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This proposal was for a joint X-ray�ultraviolet�ground-based study of

the abnormal Be star lambda Eri, which has previously shown evidence of

X-ray flaring from ROSAT observations in 1991. The X-ray component consisted

of observations from the both ASCA (subject of this task) and ROSAT satellites.

The 1991 flare event observed by ROSAT caught the astronomical hot star

community by surprise because X-ray flares have not been observed from other

single B-type stars, before or since. It was important to obtain additional
observations to estimate whether flares in this star are common or rare.

My collaborators in India and Japan and I were able to schedule observations

with the ASCA, IUE, and Voyager satellites, as well as ground stations in

the US and India.

The program was conducted from Feb. 26-March 7, 1995. ASCA and optical
observations were scheduled on Feb. 26-27. The ASCA data was reduced and

fit to models at the ISAS facility in Tokyo by Dr. T. Murakami and H. Ezuka.

The results of these data can be summarized as follows: (i) the mean X-ray

flux level agrees to within 10% of the 1991 quiescent flux level found by

ROSAT, (2) no significant variability can be seen, and (3) the X-ray

spectrum can be fit with a Raymond-Smith (optically thin plasma) model

having a temperature of iX10^7 degrees.

Both optical (H-alpha) and UV/Voyager observations provide evidence for

transient heating events near the surface of lambda Eri. The absence of

strong associated X-ray fluctuations suggests these heatings are mild,

and are much less than 10^6 degrees.

A manuscript has been written and submitted to the Astrophysical

Journal and is appended to this report.
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ABSTRACT

We document the results of a simultaneous wavelength monitoring on the

B2e star _ Eri. This campaign was carried out from ground stations and with

the ROSAT, ASCA, IUE, and Voyager 2 space platforms during a week in

February-March 1995; a smaller follow-up was conducted in September 1995.

During the first of these intervals _ Eri exhibited extraordinary wind and

disk-ejection activity. The ROSAT/HRI X-ray light curves showed no large

flares such as the one the ROSAT/PSCA observed in 1991. However, possible

low level fluctuations in the February-March ROSAT data occurred at the same

time as unusual activity in Ha, He I )t6678, He II _1640, and the C IV doublet.

For example, the hydrogen and helium lines exhibited an emission in the blue

half of their profiles, probably lasting several hours. The C IV lines showed

a strong high-velocity Discrete Absorption Component (DAC) accompanied

by unusually strong absorption at lower velocities. The helium line activity

suggests that a mass ejection occurred at the base of the wind while the strong

C III (Voyager) and C IV (IUE) lines implies that shock interactions occurred

in the wind flow. It is not clear that the X-ray elevations are directly related to

the strong C IV absorptions because the former changed on a much more rapid

timescale than absorptions in the C IV lines.

Within hours of the mild X-ray flux variations found by ROSAT on February

28, the Voyager UVS observed a "ringing" that decayed over three 3-hr.

cycles. The amplitude of these fluctuations was strong (50%) at _$950-1100,

decreased rapidly with wavelength, and faded to nondetection longward of

_1300. Various considerations indicate that these continuum variations were

not due to an instrumental pathology in the UVS. Rather, they appear to be

due to a time-dependent flux deficit in the _950-1250 region. We outline a



scenario in which a dense plasma structure over the star's surface is heated and

cooled quasi-periodicaLly to produce such flux changes. Observations of new

examples of this phenomenon are badly needed. Amateur astronomers can make

a significant contribution to its understanding by searching for ringing in light

curves of Be stars during their outburst phases.

Finally we draw attention to an increase in the emission of the Ha line

that occurred at about the time the FUV ringing started. This increased

emission hints that _50,000K plasma near the star's surface can influence the

circumstellar disc at _12B.. by its increased Lyman continuum flux.

Subject headings: stars: individual A Eri, stars: emission-line, Be - stars:
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1. Introduction

The early 1990's has been a golden period in the study of Be stars because it has

permitted multi-wavelength monitoring observations of the variability of these objects to

be carried out from a variety of space platforms as well as ground stations. In this paper

we discuss results from a coordinated campaign comprised of optical and UV spectroscopy

and X-ray observations with the ROSAT and ASCA satellites of a perennial favorite mild

B2e star, _ Eri. This star has been routinely observed in the optical region since a 0.9 day

periodicity, usually attributable to nonradial pulsations, was discovered in its optical line

profiles and radial velocities (Penrod 1986, Bolton and Stefl 1989, Smith 1989). This star

has been the subject of a large number of IUE and optical campaigns (Peters 1991, Smith

and Polidan 1993, Kambe et al. 1993). In 1991 February the ROSAT satellite observed

a strong, several-hour X-ray flare on this star during an epoch of weak mass ejection and

wind activity (Smith et al. 1993). _ Eri is also well known for the erratic rapid variations

in its photospheric He I A6678 line. These variations take the form of "dimples" and

micro-emissions at frequent irregular occasions, during both Ha emission and quiescent

phases (Smith 1989, Smith and Polidan 1993, Kambe et al. 1993, Smith et al. 1994, Smith

et al. 1996, Smith 1997). This rapid optical line variability develops over 10's of minutes

or less, implying that violent high-energy events occur close to the surface of this star. The

reported correlations of strong UV resonance lines with dimples and emissions in optical

lines (Smith and Polidan 1993, Smith et al. 1996), together with the 1991 X-ray flare,

suggested to us that a more concentrated X-ray/UV/optical campaign might shed light on

a high energy connection with erratic optical line activity. Toward this end we were able to

arrange a new campaign in 1995, just a year before the termination of the operation of the

IUE satellite and soon after the launch of ASCA. In a recent paper (Smith et al. 1997) we

have also reported the nondetection of <)_400 flux from this star by the EUVE satellite.
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The purpose of our multi-wavelength campaign is to address two questions: first, does

A Eri show major X-ray flares frequently? If it does, A Eri may be somehow abnormal,

for X-ray surveys of hot stars, Be stars included, are not finding variability to be common

(e.g. Cassinenl et al. 1994). The second question was: are there optical or UV proxies of

high energy transient activity? It is essential to establish what this might be because of the

difficulty of setting up concentrated X-ray campaigns on a type of star that is not known

for its X-ray variability. In our new observations we found no examples of a second major

X-ray flare. Clearly, then, the first question may be answered "no." The response to the

second question hinges on possible small-scale X-ray variations that may be present in the

ROSAT data. We observed marked variations in the UV and optical spectra that coincided

with these putative X-ray excursions.

Aside from its X-ray flare, A Eri appears to have normal parameters for a B2 star.

Following Smith, Peters, and Grady (1991) Smith, Hubeny, and Lanz (1994), and Smith et

al. (1994), we will adopt the following parameters for this star in our discussion: T_/! =

23,000K, R = 6Re, and an inclination, i _ 6 °, between our line of sight and the equatorial

plane.

2. Observations

We were allocated 30 ks of ROSAT time and 24 ks of ASCA time during the 1995

season. The ROSAT data were obtained with the High Resolution Imager (HRI). This

instrument does not have the energy discrimination of the Position Sensitive Proportion

Counter (PSPC) which was used to observe the 1991 flare, nor is it quite as sensitive.

However, it provides five times the spatial resolution on the sky and still produces a light

curve limited in accuracy mainly by photon statistics. The ASCA satellite provides a pair of

moderate spectral resolution (E/AE) Solid-State Imaging Spectrometers (SIS) sensitive to



-6-

energies from 0.5-10 keV and a pair of lower resolution Gas Imaging Spectrometers (GIS),

which responds to 1-10 keV energies (see Tanaka, Inoue, and Holt 1994).

The ROSAT observations could not be scheduled during a single short epoch. About

65% of our time was scheduled during the period 1995 February 26 through March 5.

The balance of our allotment was scheduled during 1995 September 9-18. The ASCA

observations were more concentrated and occurred within a 22-hour period on February

26-27. We were also allocated 8 hours of IUE time to cover these X-ray observations. Seven

optimally exposed high dispersion SWP IUE observations (exposure time: 1 rain.) were

made on February 27, 21:34-24:37 U.T. In addition, Ha observations were made with the

Fabry-Perot spectrometer at the 1.2-m Guruskihkar Infrared Telescope (GIT) operated by

the Physical Research Laboratory on Mount Abu, India on the nights of February 26-28.

McMath telescope service observations of the Ha and He I lines at Kitt Peak were carried

out on the nights of February 27 and 28 (UT). Additional IUE observations were carried

out on March 7 (one), on September 7-9 (11) and September 16 (one).

Our target was observed on-axis by the HRJ during both portions of our ROSAT

program. The data were reduced with the IRAF/PROS package and the HEASARC

XSELECT software. Source counts were extracted from a circular region of radius 30

arcsec. Background counts were taken from a nearby region. We time-binned the data

using 2000 sec (orbital window) segments in order to maximize the signal to noise ratio

and to minimize the loss of sensitivity to possible short-timescale variability. We initially

extracted flux by excluding the first three channels of the 30 HRI channels because of the

UV light leak known to affect these these channels for hot sources. The centroid of the HI_I

image of the source was only 1 arcsec off the optical position of the star. This small error is

typical of the pointing errors for the HRI instrument. The centroid position did not shift

appreciably when channel 4 counts were subtracted.



Because the HRI has a known UV leak and because R Eri is a strong UV source,

we were obliged to correct for UV contamination in the HRI counts. We compared the

pulse-height distribution in our observations with the the pulse-height distribution obtained

for Vega (David et al. 1996), a UV-bright star which has little known X-ray emission.

We found that Vega distribution is peaked below channel 4, with very little emission in

higher channels. The pulse distribution for $ Eri is also high for channels 1-4, but with

significantly more counts above channel 4. This suggests that channels 5 and above are

dominated by X-rays. Therefore, we ignored all pulse-height channels below channel 5

in our HRI reductions. As a check we compared the apparent flux derived from spectral

fitting of the basal PSPC spectrum and also with the contemporary ASCA SIS data (see

below). Using a Raymond-Smith model and a standard count to energy conversion factor

for the HRI, we found that the tIRI flux agreed to within 10-20% of the old PSPC and

contemporary ASCA values, indicating that most of the UV contamination of the HItI data

was successfully removed. The light curve discussed below was obtained by binning the

data in segments of about 2000 sec.

The reductions of the ASCA data proceeded in an analogous manner using ISAS

analysis software. Because of the soft distribution of $ Eri's X-ray flux and the absence

of any flaring by a harder component, we confined our attention to the SIS detectors,

which are more sensitive at lower energies than the GIS. The ASCA observation of $ Eri

started at February 26 12:36 (U.T.) and covered roughly 22 hours except for occasional

Earth occultations. The two detectors (SIS0 and SIS1) are virtually identical, so we have

combined the two data sets to enhance the signal to noise ratio. Source counts were

extracted from a circular region of 4.5 arcmin radius. The background-subtracted spectrum

was fitted, as discussed below, with various Raymond-Smith models, though alternative

types of models would have fit the data fluctuations equally well.

All IUE spectra were reduced by the prototype NEWSIPS spectral processing system
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(Nichols and Linsky 1996). Extensive comparisons of the signal to noise ratios of NEWSIPS

to the old standard IUESIPS processings by the IUE Project has determined a consistent

improvement of a factor of two in the measurement of the equivalent width of a rotationally

broadened line. Much of this improvement comes from a reduction in the pixel-to-pixel

noise. An additional enhancement that is important for broad-lined spectra is the more

reliable estimate of the continuum placement with NEWSIPS, which permits more

consistent equivalent width measurements. For example, we estimate an error of +4% in

the equivalent width measures of He II A1640.

Several hours of high data rate spectra were obtained by the Voyager 2 Ultra-Violet

Spectrometer (UVS) beginning at February 27 18:37 U.T. (heliocentric) and ending 23.5

hours later. These data were obtained in the rapid-readout (3.84 see.) cadence with these

data pre-binned to 3:1 such that each spectrum examined has an effective integration time

of 11.5 sees. The UV Spectrometer data were reduced by J. Holberg and J. Collins of

the LPL Voyager-GO laboratory using an updated version of the data reduction package

described by Holberg and Watkins (1992). The raw data showed no indication of abnormal

spacecraft or UVS functioning. Seventeen clean "drift scan cycles were obtained with

the star passing close to the center of the field aperture in each cycle. The aperture

functions constructed from these cyclesin allcases included data from both halves of the

fieldaperture. As a resultextrapolations of the count rate from the star being at various

positionswithin the fieldaperture were minimal. The effectiveintegrationtime for each

of the final17 time-binned spectra was 12-29 re.ins,and the effectivespectralresolutionis

15,_. Light curves were synthesized from severalbandpasses of size 75-150_ between A500

and A1500.

Because the errors in the monochromatic light curves from the Voyager data are

important to our results, we took care to insure that the fluctuations we found were not

instrumental artifacts. Smith and Polidan (1993) have published a light curve for A Eri.
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That curve showed apparent constancy to within ±3%. This is also consistent with errors

found by other observers of bright B stars (e.g. Porri et al. 1994, Smith 1995, and references

cited therein). The fluctuations in the )_1300-1500 bandpa.ss of our data suggest an error

of ±5%, which is consistent with the lower instrumental response in this wavelength region.

Since we believe the short wavelength data contain real stellar variations, we cannot use the

data to obta;n a reliable error estimate. However, we may still take the median value of the

point-to-point fluctuations in each light curve as an estimate of this error. Of course this

figure will be high if the star is actually variable. Using this as a criterion for the error, we

find an r.m.s, of < ±5%, from the 3_A912-1050, )_A1050-1100, and A)_1100-1200 light curves.

Thus, we have no reason to believe that the errors for the short wavelength data are much

larger with the ±3% value expected for a B star of this brightness.

The McMath optical spectra were reduced in IRAF. These spectra exhibit a level of

Ha emission unmatched for A Eri since its discovery as a Be star, nearly 1.4Ic. The epoch of

our primary campaign is near the time of the maximum Ha-emission outburst, which was

first reported by Stefl in 1994 October (Stefl 1994). The Violet (V) and Red (R) emission

maxima were separated by 177+5 km s -1. This separation corresponds to an orbital radius

of about 12R.. assuming a nearly edge-on, detached disk with Keplerian orbital velocities

(Smith, Grady, and Peters 1991).

3. Results

Figure 1 shows a plot of the background-corrected ROSAT fluxes during the February-

March campaign. The times of the ASCA, IUE, Voyager, and optical observations are

indicated. There are no highly significant X-ray variations in these data. There are two

mildly elevated flux observations during the second day as well as a weak upward trend

for the third through fifth day. Both trends are significant to at least the 95% level from
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standard X 2 and Kolmogorov-Smirnov tests against constancy.

In order to look at the possible variations in the ROSAT data and their correlations

with other signals, it is convenient to break up the February-March campaign into three

intervals. These are described as follows:

i) Day 0.0-0.5 (February _6-_7) t 1

The two orbits represented in this period show a just credible detection, with a mean

HRI count rate of about 0.0016+-.0007 -t. This rate is consistent with the mean rate

of 0.0014+.003 -1 in our September data, which showed no trends or variations at all.

Theoretical models may be constructed in principle to link the 1991 PSPC observations of

this star with the current flux level measured by the HRI. Fortunately this connection can

be made by referring the HRI count rate to apparent flux rate from the far better statistics

in the ASCA/SIS data for the same day. The background-corrected count rate from the SIS

for February 26 is 5.1+0.7× 10 -3 s -1.

As depicted by Figure 2, the SIS spectrum can be matched very well with a Raymond-

Smith thermal emission model. To obtain a fit we fixed the ISM column density at 1 x 1020

cm -2, based on the fit with the 1991 PSPC data and a pair of UV interstellar Zn II lines

(see Smith et al. 1993). We also assumed a solar-like chemical composition. With these

assumptions the best derived model has a temperature kT = 0.86 +0.09,-.05 keV (X 2 =

1.19). The errors for the ASCA data refer to a lcr level. The Raymond-Smith is shown as a

histogram in the figure. We note that this temperature estimate is preferable to the value

assumed by Smith et al. (1993), which is twice this determined value. Our best-fit model

corresponds to a flux of 8.1x10 -14 ergs cm-2s -1 for the 0.5-5 keV bandpass. The correction

t lAll times are reckoned from the start of the ROSAT observations at February 26 at

15:13 U.T. ASCA Observations commenced at 12:36 U.T. on this date.
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of the integrated model fit to the PSPCbandpasswas found to be only 10% higher than

this vMue (Smith et ai. 1993). The 10% difference is also comparable to the flux differences

we estimate for different kinds of fits to the X-ray continuum. This same uncertainty is also

comparable to the ratio of count rates in the HRI data for February-March and September.

The near agreement for these two instruments suggests that the low flux in 1995 February

and September are essentiaLly the same as the basal flux measured in 1991. For an assumed

a distance of 270 pc, the soft X-ray Emission Measure from A Eri is about 3x10 su cm -3.

ii) Day 0.5-1.5 (February _7-_8)

During this interval ROSAT showed two orbits for which the soft X-ray fluxes were

slightly elevated over the mean, followed by two which are 2or over the average, ttcz and

He I _6678 were also observed at the beginning and end of this time, and seven IUE spectra

were obtained in the middle. The V and R emission components in the initial tIa profile

on February 27 6 UT rose to 1.29Ic and 1.32Ic. The profile on Febuary 28 5 UT was much

stronger, at 1.391oand 1.34Io This comparison is exhibited in the top panel of Figure 3.

The GIT (Mt. Abu) Ha profiles on February 27 14-18 UT support this difference, showing

a V component that is marginally strong than on the previous night. (On February 28 this

emission is at least as strong and the emission in the R wing grew by about 10%.)

The A6678 photospheric profile was appeared filled in slightly on February 27; the

incipient emission was more noticeable on the following night. The equivalent width

decreased from 0.60_ to 0.48/t_ during this period. Figure 3, middle panel, shows these

two profiles. An equivalent width of 0.48/tt is a rather low value for _6678 in this star,

even for disc ejection epochs (Smith, Hubeny, and Lanz 1994, Smith et al. 1996). Emission

in this llne means that the site responsible for the emission is necessarily much less than

one R. from the star's surface (Smith et al. 1997). The fact that no concomitant emission

was observed in either the V or R wings of A6678 implies that much or all of the emitting
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volume lies probably along the line of sight to the stellar disk, i.e. it is foreground material.

In contrast, the strengthening of the entire Ha emission profile in this period suggests that

most of the circumsteUar (CS) disc reacted to a change near or on the star. The filling in of

this line on February 27 is consistent with some level of emission-triggering occurring before

the more extreme activity found on the next day.

In addition to the emissions in the optical He I and Ha lines, and He II Ba A1640 line

also showed remarkable incipient emission, during the three hours of IUE obserwtions on

February 27. Similarly, the C IV lines showed weakened absorption in these data. The lower

panel of Figure 3 shows the difference between these observations and a reference spectrum,

which is actually a composite of SWP49687 and SWP49690 observations obtained during

a quiescent phase on 1993 December 23. Figure 4 shows that the C IV doublet showed

a pronounced DAC at -925 km s -1 (depicted at -1430 km s -1 in the figure) and a strong

low velocity absorption enhancement. When present at all, a DAC in ,_ Eri's C IV Line

is generally weaker than is shown here. Moreover it is not shifted to such large negative

velocities. We have been unable to find as strong an integrated wind absorption for this

doublet in the IUE archival spectra for )_ Eli which extend over 1982-1995. Figure 4 shows

an additional spectrum obtained four days after the end of the ROSAT campaign. The

C IV profiles may be compared with the optimally Fourier-filtered spectrum of the average

of two observations when the DAC feature was relatively weak. We will refer to as this as

a template spectrum. By way of reference the mean equivalent widths of the DAC and

the lower velocity wind features for the seven IUE spectra of February 27 are 0.44_ and

0.17Ik, respectively. If one scales the DAC equivalent width to the same feature in the Be

star -/Cas found by Henrichs et al. (1982) and Telting and Kaper (1994), one finds rather

high wind C +++ column densities of 1.6x10 TM cm -_ for the DAC and 4x1013 cm -2 for the

lower-velocity wind. Note also that the presence of an abnormally strong wind is confirmed

by the observation of a strong C III line at 977._. in Voyager data discussed below.
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Table 1 summarizes the absorption strengths of He II A1640. This table includes the

mean strength of this feature for February 27_ for the single observation on March 7, and

for 12 on September 7-9 when the signatures of the disc had weakened according to its

Ha emission strength. We tabulate also the nominal strength of this feature compiled

from measurements during non-emission epochs by Smith et al. (1996, 1997) as well as

from the template spectra. The table shows clearly that the equivalent width of the He II

line was abnormally weak on February 27_ even compared to March 7. Closer inspection

shows no significant fluctuations in the strength of A1640 during the three hours of IUE

coverage. However when the profiles are compared with observations of 1995 March 7, 1995

September, or the template spectrum, the mean _1640 shows a filling in over the blue half

of the profile (Figure 3). This asymmetry suggests this emission is excited from within a

volume of _<R. 3. Note that these IUE observations were made within a few hours after

the optical observations in India. Both the He, and He I A6678 observations also show

an increased emission in the blue half of their profiles. The coincidence of the differential

emission is readily apparent in Figure 3.

The behavior of the photospheric UV resonance lines from three ionization stages of

silicon supports our finding of particularly strong spectroscopic activity at this time. The

equivalent width of the A1265 line arising from the subordinate Si II ion decreased 20% from

its template spectrum value of 0.30_. The Si III )_1206 llne strength likewise decreased

10% from its nominal value of 2.3,_.. The weakening of the A1403 line from the C IV line

was only 7% (from 1.04_). It was caused entirely by a distinct filling in of the blue side of

the line core. The weakening of the lines from lower species is perhaps easiest understood

as being caused by a local temperature increase which increases the degree of ionization

of silicon species. We believe the filling in of the Si IV line core is caused by a transient

emission, perhaps by recombination in the photosphere or within a structure not far above

it such as determined by Smith et al. (1997) for He I lines.
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Table 1: He II A1640 Strengths

Date Equiv. Width Date Equiv. Width

Nominal 0.55+ .005

SWP49687,90 0.56±.014

1995 Feb. 27 0.44+.010

1995 March 7

1995 Sept. 7-9

O. 52±.020

0.54±.010

Voyager UVS light curves during February 27-28 are shown for five spectral bandpasses

indicated in Figure 5. The most notable characteristic of these curves is the "decayed

ringing" or flickering appearance in the first three, which begins at 8 U.T. on February 28

(JD2449776.8). Note that this is just after the positive excursions in ROSAT flux, the IUE

observations, and the Mr. Abu observations for this day. In the first and largest cycle the

range in flux is _50% at short wavelengths. Therefore this feature is highly statistically

significant. Points #13-16 in the plot, which comprise the second and third cycle, actually

represent integrations obtained over portions of two drift scans each, and point give largely

redundant results. _Ve have chosen to group these observations in order to maintain

constant errors even though this grouping makes the two flux cycles appear undersampled

in our figure. Inspection shows that the level of short wavelength flux is uncorrelated with

the position of the star in the field. Moreover, no instrumental pathologies are known

which could mimic this effect (Holberg 1996). Figure 5 shows that the highs and lows

of these cycles decreases with increasing wavelength. A comparison of the spectral plots

from these times also shows that the amplitude decreases quickly across the low sensitivity

AA1200-1300 region until it disappears at AA1300-1400. The fluctuations appear to arise

from a continuum flux deficit at minimum phases and not from variations in the Lyman

line strengths.

ii 0 February 28 - March 3

The ROSAT data during this time are best fit with a sloped line rising to a rate of
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0.007 cts S -1 • This is a few times the basal X-ray flux level for this object. There are no

other data taken at the same time with which to compare this rise. The IUE observation a

week later still showed a strong amount of wind activity. However, the C IV DAC feature

and ,_1640 emission were notably weaker than on February 27 (see Table 1).

iv} September 9-18

As already mentioned, the ROSAT data showed the same count rate as for the

beginning of the February observations. The IUE spectra showed little or no variability.

The C IV DAC feature was only 70% as strong as in the earlier campaign and was centered

at -850 km s -1, which is slightly lower than during February-March. The C IV profile

showed only weak absorption to the red of the DAC feature, again unlike the earlier

observations. The optical McMath observations on September 10-12 show no Ha emission

and, with one exception, exhibit little hint of activity or filling in of the A6678 line. The

exception was a spectacular "flare-like" emission rising 13% above the continuum in the

red wing of this llne. This event, discussed by Smith et al. (1997), lasted _20 minutes

and must have been emitted from a structure seen over the projected limb of the star.

Using the decay time as a recombination timescale, the density of the structure must be

at least 4x1011 cm -3. This event is the strongest and most rapidly decaying emission yet

documeffted in A6678 for this star or possibly any other Be star.

4. Discussion

We believe that ours is the second report of simultaneous X-ray, UV, and optical

variations in a classical Be star, the first being a panchromatic flare observed in 7 Cas

(Slettebak and Snow 1978, Peters 1982). The weakest element in an argument for a

multiwavelength correlation for )_ Eri is the low significance of the X-ray fluctuations.

Yet, the suspicion that these X-ray elevations are stellar in origin is strengthened by the
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nonvariable ROSAT count rates a half day earlier when concentrated ASCA observations

showed constancy as well as its constancy again in September (right panel of Figure 1). In

the remaining discussion we will tacitly assume that the marginal X-ray fluctuations are

real, but this assumption does not impact any of the conclusions drawn in this paper.

4.1. X-ray and UV Fluctuations in the Wind

The abnormally strong C IV absorption shown in Figure 4 and the strong 977_ feature

in our Voyager spectra are consistent with a picture that recently ejected matter was injected

into the wind and become involved in X-ray generating shock interactions. Bergh/Sfer et

al. (1996) have found that X-ray variations can occur also in the O-stars ¢ Pup (possibly

periodic) and ¢ Ori (single event). The X-ray variations in ¢ Pup appear to correlate with

Ha emission with a period of 16.7 hrs. These authors explain their events by invoking a

rotationally modulated density enhancement near the base of the wind which propagates

out to where X-rays become self-transparent. Bergh/Sfer and Schmitt (1994, 1995) have also

found a single excursion in an otherwise constant soft X-ray light curve of _ Ori. These

authors interpret this as the result of varying numbers of wind shocks of equal strengths.

Our IUE and optical data for February 27 (but not the subsequent ringing in the FUV)

suggest that the spectral and temporal variations arise from a single atypical strong event

rather than a larger than average fluctuation of many smaller ones. As evidence of this, we

point to the asymmetric He I and He II profiles on this date as well as the strong absorption

in the Si IV lines at low and high velocities. We comment below on the limitations of

interpreting X-ray fluctuations as the cause of optical and UV spectral variations.

An interesting result of our observations is that to within the several percent accuracy

of measurement, the basal soft X-ray flux of A Eri was the same in 1991 during a quiescent

phase as it was during the particularly strong mass ejection outburst in 1995. Even during
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the 1995 March observations the bulk of the CS disc was at _I2R. in the equator. The

inclinationof the star'sdisk to the lineof sightis very small, perhaps only _6 ° (Smith,

Peters, and Grady 1991). It isnow believed that the wind-shocked X-ray sitesare located

at most a few stellarradiifrom the star (e.g. Cranmer and Owocki 1996). If thisistrue,

the majority of X-ray emission probably originatesfrom centers located in intermediate

latitudinalor polar regions. In the equatorialplane,X-ray emissions from these centerswill

be strongly attenuated by the circumsteLlardisc,ifnot by the wind (Cohen et al. 1996).

Conversely, one may make use of disc attenuation to place weak limitson the disc height

in the polar direction. Assuming a typicaldistance of 2R. for the X-ray sitesand that the

wind istransparent to softX-rays, thislimithas to be somewhat lessthan a stellarradius.

Could the putative X-ray elevationon February 28 be related to the abnormally strong

wind features at the same time? While itis tempting to believe that they might be, the

timescales of the respective changes do not fitinto a simple cause-and-effectpicture. As

Figure i indicates,the X-ray elevationoccurred within one 96-rain orbit. The decline

was almost as rapid. The C IV wind features show considerable absorption at moderate

velocitiesalready at the startof the putative X-ray fluctuation.Three hours of observations

showed no substantialevolution of thisabsorption. Ifthe X-ray flux and C IV absorption

at low velocitieswere simply related,the latterwould have to have just appeared at the

time of our firstobservation and then remained constant over three hours. More likely,the

moderate velocity wind absorptions had been essentiallyas we firstobserved it before the

X-ray increase. Then the increased X-ray flux might have nothing to do with the C IV

absorptions (indeed the former may not be real).In addition,we note that the FUV ringing

event observed by Voyager occurred just as the X-ray flux appeared to decrease (seventh

ROSAT orbit).
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4.2. Ha Variations

We consider now the relationship of the X-ray and Ha fluctuations on February 27.

We begin by noticing that H_, emission increases cannot be the redward-extrapolated flux

from a Raymond-Smith distribution because this flux is far too low to photoionize enough

hydrogen atoms in the circumstellar disc (even if they were near the star). Perhaps instead

the disc brightens for the same reason that it glows already in Ha under steady state

conditions, namely that an increased supply of Lyman continuum photons from the star

ionizes additional atoms in the CS disc. The disc atoms would then recombine and emit

increased Ha radiation. In this connection, we note that Smith et al (1997) have shown that

A1640 emission can be caused by dense plasma at _,50,000K above the surface. Gas at this

temperature emits continuum radiation e_ciently at _900_. Standard model atmospheres

(e.g. Kurucz 1979) show that a (50,000K, 4.0) model emits _,4×103 times as much flux

near 900._. as a 22,500K model does appropriate to _ Eri. Then let us consider a suspended

slab, such as that discussed by Smith et al. (1996) to explain He I line emissions, only

heated to 50,000K. To be conservative, we will posit that this slab is optically thin and has

an emissivity of, say, 1/3 the irradiance of the Kurucz 50,000K atmosphere. We also specify

a filling factor of 10% of the stellar disk. If we further assume a geometrical dilution factor

of 1/200 as seen from the CS disc, we can compute that a hot slab suspended somewhere

in the vicinity the star would increase the number of Lyman photons available to ionize

hydrogen atoms in the disk by a factor of 4,000/(3 × 10× 2× 10 _) = ,-_67%. Then even if one

allows for attenuation of Lyman flux from intervening wind atoms, the increase in Lyman

flux is enough to match the comparatively small emission increase shown in Figure 3.

Notice that our estimate of surplus Lyman flux, while necessarily rough, does not require

that the X-ray flux on February 28 was enhanced. It requires only that the mass injection

is accompanied by a modest heating above T_//, which we already suspected from the near
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simultaneous weakening (emission) of He II _1640 and weakening of lines of three stages

of silicon. If one estimates the wind density as _..108 cm -3 at 12R., the recombination

timescale will be at least a few hours. Thus a single impulsive event near the star could

sustain an enhanced Ha emission from the CS disc long enough to be observed in Ha from

the a random longitude zone on the Earth.

5. The FUV Continuum Variability

There are two aspects to the FUV fluctuations observed by Voyager 2 which are novel.

The first is the temporal characteristics summarized in Figure 5, and the second axe changes

in the spectral characteristics as the FUV flux changes from its high to low state. We

consider each of these characteristics as follows.

Although ringing in the FUV such as found in our Voyager observations not been

noticed in other B stars, Balona (1990) has reported the precedent of a similar flickering

being observed in the optical flux of the Be star _; CMa. Balona's observations showed

the ringing had a timescale of about 0.2 days, or about twice the cycle length shown in

Figure 5, and damped out in a day or so. The occurrence of this event coincident with a

0.1 mag. brightening associated with an Ha emission outburst of this star. We believe that

this behavior in _ CMa is rather similar to what our Voyager observations show.

We have surveyed the recent literature for other examples of ringing in stellar flux, and

we have become aware only of similar behavior in the X-ray and microwave regions from

oscillating loops above the Sun's surface Zaitsev and Stepanov (1989; "ZS") have suggested

that transient ringing is initiated by an unspecified mechanism. The instability sets up

magnetic Alfven waves which travel along the loop field lines and are reflected at their

footpoints until they eventually damp from electronic-ionic collisions. ZS argued that if the

period, amplitude, and number of effective cycles is known one may solve for a characteristic
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temperature, density and magnetic field strength in the oscillating loop. Mullan, Herr, and

Bhattacharyya (1992) have applied ZS theory to damped X-ray oscillations observed in

active red dwarfs and have been able to derive reasonable physical parameters for the gas

and field in such loops. We have found that an application of ZS theory to our Voyager

data leads to badly inconsistent values for the loop gas temperature (too high) and density

(too low). The physical cause of this inconsistency can be traced to the long quasi-period

of 104 sec. A second problem is that the oscillating FUV continuum flux must form in

an optically thick medium rather than an optically thin one as this theory assumes. One

can avoid this problem in principle by arguing that the _50% FUV flux variations occur

from backwarming of the photosphere by transient X-ray flux. However, the simultaneous

ROSAT observations show that such strong heating could not have occurred, at least

for very long. We conclude the ZS mechanism cannot be responsible for the FUV flux

variations. Because this is the first observation of its type, we do not wish to attempt to

speculate further on what might cause this periodic behavior.

The flux distribution of our Voyager spectra provide additional clues to the FUV

ringing, but they do not resolve its mystery. With the help of R. Polidan we have compared

these spectra with spectra of the Voyager standard stars eCMa (B2 II) and _ Hyi (B9 III)

plus Voyager 1 spectra of A gri taken in 1990 and discussed by Smith and Polidan (1993).

Aside from their utility in detecting strong Lyman and C III lines in the spectra of hot stars,

Voyager spectra can be used to assess the effective temperatures of stars both from the steep

rise in flux at ,_,_912-975 and from the slope over ,_,_1300-1650. We have found that both

these gradients are the same for )t Eri and e CMa within the errors. This confirms results

from various optical studies that the two stars have very similar temperatures, perhaps to

within +1500K. The gradients at the blue and red ends are similar for spectra obtained

at both maxima and minima of the FUV oscillation cycle. A comparison of the high- and

low-state spectra with 1990 spectra showed two properties. First, the 1995 spectra obtained
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by Voyager 2 appear some 13% fainter than the 1990 spectra obtained by Voyager 1. This

apparent dimming is actually most likely caused by a loss of sensitivity of Voyager 2 relative

to Voyager 1 after the last calibrations of these instruments were made (Holberg 1996).

Thus we will disregard it from further consideration. A second peculiar property of our

new UVS spectra is that the high-state spectra mimic the flux distribution of the 1990

archival spectra: it is the low-state spectra that appear anomalous. The latter show a flux

deficit in the region AA950-1250. We now consider two ways this spectral difference might

arise, first with a dual-temperature composite model and second with the imposition of a

wavelength-llmited opacity source. We are indebted to R. Polidan for putting forth both of

these concepts.

In the firstcase we consider a large,cool,opticallythick blob situated such that part

of itsarea obscures the Be star while the restof itisseen against the projected limb of the

star. The latterprimarily adds low emissivityfluxin the red. One can then play with the

parameters to match the observed spectrum with a two-temperature model of the partially

eclipsed star.As a typical case,we findthat ifone dilutesthe high-stateflux of the Be star

by 27% and arbitarilyadds enough red fluxfrom the blob, one can duplicate the low-state

Voyager spectra well. In this case the red gradient emulates that of a late-B star spectrum

while the AA912-975 gradient is stillunaffected. The gradient of the red flux needed to do

this is consistent with a _12,000K star similarto 3 Hyi. However, a fatalflaw with this

model is that the emissivity of the B9-type structureisso low that one must postulate a

blob radius several times that of the Be star to match allthe hypothesized excess red flux.

We have rejectedthis model for thisreason.

As a second model, we accept at face value the flux deficitin the A950-1350 region

and consider mechanisms that could produce transientexcess opacity in this band. A

prospective candidate is the C I ion which has strong bound-free edges at 1100_ and

1240./k.These edges arc located in the middle of a forestof strong Fc II lines.If a means



- 22 -

could be found to force carbon to recombine to C I periodically in a slab-like structure

above the star, one could explain the transient spectral-dependent variations. A high

carbon opacity could occur only if the slab were much cooler than equilibrium conditions

would warrant. For example, if the temperature were 10,000K the ionization fraction of

carbon drops enough for its opacity to dominate over Balmer continuum opacity and even

to become the dominant feature in this wavelength region (Hubeny 1996). The challenge

then becomes how to explain the slab temperature can drop to a value much lower than

temperatures found in a static model atmosphere of a B2 star. We conjecture that a sudden

injection of superheated material into a magnetic loop could produce an instability in

which radiative losses from the slab could briefly overcome the ability of stellar radiation to

maintain its equilibrium temperature. The most reasonable way this could happen is if an

ionization/recombination wave moved through the slab periodically and caused alternate

high and low thermal excursions. At the low temperature phase the carbon-induced flux

deficit would become prominent while at the high temperature phases the FUV spectrum

would remain basically unchanged. Note incidentally that during the hot phase an excess

of <912A flux would be produced, and this could be the source of the increases in disc Ha

emission discussed above. Yet all of this is conjecture. At this early stage we must keep

in mind that there is no precedent and little context for the FUV ringing. The Voyagers

have not observed any facsimile of damped ringing has been seen the B stars they have

monitored (Holberg 1996).

6. Conclusions

The absence of sharp brightenings in either the February-March or September

observations has established that extended soft X-ray flares are not the rule for A Eft. In

one sense the nondetection of a second strong flare should remove concerns that A Eri
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may be somehow atypical of other classical Be stars. Also, the nondetection of additional

strong flares in _ EH ironically strengthens the argument that X-ray survey observations

of Be stars should not be used as a basis for contending that these stars do not show any

flares at all. A wide variety of flare stars show a power-law distribution in flare amplitude,

and our combined X-ray observations of _ Eri are so far consistent with this behavior. If

flaring plays a role in the mass loss episodes of these stars, multi-wavelength campaigns can

attempt observations of optical He II lines to monitor the recombination rates in this ion.

We have found that several signatures of wind/disk activity, namely elevated X-ray

fluxes, abnormally strong wind absorption in C IV, and enhanced V-wlng emission in Ha,

occurred on February 28 just when the same velocity range of the He I and He II lines

showed a fiJ].ing in. Helium lines are thought to show emission only when excited well

within _IR. of the surface. The behavior of these diagnostics indicates that a strong shock,

perhaps a flare, originated close to the star, and yet it may have also excited emission by

recombination in the disc at _12R. from the star.

With the IUE mission now closed, observers may have to look with high signal to noise

ratios to other proxies of high energy events to build on recent multiwavelength results.

Smith et a_. (1997) have suggested that He II _4686 might serve as an alternative, at least

for hotter members of the Be class such as types O9e-B0e. We also would stress that optical

photometrists, including amateur astronomers, can make a significant contribution to the

study of Be star instabilities by monitoring newly active Be stars for optical-wavelength

flickerings such as that found by Balona (1993).

After this paper was essentially completed, we received a preprint from R. d'Oudmaijer

and J. Drew on the observations of a rapid increase in the Ha emission profile of the Be star

HD76534. In their paper these authors conjectured that an increase in Lyman continuum

flux from this Be star could explain the Hcz brightening over a few hours. Their suggestion
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is similar to the inference we made above that heated slabs cause the increased Ha emission

of February 28 in _ Eri. The rapid timescale for the HD76534 event these authors found is

reinforced by the case we have made from He II ;_1640 reemission for illumination of the CS

disk by a transient suprathermal event near the Be star. We note also that rapid though

smaller-amplitude Ha brightenings have been found for A Eri itself (e.g. Smith 1989, Fig.

35). We are grateful to these authors for sending us a preprint of their work on HD76534.

We wish to thank Ms. Michele de la Pefia and Mr. Sam Coleman for help with

the IUE NEWSIPS reductions. We have profited very much also from conversations on

DAC formation conditions with Dr. Steven Cranmer. We appreciate Dr. Jay Holberg

and Mr. Jim Collins for generating light curves of Voyager data and for discussions on

the reliability of the Voyager data. We are grateful to Dr. Dermott Mullan for suggesting

to us the Zaltsev-Stepanov oscillating loop mechanism. Finally, we wish to acknowledge

our appreciation to Dr. Ron Polidan for his enthusiastic participation in the analysis of

the temporal fluctuations of the Voyager data and his hypothesis of the appearance of the

carbon absorption.
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Fig. 1.-- The light curve for ROSAT ttRI observations during the 1995 February-March

campaign (left panel). Starting time is referenced to February 26 at 15:13 UT. Times of

ASCA, IUE, Voyager, and optical (McMath/Kitt Peak and Mt. Abu) observations are

indicated. Error bars refer to the lv level. Note the slightly elevated HRI fluxes in the fifth

and sixth orbit (point) and the general trend towards increasing soft X-ray fluxes The right

panel shows 1995 September HRI observations; this shows the scatter expected for a source

having _ Eri's mean X-ray flux.

Fig. 2.-- The ASCA/SIS spectrum of ,_ Eri on 1995 February 26-27. The histogram is a fit

to a Raymond-Smith (optically thin, thermal) model with kT = 0.86 keV. Error bars refer

to the l_r level. The X 2 differences are shown in the lower panel.

Fig. 3.-- Upper panel: comparison of the Ha profiles obtained on February 27, 6 UT (solid

line), and February 28, 5 UT (dotted line). Middle panel: spectra of the He I _6678 line

obtained at nearly the same times. Lower panel: difference plot of the He II _1640 line

from IUE observations on February 27, 21-24 UT, relative to a template spectrum from this

profile - for this spectrum a difference of 0.0 is arbitrarily shifted represented as "0.7" in

continuum units. Note the emission present on the blue side of each of these spectral lines.

Fig. 4.-- A comparison of the C IV _1548-52 doublet for the mean of seven spectra on

February 27 and a spectrum on March 7. The thick line shown is the template spectrum

taken for a pair of spectra when the mass loss activity of ,k Ell was mild. Note the strong

narrow DAC feature at -930 and -1430 km -1 as well as continuous lower velocity absorption

from the wind.

Fig. 5. m FUV continuum light curves of _ Eri for 1995 February 28 in offset magnitudes.

Bright star is up, and Feb. 27 corresponds to HJD 2,499,775.5. Estimated l_r error bars are

shown. Note the flickering which rapidly decreases in amplitude with increasing wavelength.
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