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ABSTRACT
Numerical simulations of the three-dimensional flow and

heat transfer in a rectangular duct with a 180° bend were

performed. Results are presented for Reynolds numbers of

17,000 and 37,000 and for aspect ratios of 0.5 and 1.0. A k-co
turbulence model with no reference to distance to a wall is used.

Direct comparison between single block and multiblock grid

calculations are made. Heat transfer and velocity distributions
are compared to available literature with good agreement. The

multi-block grid system is seen to produce more accurate results

compared to a single-block grid with the same number of cells.
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Flow arcs

Friction coefficient, 2x_p V"2

Hydraulic diameter----4 A/P or turbulent dissipation

Channel height

Thermal conductivity or turbulent kinetic energy

Turbulent length scale, ,Jk/to

Channel length
Mass flow rote

Nusselt number, hD/k

Wetted Perimeter of duct or production of k

Prandfl number

Reynolds number, VD/v

Distance along the blade surface

Temperature

Characteristic velocity, m/( p A) _Re Fff'17-2
Dimensionless distance f_om the wall, D q 2
Turbulencedissipation rate
Distancenormal towall

Specific heat ratio

I1 Viscosity

p Density

v Kinematic viscosity

co Specific dissipation of turbulence,;

xw Wall shear stress

Subscripts

cent Cenmrline value

in Condition at inlet

prof profile

t Total condition or turbulence quantity

w Wall value

0 Fullydevelopedvalue

INTRODUCTION

Future generations of ultra high bypass-ratio jet engines

will require far higher pressure ratios and operating

temperaturesthanthoseof current engines. For the foreseeable

future, engine materials will not be able m withstand the high

temperatures without some form of cooling. In particular the

turbine blades, which are under high thermal as well as

mechanical loads, must be cooled (Taylor, 1980, Suo, 1978 and
Snyder and Roelke, 1990). Cooling of turbine blades is achieved

by bleeding air from the compressor stage of the engine through
complicated internal passages in the turbine blades (internal

cooling, including jet-impingement cooling) and by bleeding

small amounts of air into the boundary layer of the external flow

through small discrete holes on the surface of the blade (film

cooling and transpiration cooling). The cooling must be done

using a minimum amount of air or any increases in efficiency
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gainedthroughhigher operating temperaturewillbe lost due to

added load on the compressor stage.

The designs of turbine cooling schemes have traditionally

been based on extensive empirical data bases, quasi-one-

dimensional computational fluid dynamics (CFD) analysis, and

trial and error. With improved capabilities of CFD, these

traditional methods can be augmented by full three-dimensional

simulations of the coolant flow to predict in detail the heat

transfer and metal temperatures. Several aspects of turbine
coolant flows make such application of CFD difficult, thus a

highly effective CFD methodology must be used. F'trst, high
resolution of the flow field is required to attain the needed

accuracy for heat transfer predictions, making highly efficient

flow solvers essential for such computations. Second, the

geometries of the flow passages are complicated but must be

modeled accurately in order to capture all impcramt details of

the flow. This makes grid generation and grid quality important

issues. Finally, since coolant flows are turbulent and separated
the effects of turbulence must be modeled with a low Reynolds

number turbulence model to accurately predict details of heat
transfer.

The overall objective of our ongoing research is to develop

a CFD methodology that can be used effectively to design and
evaluate turbine cooling schemes. In this study, we focus on two

aspects of CFD for turbine cooling, namely grid SU'UCnLreSfor

coolant passage geometries and turbulence modeling for coolant

flows. Grid generation for complicated geometries such as

coolant passages, is currently an active area of research. In

general, grid systems for compficated gecmeuies are classified

as block-su'ucmred, unsU'uctured or hybrid. Of those,

unstructured grids offer the greatest flexibility for modeling of
complex geometries and the generation of unstructured grids is

largely automatic. In contrast, fully continuous block-structured
grids, where all grid lines are at least C l continuous across block

faces (here referred to as multi-block grids), are more difficult to
generate but are the most suitable for simulations of viscous

flows. In addition, flow solvers for su'uctmed grids typically

require less memory than those for unstructured grids, and can

take full advantage of various convergence acceleration

schemes (e.g. multigrid) and fast solvers for implicit
disoretizations (e.g., fine Ganss-Seidel, approximate LU and

ADI schemes). In this study, we use semi-automatically

generated multiblock grids (i.e., shape of Mocks is

automaticaliy determined but grid-topology or Hock-structure
needs to be specified befccehand).

Turbulence models used in simulations of internal flows in

ccmplicated gecmetries must be able to model flows involving
separation and adverse pressure gradients. One such model is

the k-cemodel of W'flcox(1994a and 1994b). This model has

several desirable features. One important fcamre is that it does

not require distance to a nearest wall as a parameter. Second, the

low Reynolds number version of the model can be used to
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x

Figure I. Geometry

model transition (Wilcox, 1994b). F'maliy, as both k and c0are
well behaved numerically, stiffness associated with low-

Reynolds number k-E turbulence models is eliminated. In

addition recent work by Chima (1996) show the model to be

useful for predicting heat transfer over turbine blades.

To test the multiblock grid system and the k-co model for

internal flows, flow and heat transfer in rectangalar ducts with

180 degree turn (see Fig. 1) were simulated. The simulations

were performed using both a traditional single block grid system

and a multi-block grid system. Results for ducts with aspect

ratio of 1.0 and 05 are presented. In this paper, the computed

results are ccmpared with experimental data reported by Arts, et

al. (1992) for those same gecme_es. The flow conditions
chosen for the simulations are the same as those used in the

experiments.

Several workers have investigated the flow and heat

transfer in 180° mras in the past, including Prakash and Zerkle

(1992) Tekriwal (1994) and Bessemum and Tanrikut (1991).

Effects of factors such as rotation, inlet and exit boundary

conditions as well as wall heat transfer boundary conditions

have been investigated. Such effects were investigated using a
high Reynolds number k-£ model with wall functions and/or

low Reynolds number turbulence models. To limit the scope of

the present study, such aspects were not investigated. Rather, an
attempt was made to account accurately for the conditions used

in the experiment by Arts eL al. and to focus on evaluation of

the low Reynolds number k-o model for heat transfer

prediction.

The remainder of this paper is organized as follows: After

this inU'oduction, the test problem is described. Then the
numerical method used in the simulations is outlined and

boundary conditions used to obtain proper entrance flow

conditions are described. Subsequently, the grid systems used
for the simulatious are discussed, and the k-co turbulence model

and its implementation is described. Finally, the results of the



computationsareshown and compared to the experimental data.

The paper ends with a summary and conclusions.

DESCRIPTION OF PROBLEM

The geometry of the 180 degree turn is shown in Fig 1. The
inlet and exit channels have the same cross sectional shape.

Aspect ratio of 1.0 (HfW) and 0.5 (H=W/2) are considered in

the present work. The overall length of the channel is 8W. The
divider has thickness of W/5 and extends to within one width of

the end wall. The divider has a semi-circular end. At the inlet,

fully developed velocity and temperature profiles are imposed.

Symmetry is enforced at half of the channel height. The

temperatureof allwallsare specifiedtobe at l.iTt,in,where

Tt. in is the centerline inlet total temperature. Reynolds number
based on hydraulic diameter of 17,000 and 37,000 are
considered.

COMPUTATIONAL METHOD

The simulations performed in this study were done using a

computer code called TRAF3D.MB (Steinthorsaen et al. 1993).
Tiffs code is a general purpose flow solver, designed for

simulations of flows in complicated geometries. The code is
based on the TRAF3D code, an effident computer code

designed for simulations of flows in turbine cascades (Amone et

al. 1991). The TRAF3D.MB code employs the full

compressible Navier-Stokes equations. It uses a multi-stage

Runge-Kutta scheme to march in pseudo time. The code utilizes

multi-grid and implicit residual smoothing to accelerate

convergence to steady state. Convective and diffusive fluxes are

computed using central differencing. Arfifidal dissipation is

added to prevent odd-even decoupling. The diseretization is

formally second order accurate. To handle complex geometries,
the code uses contiguous multiblock grid systems but has the

added capability of handling grids with non-contiguous grid
lines across branch cuts. For contiguous systems, all internal
boundaries are conservative. The TRAb3DaMB code was

described in detail by Steinthorsson et al. (1993). Some aspects
of the formulation used in the code are the same as those

described by Arnone et al. (1991). For the present computations

the code was fitted with the low Reynolds number k-o_ model of
Wilcox (Chima, 1996).

Turbulence Model

When using a multibloek approach it is advantageous to use

a set of equations describing the turbulence that does not require

the computation of the dimensionless distance to the wall y+.

The boundaries between adjacent blocks should be free to cut

across boundary layers and regions of high shear.Having to

carry information on solid walls and dealing with corners

requirescommunication of much informationthat is quite

cumbersome and time consuming both in terms of programming
and CPU time.

The k-co turbulence model developed by W'flcox

(1994a, 1994b) satisfy our requirements. Subsequent

modifications by Menter (1993) improved the robusmess of the
model. Recently, Chima (1996) incorporatedsome of the latter

modifications to the turbtdenoe model and presented some

applications of this model in the context of a Navier-Stokes
solver. In fact it is the three-dimeusioual variation to the

formulation adapted by Chima thathas been utilizedin this

paper. Chima has shown the model to possess very good
convergence properties. He also showed that the model

performs well in predicting the rate of heat mmsfer from a

simulated fiat plate and turbine blades under various conditions.

Below we present the equations describing the tm'bulence in
tensor notation.

(PSi) .t + (PSittj + qiJ ) .j = _ ( P - D) (1)

qi, j -( It+ O/ i,j

where Sl=k and s2=co also _=a* ok
o

j=l,3 (2)

The source terms, P, of equation (1) are defined as

FRe 1 _2 2k ._ , .

p_= [---;-it,u - T tv vj (3)

where f2 is the vorticity. The destruction terms, D, are given by

(4)

The coefficients appearing in the model are

0=0.5, 15=3/40, 15"=0.09F15, a=(5/9)('Fa/F_t), and a*=Fg,
where

5 ( ReT)4

FI_ = fReT)4

Va = t, R_ ) (6)
Re T



( ReT_

Fl_ =

l+t Rt)

(7)

Re T = pk_o (8)

Above ¢x0=0.1, ao*=0.025,R_--8, R_=0.27 and Rk=6.

Boundary_ Conditions

The types of boundary conditions encountered in solving

the problem at hand are as follows:

1) Inlet: The inlet boundary condition for subsonic flows is

l_ated by specifying the total inlet temperature and total inlet

pressure as well as the inlet angle profiles. The outgoing

Riemann invariant is extrapolated to the inlet from within. The
total mmperamre and pressure profil_ are chosen to produce

specified velocity and temlxu'ature pmfile_. In the present work,

velocity and temp_amre profiles which are reasonably valid for
fully developed circular pipe flow are mapped to the present

rectangular sha_. These profiles are obtained as follows:

For a fiat plate the law of the wall profiles are (Kays and
Crawforcl, 1980)

y+ < 10.88]

y+ > I0.88J

(9)+c+tcy: uSy =
.51n y +5.5

(I0)
2 PrY+ Y+< 13'21T;(Y+)= .1951n(y+)+ 13.2Pr-(5.66)y+> 13.2J

Now, tomakethesevalidforacircularpipe,let

Since the flow is at low Match number the total temperature

profile is set to Tlxof and the total pressure profile is defined by

,t

pt, prof = ( l + _-_ (McUlx_) 2) (_-1) (14)

where M cisa specified centerline Mach number.

The turbulent viscosity profile is set to (ICays and Crawford,

1980)

.: o.G___.(+ (15)

and the length scale to (Schliehting, 1979)

(r) 2 (r) 4l = 0.14-0.08 -0.06 (16)

Inlet profiles of k and co are set based on It t and I.

2) Exit: At the exit boundary, for subsonic flow, the

pressure is specified while all other conditions are extrapolated
from within.

3) Walls: At walls, the normal pressure gradient is set to

zero, the temperature is specified, and the no-slip condition is
enf_ The density and total energy are computed from the

pressure and the temperature. The boundary conditions for the
turbulence quantities are k=O and

co=S 3u
l_y wall (17)

where

<11, J <18,

as suggested by Reichardt (ibid). Using y; in Eqs. (9-10)
produces zero slope at the centerline while near the wall the

profile is relatively unaffected. The profiles are then input to the

code normalized by the centerline values so that

(12)

(13)

and KR is the equivalent sand grain roughness height in

turbulent wall units. KR=5 was used, corresponding to a
hydraulically smooth surface.

An upper limit is imposed on the value of co at the wall

using the following boundary condition suggested by
Menter(1993) and found effective by Chima(1996),

106 v

(Omax= ReaAy2V (19)

COMPUTATIONAL GRID

Two types of grids are used in this study to model the

geometry of the ductin Fig. 1. Both gridtypesare body-fitted
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a. single block medium grid

b. multiblock grid

Figure 2. Example of grids

structured (mapped) grids. The first is a traditional single-block

grid(Fig. 2a), whereas the second is a multi-block grid(Fig. 2b).

In the single-block grid, shown in Fig. 2a, one family of

grid lines follows the main streamwise direction of the flow and
thus wraps around the inner wall of the duct. This produces a

high quality grid on the inner surface of the duel However, the
use of a single block for the grid forces one to make trade-offs

between resolution or grid quality in different regiom of the

duct. In the single-block grid lines go from the rounded section
of the inner side wall to the end wall (on the outer side wall).
When sufficient resolution is obtained on the section of the inner

wall, the end wail is highly under-resolved. Also, with the single

block grid it is difficult to get the needed resolution in the two
outer comers without producing an excessively refined grid

elsewhere or sacrificing grid quality.

The multiblock grid system, shown in Fig. 2b, is designed

to give high-quality grids near all solid surfaces. Thus, the block
structure is such that grid lines near the inner wall "wrap

around" the wall as in the single block grid, while an H-like grid

SlrUCaLreis created along the outer wall. To match the grids near
the inner wall and the outer wall, one allows topological

singularities in the grid structure, where three, five, or more grid
lines intersect. By allowing these topological singularities,
much more control over resolution, smoothness and

orthogonality is obtained. These singuladties lie in regions

where the flow is less complicated and where gradients are
small. The net results is that the grid in the bend is smooth,

nearly orthogonal and has the greatest resolution where it is
needed.

The single-block grid systems used here were generated

using Gridgen (1995) whereas the multi-block grid was

generated using a combination of C_dPro/az3000 (1993)and

Gridgen.
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Figure 3. Cenvergence history for single and multi-block

RESULTS AND DISCUSSIONS

Overview of Cases

Numerical solutions of the flow and heat transfer in the duct

of Fig. 1 were obtained for a total of four physical eases. Ducts

with aspect ratio of 1.0 and 0.5 were calculated at Reynolds

numbers of approximately 18000 and 35000. The computed

heat transfer and flow-field data are compared with

expeKmental data of Arts, et a1.(1992). The results of the

computations are shown in Fig. 3-8.

A total of seven numerical rims were performed as outlined

in Table 1. First, three single-block runs were done to assess

grid requirements at the lower Reynolds number and aspect

ratio of 0.5. Then the higher Reynolds number flow was

calculated on the single block medium grid. Also, the single

block medium grid was stretched in the z-direction to perform

calculations at an aspect ratio of 1.0 at the low and high

Reynolds numbers. The multi-block grid was used for the 0.5

aspect ratio duct at the lower Reynolds number. For all the

lower Reynolds number cases the average y+ on the bottom wall

was about 1.0 with peak values near 3.0.

The resulting Reynolds numbers from the calculations do

not exactly match the experiment since the final converged mass

flow rate is governed by the fixed pressure ratio. The resulting

Reynolds numbers are sufficiently close to the experimental

results for direct comparison. This is especially true for the heat

transfer results since they are normalized to take into account

Reynolds number variation.



Re Az Cells
Grid xl03 W A.R. xl03

Single Block Coarse 17 .0040 0-5 30

Single Block Medium 17 .0028 0_5 90

Single Block Free 17 .0020 0.5 270

Multi-block Medium 17 .0028 0.5 90

Single Block Medium 37 .0028 0.5 90

Single Block Medium 17 .0028 1.0 90

Single Block Medium 34 .0028 1.0 90

TABLE 1. Overview of numerical runs.

Figure 3 shows the convergence history for the single-block

medium grid and the multi-block grid. It is often expected that

multi-block grids will converge slower than single block grids.
For the present calculation the convergence was comparable for

the two topologies. Apparently any possible harm done by the

decoupling in the multi-block grid is offset by improvement due

to a better quality grid. It is also conjectured that the muitigrid

procedure employed in the flow solver provides slrong coupling
between blocks, _'g any slow down in convergence

which might otherwise result.

Before the computed and experimentally determined heat
transfer in the duct is examined, it is informative to examine

main features of the flow field in the duct. Fig. 4-6 show the

computed flow field in the channel. Figure 4 shows the

streamline pattern in the symmetry plane of the duct for the

single block fine (Fig. 4a) and the multi-block (Fig. 4b)

calculations at Reynolds number of 17,000. The figure reveals

the expected recirculation zone in the first outer corner of the

duct and the region of separated flow near the inner side wall, at

and after the 180 degree turn. The multi-block solution also
produces •mall tecirculation zone at the second outside corner.

This is _ :nably due to the superior resolution in the corner

region.s .:_lthatthe finesingle-block gridhas roughly three

times as y cells as the multi-block grid but still has poor

resolutiot: -ear the outer corners.

In the symmetry plane, the flow separates from the inner

side wall at about 60 degrees into the turn. The flow reattaches

at about x=5W. Away from the symmetry plane, the size of the

recirculation zone is affected by the presence of the secondary
flow in the channel. The effect of the secondary flow is to

"pinch" the separated region and reduce it's size near the bottom
wall.

In Fig. 4 it can be seen how the high-momentum fluid

entering the turn from the inflow branch impinges on the end

wall. This impingement gives rise to secondary flow as fluid is

a.single blockfine

b.multiblock

Figure4. Symmetry plane su'osmlines forReynolds number of

17,000and aspectratioof0.5.

diverted away from the symmetry plane and towards the top and

bottom surfaces of the duct (see also Fig. 5a). As the flow turns
into the outflow branch of the duct, the high-momentum flow in

the symmetry plane again impinges on the outerwall, further

strengtheningthe secondary flow in the duct.

Figure 5 shows simulated oil flow (a) and surface pressure

Co) on the bottom wall for the multi-block calculation at a

Reynolds number of 17,000 and aspect ratio of 0.5. Overlaid on

these plots is the topology of the block structure. Figure 5a

shows the presence of the recirculation zone downstream of the

inner comer, and alsotheseparation line at the entrance to the

turn. Comparison of Fig. 4b and Fig. 5a also reveals that near

the bottom surface, the flow direction is vastly different from

that in the symmetry plane. Figure 5b shows the normalized

pressure on the bottom wall. In Fig. 5b, the separation zone

coincides with a low pressure region. This figure also shows that

most of the pressure drop in the passage occurs as the flow

negotiates the ram.

The secondary flow at x=6.9W in the out-flow branch is

shown in Fig. 6. These results are for the aspect ratio of 1.0 and

at the higher Reynolds number. The solution for the single block

medium grid is shown and has been reflected about the

symmetry plane for c,¢_parison to the experiment. Also in that

figure is a plot of the experimentally determinedflow field at the

same location. As the figure shows, the secondary flow is

reasonably well predicted by the computations. It should be

noted that the numerical results for the lower Reynolds number

are similarwhen plottedas in Fig.6 which indicatesthat the
global topology of the flow is unchans_ at this location. Note

thatonly the medium grid was run for this case. A fine single-

blockormulti-blockgridwould be expectedto compare better

quantitativelyto the experimentaldata.These caseswere not

simulated, however, since the effort was placed on getting heat

transfer results which were available for the aspect ratio of 0.5.

6



a.) Simulated oil trace. b.) Normalized surface pressure.

l

Figure 5. Bottom wa)l results for Reynolds number of 17,000 and aspect ratio of 0.5

a. numerical single block medium grid b.experiment(Artset.al.(1992)
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Figure 6. Velocity vectors in downstream leg at x=6.9W for Reynolds number of 37,000 and aspect ratio of 0.5.

Heat transfer

The heat Uansfer is presented in the form of the Nusselt

number normalized by the value for fully developed turbulent

pipe flow. The Nusselt number is defined as

where D is the hydraulic diameterand k is the thermal

conductivityevaluatedat the referencetemperature.The
rcfe,r_ce tcmpexaturc for the present study is taken to be the
average between the inlet and exit centerline temperatures at
x=0. The heat transfer coefficient h is defined by

= (20)
k

h = --q_ (21)
Tw - Tre l



a. single block coarse grid (30,000 cells) a. single block fine grid (270,000 cells)

b. single block medium grid (90,000 ceils)

c. single block fme grid (270,000 cells)

b.multiblockgrid(90,000cells)

Figure 7. Bottom wall heat _ansfer for aspect ratio 0.5 and Rey-

nolds number of 18,000.

The Nusselt number for fully developed turbulent pipe flow
is taken to be

Nu 0 = O.023Re_8pr 0"4 (22)

The computed heat transfer on the boUom wall is shown in

Fig. 7and 8 for the 0-5 aspect ratio and 18000 Reynolds number.

Figure 7 shows the heat transfer obtained using three single-

block grids, with about 30,000, 90,000 and 270,000 grid points.
Figure 8 shows a close-upview of the regionaround the 180

degreebend forthefinestsingle-blockgrid,themulti-blockgrid

and the experimental data.

Figure 7 reveals that the resultsfor the medium single-

block grid (Fig. 7b) and the finest single-block grid (Fig. 7c) are

very similar. Both show two peaks in the heat uansfer ca the
bottom wall, one near the end wall and the other near the outer

wall after the second comer. Furthermore, magnitude of the

second peak is nearly identical in thoee two solutions. In

contrast, the coarsest solution obtained on the single-block grid
(Fig. 7a) does not ccatain the first of the two peaks in heat
transfer. The fact that there still exists some difference between

the fine andmedium solutions indicates that, even with 270,000

cells, the single-block grid lacks the required resolution in some

reglOllS.

c. experiment Arts et. al. (1992)

Figure 8. Bottom wall heat usmfer for fine single block (a),

multiblock Co), and experiment.

In Fig. 8 it is seen that like the solutions obtained on the

medium and fine single-block grids, the solution obtained on the

multi-block grid also exhibits the two peaks in heat transfer.

However, the peak values of heat transfer predicted using the

multi-block grid more closely matches the experimental data.



a. single block fine grid (270,000 cells)

b. multiblock grid (90,000 cells)

c. experiment Arts et. al.(1992)

TOP WALL

_ 1.'_ // A t

_._t .__

BOTTOM WALL

Figure 9. Side wall heat transfer for Reynolds number of

17,000 and aspect ratio of 0.5.

Furthermore, the shape of the contours entering the first corner

is better predicted by the multi-block solution.

Although both the single-block and the multi-block grids

produce the two peaks in heat transfer, albeit with different

degrees of accuracy, neither produces the elevated heat transfer
which the experimental data reveals near the inner wall, down-

stream of the bend, where the primary separated flow reattaches.

Reasons for this deficiency in the computed solution maybe a

lack of streamwise resolution at the reattachment point and/or a

weakness in the turbulence model. It is also possible that a lack

of perfect symmetry in the experimental data exaggerates the

heat transfer at this particular location.

Overall, Fig. 7-8 show that multi-block grid systems leads
to better results than the traditional single block grid, even for

this relatively simple geometry. Also, the k-co turbulence model

appears to perform well, giving the right level of heat transfer
although the peak values appear to be over predicted. This over

prediction could also be related to the lack of symmetry in the

experimental data (see Fig. 6b and Fig. 9c). It should be noted

that levels of Nu/Nu 0 greater than three are not uncommon in
these types of flows. Boyle(1984) presents results for a very

similar geometry showing heat wansfer results along the

centerline of the channel which go above three times the fully

Figure 10. End wall heat transfer for Reynolds number of

17,000 and aspect ratio of 0.5.

developed turbulent pipe flow value, which is consistent with

the present results.

Figure 9 shows the heat transfer on the outer wall of the

return channel of the duct at Reynolds number of 17,000 and

aspect ratio of 0.5. The figure shows the heat transfer obtained

on the single-block fine grid, the multi-block grid and it shows

the experimental data of Arts et al. (1992). As expected, a peak
in the heat transfer is observed a short distance from the comer,

where the high-momentum fluid in the center of the duct

impinges on the side wall. The location of the peak obtained

with the multiblock grid matches the experimental data well,

whereas with the single block grid the location of the peak is too

far down stream of the comer by nearly half the width of the
channel.

The heat transfer on the endwall is shown in Fig. 10. This

figure shows the peak value to be at the midspan of the passage

where the flow from the first leg impinges on the endwall. Also

in Fig. 10 is a line of lower heat transfer near the second comer

which corresponds to the separation line associatedwith the
vortex formed in that comer.

CONCLUSIONS

In this study, flow and heat mmsfer in rectangular ducts

with a 180 degree tam has been simulated. The geometry of the

ducts represent configurations found in internal coolant

passages of turbine blades. The computed heat transfer was

compared to the experimental data of Arts et. al. The computed
results, show that reasonable accuracy can be obtained for heat

transfer in internal coolant passages.

Two sets of numerical solutions were presented. The first

was obtained using a single-block grid system. The second was

obtained with a multi-block grid system with the same number

of cells as the medium single-block grid. Comparison of the two

sets of results revealed that the multi-block grid system yielded

better results than even the fine single-block grid. The key
difference between the grids is the inferior resolution and

orthogonality of the single-block grid in the outer comers of the

bend. Although the lack of resolution and orthogonality in the

single-block grid is confined to a small region in the corners, it

causes substantial difference in the computed solutions. This

sensitivity demonstrates the need for particular attention to grid

quality and resolution even in regions where the solution may
not be of interest.

The k-co turbulence model of W'flcox(1994a,b) was found

to do a reasonable job of modeling the effects of turbulence on

9



themeanflowandheattransfer,withoutrequiringreferenceto
distancetosolidsurfaces.Themodelwasalsofoundtobehave
wellnumericatly.Thecombinationofmulti-blockgridsandthe
k-coturbulencemodelappearsto be a promising approach to
simulating flow and heat transfer in complex turbine coolant

passages.
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