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Optimum Shape Design using Automatic Differentiation in

Reverse Mode "

M. Hafez, B. Mohammadi and O. Pironneau
U. C. DAVIS and INRIA

Summary

This paper isdevoted toshow how touse automatic

differentiationinreversemode as a powerfultoolin

optimizationprocedures. Itisalsoshown that for

aerodynamic applicationsthe gradientshave to be

as accurate as possible.In particular,the effectof

having the exact gradientof the firstor second or-

der spatialdiscretizationschemes ispresented.We

show that the lossofprecisioninthegradientaffects

not only the convergence,but alsothe finalshape.

Both two and three dimensional configurationsof

transonic and supersonic flows have been investi-

gated. These casesinvolveup to severalthousand

of controlparameters.

1 Introduction

The problems of interest here belong to optimal

shape design in aeronautics. Some implicit cost
functional has to be minimized over a set of possible

states, under the constraint that the state equations

(steady Euler) are satisfied.

When using gradient based methods for optimiza-

tion, we need the gradient of the cost function with

respect to control parameter variations. This is a
severe limitation if a direct method based on suc-

cessive cost function evaluation is used. Indeed, the

cost of one evaluation of the gradient will be pro-

portional to the number of control parameters.

We use the Odyss_e system [1,2] in reverse mode

to produce the Jacobian of the cost function with

respect to the control variables. Odyssde takes as

input a FORTRAN 77 program and a set of variables
and returns a new FORTaA_ 77 program computing

the derivatives of the original function with respect

to the given variables. This gradient has been used

in a projected conjugate gradient method for mini-
mization.

As mentioned before, in optimization procedures

we have to compute the effects of control variables

variations on the cost J (i.e. dJ/dzc). Therefore,

if a control point is moved, this variation has to

be propagated to all the mesh nodes. Because the
target geometries are usually described by an un-
structured mesh, we have developped a correspond-

ing framework for shape deformations to take into
account these deformations over the meshes. The

meshes used here contain only triangles in 2D and

tetraedra in 3D.

2 Control Problem Formula-

tion

In this paper the aim is to minimize a functional

J(z, U(x)) under geometric and aerodynamic con-
straints. Here, z indicates the geometrical de-

scription of a configuration and the flow pattern

around this shape is the solution of the steady Eu-

ler system of fluid dynamics in conservation form:

V.(F(U)) = 0, where g is the vector of conserva-
1 2 t

tive variables (i.e. U = (p, pG, p(C,_T + _lu[ )) ), F
represents the advective operator. This system has

4 equations in 2D (5 equations in 3D) for 5 variables

(6 variables in 3D) and the system is closed using

the equation of state p "- p(p, T).

2.1 The Reverse Mode

To calculate the gradient of J under aerodynamic

constraints, automatic differentiation in reverse

mode has been used. In this approach, the lines

of the programs describing the relations between

the variation of the design variables and the cost

function including the grid and the 'steady' flow

equations are multiplied by parameters (P'3 and an

augmented Lagrangian (L) is constructed. The val-
ues of the parameters are obtained from the opti-

mality conditions (i.e. that the first variations of L

with respect to intermediate variables vanish). The

*The first author was supported by NASA Ames Cooperative Agreement
(NCC2-5049).



solution can be always obtained simply by back sub-

stitution (hence the notion of reverse mode). Once
the parameters are evaluated, the gradient of L can

be easily calculated ( a simple example is given in

the appendix).

In this approach no adjoint system is solved and

the work in the back substitution step is equivalent
to one explicit iteration of the governing equations

[s].
The advantages over the other methods are clear.

In particular, this leads to the exact gradient of the
discrete cost function with respect to the control

variables and the computational time for the gradi-
ent is independant of the number of controls.

This gradient is then used in a conjugate gradi-

ent method to solve the optimization problem. In

[4,5,6], the gradients obtained by Ody_,e have been
compared with those obtained using finite differ-

ences for similar problems.

2.2 The Conjugate Gradient Method

Our minimization tool is quite simple. It is based on

a conjugate gradient method with optimal descent

step. We use projection to take into account the
local geometrical constraints and global constraints

are taken into account in the cost function using

Lagrange multipliers.

More precisely, the algorithm is as follows (we de-
note J(z, U(x)) by J(z):

zogiven,

do 1 iteration of the steepest descent algorithm,

where,

for n = 2, 3,... do

IV.J(x"-l)l 2

7 = iV_j(x._2)12,

h" = -V,J(z "-1) + 7 h"-z,

Z n : Z n-1 "1- )_nhn,

)_n = minxJ(_., U(_)).

with _ = z n-z - _VxJ(z n-z) and

bJ 8J T OU
V_J = -_z + (-O-U) ( O;x )"

This algorithm converges to a local minimum of J.

2.3 Flow Solver

The NSC2KE solver uses a finite element/finite vol-

ume formulation on unstructured meshes involving

triangles in 2D and tetraedra in 3D. Second or-

der accuracy in space has been achieved using a

MUSCL type reconstruction and limiters have been

used to prevent oscillations. The time dependant

equation (OV/Ot + V.F(U) = 0) is marched in time
to a steady state. The time discretization is based

on a 4-stage Runge-Kutta scheme. We will show

that for the optimization procedure it is important

to have a gradient including all of these ingredients

(especially, the second order MUSCL reconstruction

step).

2.4 Geometry Modifications
Control Points Definition

and

In 2D, the control points are fitted by a cubic

spline. The splines have two features. They have

a smoothing effect on the variations of the control

points (6zc) and they propagate these variations to
the other body points which are not control points

For 3D applications, the use of generalized surface

splines is quite complicated and involves CAD con-
cepts and deriving these objects is more difficult

than the fluid solver. The present unstructured

framework [3] for geometry modifications is based

on the following:

1. All the nodes on the shape are control points.

2. To avoid oscillations, a smoothing operator is

defined over the shape. This can be, for instance, a

few Jacobi iterations to solve ((I- eA)8$_, = gz_),

where 65w is the smoothed shape variation for the

shape nodes and $z_ is the variation given by the

optimization tool. Once (z_) known, we have to
expand these variations overall the mesh. This is

done by solving an elliptic system. These tools have

also been derived by the automatic differentiation

procedure.

2.5 Geometrical Constraints

The present geometrical constraints are of two

types. The first one is imposed by defining two lim-

iting surfaces (curves in 2D) between which shape

variations are allowed. As all shapes in this paper

are of wing type, the second constraint is that the

original planform should remain unchanged. This

means for instance in 2D that the leading and trail-

ing edge are frozen.



3 Results 3.3 An Inverse Problem in 3D

Two and three dimensional results of inverse prob-

lems and drag reduction for airfoils and wings are

presented for transonic and supersonic flows.

3.1 An Inverse Problem in 2D

The first case consists of an inverse problem based

on a given pressure distribution. The cost function

is given by J(z) = ½ f_ IP, - Pt,rgal 2dz, where,

Ptarget is a given target pressure and p_ the actual
flow pressure. The design takes place at Mach num-

ber 0.85 and zero angle of incidence. The initial

shape is the RAE2822. The target pressure corre-

sponds to the same airfoil deformed by about 30

percent on the upper surface and 20 percent on the
lower surface. This leads to a shift of the shocks to

the right by about 20 percent of the chord. There
are 20 control points on the airfoil and 60 total

nodes. This is a quite coarse mesh and enables us

to compare the Odyssge gradients with finite differ-

ences (see Fig. 1).

The cost function has been computed using a second

order scheme but the gradient has been computed

either by a first or a second order scheme. This is

to show that this loss of precision for the gradient

impacts both the convergence and the final shape.

3.2 A drag reduction problem in 2D

The aim here is to reduce the shock-induced drag for

a RAE2822 profile at Mach number 0.8 and zero an-

gle of incidence. The shock on the upper surface is

quite close to the trailing edge and is more difficult

to remove as in this region geometrical constraints

are more important. On the other hand, the shock
on the lower surface is easier to remove.

As in [7,8], consider as cost function J(z) =
1

fr Ip-pil2dz + IOCd, where pl is the original pres-
sure distribution and Ca the drag coefficient. The
first term forces the profile to remain as much as

possible close to the original shape. Moreover, the

shape variation is limited to 5 percent. The drag

(resp. lift) has been reduced from 2.110 -2 (resp.

0.292) to 1.2510 -2 (resp. 0.291) with the second

order gradient and to 1.5310 -2 (resp. 0.289) using
the first order one. The airfoil volume's has almost

remained unchanged.

We consider a pressure recovery problem in 3D. The

original shape here is the ONERA M6 wing. The
target shape is the same wing deformed on its upper

surface by 30 percent. Our aim is to recover this

shape using the corresponding pressure distribution

starting from the M6 wing. The section definitions

of the wing are not used. Also, the cross sections

have been computed by interpolation (see Fig. 6).

All the wall mesh points are control points. In this

case, we have about 700 nodes on the wing. It is
therefore impossible to treat this case without the

adjoint (inverse) mode. The important remark here

is that when we use only first order gradient, the
target shape is not correctly recovered.

3.4 Wave-Drag Reduction in 3D

The aim here is to reduce the shock-induced drag

over an M6 type wing. The original wing is an M6

wing with the upper surface deformed by 10 per-

cent to obtain a nonsymmetric wing. The mesh
has around 105 tetraedra and there are about 2000

control points on the wing (see. Fig. 11). The

design take place at Mach number 0.84 and in-

cidence of 3.06. This configuration involves a _-

shock on the upper surface and our aim is to pro-

duce a wing as close as possible to the original with
smoothed shocks. We will use the second order

gradient in this computation. The cost function is

J(z) = ½ fr IP -pol 2dz + 10Ca + ICt - C°l, where

Ct and C_l are the actual and initial lift coefficients.
The drag has been reduced by about 10 percent.

3.5 A supersonic case

This is an inverse problem at Mach 3 over an
Naca0014 airfoil. The aim is to show that the ex-

tension of our approach to supersonic flows does not

introduce any particular difficulty even at bound-
aries.

4 Concluding Remarks

A new approach involving the reverse mode of auto-

matic differentiation has been presented. A general

framework for treating geometries with unstruc-
tured discretization has been introduced for both

two and three dimensional configurations. Prelim-
inary examples show the ability of the method to

treat inverse and control problems.



Theinversemodeis shown to be a powerful tool

for providing the exact gradient of the discrete op-
erators. Thus, 3D cases with several thousands of

control points are possible to calculate.

It has also been pointed out that the gradient

should include all the ingredients of the discrete op-

erators. The accuracy of the gradient impacts not

only the convergence but also the final shapes.

It is important to notice that, except for the gra-

dient which use a backward time integration pro-

cedure, all the calculations have been done by ex-

plicit schemes. A parallel implementation of this

approach is therefore quite simple.

Future works will include more extensive validation

of these techniques in 3D configurations.
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and the design variables z such that f(u(z)), where

u(z) is the solution of the flow equations. Assume

the following FORTRAN 77program:

ul=x

U2=X**2+2*Ul

f=ul+u2

In automatic differentiation in reverse mode, we

consider the lines of the program as constraints and

associate to each of them a Lagrange multiplier and

define an augmented Lagrangian as follows:

L : u 1 -{- u2 + pl(u2 - z 2 - 2Ul) -{- p2(ul - z).

We know that at the solution we have:

OL
-- : 1-2pl +P2 : O,
OUl

OL
--=l+pl:0.
cOu2

We notice that to find Pi, we have to solve the pre-

vious set of equations in "reverse" order. Once pi

known, we have:

OL _ @f
-- 2plx - P2,

Oz Oz

which is the Jacobian of f.
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Figure h Inverse problem with inverse mode: com-

parison of the gradients obtained by Odyssde and

finite differences.

6 Appendix

We give a simple example of the automatic differen-
tiation in reverse mode. Consider a cost function f
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Figure 2: Inverse problem with inverse mode: ini-

tial, target and computed shapes using the first and
second order Jacobians.

Figure 5: Drag reduction: initial and final shapes
obtained with the first and second order 9radients.
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Figure 3: Inverse problem with inverse mode: con-

ven2ence histories for the cost using first and second

order gradients.

Figure 6: 3D inverse problem: M6 wing, upper sur-

face discretization.
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Figure 4: Dra# reduction: convergence histories for

the cost function using second order operator and

first or second order 9radients.

Figure 7: 3D inverse problem: lso-Mach contours

over the M6 win#'s upper surface (in the range

[0.3,1._] with _0 contours).
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Figure 8: 3D inverse problem: Iso-Mach contours

over the target wing's upper surface (in the range

[0.3,1.4] with 40 contours).

Figure 11: 3D Drag reduction: nonsymmetric wing,
upper surface discretization, all these points are

control points.
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Figure 9:319 inverse problem: Iso-Mach contours
over the upper surface of the shape obtained using

the second order gradient (uniform discretization of
the interval [0.3,1.4] with 40 isovalues).

Figure 12: 8D drag reduction: Iso-Mach contours

over the initial wing's upper surface.
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Figure 10: 3D inverse problem: Iso-Mach contours

over the upper surface of the shape obtained using

the first order gradient (in the range [0.3,1.4] with

40 contours).

Figure 13: 3D drag reduction: Iso-Mach contours

over the upper surface of the shape obtained using

the second order gradient.
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Figure 14: 8D drag reduction: shape cross-section

for the initial and the optimized shape after 5 design
iterations.
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Figure 17: Supersonic flow at M=8. Pressure dis-

tribution: initial, target and computed.

Figure 15: 3D drag reduction: pressure cross-

section over the initial and the optimized shape after
5 design iterations.
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Figure 18: Supersonic flow at M=3. Initial, target

and final shapes.

Figure 16: Supersonic flow at M=3. Convergence

history.


