsensibleheat.

A.1 Shortwaveradiation

Threecomponentsareconsideredin thecalculationof shortwaveradiation:direct,
D, diffuse, I, and sky reflected, R. Reflected radiation from neighboring slopes is

neglected; an assumption that is justified for forested catchments, but would need to be

retained in high alpine environments. The total shortwave radiation into the snowpack is

Qs = I + D+ R (A.I)
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Direct radiation is that part of the solarbeamthat is not depleteddue to scatteringor
absorption.Diffuse radiation is thefractionof thebeamthat is scatteredin theforward

direction. Thesky reflectedcomponentis radiationreflectedfrom the surfaceto thesky

andthenbackto thesurfaceagain.Thiscanbeasignificantcomponentof totaldownward

solarradiationoversnow-coveredsurfaceswherethealbedois highandthereis low cloud
cover. Presumingthat measurementsof I, D, and R are not available, which is normally

the case, the direct and diffuse terms can be estimated using the clear sky equations of

Munro and Young (1982) with the cloud effect estimated based on Davies et al. (1975) and

Davies and Idso (1979). The direct component of solar radiation received at a snow

covered pixel is

I = loS(1-as)[lPr03 I[.[rs-(l- Iprw)]l_rdal[fdstPrCFs (A.2)

where Io is the direct solar radiation reaching the top of the earth's atmosphere, H is a

topographic parameter accounting for pixel slope, aspect, and shading, a s is the snow

albedo, gt is the transmissivity function for ozone absorption, Rayleigh scattering, water

vapor absorption, aerosol absorption and scattering, and clouds (for subscripts 0 3 , rs, w,

da, ds, and C), and F s is an interception factor for forest cover.

The diffuse radiation component is estimated assuming that the fraction of Rayleigh

scattering in the forward direction is one half, and that the fraction of Mie scattering in the

forward direction is 0.85 (Robinson, 1970). The diffuse radiation into the snowpack is

(A.3)

where Vf is the pixel view factor, which represents the fraction of the pixel open to the sky

hemisphere.

The reflected radiation is an infinite sum of reflected radiation between sky and

atmosphere. However, it is only of significance in this study when there is cloud cover

and only one return is considered. This is estimated as

R=(I + D)as(1-as)acVf2Fs 2 (A.4)
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A.2 Longwaveradiation

The longwaveradiation term consistsof four components: emissionsfrom the

atmosphere,clouds, forest, andsnow surface. As with the shortwavecomponent,the

effectof thesurfaceradiationfrom neighboringpixelsisneglected,which is anappropriate

assumptionin the presenceof forestcover. Longwaveradiation is partitionedbetween
forest-snowexchangeandatmosphere-snowexchange.Thelongwaveradiationbalanceat
thesurfaceis

Qt.. =(Ql.a +QLc)Vf(I- F)+Qt4.F-Qta (A.5)

where F is the fractional forest cover. The atmospheric component is

Ql_a = EaO"Ta 4 (A.6a)

the cloud component (Kimball et al., 1982) is

rl

Qcc = Y'. rsfseci OTci'_ (A.6b)
i=1

the forest component is

QLf = E f o'T f 4 (A.6c)

and the surface component is

QLs = EsCrTs 4 (A.6d)

where s is emissivity, o" is the Stefan-Boltzmann constant, T is temperature, and r s and

f8 are the transmissivity and fraction of radiation in the 8-14 btm band, the region where

the atmosphere is opaque in the infrared. The subscripts a, ci, f, and s represent air, cloud

at level i, forest, and snow, respectively.
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A.3 Heattransfer

A bulk aerodynamicformulation (Sellers, 1965;Deardorff, 1968) is used for
sensibleheat:

QH =PaCpCHUaF,,(Ta-Ts)Sf (A.7)

and for latent heat:

QE - 0"622PaLs CwuaFu(ea -es)Sf (A.8)
Pa

where Ch, and C w are the bulk transfer coefficients for heat and water, which depend on

wind reference height, u a is the near-surface wind speed (e.g., at elevation 10 m above the

surface), P,, is the atmospheric pressure, /7,, is an adjustment factor for the forest effect on

windspeed, e is the vapor pressure, cp is the specific heat, Ls is the latent heat of

sublimation, Pa is the air density, and Sf is a stability adjustment.

Appendix B

As seen in Section 4B, the mathematical description of the DMRT involves integro-

differential equations that must be solved numerically and an inverse relationship that is

difficult to estimate. There are several methods available to determine the inverse. We

have chosen to use a neural network representation of the DMRT to solve the inverse

problem. The input-output pairs of the DMRT are used to train the neural network. Once

the neural network is trained, the brightness temperatures can be computed readily from the

input parameters S. This has been used for the DMRT in Tsang et al. (1992) and Davis et

al. (1993). We use a multilayer perceptron (MLP) which is a feedforward neural network

having one or more layers of hidden neurons between the input and output layers. They

have a simple layer structure, where successive layers of neurons are fully interconnected,

with the connecting weights controlling the strength of the connections. Based on the

snowpack parameters S as the inputs and brightness temperatures T b as the outputs, the

MLP has four separate input and output nodes. We used one hidden layer with five nodes.

The MLP is a representation of the function _ where T b = q_(S,F) as shown in Figure 12.
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An MLP is a function determinedby its architectureand its connectionweight

values.The inputvectorpassesdirectlyto thefirst layerof connectionweights. Theinput
ui(l + 1) to each neuron in the next layer is the sum of all of its incoming connection

weights multiplied by their connecting input neural activation value aj(l). The trainable

offset value associated with the neuron is added to the sum, and the result is fed into the

nonlinear function of the neuron, which is usually the sigmoid function (Lippmann, 1987),

f(u) = (1 +e")-'. (B.1)

The training phase of the MLP uses the backpropagation (BP) learning rule, an

iterative gradient descent algorithm designed to minimize the mean squared error between

the desired targets and the actual output vectors. The weights are updated until a minimum

error criterion is reached between the target values T b and the predicted outputs from the

MLP.

To provide a training set for the neural network, the DMRT is run for many

combinations of the four snowpack parameters, discretizing the space appropriately. The

neural network is trained on this model output set until the overall improvement at each new

iteration becomes small.

This provides the forward model which outputs the 1 km pixel brightness

temperatures, given the snow hydrology parameters. The adjusted brightness

temperatures, based on the simulated and measured values are used as inputs to the inverted

neural network, which then gives adjusted snowpack parameters for each 1 km pixel. The

snow hydrology model then continues onward with these updated parameters, being

updated for each day in which there are SSM/I observations available. A least mean square

error scheme is used to update the snow parameters for each pixel using the neural network

inversion of the DMRT. The snow hydrology model then continues forward with the

updated parameters until the next SSM/I observation. This is the forward iterative

inversion neural network technique discussed in Davis et al. (1993).
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Table 1. Datainputsusedandfrom wheretheywereobtained.

Data Type

a) Hydrology model inputs

Digital Elevation Model file

Land Use and Land Cover files

Hourly point meteorological
measurements

Daily precipitation totals

Basin streamflow measurements

Agency

U. S. Geological Survey

U. S. Geological Survey

National Weather Service

National Weather Service

U. S. Geological Survey

b) Satellite remote sensing measurements

SSM/I microwave brightness Marshall Space Flight
temperatures Center, NASA

c) Ground truth measurements for algorithm validation

SNOTEL SWE measurements Natural Resources
Conservation Service

Address

Sioux Falls, SD

Sioux Falls, SD

Asheville, NC

Asheville, NC

Sioux Falls, SD

Huntsville, AL

Portland, OR
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Table 2. Name, location, and elevation of the SNOTEL stations-available for the year of
study that are in or near the basin (see Figure 2).

Number Name Latitude Longitude
(Deg-Min) (Deg-Min)

I Beartown 37-43 107-30

2 Middle Creek 37-37 107-02

3 Slumgullion 37-59 107-12

4 Upper Rio Grande 37-43 107-15

5 Upper San Juan 37-29 106-50

6 Wolf Creek Summit 37-29 106-48

Elevation

(m)
3530

3420

3470

2860

3080

3345

Table 3. The values used for the fixed parameter vector F in the DMRT for SNOTEL
station #2 and for station #4.

Number e_ T_
2

(3.0 + i0.1)eo 270.

(3.0 + i0.1)e o 270.

Q Q_ g,,._, (cm)
0.0375

0.40 0.25 0.0450
0.0600

0.0350
0.40 0.30 0.0425

0.0500
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Figure 1 Flow chart outlining the steps in the combination of the snow hydrology model
and remote sensing information to estimate snowpack parameters. Letters refer to
paragraphs in the text.
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Figure 2 Location of the upper Rio Grande river basin near Del Norte, CO within the
region. The left border is the boundary between Utah and Colorado, and the lower border
the boundary between New Mexico and Colorado.
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Figure 3 Elevation image of the Upper Rio Grande river basin near Del Norte, CO. The
image resolution is 1 km based on the DEM. The location of the SNOTEL measurement
stations are also included (see Table 1).



34

Day 091 Day 092

Day 093 Day 094

Figure 4 Sensor footprint coverage of a SNOTEL site for four consecutive days. The day-
to-day variation in the coverage position of the footprint for the SNOTEL pixel is shown.
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Figure 6a-d Evolution in time at station #2, high elevation station, of the four snowpack
state variables in S: depth, temperature, grain size, and fractional volume.
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station #4 using a coverage radius of 12.5 kin. This includes all brightness temperature
measurements whose footprint covers the SNOTEL pixel.
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Figure 9b The 37 V brightness temperature plotted as a function of SNOTEL SWE for
station #4 using a coverage radius of 4.0 kin. The inverse relationship between brightness
temperature and SWE is much clearer.



4t

e3
I.-

240

235

23O

225
8O

! I I I I I I

I

I \

/

/

\

\

\

\

\

.... Tb

SNOTEL

Model

Updated Model

\

I I ! 1 I I

85 90 95 100 105 110 115

Water Year Day

15

10

cm

5

0
120

Figure 10 Comparison of the SWE simulations at SNOTEL station #4 for the hydrology
model without updating and the hydrology model with updating. Four brightness
temperature channels are used in the multi-parametric inversion. The 37 H brightness
temperature measurements are shown for reference.
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Figure t I Comparison of the SWE simulations at SNOTEL station #2 for the hydrology
model without updating and the hydrology model with updating. Four brightness
temperature channels are used in the multi-parametric inversion. The 37 H brightness
temperature measurements are shown for reference.
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Figure 12 The structure of the multilayer perceptron neural network used to represent the
dense medium radiative transfer model (DMRT). We use four input nodes, four output
nodes, representing the input and output vectors S and Tb, and one hidden layer with five
nodes.


