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Abstract

This article gives a brief history of the analysis and computation of the mathemat-

ical constant rt = 3.14159 .... including a number of the formulas that have been

used to compute x through the ages. Recent developments in this area are then

discussed in some detail, including the recent computation of it to over six billion

decimal digits using high-order convergent algorithms, and a newly discovered

scheme that permits arbitrary individual hexadecimal digits of rt to be computed.
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Introduction

The fascinating history of the constant we now know as 7r spans several millennia,

almost from the beginning of recorded history up to the present day. In many ways this

history parallels the advancement of science and technology in general, and of mathematics

and computer technology ill particular. An overview of this history is presented here in

sections one and two. Some exciting recent developments are discussed in sections three

and four. Section five explores the question of why this topic has such enduring interest.

For further details of the history of rr up to about 1970, the reader is referred to Petr

Beckmann's readable and entertaining book [3]. A listing of milestones in the history of

the computation of _ is given in Tables 1 and 2.

1. The Ancients

In one of the earliest accounts (about 2000 BC) of rr, the Babylonians used the approx-

imation 31 = 3.125. At this same time or earlier, according to an account in an ancient

Egyptian document, Egyptians were assuming that a circle with diameter nine has the

256 3.1604 .... Others of antiquitysame area as a square of side eight, which implies 7r - sl -

were content to use the simple approximation 3, as evidenced by the following passage
from the Old Testament:

Also, he made a molten sea of ten cubits from brim to brim, round in compass,

and five cubits the height thereof; and a line of thirty cubits did compass it

round about (I Kings 7:23; see also 2 Chron. 4:2).

The first rigorous mathematical calculation of the value of 7r was due to Archimedes

of Syracuse (ca. 250 BC), who used a geometrical scheme based on inscribed and circum-

scribed polygons to obtain the bounds 3_ < _- < 3_, or in other words 3.1408... < 7r <

3.1428... [11]. No one was able to improve on Archimedes' method for many centuries,

although a number of persons used this general method to obtain more accurate approxi-

mations. For example, the astronomer Ptolemy, who lived in Alexandria in 150 AD, used

tile value 31@o = 3.141666..., and the fifth century Chinese mathematician Tsu Chung-

Chih used a variation of Archimedes' method to compute 7r correct to seven digits, a level

not obtained in Europe until the 1500s.

2. The Age of Newton

As in other fields of science and mathematics, little progress was made in the quest for

_r during the dark and middle ages, at least in Europe. The situation was somewhat better

in the East, where A1-Kashi of Samarkand computed rr to 14 places about 1430. But in

the 1600s, with the discovery of calculus by Newton and l,eibniz, a number of substantially

new formulas fox" rr were discovered. One of them can be easily derived by recalling that

fo x dt foX( [2 14 t 6tan -ix = l+t 2 - 1- + - +-..)dt

X 3 /r 5 3:7 x 9

= :r---+ .+ .....
3 5 _ 9



Substituting x = 1 gives the well-known Gregory-Leibniz formula

= 1 - 1/3 + 1/7 + 1/9- 1/11 +...

Regrettably, this series converges so slowly that hundreds of terms would be required to

compute the numerical value of _ to even two digits accuracy. However, by employing the

trigonometric identity

7r/4 = tan-'(1/2) + tan-'(1/3)

(which follows from the addition formula for the tangent function), one obtains

(_ 1 1 1 ) (_ 1 1 1 )_'/4 = 3.2 3 + 5 • 2 s 7 • 2 7 + "'" + 3 • 33 -4- 5 • 3 5 7.3 T + "'"

which converges much more rapidly. An even faster formula, due to Machin, can be

obtained by employing the identity

7r/4 = 4tan-1(1/5)-tan-l(1/239)

in a similar way. Shanks used this scheme to compute _ to 707 decimal digits accuracy in

1873. Alas, it was later found that this computation was in error after the 527-th decimal

place.
Newton discovered a similar series for the arcsine function:

1 • x 3 1 • 3 • x s 1 • 3 • 5 • x _
sin-ix = x+--+ + +.--

2.3 2.4.5 2.4.6.7

7r can be computed from this formula by noting that 7r/6 = sin-l(1/2). An even faster

formula of this type is

7r 3v/-3._ (1 1 1 1 )- + 24 _-23 -- 5 "-25 -- 7" 2--------7 -- 9" 2-------N ....

Newton himself used this particular formula to compute 7r. He published 15 digits, but

later sheepishly admitted, "I am ashamed to tell you how many figures [ carried these

computations, having no other business at the time."

In the 1700s the mathematician Euler, arguably the most prolific mathematician in

history, discovered a number of new formulas for _'. Among these are

_r2 1 1 1 1
-- = 1+ + + + +...

rr4 1 1 1 1
-- = 1+ + + + +...
90 _ 3-_ _ _

A related, more rapidly convergent series is

7r 2 oo 1
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Theseformulasaren't very efl3cientfor computing_r,but they haveimportant theoreti-
cal implications and havebeenthe springboardfor notable researchquestions,suchasthe
Riemann zeta function hypothesis,that continue to be investigated to this day.

One motivation for computations of 7r during this time was to see if the decimal expan-

sion of 7r repeats, thus disclosing that _r is the ratio of two integers (although hardly anyone

in modern times seriously believed that it was rational). This question was conclusively

settled in the late 1700s, when Lambert and Legendre proved that _r is irrational. Some

still wondered whether rr might be tile root of some algebraic equation with integer coeffi-

cients (although as before few really believed that it was). This question was finally settled

in 1882 when Lindemann proved that 7r is transcendental. Lindemann's proof also settled

once and for all, in the negative, the ancient Greek question of whether the circle could

be squared with ruler and compass. This is because constructible numbers are necessarily

algebraic.

In the annals of 7r, the nineteenth century came to a close oil an utterly shameful note.

Three years prior to the turn of the century, one Edwin a. Goodman, M.D. introduced into

the Indiana House of Representatives a bill that would introduce "new Mathematical truth"

and enrich the state, which would profit from the royalties ensuing from this discovery.

Section two of the bill included the passage

"disclosing the fourth important fact that the ratio of the diameter and cir-

cumference is as five-fourths to four;"

i6 _ 3.2. In spite of thisThus one of Goodman's new mathematical "truths" is that 7r - s

and numerous other absurd statements, the Indiana House passed the bill unanimously

on Feb. 5, 1897. The bill then passed a Senate committee, and would have been enacted

into law had it not been for the last-minute intervention of Prof. C. A. Waldo of Purdue

University, who happened to hear some of the deliberation while on other business.

3. The Twentieth Century

With the development of computer technology in the 1950s, rr was computed to thou-

sands and then millions of digits, in both decimal and binary bases (see for example [17]).

These computations were facilitated by the discovery of some advanced algorithms for per-

forming the required high-precision arithmetic operations on a computer. For example, in

1!)65 it was found that the newly-discovered fast Fourier transform (FFT) could be used

to perform high-precision multiplications much more rapidly than conventional schemes.

These methods dramatically lowered the computer time required for computing 7r and

other mathematical constants to high precision. See [1], [7] and [8] for a discussion of some

of these techniques.

In spite of these advances, until the 1970s all computer evaluations of rr still employed

classical formulas, usually a variation of Machin's formula. Some new infinite series formu-

las were discovered by the Indian mathematician Ramanujan around 1910, but these were

not well known until quite recently when his writings were widely published. One of these



is the remarkableformula

1 _ 2v_ _-_ (4k)!(1103 + 26390k)

:r 9801 Z._ (k!)43964kk=O

Each term of this series produces an additional eight correct digits in the result. Gosper

used this formula to compute 17 million digits of 7r in 1985.

While Ramanujan's series is considerably more efficient than the classical formulas,

it shares with them the property that the number of terms one must compute increases

linearly with the number of digits desired in the result. In other words, if one wishes to

compute 7r to twice as many digits, then one must evaluate twice as many terms of the

series.

In 1976 Eugene Salamin [16] and Richard Brent [8] independently discovered a new

algorithm for re, which is based on the arithmetic-geometric mean and some ideas originally

due to Gauss in the 1800s (although for some reason Gauss never saw the connection to

computing re). This algorithm produces approximations that converge to rr much more

rapidly than any classical formula. The Salamin-Brent algorithm may be stated as follows.

Set a0 = 1,bo = l/v/-2 and So = 1/2. For k = 1,2,3,-.. compute

ak-1 + bk-1
ak --

2

bk = _/ak-lbk-1

= --
S k _ 8k_ 1 -- 2kck

Pk --
8k

Then pk converges quadratically to re. This means that each iteration of this algorithm

approximately doubles the number of correct digits. To be specific, successive iterations

produce 1, 4, 9, 20, 42, 85, 173, 347 and 697 correct digits of re. Twenty-five iterations are

sufficient to compute _r to over 45 million decimal digit accuracy. However, each of these

iterations must be performed using a level of numeric precision that is at least as high as

that desired for the final result.

The Salamin-Brent algorithm requires the extraction of square roots to high precision,

operations not required, for example, in Machin's formula. High-precision square roots

can be efficiently computed by means of a Newton iteration scheme that employs only

multiplications, plus some other operations of minor cost, using a level of numeric precision

that doubles with each iteration. The total cost of computing a square root in this manner

is only about three times the cost of performing a single full-precision multiplication.

Thus algorithms such as the Salamin-Brent scheme can be implemented very rapidly on a

computer.

Beginning in 1985, two of the present authors (Jonathan and Peter Borwein) discovered

some additional algorithms of this type [5, 6, 7]. One is as follows. Set ao = 1/3 and
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So = (_- 1)/2. Iteratc

3
rk+ 1 _-

1 + 2(1 -.s_)l/3

rk+, - 1
•_k+l --

2

3k(r_+l 1)ak+ 1 ---- rk+la k --

Then 1/ak converges cubically to _r -- each iteration approximately triples the number of

correct digits. A quartic algorithm is as follows: Set a0 = 6-,lv/2 and y0 = _- 1. Iterate

1-(1 _y_)1/4
Yk+l =

1 + (1 - y_)l/4

ak+l ak(1 + yk+l) 4 ,_2k+3. /= - z yk+l(1 + Yk+l + Y_+I)

Then ak converges quartically to 1/7r. This particular algorithm, together with the Salamin-

Brent scheme, has been employed by Yasumasa Kanada of the University of Tokyo in

several computations of 7r over the past ten years or so. In the latest of these computations,

Kanada computed over 6.4 billion decimal digits on a Ilitachi supercomputer. This is

presently the world's record in this arena.

More recently it has been further shown that there are algorithms that generate rn-th

order convergent approximations to _r for any m. An example of a nonic (ninth-order)

algorithm is the following: Set ao = 1/3, r0 = (v/-3 - 1)/2, s0 = (1 - r03)1/3. Iterate

t = 1 + 2rk

u = [9rk(1 + rk + F_.)] 1/3

v = t 2 + tu + u 2

27(1 + sk + s_.)

V

ak+l = rnak + 3:k-1(1 - m)

(1 -- rk) 3
Sk+ 1 --

(t + 2u)v

?'k+l ----- (1 -- s_) '13

Then 1/ak converges nonically to 7r. It should be noted however that these higher order

algorithms do not appear to be faster as computational schemes than, say the Salamin-

Brent or the Borwein quartic algorithms. In other words, although fewer iterations are

required to achieve a given level of precision in the higher-order schemes, each iteration is

more expensive.

A comparison of actual computer run times for various 7r algorithms is shown in Figure

1. These run times are for computing rr in binary to various precision levels on an IBM

RS6000/590 workstation. The abscissa of this plot is in hexadecimal digits -- multiply

these numbers by four to obtain equivalent binary digits, or by 1og10(16 ) = 1.20412...
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Run time for computing various algorithms
Time in seconds
-3000

25OO

2000

1500

1000

500

Number of hex digits

Figure 1: Run times for Computing Pi

[] Gregory-Leibniz

[] Machin

• Brent-Salamin no FFT

[] Brent-Salamin FFT

[] Borwein quartic FFT

[] Borwein cubic FFT

• Borwein Garvan nonic FFT

to obtain equivalent decimal digits. Other implementations on other systems may give

somewhat different results -- for example, in Kanada's recent computation of _r to over six

billion digits, the quartic algorithm ran somewhat faster than the Salamin-Brent algorithm

(116 hours versus 131 hours). But the overall picture from such comparisons is unmistak-

able: the modern schemes run many times faster than the classical schemes, especially

when implemented using FFT-based arithmetic.

David and Gregory Chudnovsky of Columbia University have also done some very-

high precision computations of Ir in recent years, alternating with Kanada for the world's

record. Their most recent computation (1994) produced over four billion digits of 7r [9].

They (lid not employ a high-order convergent algorithm, such as the Salamin-Brent or

Borwein algorithms, but instead utilized the following infinite series (which is in the spirit

of Ramanujan's series above):

! 12 _-_ (-1)k (6k)!(13591409 + 545140134k)
7r k=o (3k-)! (k!) 3 64032Oak+a/2

Each term of this series produces an additional 14 correct digits. The Chudnovskys imple-

mented this formula with a very clever scheme that enabled them to utilize the results of a

certain level of precision to extend the calculation to even higher precision. Their program

was run on a home-brew supercomputer that they have assembled using private funds. An



interesting personalglimpseof the Chudnovskybrothers is givenin [14].

4. Computing Individual Digits of rc

At several junctures in the history of re, it was widely believed that virtually everything

of interest with regards to this constant had been discovered, and in particular that no

fundamentally new formulas for re lay undiscovered. This sentiment was even suggested in

the closing chapters of Beckmann's 1971 book on the history of rr [3, pg. 172]. Ironically,

the Salamin-Brent algorithm was discovered only five years later.

A more recent reminder that we have not come to the end of humanity's quest for

knowledge about rr came with the discovery of the Rabinowitz-Wagon "spigot" algorithm

for _r in 1990 [15]. In this scheme, successive digits of re (in any desired base) can be

computed with a relatively simple recursive algorithm based on the previously generated

digits. Multiple precision computation software is not required, so that this scheme can be

easily implemented on a personal computer.

Note however that this algorithm, like all of the other schemes mentioned above, still has

the property that in order to compute the d-th digit of re, one must first (or simultaneously)

compute each of the preceding digits. In other words, there is no "shortcut" to computing

the d-th digit with these formulas. Indeed, it has been widely assumed in the field (although

never rigorously proven) that the computational complexity of computing the d-th digit is

not significantly less than that of computing all of the digits up to and including the d-th

digit. This may still be true, although it is probably very hard to prove. Another common

feature of the previously known re algorithms is that they all appear to require substantial

amounts of computer memory, amounts that typically grow linearly with the number of

digits generated.

Thus it was with no small surprise that a novel scheme was recently discovered for

computing individual hexadecimal digits of re [2]. In particular, this algorithm (1) pro-

duces the d-th hexadecimal (base 16) digit of 7r directly, without the need of computing

any previous digits; (2) is quite simple to implement on a computer; (3) does not require

multiple precision arithmetic software; (4) requires very little memory; and (5) has a com-

putational cost that grows only slightly faster than the index d. For example, the one

millionth hexadecimal digit re can be computed in only a minute or two on a current R1SC

workstation or high-end personal computer. This algorithm is not fundamentally faster

than other known schemes for computing all digits up to some position d, but its elegance

and simplicity are nonetheless of considerable interest.

This scheme is based on the following remarkable new formula for re:

_'° 1 ( 4_ 2 1 1 )_u- 8i+1 8i+4 8i+5 8i+6
re

i=0

The proof of this formula is not very difficult. First note that for any k < 8,

ao['/'/_ 1-gk-1-----;1."8 dg = f 1/'gr_ ___,X k-'+si dx _ 2'_/21 16'(8il + k)
at) i=0 i=0
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Babylonians
Egyptians
China
Bible (1 Kings 7:23)
Archimedes
Hon Han Shu
Ptolemy
ChungHing
Wang Fau
Liu Hui
Siddhanta
Tsu Ch'ung Chi
Aryabhata
Brahmagupta
A1-Khowarizmi
Fibonacci
A1-Kashi
Otho
Viete
Romanus
Van Ceulen
Van Ceulen
Newton
Sharp
Seki
Kamata
Machin
De Lagny
Takebe
Matsunaga
Vega
Rutherford
Strassnitzkyand Dase
Clausen
Lehmann
Rutherford
Shanks

2000? BCE

2000? BCE

1200? BCE

550? BCE

250? BCE

130 AD

150

250?

250?

263

380

48O?

499

640?

80O

1220

1429

1573

1593

1593

1596

1615

1665

1699

1700?

1730?

1706

1719

1723

1739

1794

1824

1844

1847

1853

1853

1874

[ 1

! 1
i 1
: 1

3

1

3

1

1

5

3

7

4

1

4

3

14

6

9

15

20

35

16

71

10

25

100

127

41

50

140

208

200

248

261

440

707

3.125 (3_)
3.16045 s 2(4(6))
3

3

3.1418 (ave.)

3.1622 (= _ ?)

3.14166

3.16227 (x/_)

3.15555 ( 142_
45 J

3.14159

3.1416

3.1415926

3.14156

3.162277 (= v_)

3.1416

3.141818

3.1415929

3.1415926536 (ave.)

( 112 correct)

(152 correct)

(527 correct)

Table 1: History of _r Calculations (Pre 20th Century)



Ferguson

Ferguson

Ferguson and Wrench

Smith and Wrench

Reitwiesner et al. (ENIAC)
Nicholson and aeenel

Felton

Genuys
Felton

Guilloud

Shanks and Wrench

Guilloud and Filliatre

Guilloud and Dichampt

Guilloud and Bouyer

Miyoshi and Kanada

Guilloud

Tamura

Tamura and Kanada

Tamura and Kanada

Kanada, Yoshino and Tamura

Ushiro and Kanada

Gosper

Bailey

Kanada and Tanmra

Kanada and Tanmra

Kanada, Tamura, Kubo, et. al

Kanada and Tamura

Chudnovskys

Chudnovskys

Kanada and Tamura

Kanada and Tanmra

Chudnovskys

Chudnovskys

Chudnovskys

Takahashi and Kanada

Kanada

Kanada

1946

Jan. 1947

Sep. 1947

1949

1949

1954

1957

Jan. 1958

May 1958

1959

1961

1966

1967

1973

1981

1982

1982

1982

1982

1982

Oct. 1983

198,5

Jan. 1986

Sep. 1986

Oct. 1986

Jan. 1987

Jan. 1988

May 1989

Jun. 1989

Jul. 1989

Nov. 1989

Aug. 1989

Aug. 1991

May 199,1
Jun. 1995

Aug. 1995
Oct. 1995

620

710

808

1,120

2,037

3,092

7,480

10,000

10,021

16,167

100,265

250,000

500,000

1,001,250

2,000,036

2,000,050

2,097,144

4,194,288

8,388,576

16,777,206

10,013,395

17,526,200

29,360,111

33,554,414

67,108,839

134,217,700

201,326,551

480,000,000

525,229,270

536,870,898

1,073,741,799

1,011,196,691

2,260,000,000

4,044,000,000

3,221,225,466

4,294,967,286

6,442,450,938

Table 2: Ilistory of re Calculations (20th Century)
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win/
writethUS we can

s,i+ s +4 si+5 si+6
i=0

= fl/v'_ 4V/_ - 8x a -- 4V/2X 4 -- 8x 5 dx
.,o i -- .s

which on substituting V := v_x becomes

/o /o /o1 16y-16 dy = --dy- r_
y4 _ 2ya + 4y - 4 y2 - 2 y2 -_y7 t_2

reflecting a partial fraction decomposition of the integral on the left-hand side.

However, this derivation is dishonest, in the sense that the actual route of discovery was

much different. This formula was actually discovered not by formal reasoning, but instead

by numerical searches on a computer using the "PSLQ" integer relation finding algorithm

[10]. Only afterwards was a rigorous proof found.

A similar formula for rr2 (which also was first discovered using the PSLQ algorithm) is

as follows:

_.2 = _--, 1 [ 16 16 8 16
2_.[,=o]-6 (8i ¥ 1)_ (8i + 2)2 (8i + a) 2 (8i + 4)_

4 4 2 ]

(8i + 5) 2 (8i + 6) 2 + (8i + 7) 2]
Formulas of this type for a few other mathematical constants are given in [2].

Computing individual hexadecimal digits of 7r using the above formula crucially relies

on what is known as the binary algorithm for exponentiation, wherein one evaluates x n

by successive squaring and multiplication. This reduces the number of multiplications

required to less than 2 logs(n ). According to Knuth, this technique dates back at least to

200 B.C [13]. In our application, we need to obtain the exponentiation result modulo a

positive integer c. This can be efficiently done with the following variant of the binary

exponentiation algorithm, wherein the result of each multiplication is reduced modulo c:

To compute r = b" mod c, first set t to be the largest power of two < n, and set r = 1.

Then

A: if n _> t then r *-- br mod c; n _ n- t; endif

t +---t/2

if t _> 1 then r _ r 2 mod c; go to A; endif

Here "mod" is used in the binary operator sense, namely as the binary function defined by

x rood y := x - [x/y]y. Note that the above algorithm is entirely performed with positive

integers that do not exceed c2 in size.
Consider now the first of the four sums in the formula abovc for a-:

Sl = 2 16/¢(8/(, _.[_ 1)
k=0

11



First observethat tile hexadecimaldigits of S1 beginning at, position d+ 1 can be obtained

from the fractional part of 16a51. Then we can write

frac(16dsx) = _ 8/: + 1 rood 1
k=O

d 16a-k mod 8k + 1 oo 16a-k

= _ 8k+l modl + _ 8k+l modl
k=0 k=d+l

For each term of the first summation, the binary exponentiation scheme can be used to

rapidly evaluate the numerator. In a computer implementation this can be done using ei-

ther integer or 64-bit floating-point arithmetic. Then floating-point arithmetic can be used

to perform the division and add the quotient to the sum mod 1. The second summation,

where the exponent of 16 is negative, may be evaluated as written using floating-point

arithmetic. It is only necessary to compute a few terms of this second summation, just

enough to insure that the remaining terms sum to less than the "epsilon" of the floating-

point arithmetic being used. Ttle final result, a fraction between 0 and 1, is then converted

to base 16, yielding the (d + 1)-th hexadecimal digit, plus several additional digits. Full

details of this scheme, including some numerical considerations, as well as analogous for-

mulas for a number of other basic mathematical constants, can be found in [2]. Sample

implementations of this scheme in both Fortran and C are available from the web site

http ://www. cecm. sfu. ca/personal/pborwein/.

As the reader can see, there is nothing very sophisticated about either this new formula

for 7r, its proof, or the scheme just described to compute hexadecimal digits of _r using it.

In fact, this same scheme can be used to compute binary (or hexadecimal) digits of log(2)
based on the formula

log(2) =
I

k=l k2k'

which has been known for centuries. Thus it is frankly astonishing that these methods

have lain undiscovered all this time. There seems to be no fundamental reason that Euler,

for example, could not have discovered them. The only advantage that today's researchers

have in this regard is advanced computer technology. Along this line, Table 3 gives some

hexadecimal digits of 7r computed using the above scheme.

One question that immediately arises in the wake of this discovery is whether or not

there is a formula of this type and an associated computational scheme to compute indi-

vidual decimal digits of ft. Alas, no decimal scheme for rr is known at this time, although

there is for certain constants such as log(9/10) -- see [2]. On the other hand, there is

not yet any proof that a decimal scheme for 7r cannot exist. This question is currently

being actively pursued by researchers. Based on some numerical searches using the PSLQ

algorithm, it appears that there are no simple formulas of the above form for rc with 10

in the place of 16. This of course does not rule out the possibility of completely different

formulas that nonetheless permit rapid computation of individual decimal digits of rr.

12



Hex Digits Beginning
Position At This Position
106
l0T
108
109
1010

26C65E52CB4593
17AF5863EFED8D
ECB840E21926EC
85895585A0428B
921C73C6838FB2

Table 3: Hexadecimal Digits of _r

5. Why?

Certainly there is no need for computing 7r to millions or billions of digits in practical

scientific or engineering work. A value of 7r to 40 digits would be more than enough

to compute the circumference of the Milky Way galaxy to an error less than the size of

a proton. There are certain scientific calculations that require intermediate calculations

to be performed to significantly higher precision than required for the final results, but

it is doubtful than anyone will ever need more than a few hundred digits of _" for such

purposes. Values of 7r to a few thousand digits are sometimes employed in explorations of

mathematical questions using a computer, but we not aware of any significant number of

applications beyond this level.

One motivation for computing digits of _r is that these calculations are excellent tests

of the integrity of computer hardware and software. This is because if even a single error

occurs during a computation, almost certainly the final result will be in error. On the

other hand, if two independent computations of digits of _- agree, then most likely both

computers performed billions or even trillions of operations flawlessly. For example, in

1986, a _r-calculating program detected some obscure hardware problems in one of the

original Cray-2 supercomputers [1].

The challenge of computing rr has also stimulated research into advanced computational

techniques. For example, some new techniques for efficiently computing linear convolutions

and fast Fourier transforms (FFTs), which have applications in many areas of science and

engineering, had their origins in efforts to accelerate computations of _r.

Beyond immediate practicality, decimal and binary expansions of rr have long been

of interest to mathematicians, who have still not been able to resolve the question of

whether the expansion of 7r is normal [18]. In particular, it is widely suspected that the

decimal expansions of 7r, e, v_, v/i--0, and many other mathematical constants all have the

property that the limiting frequency of any digit is one tenth, and the limiting frequency

of any n-long string of decimal digits is 10 -n (and similarly for binary expansions). Such a

guaranteed property could, for instance, be the basis of a reliable pseudo-random number

generator tot scientific calculations. Unfortunately, this assertion has not been proven in

even one instance. Thus there is a continuing interest in performing statistical analyses on

the expansions of these numbers to see if there is any irregularity that would suggest this
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assertionis false. Sofar, suchstudiesof high-precisionvaluesof _-havenot disclosedany
irregularities. Along this line, new formulas and schemesfor computing digits of _-,such
as the one describedin sectionfour, areof interest becausesomeof thesemay suggestnew
approachesto answeringthe normality question.

Finally, there is a more fundamental motivation for computing iv, which should be
familiar to anyonewho hasscaleda lofty mountainor competedin a major sporting event:
"it is there" it is easily the most famousof the basicconstants of mathematics. Thus

as long as there are humans (and computers) we will doubtless have ever-more impressive

computations of 7r.

Conclusion

The constant 7r has repeatedly surprised humanity with new and often unanticipated

results. If anything, the discoveries of this century have been even more startling, with

respect to the previous state of knowledge, than those of past centuries. Thus we conclude

that even more surprises lurk in the depths of undiscovered knowledge regarding this famous

constant. We thus look forward to what the future has to bring.
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