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ABSTRACT

We reexamine both numerically and analytically the collapse of the singular isothermal sphere in the con-
text of low-mass star formation. We consider the case where the onset of collapse is initiated by some arbi-
trary process which is accompanied by a central output of either heat or kinetic energy. We find two classes of
numerical solutions describing this manner of collapse. The first approaches in time the expansion wave solu-
tion of Shu, while the second class is characterized by an ever-decreasing central accretion rate and the pres-
ence of an outwardly propagating weak shock. The collapse solution which represents the dividing case
between these two classes is determined analytically by a similarity analysis. This solution shares with the
expansion wave solution the properties that the gas remains stationary with an r~2 density profile at large
radius and that, at small radius, the gas free-falls onto a nascent core at a constant rate which depends only
on the isothermal sound speed. This accretion rate is a factor of ~0.1 that predicted by the expansion wave
solution. This reduction is due in part to the presence of a weak shock which propagates outward at 1.26
times the sound speed. Gas in the postshock region first moves out subsonically but is then decelerated and
begins to collapse. The existence of two classes of numerical collapse solutions is explained in terms of the
instability to radial perturbations of the analytic solution. Collapse occurring in the manner described by
some of our solutions would eventually unbind a finite-sized core. However, this does not constitute a vio-
lation of the instability properties of the singular isothermal sphere which is unstable both to collapse and to
expansion. To emphasize this, we consider a purely expanding solution for isothermal spheres. This solution is
found to be self-similar and results in a uniform density core in the central regions of the gas. Our solutions
may be relevant to the “luminosity ” problem of protostellar cores since the predicted central accretion rates
are significantly reduced relative to that of the expansion wave solution. Furthermore, our calculations indi-
cate that star-forming cloud cores are not very tightly bound and that modest disturbances can easily result in
both termination of infall and dispersal of unaccreted material.

Subject headings: hydrodynamics — shock waves — stars: formation

1. INTRODUCTION . .
inevitably approached a strongly peaked r~? profile as the

The gravitational collapse of gas spheres in the context of
star formation has long been an active area of study. Pioneer-
ing numerical calculations (e.g., Gaustad 1963; Bodenheimer
& Sweigart 1968; Larson 1969; Penston 1969a, b) based on the
collapse of a Jeans unstable uniform density sphere elucidated
the general properties of star formation and provided the basis
of much of the subsequent work in the area. One of the most
important properties found by these early investigations was
that efficient cooling by dust grains allowed the rapid radiation
of compressional heat generated during collapse. The gas
remained essentially isothermal with a temperature of ~10 K
over many orders of magnitude in density during the early
phases of collapse. Isothermality was only violated when the
densities became sufficiently high for gas to become rather
optically thick to dust emission. Isothermality, taken as an
assumption, enabled great simplification in many subsequent
studies because radiation transfer was eliminated from the
problem (however, this restricted the applicability of these
solutions to the more optically thin regions of collapse). It was
also shown that collapse occurred in a very nonhomologous
fashion, i.e., the central regions of the cloud collapsed much
more rapidly than the outer regions. The density distribution
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collapse approached core formation.

Later studies addressed primarily the unrealistic nature of
the starting conditions adopted in the early work. The assumed
initial configuration for the gas was an isothermal uniform
density sphere that was far out of hydrostatic equilibrium.
Such conditions would be very difficult to produce in nature.
Furthermore, the velocities resulting from the collapse were
criticized as being unrealistic (Shu 1977). At large radius, the
flow was directed inward at 3.3 times the sound speed which
was considered numerically ad hoc. Many of the subsequent
considerations (e.g., Shu 1977; Hunter 1977; Boss & Black
1982; Whitworth & Summers 1985; Foster & Chevalier 1993)
centered around the collapse of equilibrium isothermal spheres
(Bonner-Ebert spheres; see Ebert 1955; Bonner 1956) where
the gas was assumed to be isothermal at all times and initially
stationary. Because the initial configurations were in equi-
librium, the numerical calculations of collapse were initiated
by some rather ad hoc perturbation. However, the nature of
the collapse was found to be rather insensitive to the manner of
the initial perturbation (e.g., Hunter 1977).

Many collapse solutions were found. These differed from one
another based on the initially assumed density profile and
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ranged from the collapse of the marginally unstable Bonner-
Ebert sphere (Foster & Chevalier 1993) to the maximally
unstable singular isothermal sphere (Shu 1977; Hunter 1977).
However, it was not clear which, if any, was the most relevant
to present-day low-mass star formation. Recently, both theo-
retical and observational work has yielded a paradigm for low-
mass star formation {(see Shu et al. 1993 and references therein).
A cloud initially supported against collapse by gas pressure,
turbulence, and magnetic fields evolves quasistatically toward
a centrally condensed singular isothermal sphere due to the
outward diffusion of the magnetic field (ambipolar diffusion).
After ~ 10° yr, the distribution becomes sufficiently centrally
condensed to undergo an “inside-out” collapse in the manner
of the analytic, self-similar solution of Shu (1977) (dubbed the
“expansion wave solution,” hereafter EWS). Although the col-
lapse calculation has been generalized to account for modest
amounts of rotation (Terebey, Shu, & Cassen 1984) and mag-
netic fields (Galli & Shu 1993a, b), the simplicity of the original
solution, as well as its closeness to the generalized solutions at
relatively early times and in regions somewhat outside the
core, has led it to be generally adopted as the benchmark for
testing the agreement of the paradigm with observations.

The EWS is obtained when a static singular isothermal
sphere suffers a central perturbation which causes the core to
collapse. The ensuing collapse proceeds in an *inside-out”
fashion where the infalling region is bounded by a rarefaction
wave which propagates outward at the sound speed. Outside
the rarefaction wave, the gas remains undisturbed and in
hydrostatic equilibrium. At small radius, gas free-falls onto a
growing core at a constant rate which depends only on the
sound speed a and the gravitational constant G,
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where C = 0.975 for the EWS. The collapse can be initiated by
any process which causes an unbalancing of the two forces in
the core (Shu 1977) or by the onset of true dynamical insta-
bility (Shu, Adams, & Lizano 1987). In the former case, any-
thing which decreases the central gas pressure, increases the
gravity (mass), or both, will cause core collapse. Possible physi-
cal processes include molecule formation (Shu 1977) and
primary core collapse (e.g., Larson 1969; Winkler & Newman
1980). True dynamical instability arises during the evolution of
the protostellar cloud toward ever more centrally peaked
density profiles during the process of ambipolar diffusion.

The considerations of this paper derive from the observation
that the suggested processes which might initiate the EWS
collapse will not only cause an initial unbalancing of the
opposing central forces, but will also in general be accompa-
nied by some initial or sustained burst of energy which will be
reabsorbed by parts of the collapsing cloud. Certainly, imme-
diately after the onset of collapse in the inside-out picture,
energy will be released from a radiating accretion shock
around either a core or a disk, or possibly by gas streams,
which are not flowing exactly radially, colliding outside of the
core. This energy will propagate back into static and sub-
sonically moving parts of the envelope and cause a preheating
effect. That is, the radiation will heat the gas above the
assumed isothermal temperature, causing an outward push
due to a higher gas pressure. This extra pressure may have
significant dynamical effects. Other ways in which collapse can
be initiated may also be accompanied by energetic output,

such as molecule formation which produces heat via recombi-
nation. Additionally, sustained stellar winds produced in the
very early life of a nascent protostar could push material out
via kinetic pressure. In any case, since the conditions which
initiate protostellar collapse are poorly understood, it is impor-
tant to investigate a spectrum of possibilities, the results of
which may be compared to observations in order to better
understand star formation.

We can imagine intuitively what the effects might be of
absorption of an initial burst of energy followed by an
unbalancing of the pressure in the core of a static, isothermal
sphere. The extra energy or pressure will first cause an outward
push to the gas in the central regions. In one instance, if the
amount of energy or the outward push is very small, the initial
condition may be thought of as a perturbation on the condi-
tion which gives rise to the EWS. We might imagine that in
time, as the ensuing collapse progresses to encompass scales
much larger than that set by the initial condition, the effects of
the perturbation will die out, and the EWS will be recovered.
In another case, if the outward push is stronger, a shock will
likely form. Because of the steep density gradient of the singu-
lar isothermal sphere, this shock can coast to large radius. In
the center, after the initial burst has subsided, gas which was
pushed outward will decelerate due to the pressure imbalance,
eventually going into infall.

We numerically determine collapse solutions resulting from
the energy burst initial condition in § 2. However, in the case
where a shock forms, we might expect in analogy with the
Sedov-Taylor solution (e.g., Sedov 1959) that there would be
an evolution toward a similarity solution once the shock has
moved to distances much greater than the scale set by the
initial perturbation. Recall that the Sedov-Taylor solution
describes the state of gas, for example, after a piston pushes
into an initially static uniform density gas (gravity is not
considered). The motion of the piston gives rise to a shock.
When the shock has propagated into a region far removed
from the scale set by the motion of the piston, the solution
approaches self-similarity because the initial length scale
becomes irrelevant. By analogy, when the shock in our
problem has moved beyond the core area where the initial
energy burst occurred, there are also no longer any relevant
length scales. Contrary to this view, we find that the numeri-
cally generated solutions do not tend toward any similiarity
solution; rather, they depend on the particular conditions initi-
ating the collapse. However, this result can be understood in
terms of the instability of a self-similar solution which we
present in § 3. In § 4, we introduce an expanding solution to
help elucidate the properties of the new collapse solutions as
well as the general collapse properties of the singular isother-
mal sphere. We discuss the relation of the new solutions to the
EWS and the theory of star formation in § 5. Conclusions are
also givenin § 5.

2. NUMERICAL SOLUTION

2.1. Method

The case where radiation from an accretion front preheats
gas which is not yet in a state of free fall is best treated by a
hydrodynamical code with radiation transfer. Although similar
calculations of collapse have been carried out (e.g, Morfill,
Tscharnuter, & Volk 1985; Bodenheimer et al. 1990; Yorke,
Bodenheimer, & Laughlin 1993), the initial conditions were
always assumed to be somewhat out of hydrostatic equi-
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librium. We will report elsewhere on a one-dimensional calcu-
lation treating the effects of accretion luminosity assuming the
exact singular isothermal sphere as the initial state. In the
present paper, we take a less specific approach by approx-
imating the effects of the energy deposition by a piston.
Although this approach is more heuristic than solving a radi-
ative transfer problem, it lends itself to a general elucidation of
the relevant physics of the problem and the consideration of
other possible modes of energy deposition in the center of the
cloud.

We assume that the protostellar cloud is spherically sym-
metric, is always isothermal, and obeys the ideal gas equation
of state. The dynamical calculations are carried out with a
Lagrangian hydrodynamics code modified from that devel-
oped by Yabhil, Johnston, & Burrows (1987). The code is con-
servative in the fluxes of energy and momentum and has
second-order spatial accuracy in the fluxes.

The initial configuration of the cloud is a singular isothermal
sphere. We begin a calculation by assuming that the material
within a radius of 2 x 10'3 ¢cm, which has an enclosed mass of
2.5 x 107* M, for a cloud temperature of 20 K and a mean
molecular weight i of 2, forms a protostellar core. If there is no
energy input, and the material immediately outside of this
region is forced into free fall, we recover the EWS.

A major problem with using a Lagrangian code for an accre-
tion calculation is that the Courant time can be so reduced for
the region near the central object that it makes the investiga-
tion of the long-term evolution of the rest of the object
extremely difficult. We circumvent this problem by specifying a
critical radius such that if a shell of material (corresponding to
a zone in the calculation) falls below this critical radius, it is
assumed to have been accreted onto the protostellar core,
which then only acts gravitationally on the rest of the cloud.
The mass accretion rate can then be approximated by m,,,,/At,
where mg,,,, is the mass of the shell and At is the time elapsed
since the last shell was accreted. This accretion rate is then held
constant until the next shell is accreted. The accretion rate
calculated this way for the EWS follows the analytical value
closely, with < 1% variations, due to changes of zone sizes and
time steps.
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We simulate the input of the initial burst of energy by apply-
ing a piston with a velocity v, immediately outside the proto-
stellar core and starting at the critical radius of 2 x 103 cm.
The piston is pushed at a constant velocity until it has reached
some distance d,, where the piston is instantaneously stopped
and we apply the free-fall boundary condition. This boundary
condition corresponds to the limiting case where the inner
pressure is reduced to zero in order to initiate collapse. Tests
with different boundary conditions where the piston is allowed
to decelerate gradually under the influence of less severe pres-
sure gradients give similar results, so they are not discussed.
We assume a constant pressure outer boundary condition.

2.2. Results

In the first case considered (case [i]), we move the piston at
half the isothermal sound speed (a = 2.87 x 10*cm s~ for our
chosen conditions) to a distance of d, = 2 x 10** cm. The
resulting velocity and density profiles of the gas at different
times are plotted in Figures la and 2a, respectively, and the
accretion rate at the core radius is given by the uppermost
solid curve of Figure 3. The action of the piston forms a shock
which propagates outward. Despite the subsonic motion of the
piston, a shock is formed because the buildup of material in
front of the piston causes a supersonically moving front to
advance ahead of the piston. The material outside of the shock
remains stationary with a density given by that of the singular
isothermal sphere. Inside the shock, gas is flowing outward
subsonically, having been accelerated by the passage of the
shock. The gas eventually is decelerated by the pressure deficit
at small radius and goes into free fall at the inner boundary.
The strength of the shock declines with time and eventually
becomes an acoustic wave propagating outward at the sound
speed. The region of outflowing gas and the outward velocity
of postshock gas become correspondingly smaller as the shock
degrades. Similarly, the size of the discontinuity in the density
profile decreases with time. The accretion rate starts out low
(after settling down from transients) but after a very short time
rises rapidly and tends toward the EWS value appropriate to
the chosen temperature of 20 K.

This case corresponds to a collapse which is initially per-
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FiG. 1.—a) The velocity profiles of the gas for the case where v, = 0.5a and d, =2 x 10'* c¢m are plotted at several different times. The leftmost curve
corresponds to the earliest time of 0.1 x 10'? s after starting the collapse Moving toward the right, the curves correspond to times of (in units of 10'2 s), 0.307, 0.507,
0.723,0.967, 1.25,1.57, 1.97, 2.42, 2.95, 3.58, 4.35, and 5.24. (b) The velocity proﬁ]es of the gas for the case where v, = 0.5a and d, = 2 x 10'® cm are plotted at imes
{in units of 10'25)0.239, 1.18,2.63,4.74,7.6, 1 1.6, and 16.7. The leftmost curve gives the earliest time, and the nghlmost curve gnves the latest time.
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FiG. 2.—{a) The density profiles of the gas for the case where v, = 0.5a and d, = 2 x 10'* cm are plotted for the same set of times as Fig. 1a. The topmost curve
corresponds to the earliest time of 0.1 x 10'? s, and successively lower curves correspond 1o later times. (b) The density profiles of the gas for the case wherev, = 0.5a
andd, =2 x 10'* cm are plotted for the same set of times as Fig. 1b. The topmost curve gives the earliest time, and lower curves give later times.

turbed from the EWS by the action of the piston. (Recall that
we obtain the EWS by simply unbalancing the forces in the
center with no accompanying piston moving outward.)
However, the effects of the perturbation die out rapidly, and
the collapse approaches the EWS solution.

On pushing the piston out farther tod, = 2 x 10'* cm with
the same velocity v, (case [ii]), we obtain the gas velocity and
density profiles shown in Figures 1b and 2b, respectively, and
an accretion rate given by the lowest solid curve of Figure 3.
We again get a shock formed by the early action of the piston,
but the shock persists in time with constant amplitude all the
way to the outer boundary. As before, the gas is stationary
outside the shock and outflowing immediately inside of it.
However, because of the undiminished amplitude of the shock,
the outflowing gas occupies a significant fraction of the
nonstatic region. The shock is rather weak with a Mach
number of ~ 1.26, and the gas has a postshock outflow velocity
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FiG. 3.—The central mass accretion rates for several cases are plotted vs.
time. All cases shown (solid lines) assume v, = 0.5a but have different values of
d,. Starting from the topmost curve and going toward the lowest curve, the
assumed values of d, are 2 x 10'*cm, 4 x 10'*cm, 6 x 10'* cm, 7 x 10'* em,
and 2 x 10'® cm. The upper dotted line gives the constant mass accretion rate
of the EWS (see eq. [1]), and the lower dotted line gives the constant rate of the
shock solution.

of ~0.43 a. The postshock density rises above the value given
by the singular isothermal sphere for a considerable region
inside the shock. The central mass accretion rate starts out
very low and declines with time and never rises back up to the
EWS value. In pushing the piston out to larger distances than
in case (i), we have essentially perturbed the collapse farther
away from the EWS solution. We might have expected that the
net effect would be for the collapse to take a much longer time
than that of case (i) to evolve back to the EWS. Instead, the
collapse does not show a tendency to evolve back to the EWS
at all.

Several cases with values of d, between those of cases (i) and
(ii) above are also computed (v, = 0.5a in all these cases). The
central accretion rates for these collapses are shown in Figure
3. The cases where the central accretion rate increases with
time have gas velocity and density profiles which behave in
time similar to those of case (i), and cases with declining accre-
tion rates have velocities and densities similar to those of case
{ii). We see that two kinds of solutions are obtained from the
piston experiments. When the collapse is initiated by a piston
which pushes to something less than ~6 x 10'* cm, the nature
of the subsequent flow is to evolve secularly back toward the
EWS. For simplicity we call these class I solutions. Once the
piston is allowed to push farther out than this, the evolution of
the flow is toward ever decreasing accretion rates (class 11
solutions). The farther out the piston is allowed to go, the
smaller is the accretion rate.

In Figure 4, we show the mass of the inner sink cell (the
“protostar™”) as a function of time for the cases shown in
Figure 3. The times required to accrete a sizable mass (~1 M)
onto the sink cell can be significantly extended relative to the
dynamical time if the collapse proceeds according to the lower
curves of Figure 4. In these cases, the mass of the sink cell
would only be ~0.1 M, by the time the shock hits the bound-
ary of the calculation. If star formation were to occur in this
manner, the accretion of a large fraction of the mass of the
protostar occurs after the passage of the shock through the
boundary, assuming a typical size for the cloud core. The sub-
sequent collapse would then depend on the particular proper-
ties of this boundary.

We obtain the same set of results as above for different
assumed piston speeds. We do not show the gas velocities and
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Fi1G. 4—The mass of the central star is plotted as a function of time for the
same cases as shown in Fig. 3. The top curve corresponds to the case where
d, =2 x 10'* cm, the next highest curve gives the case where d, = 4 x 10'*
cm, and so forth for the lower curves. The dotted line gives the mass for the
EWS solution.

denstties in detail. Figure 5 shows the mass accretion rates for
some of the cases considered. For various piston speeds, the set
of collapse solutions again divides into those cases with rising
accretion rates and those with declining rates. The dividing line
between these two sets of solutions occurs for d, ~ 6 x 10'*
cm for the piston velocities considered.

We examine the above results in more detail. The condition
which determines which of the two classes of solutions a given
collapse calculation will follow is not easily defined. First, the
amount of work done by the piston during the push phase of
the calculation will not alone determine the subsequent evolu-
tion of the collapse. Having taken the gas to be isothermal
implicitly assumes that the cloud can instantaneously
exchange energy with some external sources and sinks. As the
piston pushes the gas outward, compressed regions of the gas
will radiate away energy. Thus, the change in the energy of the
cloud during the time that the piston is pushing does not
depend solely on the amount of work done by the piston, but
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FiG. 5.—The central mass accretion rates for several cases are plotted as in
Fig. 3. The solid lines give the case where v, = a. The upper solid line assumes
d, =47 % 10'* cm, and the lower one assumes d, = 74 x 10'* cm. The
dashed curves give the case where v, = 1.2a. The upper curve assumesd, = 5.9
x 10'* ¢m, and the lower curve assumes 6.3 x 10'* cm. The dotted lines give
the accretion rates of the EWS (top line) and the shock solution (bottom line).
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also on its exact velocity history. Also, the collapse after the
piston has been stopped is not energy conserving, again since
the gas is assumed to be isothermal. Whatever changes in the
energy of the cloud occurred during the time the piston was
pushing are swamped by subsequent energy exchanges of the
cloud with the external sources and sinks.

An alternative is to consider the dynamics of the shock. The
shock is launched by the piston and grows in strength as the
piston pushes outward. However, when the piston is stopped
and the inner boundary condition is applied, a rarefaction
wave is also sent propagating into the gas because the velocity
of the gas just in front of the piston is positive when the piston
is stopped. This can be seen in the topmost curve
(corresponding to the earliest time shown) of Figure 2b. The
shock is at a radius of ~10'® ¢cm, and a rarefaction wave is
seen at a radius of ~6.3 x 10'® cm. A rarefaction wave travels
at the local sound speed. Since the rarefaction wave generated
by the piston propagates into a region of outflowing gas, the
wave can actually catch up to the shock, even though the shock
is traveling outward supersonically. This can be seen in both
Figures 1b and 2b. The rarefaction wave which is well separat-
ed from the shock at the earliest time plotted has caught up to
the shock by the next time shown and is interacting with the
shock and decreasing its strength. Once caught up with the
shock, the rarefaction wave cannot proceed further upstream
since the shock is propagating supersonically into a static
medium. The subsequent evolution of the shock and the col-
lapse solution in general then depends on the complicated non-
linear interactions of the rarefaction wave and the shock. The
amplitudes of the shock and the rarefaction wave again depend
in detail on the velocity history of the piston.

Although complex, there is hope that the late time behavior
of the collapse can be understood. The evolution toward the
EWS of collapse initiated by central perturbations without
accompanying piston motions suggests that there must be
some link between the late time, scale-free evolution of our
collapse solutions with a similarity solution. Analogous con-
siderations based on the Sedov-Taylor problem further
emphasize this link. What then should be the properties of
such a similarity solution? The numerical considerations indi-
cate that if the actions of the piston are very finely tuned, a
collapse which has properties between those of the two
numerical classes can be obtained. Specifically, the solution
would have a constant central accretion rate and an approx-
imately Mach 1.26 constant amplitude shock propagating
outward. We find such a solution in § 3 and use it to under-
stand the late time evolution of the numerical solutions.

3. SIMILARITY SOLUTIONS

3.1. The Shock Solution

The equations governing an isothermal gas sphere are the
continuity equation,

pu) =0, (2)

and the Euler equation,

du du a’dp GM
R s il &)
ot or p Or r
where p is the gas density, u is the gas velocity, M is the mass
enclosed within radius r, and a is again the isothermal sound
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speed. Following Shu (1977), we define the similarity variable

x=- 4)

and we nondimensionalize the fluid variables,

R
pr =15, (5)
3
M(, 0 = % mix), ©
u(r, t) = av(x) . (7

Equation (6) indicates that the mass is zero at the instant t = 0.
This corresponds to the moment of core formation. We will
consider positive times after the formation of the core. Substi-
tuting equations (4)—(7) into equations (2) and (3), we get the
following set of equations (same as egs. [11] and [12] of Shu
1977),

d 2
[x— oy —13 7 = [a(x— v)—;](x—v), (8)

R Lot ] T TC

for the nondimensionalized fluid variables. It can also be
shown using the continuity equation for M(r, t) rather than for
the density that the nondimensionalized mass is given by

m= x%a(x — v). (10)

Shu (1977) found a large set of solutions to equations (8)-
(10), some of which were identified as viable collapse solutions.
These were called “minus solutions without critical points”
(MSWCPs) (see Fig. 2 of his paper and the light dotted lines of
Figs. 6 and 7), of which the EWS represents a certain limit
(although the EWS is not one of the MSWCPs). The MSWCPs
correspond to solutions of equations (8)—(10), where the outer
boundary condition requires that the gas be static at large x
and the inner boundary condition requires that the gas be in
freefall,

ox — (m0/2x3)1/2 , )1/2

as x—0,
(1y

where m, is the nondimensionalized mass of the accreting
central protostar. These solutions are so dubbed because the
entire flow from the outer static region to the inner free-falling
regime occurs without passing through a critical point. Note
that the coupled set of equations (8) and (9) have a locus of
critical points given by

m—mg, v— — (2my/x

x=1+v, (12)

which is shown as the dashed line of Figure 6. The entire set of
MSWCPs does not intersect this line.

The MSWCPs correspond physically to the collapse of ini-
tially static isothermal spheres with r™? density profiles but
which are too dense to be in equilibrium. The initial density
can be represented by

2

a
p(r,0)=ml‘72, (13)

where A is a numerical constant satisfying the condition A4 > 2.
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FiG. 6.—The nondimensionalized velocities for various similarity solutions
are plotted vs. the similarity variable. The light dotted lines give the “minus
solutions without critical points™ (MSWCPs). From the lowest to the upper-
most curve, these correspond to A = 2.8, 2.6, 2.4, and 2.2. The heavy dotted
line gives the expansion wave collapse solution (EWS; A = 2), and the heavy
solid line gives the shock solution. The light solid line gives the expanding
solution, and the dashed line gives the locus of critical points of egs. (8) and (9)
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F16. 7.—The nondimensionalized density profiles for several similarity
solutions are plotted. The light dashed line gives the MSWCPs corresponding
to A = 2.8, and the heavy dotted line gives the expansion wave collapse solu-
tion (EWS; A = 2). The heavy solid line gives the shock solution, and the light
solid line gives the expanding solution.
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The limiting case of A = 2 corresponds to the singular isother-
mal sphere, implying that the EWS is the limit of the MSWCP
solutions as 4 — 2. The values of m, are determined uniquely
by the value of A. For the EWS, my, = 0.975, and it is larger for
solutions with larger values of A.

The EWS obeys the same inner and outer boundary condi-
tions as the MSWCPs; however, the flow passes through a
critical point at x = 1 (Fig. 6). This implies that the EWS is
actually a member of a different set of solutions called “ minus
solutions” (Shu 1977). These are solutions which obey the
inner boundary condition of equation (11) (with values of
mgy < 0.975) but which do pass through a critical point with
positive slope in the velocity profile. With the exception of the
EWS, the minus solutions were originally discarded as inap-
propriate for collapse since the inner inflowing part of the
solution could not be joined consistently with an outer solu-
tion which obeyed the static outer boundary condition. More
specifically, starting with values given by the inner boundary
condition (11), the fluid variables can be integrated outward to
the location of the critical line (e.g., the negative velocity
portion of the heavy solid line in Fig. 6 is a minus solution). In
order that the flow then passes smoothly through the critical
point with positive slope in the velocity profile, equations (8)
and (9) require that

1
—v=(1—x*)—-x—(x—x,)+"',
*

14

where x, is the position of the critical point (the value of x, is
fixed by the value of my or vice versa). The fluid variables can
then be integrated outward to the point where the gas velocity
is zero. Here the velocity profile of the inner solution can be
smoothly joined to the static outer part. However, the density
at this point from the inner integration does not correspond to
the density appropriate to that radius in the singular isother-
mal sphere. The velocity and density therefore cannot be
simultaneously matched to a static outer solution. The EWS is
the only exception that allows a consistent matching,

Guided by the numerical considerations of § 2, the presence
of a shock somewhere in the flow allows for 1 more degree of
freedom (the location of the shock) which might allow the fluid
variables of the inner part of a minus solution to be consistent-
ly joined via the shock jump conditions to a static outer solu-
tion. We first determine the appropriate shock jump
conditions. Since we consider an isothermal shock, we need
only consider mass and momentum conservation across the
shock. If we assume that the shock is propagating into static
gas, we have, in terms of dimensional fluid variables,

2

2 2
P Sl &=<ﬁ>’ 1)

Ush P a

where u, and p, are the postshock gas velocity and density,
respectively, u,, is the speed of the shock as it goes into the
static gas, and p, is the preshock gas density. Assuming the
shock travels at a constant speed and starts at the origin at
t = 0, the location of the shock expressed in terms of the simi-
larity variable will be fixed. That is, uy, = x,, a, where x,,, is the
fixed position of the shock in similarity space. The jump condi-
tions in nondimensional form are then
1

by =X = M =2, (16)
sh
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where again a subscript of 2 denotes postshock values. In
deriving equation (16), we have taken the preshock density to
be that of the singular isothermal sphere.

The property that 2, = 2 at the shock suggests the following
scheme for determining the desired shock solution. Pick a loca-
tion on the line of critical points such that x,, lies in the range
0 < x, < 1. The values of the fluid variables at x, are then
fixed by equation (14). Using these as starting values for an
integration to smaller x yields the value of m, which corre-
sponds to the assumed value of x,,. The fluid variables are then
integrated outward from x, to the point where a, = 2. Take
this as the location of the shock x,,,. The jump condition for the
density is then automatically satisfied at this point. However,
the velocity jump condition may not be simultaneously satis-
fied. The initially assumed value of x, is adjusted and the
above procedure repeated until both jump conditions are
simultaneously satisfied.

We find that there is a unique value of x, (hence also of m,
and x,,) such that the solution both passes smoothly through
the critical point and satisfies the shock jump conditions, given
that the outer solution is the singular isothermal sphere. This
solution is shown as the heavy solid line in Figures 6 and 7, and
a listing of values is given in Table 1. We get x, = 0.0544,
which implies that x,, = 1.26 and that my = 0.105. That is, the
shock has a Mach number of 1.26, and the mass accretion rate
onto the central “ protostar ™ is constant and is given by equa-
tion (1) with C = 0.105.

This solution represents the dividing line between the
numerical class I and class II solutions. The predicted constant
accretion rate neatly separates those cases with increasing acc-

TABLE
SHock SoLuTion*

@ v m
M 2) 3 @)

000...... © —w 0.105
005...... 400 —-1.03 0.108
0.10...... 21.2 —0.446 0.116
015...... 15.7 —0.218 0.130
020...... 13.0 —0.0921 0.152
0.25...... 113 —0.00891 0.182
030...... 10.0 0.0532 0.222
035...... 9.02 0.103 0.272
040...... 8.19 0.146 0.333
045...... 747 0.183 0.403
050...... 6.83 0.217 0.484
055...... 6.26 0.247 0.574
0.60...... 5.75 0.275 0.673
065...... 5.29 0.300 0.781
070...... 4.86 0.324 0.896
075...... 4.48 0.345 1.02
080...... 413 0.365 1.15
085...... 3.80 0.383 1.28
090...... 351 0.400 1.42
095...... 324 0414 1.57
1.00...... 2.99 0.427 1.71
1.05...... 2.77 0.439 1.87
1.10...... 2.56 0.448 202
LI15...... 237 0.455 2.18
1.20...... 2.19 0.461 233
1.25...... 203 0.463 249

* Col. (1) gives the position in similarity
space, col. (2) is the nondimensionalized
density, col. (3) is the nondimensionalized
velocity, and col. (4) is the nondimension-
alized enclosed mass.
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retion rates from those with declining rates (see Figs. 3 and 5).
In addition, since the analytic “shock ” solution is self-similar,
the distance of the shock to the origin is a fixed multiple of the
distance of the stagnation point to the origin. This property
separates the class I solutions which have a decreasing value of
the ratio of these two distances (Fig. la) from the class II
solutions which have an increasing ratio (Fig. 1b). The charac-
ter of the shock in the analytic solution is also comparable to
that of the class II solutions, moving out at about the same rate
and having constant amplitude.

3.2. The Energetics of the Shock Solution

We consider in more detail some of the properties of the
shock solution. An obvious issue is what drives the large region
of outflowing gas. This is most easily addressed by looking at
how the energy of the solution evolves with time. In principle,
the static singular isothermal sphere has infinitely negative
total energy. This is because the total energy is the sum of the
gravitational energy (E,,,,) and the thermal energy (Ew). which
are each given within a radius r by

r 4
Egar) = —j w p(rdnridr = — 4% r, (17

0

r 4
Enn = J‘ % [M]4nr2 dr = —32— r, (18)

0 “mp

where um,, is the mean mass per particle. Clearly, if r extends to
infinity, the total energy is infinitely negative. Note that equa-
tions (17) and (18) are consistent with the virial theorem, since
the singular isothermal sphere truncated at any finite radius is
in equilibrium only if an external pressure acts at the outer
boundary. A boundary term, which is customarily discarded in
the statement of the theorem, must be included in our case.
Consider now the energy of the flowing part of the shock solu-
tion. Within a fixed value of the dimensionless distance x,

a’t [~
Egrav(x’ )= — -6 '[ xcx(x)m(x)dx ’ (19)
0
3 s
Enlx, 0 =5 o ) = ma] (20)

where the fluid variables are converted to the forms of equa-
tions (5) and (6). The quantity m, in equation (20) represents
the mass accreted onto the core and is subtracted from the
total enclosed mass, since the accreted gas is assumed to have
no therma! effect on the collapse. We additionally need to
consider the total kinetic energy of the flowing gas,

a’t [~
Eyinlx) = 3G L a(x)u?(x)x2dx . 2n
The integrals of equations (19) and (21) can be evaluated
numerically within the shock radius x,,. The total energy is
then

Ei (x4, 1) = Egry + Eyy + Eyiq

a’t
G’
which is positive. This implies that as the flowing region
expands outward in time, the energy of each region that gets

engulfed by the expanding shock increases. This behavior can
be contrasted with that of the collapsing region of the EWS.

5
=(—353 +362+0.17) %t =026 (22)
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Equations (19)—(21) imply that inside of the rarefaction wave
x = 1, the energy is

Etm(x = 1’ t) = Egrav + Elh + Ekin
5t 5¢
= (=298 + 1.54 + 0.69) % = —0.75 % . (23)

We consider the flow of energy in these solutions. The iso-
thermal nature of the gas does not derive from the gas being in
thermodynamic equilibrium with a large heat reservoir. In the
realistic setting of modeling the coliapse of a cloud core, iso-
thermality arises out of the stable balance between heating due
to sources such as cosmic rays and cooling due to radiation
from dust. For example, in the cases where the gas is heated by
compression, dust emission is assumed to be so efficient that
the extra heat can be radiated away rapidly. In the opposite
case where gas is cooled by expansion, the various sources of
heating are assumed to be sufficiently rapid to heat the gas
back to the stable equilibrium temperature. In this sense, the
shock solution does not represent a violation of the second law
of thermodynamics. That is, if we had considered a cloud
which was isothermal with temperature T because it was in
thermal contact with a bath with the same temperature, the
extra energy of the expanding region would have represented
the conversion to mechanical energy of heat without any
accompanying work done on the system. However, this is not
the case with the shock solution. The system is not in ther-
modynamic equilibrium with any thermal bath or radiation
field. The temperature is determined only by the balance of a
heating and cooling rate due to nonthermal processes which
do not have the same temperature as that assumed for the
cloud. In the case of the EWS, the pure compression in the
flowing region of the cloud implies that no extra energy is
taken in from the heating sources leading to a purely negative
total energy. The motions of gas in the shock solution are more
complicated. Initially, static gas is first compressed by the
passage of the shock. The gas radiates compressional heat, but
because this gas now has outward motion, it also cools by
expansion. At some point, the expansion causes the tem-
perature of the gas to want to dip below the equilibrium tem-
perature appropriate to the heating and cooling rates. The gas
then takes in extra energy from the heating sources to remain
isothermal. Finally, as the parcel of gas is decelerated and sent
into infall, compressional energy is again radiated by the gas.
Because there is a net energy taken in by the gas, the energy of
the flowing region is positive and increasing.

In the realistic setting of a finite-sized cloud core, collapse
described by the shock solution would eventually make the
total energy of the core positive, hence making it unbound.
This is acceptable behavior in light of the instability of the
singular isothermal sphere to both collapse and expansion.
The shock solution simply represents a mode of collapse which
allows the accretion of some material onto a core but which at
the same time interacts with an external energy source so as to
make the flowing parts of the gas unbound. To emphasize this
point, we demonstrate in § 4 that the singular isothermal
sphere can be easily sent into complete expansion if collapse is
not initially forced on the cioud.

We note that the above energy considerations apply equally
well to the shock found in the numerical solutions of § 2.2. The
important thing to consider in that case is that the shock per-
sists long after the piston has been applied to the gas. The
energetics of the postshock gas are only related to the actions
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of the piston in the sense that the piston puts the gas into a
state where the subsequent evolution is driven by a shock and
the requirement that the gas be isothermal. The work done by
the piston is insignificant compared to the subsequent energy
exchanges of the cloud in trying to remain isothermal.

We have assumed that the rate at which the cloud is heated
in the expanding part of the flow is sufficiently rapid so that
there will only be small departures from isothermality. A
concern might be that the evolution of the gas in the shock
solution may require a heating rate which is so high that the
prescribed processes cannot supply the needed power. This is
not likely the case since the shock in the above solution is
weak; the postshock motions are subsonic, and the density
contrast at the shock is only a factor ~1.6. We examine this
quantitatively. During the early phases of collapse as described
by the shock solution, the shock is in the high-density region
near the core. This part of the collapse is not well modeled by
any isothermal collapse solution since the gas is expected to be
hotter due to trapped compressional heat. At somewhat later
times, the shock will be in a more optically thin region where
grain cooling will be more effective and where isothermal solu-
tions may apply. Heating in this region can be due to absorp-
tion of accretion luminosity, cosmic-ray impacts, and grain
heating. The latter two processes are expected to be most
important in the outer, low-density regions of the cloud,
whereas the effects of accretion luminosity are most important
in the inner regions (although significant heating from accre-
tion luminosity occurs even when the gas is optically thin;
Hollenbach et al. 1995; Ceccarelli, Hollenbach, & Tielens
1995). In Figure 8, we show estimates of heating rates due to
the aforementioned processes as well as the rate of adiabatic
cooling due to the expansion of gas immediately behind the
shock. (We do not include other forms of cooling since these
are ineffective at temperatures of less than about 10 K.) The
cooling rate is given by

SkTu (dp a’up
Aglr) = 2 m, (dr) = -5 - (24)

where all fluid variables are dimensional. We have assumed
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FiG. 8.—The magnitude of the rate of adiabatic cooling of gas expanding
immediately behind the shock is given by the heavy solid line as a function of
the position of the shock. The heating rates per unit volume of the same gas
due to cosmic rays (dotted line) and dust heating (short-dashed line) are also
plotted as a function of the location of the shock. The long-dashed line indi-
cates the heating rate due to accretion luminosity.
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that the density distribution obeys p oc r~2 in obtaining the
rightmost equality. We estimate the heating rates using

I, ~4x 10‘”(L> ergss™ ! cm™? 25)
for cosmic rays (Black 1987) and
[ yuee ~ 4 % 1026(L> ergss 'cem 3 (26)
pm,,

for photoelectric heating from dust (Black 1987). Heating from
accretion luminosity is estimated by taking the luminosity to

be
M 173
) o

_GM_ M
a 1075 Mg yr~

L, R

. R,~3x 10“(

(27

where the latter relation for R, is a fit to detailed calculations
(Adams & Shu 1985; Stahler, Shu, & Taam 1980; Stahler 1983)
and M is given by eq. (1) with C = 0.105, the value appropriate
to the shock solution. The mass of the star is just M, = Mt,
where ¢ is the time under consideration. The heating due to
accretion luminosity for gas at radius r is then computed:

L
Face = KP( 47[:2) , (28)

where « is the absorption opacity of the gas. The dust photo-
sphere which reprocesses the radiation from the accretion
shock should have a temperature ~500 K (Adams & Shu
1985) which corresponds to a peak wavelength of ~6 um. The
opacity here is k ~ 2.5 cm? g~ !. Ideally, « should be averaged
over the emergent spectrum; however, we simply take the
above value for our estimates. Equation (28) also represents an
approximation since the emission from the dust photosphere
will be further reprocessed by the material between the photo-
sphere and the radius under consideration, r. If r is reasonably
small, then this should not be too bad an approximation since
most of the energy fed in at the dust photosphere will even-
tually make it out to radius r.

The abscissa in Figure 8 is the location of the shock. The
heating and cooling rates are computed for the gas imme-
diately behind the shock because this is the region experiencing
the greatest expansion. In the inner region (r ~ 10'5-106-*
cm) where both cosmic-ray and dust heating are minimized by
the high optical depth, accretion luminosity provides an ample
supply of energy to overcome the cooling due to expansion. In
the outer region (r 2 10'%3 cm) where the amount of accretion
luminosity absorbed by the gas is minimal, dust and cosmic-
ray heating adequately replace the energy density lost via
expansion.

3.3. Radial Stability of the Shock Solution

We examine the stability of the shock solution numerically.
Although less satisfactory than linear stability analysis, essen-
tial features of the stability of the solution can be discerned in
this manner. For example, when numerical calculations which
begin with core collapse are continued beyond the point where
the EWS is recovered, the subsequent evolution of the gas does
not deviate substantially from the EWS (e.g., Boss & Black
1982). This suggests that the EWS is stable to radial pertur-
bations, a result also determined analytically (e.g., Silk & Suto
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1988; Ori & Piran 1988). We have also confirmed this result.
We start a numerical calculation by assuming that the initial
density and velocity profiles are those of the EWS scaled to
some early time. The cloud is then evolved for about a dynami-
cal time with the inner boundary condition that there be free
fall onto a sink cell {the same boundary condition as adopted
in § 2). We find no substantial deviation from the EWS.

The stability of the shock solution can be similarly tested.
We set the initial density and velocity profiles of a numerical
calculation to be that of the shock solution at some early time.
We evolve the cloud with the same free-fall inner boundary
condition as used previously. The subsequent collapse rapidly
departs from that of the shock solution and suggests that it is
unstable. We further test the behavior of the numerical col-
lapse. Since we know from the analytic solution what the gas
velocity should be at every location and time, we find that the
infall speed of the shock solution at the radius where the inner
boundary condition was imposed is somewhat smaller than the
corresponding free-fall speed based on the enclosed mass. This
is because pressure effects, though small, still contribute to the
dynamics of the flow. In trying to eliminate all possible pertur-
bations on the flow, we ran another numerical collapse calcu-
lation imposing the new inner boundary condition that the
velocity and density be exactly as specified by the analytic
solution at the given time and location. Even under these con-
ditions, numerical noise is sufficient to drive the subsequent
evolution of the gas away from that specified by the shock
solution.

The difference in the stability properties of the EWS and the
shock solution are not surprising. Within the rarefaction wave,
the EWS possesses a large region of supersonic infall and steep
velocity gradients which can serve to shear out perturbations.
This stabilizes the flow (Shu 1977). The shock solution, on the
other hand, has a large region of subsonic outflow which is
accompanied by rather limited velocity gradients. Further-
more, the constant amplitude shock is maintained by a pre-
carious interplay between a pure outgoing shock and a pure
outgoing rarefaction wave. Perturbations to this arrangement
in the form of sound waves can probably do considerable
damage. A linear stability analysis of the shock solution will be
presented elsewhere.

We studied the ways in which the numerical collapse departs
from the shock solution by perturbing the flow away from the
analytic solution in various ways. In the first instance, we again
start the calculation by taking an early-time version of the
shock solution as giving the initial density and velocity profiles
for the gas. We also impose the free-fall inner boundary condi-
tion. However, we artificially increase the initial mass of the
sink cell by 5%. This has the effect of gravitationally per-
turbing the entire cloud. The collapse then proceeds according
to the properties of the class I numerical solutions of § 2.2.
More specifically, the central mass accretion rate increases
rapidly from the value specified by the shock solution and
approaches in time the value corresponding to the EWS solu-
tion. The amplitude of the shock decreases with time, and the
ratio of the distances from the shock to the origin and the
stagnation point to the origin decreases with time (i.c., the
region of outflowing gas in similarity space gets smaller). Note
that the same perturbation imposed on a numerical realization
of the EWS does not result in departures from the analytic
solution. In the second case, we run a collapse calculation in
the same manner as above, but we instead artificially decrease
the initial mass of the sink cell. We first decrease the mass of
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the sink cell so that the free-fall velocity at the radius where the
inner boundary condition is applied is equal to the velocity as
specified by the shock solution at that radius. The mass is then
decreased a further 5% to run the calculation. The subsequent
collapse evolves according to the class I solutions of § 2.2. The
central mass accretion rate decreases from the level specified by
the analytic shock solution, and the shock persists in time with
roughly constant amplitude.

The modes of instability described above provide an expla-
nation for the existence of the two classes of collapse solutions
found in the piston experiments of § 2.2. After the collapse is
launched by the piston and imposition of the inner boundary
condition, the shock propagates out to a distance where the
initial scale set by the piston motion becomes much smaller
than the scale of the region over which the gas is flowing. The
collapse attempts to go toward the shock solution; however,
because it is unstable, perturbations imposed by the early
piston motion nudge the collapse toward one of the two modes
of instability growth. If the piston does not go out too far and
does not impose initial conditions too far removed from simply
having an initial pressure imbalance in the core, the solution
follows the class I type of collapse and evolves toward the
nearest stable solution, the EWS. On the other hand, with a
sufficiently large push, the piston launches the collapse into the
class II type of behavior, with the solution evolving toward
lower accretion rates.

The piston experiments show that, given a reasonable
amount of initial push by the piston, accretion would continue,
although at low rates, for the duration of the collapse simula-
tions. It is, however, interesting to consider the limiting case if
the calculation were to be allowed to run indefinitely. Accre-
tion will likely have stopped, and we can ask if there is some
solution which represents pure outflow. That is, are there con-
ditions under which the singular isothermal sphere could be
sent into complete expansion? This is considered in the next
section.

4. OUTFLOW SOLUTION

We initiated the numerical calculations of § 2.2 by pushing a
piston and then imposing a free-fall boundary condition at the
end of the push. The boundary condition models a large pres-
sure imbalance in the center of the cloud which essentially
forces the inner region into collapse. In this section, we con-
sider the case where a push on the gas by the piston is followed
by a no-flow boundary condition, i.e., imposing the condition
that the gas velocity be zero at the inner boundary.

The results of one of the numerical calculations are shown in
Figures 9 and 10. The piston again forms a shock which propa-
gates in time to large radius with constant amplitude. In con-
trast to the results of § 2.2, the velocity profile is one of pure
outflow, and the shock has a higher Mach number of roughly
1.3. The density is characterized by a postshock region which
flattens out toward small radius, in contrast to the steeply
peaked density of the initial static isothermal sphere and to the
density of the shock collapse solution. Identical results to those
displayed here are obtained assuming any of a series of piston
speeds and distances (v, and d,). In particular, the case shown
in the figures assumes v, = 0.5a and d, = 2 x 10'* cm. Recall
that the case from § 2.2 with the same piston parameters, but
where the free-fall inner boundary condition was imposed, led
to an increasing mass accretion rate and a diminishing shock
(Figs. la, 2a, and 3). In the present caiculation, the shock does
not weaken with time. Other cases where d,, is even smaller
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(representing very small perturbations to the flow) also lead to
constant amplitude shocks. Therefore, for the pure expansion
case, there is no bifurcation into two classes of solutions. All
piston parameters considered lead to the same solution as
shown in Figures 9 and 10. Furthermore, only very modest
initial perturbations are required to cause the singular isother-
mal sphere to expand.

The character of the numerical results again suggests that we
seek a similarity solution to describe the late time evolution of
the expanding solution. We use the formulation of § 3.1. The
shock is again expanding into a static singular isothermal
sphere. The shock must then obey the jump conditions of
equation (16). Our procedure is first to assume a location for
the shock, x,,. Starting with values of the density and velocity
given by equation (16), we integrate the fluid equations (8) and
(9) numerically to small radius. The resulting gas velocity will
not vanish in general as x — 0. However, by adjusting x,, this
condition can be satisfied. We find that such a solution is
unique, as was the case with the shock collapse solution of
§ 3.1. The velocity and density profiles are given in Figures 6
and 7, respectively, by the light solid line. The shock propa-
gates outward at a constant speed of 1.34a.

To better compare the analytic result to the numerical solu-
tions, we scale the similarity solution to the time of the last
curve in Figures 9 and 10. The similarity solution is given by
the dots. The numerical results agree exactly with the similarity
solution, except of course for the shock which occupies several
zones in the numerical simulation. This indicates both that the
similarity solution gives a good description of the flow and that
the solution is probably stable.

It is easy to show from equations (8) and (9) that

d—a-»O asx—0. (29)
dx
The passage of the shock through the singular isothermal
sphere rearranges the gas into a flat distribution. The centrally
peaked nature of the initial cloud is completely disrupted as
gas is sent outward. Figure 7 shows that ~ 30% of the expand-
ing region is included in such a “core.” Furthermore, equation
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FiG. 9.—The gas velocities in the pure expansion case where v, = 0.5a and
d, = 2 x 10'* cm are plotted for several times. The leftmost curve corresponds
to the earliest time of 0.1 x 10'? s. Going toward the right, the corresponding
times are 0.53, 1.27, 2.37, 3.89, 5.89, 844, 11.6, 154, and 19.9 in units of 10'% s,
The dots give the analytic solution of Fig. 6 scaled to the time of the last
numerical calculation shown.
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FiG. 10.—The gas density in the case of pure expansion where v, = 0.5a
and d, = 2 x 10" cm is plotted for the same times as shown in Fig. 9. The dots
indicate the analytic solution of Fig. 7 scaled to the time of the last numerical
calculation shown.

(5) indicates that the central density decreases as the square of
time. After a time of 10° yr, the central density is ~2 x 103
cm 3, which is comparable to the density of a molecular cloud
core (e.g., Goldsmith 1987). The expanding solution then not
only demonstrates that the singular isothermal sphere can be
easily sent into pure expansion, but that a very modest central
perturbation and subsequent subsonic motions of the gas can
lead to a uniform density distribution throughout the region
originally occupied by the singular isothermal sphere.

We again emphasize that the shock in the solution of this
section is not powered by the piston, which stops after a very
short time. The piston simply puts the gas into a state where
the subsequent evolution is governed by the dynamics of the
shock and the assumption that the gas is isothermal.

5. DISCUSSION AND CONCLUSIONS

We have considered the collapse of the singular isothermal
sphere in the case where infall is initiated by some arbitrary
process which, in addition to causing a central pressure imbal-
ance, is accompanied by some input of heat or energy into the
cloud. The rationale for this is to understand the possible
effects on the collapse of either preheating by accretion lumi-
nosity or some other means of early energy input into the
cloud, such as stellar winds. In order to be rather general and
to understand the relevant physics, we modeled this process
numerically with a one-dimensional hydrodynamical code
where we initiated collapse with a central piston which first
pushes at a constant speed out to some distance which is small
relative to the size of the cloud. The piston is then stopped and
a free-fall boundary condition is applied. This inner boundary
condition acts to initiate collapse in the central regions. We
assume isothermal conditions throughout.

Numerical collapse solutions in the piston experiments fall
into two classes, depending upon how far the piston is allowed
to push. Both classes are characterized by the presence of an
initial shock created by the action of the piston, a region of
outflowing gas just inside of the shock, and inflowing gas in the
central regions. If the piston is pushed to less than a certain
distance, the subsequent rate of mass accretion onto the core
increases with time and approaches the constant value corre-
sponding to the EWS. The shock decays with time and
becomes a sonic pulse. The amount of outflowing gas also
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decreases with time. These were dubbed class I solutions and
correspond to cases where, because the initial central pertur-
bation was not very different from the conditions giving rise to
the EWS, the subsequent collapse tended toward the EWS. In
the cases where the piston was allowed to push further out, the
accretion rate instead decreased with time. The initial shock
persisted with roughly constant amplitude, and the region of
outflowing gas grew with time. These were dubbed class Il
solutions. These two classes of solutions existed for any of the
assumed piston speeds which included both subsonic and
supersonic cases.

The interpretation of these results is given in terms of the
instability of a similarity solution (the shock solution) which
serves to divide the two classes of numerically determined solu-
tions. The shock solution is characterized by a constant central
mass accretion rate whose value exactly divides the class 1
accretion rates from the class IT accretion rates (Figs. 3 and 5).
The shock solution also has a constant amplitude shock and a
constant ratio of the distances from the shock to the origin and
the stagnation point to the origin. We examine the stability
properties of the shock solution by starting a numerical col-
lapse calculation with gas densities and velocities given by the
shock solution scaled to some early time. The subsequent evo-
lution of the cloud was found to always deviate from the analy-
tic solution. (This contrasts with the behavior of the EWS.)
This indicates that the solution is most likely unstable to radial
perturbations. The manner of the deviation was such that a
small perturbation of the flow toward increasing accretion
rates (artificially increasing the mass of the core), resulted in a
solution with the exact properties of the class I solutions. A
perturbation in the other direction (artificially decreasing the
mass of the core) resulted in evolution akin to that of the class
II solutions. The interpretation of the numerical solutions is
that when the shock has reached a distance far removed from
the scales set by the actions of the piston, the solution tries to
go to the shock solution. However, because it is unstable,
initial perturbations due to the piston cause the solution to
evolve away from the shock solution in either the manner of
the class I or class II solutions.

The shock solution and the class II numerical solutions
eventually lead to the unbinding of any finite region of the
singular isothermal sphere. The energy for this does not come
from the actions of any piston. Rather, in the case of the
numerical solutions, the piston changes the state of the cloud
so that it absorbs extra energy from whatever agent is helping
to keep the cloud isothermal. In the case of an actual protostel-
lar cloud core, this would presumably include dust and cosmic-
ray heating. Furthermore, this mode of collapse does not
represent a violation of the instability properties of the singular
isothermal sphere since it is unstable both to collapse and to
expansion. The limit of the class II solutions is in fact rep-
resented by the case of zero mass accretion and pure outflow.
We also obtained such a solution both numerically and ana-
lytically. The numerical realization is obtained by again
pushing a piston out some distance into an initially static sin-
gular isothermal cloud and imposing the inner boundary con-
dition that the velocity be zero at small radius. This expanding
solution is characterized by an outgoing constant amplitude
shock and a flat central density profile. In approximately a
dynamical time, the central density falls to values comparable
to those of interstellar cloud cores. We find that even when the
piston is pushed a very small distance, a purely expanding
solution is always obtained. The numerical solution then
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evolves rapidly toward a similarity solution. Because the late
time evolution of the numerical solutions does not deviate
from the similarity solution, it is likely that the expanding
solution is stable.

We consider the implications of the above results for star
formation. First, the deposition of energy or pressure into the
central regions of a collapsing protostellar cloud must occur to
some extent. For example, if we adopt the standard paradigm
of low-mass star formation (Shu et al. 1993), as infall is initiated
in the center of a singular isothermal sphere, a core develops
rapidly onto which material is accreted. The preheating effect
of the accretion luminosity will modify the flow in the region of
gas that is not yet in supersonic infall on a timescale very short
compared to the dynamical time. This has the effect of giving
the gas an outward push. Note that the preheating effect does
not have to be so extensive as to include the more optically
thin regions of the cloud. If preheating is sufficient to create a
weak shock in the inner optically thick region, our consider-
ations show that the shock can propagate to large radius
simply because the gas is being kept relatively isothermal in the
thin region. It is also known that protostellar winds occur very
early on in the formation of the protostar (e.g., see Bally &
Lane 1991). Although these winds are thought to be initially
highly collimated, they nevertheless can impart significant
outward momentum to some of the gas. We have modeled all
of these processes by a piston pushing in the center of a singu-
lar isothermal sphere. Although heuristic, this approach does
give an indication of the nature of the subsequent collapse.
Specifically, there is the possibility of accretion rates that are
lower than the canonical value given by the EWS. Depending
upon the degree of the initial perturbation, accretion rates
could be a factor of 10 lower than the EWS value and evolve
toward lower values, or they could be initially rather low and
rise up to the EWS value. The present work does not predict
the exact rate since the extent of the initial perturbation is not
known.

The prediction of reduced accretion rates may be related to
the “luminosity problem” of protostars. The observed lumi-
nosity function of embedded sources in several star-forming
regions implies that the central accretion rates are generally
~ 10 times lower than predicted by the standard paradigm
(e.g., Kenyon et al. 1990; Kenyon et al. 1994; Greene et al.
1994). This discrepancy may be due to rotational effects that
are not considered in the spherically symmetric approximation
of the EWS (Kenyon et al. 1994). For example, most collapsing
material could fall onto a disk and then be accreted onto the
star on a timescale set by disk physics. The accretion from a
disk could be, for the most part, smaller than that of spher-
ically symmetric accretion. Since studies show that the lifetime
of the accretion phase is ~ 10° yr, accretion from the disk must
occur in a series of bursts separated by a phase of low accretion
in order that the average accretion rate be high enough to form
a solar-mass star in the given time. Our study indicates that
independent of rotational considerations, which must be
important to some degree, spherically symmetric collapse itself
gives rise to time variable accretion rates which could be rather
low, especially at early times. The objection is then raised that
in ~ 10° yr a consistently low accretion rate leads to a star that
is well below a solar mass. There are several possible ways out
of this. A time-variable accretion rate, such as those of the class
I solutions, would imply that the low-luminosity sources are
simply young and are experiencing a period of rather low acc-
retion. At later times, the accretion rate increases so that a
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solar-mass star can still be formed in approximately the
allowed time. On the other hand, if indeed the accretion rate
remains consistently low, in ~ 10° yr the shock of our solutions
would have traveled to the outer regions of the cloud core. The
nature of the collapse after this depends in part on what
happens to the shock on reaching the outer boundary,
although the presence of significant magnetic support for the
cloud in these regions will lessen the effects of the shock. Since
this is unknown, what happens to the accretion rate after the
first ~ 10° yr is unknown also.

The application of our study to protostellar winds is more
heuristic. Early stellar winds are thought to be highly colli-
mated and rather supersonic. Our solutions, however, are
spherically symmetric, and the shock is rather weak. Therefore,
our considerations will not provide an exact description of the
effects of the wind on the collapsing cloud. However, we
showed that the singular isothermal sphere is, qualitatively
speaking, rather loosely bound; small initial perturbations
toward expansion can easily lead to the general expansion of
the cloud. This indicates that the termination of accretion can
be easily effected by a stellar wind. Conversely, the star forma-
tion scenario might be that protostellar collapse first proceeds
according to one of our solutions. The passage of the shock
unbinds much of the material in the outer regions of the core.
The onset of an observable protostellar wind may then occur
as a result of the cloud no longer presenting much of a barrier
against which the wind must fight to get out of the core.

The results of § 4 also offer the intriguing possibility that if
some process exists which applies a small push in the central
regions of a centrally peaked cloud core without an accom-
panying pressure imbalance, the core can be easily dispersed in
a dynamical time. It is not clear, however, whether such a
process exists in nature.

In considering the relevance of the current study to star
formation, we must be mindful of the limitations of our
assumptions and methods. For example, the assumption that
protostellar collapse occurs in an isothermal fashion has pre-
viously only been made in connection with a purely collapsing
cloud. Under this latter condition, compressional heat gener-
ated during collapse is efficiently radiated by various mecha-
nisms, including dust emission. However, our solutions include
an expanding outer envelope which is cooled by expansion. We
should therefore check that sufficient heating exists from
various processes (cosmic rays, dust heating, and heating from
accretion luminosity) to keep the gas isothermal. We have
demonstrated that this is indeed the case by estimating the
various heating rates and comparing them to the rate of adia-
batic cooling of expanding gas (see § 3.2).

Another assumption of the current work is that the cloud
into which the shock propagates is exactly stationary. If the
currently held paradigm for low-mass star formation does
indeed provide a framework for collapse (Shu et al. 1993), there
could be a subsonic inward drift of the gas at large radius as
the magnetic field diffuses out of the collapsing cloud. What is
the behavior of the shock solution under these conditions or in
the more extreme case where the inward drift is supersonic? It
is obvious, since the shock in our solution has a Mach number
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of only 1.26, that any inflow upstream of the shock of greater
than the indicated speed will sweep the shock into the core.
The solutions investigated in this paper would not apply to
these flows. In the case where the inflow ahead of the shock is
subsonic, the effects of our solution are somewhat reduced. For
example, we have considered the collapse of isothermal spheres
which have a density that is everywhere greater by a uniform
factor than that of the singular isothermal sphere. Because
these spheres are too dense to be in equilibrium, infall is initi-
ated at all radii at the beginning of collapse. The case where
infall is not accompanied by any central energy input is
described by the MSWCP solutions discussed in § 3.1. When a
central piston is applied, we find that resulting solutions are
similar to those in which a shock propagates into static gas;
however, there is a greater tendency to follow the class I behav-
ior (see § 2.2). Specifically, the accretion rate, which always
begins at rather low values (M ~ few x 1077 M yr !) shows
a greater tendency to evolve toward the higher value associ-
ated with the corresponding MSWCP solution. The low accre-
tion rates characterizing the early parts of the collapse of some
of the class I solutions last for shorter times. Similarly, the
magnitude of the shock tends to decrease more rapidly as does
the size of the region of outflowing gas. However, even when
gas ahead of the shock is infalling subsonically, significant
reductions in the central accretion rate relative to the values
associated with no energetic input are possible.

Current observational constraints on the nature of infall are
inadequate for differentiating between our solutions and other
models. Although molecular line width studies have ruled out
outflow in various cloud cores (e.g., Zhou 1992; Evans et al.
1992), the nature of the infall has not been especially well con-
strained. Although collapse according to the Larson-Penston
model (Larson 1969; Penston 1969a) is likely ruled out, the
nature of the infall predicted by the shock solution is not very
different from that of the EWS, in that free-fall will prevail in
the central regions. Additionally, the outflows in our solutions
are rather subsonic, so they are not detectable using line pro-
files. The constraints on the density profile are similarly ambig-
uous enough to allow a variety of models. Studies of spectral
energy distributions indicate the density can be consistent with
p ~ 1/r1-3-2.9 nrofiles (Butner et al. 1990; Butner et al. 1991).
Because the EWS and our solutions both derive from collaps-
ing a singular isothermal sphere, comparable density profiles
exist throughout much of the cloud.
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