NASA Technical Memorandum 107315 AIAA-97-0546

A Proof of Concept Experiment for Reducing Skin Friction By Using a Micro-Blowing Technique

Danny P. Hwang Lewis Research Center Cleveland, Ohio

Prepared for the 35th Aerospace Sciences Meeting and Exhibit sponsored by the American Institute of Aeronautics and Astronautics Reno, Nevada, January 6–9, 1997

National Aeronautics and Space Administration

•

A PROOF OF CONCEPT EXPERIMENT FOR REDUCING SKIN FRICTION BY USING A MICRO-BLOWING TECHNIQUE*

Danny P. Hwang[†] National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

Abstract

A proof of concept experiment for reducing skin friction has been conducted in the Advanced Nozzle and Engine Components Test Facility at the NASA Lewis Research Center. In this unique concept, called the micro-blowing technique (MBT), an extremely small amount of air was blown vertically through very small holes to reduce the surface roughness and to control the gradient of the flow velocity profile on the surface thereby reducing skin friction. Research revealed that the skin was the most important factor to make this concept achievable. The proposed skin consisted of two layers. The inner layer was a low permeable porous skin for distributing the blowing air evenly while the outer layer with small holes controlled the vertical or nearly vertical blowing air. Preliminary experimental results showed that the MBT has the potential of a very large reduction in skin friction below the skin friction of a nonporous plain flat plate. Of the skins tested, three have been identified as the MBT skins. They provided very low unblown skin friction such that a large skin friction reduction, below a flat plate value, was achieved with very small amounts of blowing air. The reduction in skin friction of 55 percent was achieved at the Mach number of 0.3 for the exhaust pressure of 0.85 atm, and 60 percent reduction was obtained for the exhaust pressure of 0.24 atm (corresponding to 10 700-m altitude) at the same Mach number. A significant reduction in skin friction of over 25 percent was achieved for the exhaust pressure of 0.24 atm at the Mach number of 0.7. This implied that the MBT could be applied to a wide range of flight conditions. It is also believed

that an additional 10 percent reduction could be obtained by eliminating the gap between the inner layer and the outer layer. The aspect ratio of the vertical small holes for the outer layer of the MBT skin should be larger than 4 based on the preliminary conclusion from this test. Many experiments are needed to find out the optimal MBT skin. The penalty associated with the MBT needs to be assessed. However, preliminary results indicated that the MBT could provide a 25 to 35 percent reduction for real-world application. The concept can be applied to not only an airplane, but also a missile, a submarine (micro-blow water instead of air), and an ocean liner.

Symbols

- A area of test plate
- AR aspect ratio, T/D
- C_f total skin friction coefficient, (skin friction

force)/ $(\frac{1}{2}\rho_{\infty}u_{\infty}^2A)$

- C_{f0} total skin friction coefficient of nonporous plain flat plate
- D diameter of blowing holes, mm
- H shape factor (ratio of displacement thickness to momentum thickness)
- T thickness of plate, mm
- u velocity component parallel to surface, m/sec
- u... free stream velocity
- y vertical distance from surface, cm
- ρ_{∞} free stream density

^{*}Patent pending.

[†]Member AIAA.

This paper is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Introduction

One of the most challenging areas of research in aerodynamics is the reduction of skin friction, especially for turbulent flow. Many techniques and methods have been tried as summarized in Refs. 1 and 2. However, none of the techniques can provide significant reduction in skin friction for real-world application. For the past 20 years, attention has been focused on surface suction to delay transition so that a large area of the laminar flow region can provide skin friction reduction as summarized in Ref. 1. There are many problems associated with this technique. Laminar flow is very unstable and tries to transit into turbulent flow even with a very small foreign object present. Also, laminar flow is susceptible to flow separation. Therefore this technique still remains in the research stage. Another method is placing riblets on the surface;¹ however, drag reduction is limited to under 8 percent.

One of the methods that has been ignored is the surface mass injection (or blowing) because many researchers believed that the penalty associated with blowing was very large because of the susceptibility of flow separation. Despite this shortcoming, many experiments were conducted in 1970's for a flat plate with no pressure gradient. 3-12 It was well established that blowing did significantly reduce skin friction with respect to the skin friction of the unblown porous plate. However the skin friction of unblown porous plates tested so far by many investigators was very high when compared with a nonporous flat plate value.¹³ It is impractical to reduce skin friction by blowing for these plates with high unblown skin friction because it requires a very large amount of blowing air (which blows away the boundary layer) to reduce the skin friction below a flat plate value.

The innovative skin friction reduction technique called the micro-blowing technique (MBT) (patent pending) has been tested in the Advanced Nozzle and Engine Components Test Facility¹⁴ at the NASA Lewis Research Center, and the concept has been proven to achieve over 25 percent reduction in skin friction for a wide range of simulated flight conditions. Results of the tests are presented in this paper.

More assessment about the penalties associated with this new technique is required, but the preliminary results show that it is a very promising new technology for reducing skin friction of both laminar and turbulent flow.

The Micro-Blowing Technique (MBT)

In this unique concept, an extremely small amount of air is blown vertically at the surface through very small holes with high aspect ratio (AR). This reduces the surface roughness and the gradient of the flow velocity profile on the surface thereby reducing skin friction.

The MBT Skin

The most important factor to make the MBT achievable is the skin. One of the proposed MBT skins consists of two layers as depicted in Fig. 1.

The inner layer is a low permeable porous skin for distributing the blowing air evenly while the outer layer with high AR holes controls the vertical or nearly vertical blowing air. In order to reduce the skin friction below a flat plate value, the skin friction of the unblown porous plate needs to be only slightly higher than the skin friction of a flat plate. The skin with less than 10 percent above the skin friction of a flat plate can be considered as a MBT skin.

Wilkinson¹³ has tested several permeable surfaces, closest to our MBT skins in size and porosity of holes, and found that the unblown skin friction of these plates (which have holes with AR <1) was very high especially for high free stream flow. These plates cannot be considered as the MBT skins.

Skins Tested

A 30-micron high density polyethylene plate with a thickness of 9.14 mm was used for the inner layer throughout the test.

The gap between the inner layer and the outer layer was about 0.8 mm. It was found later from Ref. 13 that elimination of the gap between two plates could provide an additional 10 percent reduction in skin friction.

Seven outer layers (each 12.36 by 25.06 cm) have been tested, and the specifications of the plates are listed in Table I.

NASA PN2 and PN3 skins were laser drilled; the shape of the hole was irregular as shown in Fig. 2. The flow direction over the plate is also indicated in Fig. 2. It is believed that a streamline on the surface should pass over the holes as often as possible in order to get the benefit of vertical blowing air. GAC series plates were provided by Northrop Grumman Corporation; they were designed for acoustic testing. The smaller openings of the conical cross section were placed in touch with free-stream flow in the same way as that used for an acoustic liner.

Test Facility

The Advanced Nozzle and Engine Components Test Facility (CE22)¹⁴ was modified for this experiment. A constant rectangular cross section duct (20.32 cm wide, 14.2 cm high, and 63.5 cm long) replaced the usual test article (designed for testing a nozzle). A 12.7-cm-long transition duct was used to connect the test section to the facility.

The facility provided stable Mach numbers from 0.3 to 0.7. The exhaust pressure at the exit of the test section could be adjusted from 1.0 atm to near vacuum, and the supply total pressure could be as high as 2.7 atm. A Mach number of 0.7 is very close to the cruise Mach number of most of the commercial airplanes, and any skin friction reduction at that speed which uses the MBT has application to a real aircraft.

Apparatus and Instrumentation

Figure 3 shows the balance used to measure skin friction. It was loaned by the Naval Surface Weapons Center, and the detailed description of the balance is in Ref. 4. The Linear Variable Differential Transformer (LVDT) was replaced by a load cell with a maximum loading of 500 grams. The accuracy of the load cell was ± 0.25 percent. The balance was placed under the test section inside a sealed compartment, as shown in Fig. 4, to minimize air leakage through the gap (0.2 mm) between the plate and the tunnel floor. The top tunnel section was removed in Fig. 4. The test skins were placed 25.4 cm downstream from the transition duct in the constant pressure region. At the Mach number of 0.7, the flow was slightly accelerated as a result of the boundary layer blockage. Because this was a proof of concept experiment, no attempt was made to correct the blockage by enlarging the cross section. There were two total pressure rakes. The total pressure rakes were built with tubing which had an outside diameter of 0.508 mm. A total pressure rake (not shown) was located 0.635 cm from the side of the test plate, and the tips of the rake were placed at the location of the leading edge of the test plate. This total pressure rake was planned to be used as a total pressure rake at the leading edge of the test plate. The thickness of the boundary layer from the sidewall unexpectedly increased, and the rake was embedded in the sidewall boundary layer. Therefore, the measurements of this rake were not usable. Another total pressure rake, as shown in Fig. 4, was placed at the centerline on the tunnel floor; the openings of the tubes were 1.27 cm upstream of the trailing edge of the plate, and there was a very small vertical gap (less than 0.2 mm) between the test plate and the nearest tube. This total pressure rake was used to calculate the momentum thickness and the velocities inside the boundary layer. A total pressure probe, a static pressure probe, and a total temperature thermocouple were placed at the entrance of the plate on the top surface of the tunnel (not shown) for the free stream Mach number measurement.

A 300-standard-liter/min (SLM) electronic mass flowmeter, as shown in Fig. 4, was used to measure the flow rate of blowing air.

Calibration

Another identical load cell was used to calibrate the load cell inside the balance. The calibration showed that the friction of the balance was very small because of the frictionless flexural pivots. The data were adjusted for this small difference during the data acquisition process.

The error introduced on the flexible bellows, as shown in Fig. 3, during 100 percent blowing was very small; it was not corrected during the test.

Test Matrix

The test plates were tested for 5 Mach numbers (i.e., 0.3, 0.4, 0.5, 0.6 and 0.7). The exhaust pressures used were 0.85 atm (Reynolds number/m = $5.36(10)^5$ to $9.24(10)^5$) and 0.24 atm (Reynolds number/m = $1.49(10)^5$ to $3.81(10)^5$). The tests for 0.85 atm were terminated at the Mach number of 0.5 because the skin friction was much higher than the flat plate value. The micro-blowing flow rates for the test plates are indicated in Table II.

Results and Discussion

The test results from the exhaust pressure of 0.24 atm are presented first.

A plain stainless steel flat plate without vertical holes was first tested. The good repeatability of the facility is shown in Fig. 5 for the results taken on August 4, 1995 and August 10, 1995. The total skin friction coefficients obtained from this test for a plain stainless steel flat plate were compared with the empirical formula of Ludwieg and Tillman based on the experimental results of Rotta¹⁵ and are shown in Fig. 6. The skin friction coefficients from the tests being reported were the average value based on a 12.36- by 25.06-cm plate, and the momentum thickness was based on the downstream total pressure rake which gave higher momentum thickness than that at the center of the plate. However, the results were reasonably close.

The total skin friction coefficients of NASA PN2 at the Mach number of 0.7 for different blowing rates were calculated based on the momentum integral equation by using the downstream total pressure rake. Since the measurements of the upstream total pressure rakes were unusable, only the effect of blowing on the total skin friction coefficient was calculated. The results were compared with the direct measurement by using the balance shown in Table III.

As mentioned earlier, the calculated C_f was based on the downstream boundary layer rake (not at the center of the plate), and C_f was assumed to be a constant on the flat plate. However, the comparison between the measured C_f and the calculated C_f was excellent.

The momentum thickness of this plate without blowing was about 1 to 2 mm.

The total skin friction coefficient of a nonporous flat plate (C_{f0}) was measured and was considered as a reference skin friction coefficient. The skin friction ratios (C_{f}/C_{f0}) were measured at different Mach numbers for different porous test plates. The skin friction ratios for unblown cases were shown in Fig. 7 for high altitude exhaust pressure. Only three porous plates (i.e., NASA PN2, NASA PN3, and GAC 1897) had unblown skin friction ratios lower than 1.1 (i.e., only 10 percent more than a flat plate) at the Mach number of 0.7. These plates were considered as the MBT skins. The unblown skin friction ratios were so high for other skins that the reduction in skin friction below a flat plate value was not possible for practical application. Notice that the AR's of the MBT skins were 4 or higher. These small high AR holes were able not only to control the vertical blowing air during the micro-blowing but also to provide the low skin friction without blowing. The study of an open cavity flow with an AR of 5 using the Navier-Stokes code indicates that there are three vortices existing inside the cavity. Further study is needed to verify experimentally whether there exist three recirculating vortices inside the small high AR holes without blowing. Since both ends of the hole are open, a slight difference in pressure could push the vortices out of the hole. Understanding these micro-physical phenomena is a challenge for aeronautical scientists. It is believed that the slip

flow occurring on the surface of the MBT skin plays an important role in reducing the unblown skin friction. The porosity (percent open area) of the NASA plates was 23 percent. GAC 1897 had 50 percent porosity based on the large open circle. The porosity is 4 percent based on the small neck area of the hourglass-shaped cross section. Whether these large open areas contribute to the reduction in unblown skin friction needs to be investigated.

The skin friction ratios of three MBT skins are shown in Figs. 8 to 10 for the exhaust pressure of 0.24 atm.

Figure 8 shows the skin friction ratio of NASA PN2. The unblown skin friction ratio at the Mach number of 0.3 is 5 percent lower than a flat plate value and increases to 10 percent more than a flat plate value at the Mach number of 0.7. The low skin friction at the Mach number of 0.3 could be due to the lower effective roughness at lower Reynolds number and the 23 percent open area without skin. The general trend, as expected, is the reduction in skin friction when the blowing rate increases. The reduction is less at higher Mach numbers with the same blowing flow rate. About 60 percent reduction below a flat plate was achieved at the Mach number of 0.3 with 100 percent blowing rate (0.205 kg/m²/sec), while 28 percent reduction was obtained at the Mach number of 0.7 with the same blowing rate. The first 50 percent (i.e., below 0.1025 kg/m²/sec) of blowing did reduce 75 percent of the total reduction at the Mach number of 0.3 and 60 percent of the total reduction at the Mach number of 0.7. This indicates that, at the lower blowing rate, the MBT is more efficient for reducing turbulent skin friction. The micro-blowing air is believed to reduce the pressure difference inside the small holes with high AR resulting in reduction in skin friction. The NASA PN2 plate has circular cylindrical holes which are perpendicular to the surface. It is believed that this type of hole can more efficiently remove the pressure difference inside the hole than the hourglass-shaped hole (GAC 1897 plate). The microblowing air is also believed to lift the external streamlines up so that the external streamlines can flow more smoothly over the surface which is covered with a thin layer of air. Thus the MBT can reduce the roughness of the surface. This thin layer of air is also believed to cause slip flow on the surface. The blowing air also reduces the gradient of the velocity profile on the surface resulting in the reduction of the viscous shear friction. Again, the straight hole can lift the streamline better than the hourglass-shaped hole. Consequently, the NASA PN2 plate is more efficient than the GAC 1897 plate.

The results of NASA PN3 (Fig. 9) were identical

to those of NASA PN2 up to the Mach number of 0.6. Somehow the skin friction ratio of this plate increased slightly at the highest blowing rate. It could be the adverse effect of a manufacturing defect groove across the plate near the trailing edge of the plate.

The results of GAC 1897 (Fig. 10) were different from those of the NASA plates. The unblown skin friction ratio of GAC 1897 was 23 percent higher than a flat plate value at the Mach number of 0.3, therefore the reduction of only 50 percent below a flat plate value was achieved at this Mach number with 100 percent blowing rate. However this plate had a very low unblown skin friction ratio at the Mach number of 0.7 (i.e., only 3 percent above a flat plate value), and 24 percent reduction in skin friction was obtained. As mentioned earlier, this plate was not as efficient as the NASA PN2.

Preliminary results showed that small holes with the AR of more than 4 can provide such a low unblown skin friction ratio that significant skin friction reduction below that of a flat plate can be achieved.

At very low blowing rates, the boundary layer growth was reduced because of the reduction in skin friction, while the boundary layer thickness increased slightly as a result of the addition of blowing air. The combined effect is shown in Fig. 11. It shows that the growth of the boundary layer thickness near the end of the plate with micro-blowing is very small. This could indicate that there was more room for reduction if a larger flow meter were available during the test.

Figure 12 is the skin friction ratio of NASA PN2 at the exhaust pressure of 0.85 atm. The unblown skin friction ratios were much higher than the cases with the exhaust pressure of 0.24 atm. The reduction of 55 percent below a flat plate value was achieved at the Mach number of 0.3. At the Mach number of 0.5, the unblown skin friction ratio was so high that the skin friction was unable to be reduced below a flat plate value.

Figure 13 shows the effect of Reynolds number (based on the plate length of 25.06 cm) on skin friction reduction for two pressure levels and two blowing rates. It is very clear that the reduction in skin friction diminishes with the same blowing rate when the Reynolds number increases.

The velocity profiles from the downstream rake of the test of two skins, GAC 1897 and GAC 2005, are shown in Fig. 14. GAC 2005 had an unblown skin friction twice as high as that of GAC 1897 based on the measurement by the balance as shown in Fig. 7. However, if the velocity profiles were extrapolated to zero on the surface, the gradient of the velocity profile on the surface of GAC 2005 is lower than that of GAC 1897 which implies lower viscous shear friction for GAC 2005. This contradiction leads to the belief that the boundary condition on the surface and the laminar sublayer just above the surface are more complicated than many scientists have believed. In order to improve the accuracy of computational fluid dynamics (CFD) analysis for predicting skin friction, a sophisticated turbulence model is needed to extend the accuracy to the surface and a more realistic boundary condition is required.

There was a gap of 0.8 mm between the inner layer and the outer layer for this test. An additional 10 percent reduction in skin friction might be possible by eliminating the gap based on the paper by Wilkinson.¹³ However, it might be possible to eliminate the inner layer completely for a real application to minimize the pressure loss across the inner layer.

Potential Application

The high external flow on the surface of an airfoil or a nacelle provides a low pressure region on the surface. The suction boundary layer control usually requires large suction power against this low pressure, while the MBT can utilize this surface suction force to provide part of blowing air. For the same skin friction reduction, the higher blowing flow rate is needed for the higher external flow velocity. Therefore, the surface can adjust itself giving more suction force on the surface where the higher blowing rate is needed. Consequently, the penalty for supplying very low blowing air is believed to be very small.

Some of the blowing air could be bled off downstream to prevent flow separation and to supply blowing air upstream. There are lots of other applications which use the MBT besides reducing skin friction. It is possible to control an airplane by adjusting the degree of skin friction on the wings using variable blowing rate. For the objects with a pressure difference between surfaces, such as a wing or a nacelle, a passive MBT can be applied to bleed off air from high pressure surface and to blow out slowly through the low pressure surface. Most foreign objects bounce off the surface because of blowing air. Even if a large foreign object sticks to the surface, it deteriorates only the small area surrounding it and does not spread to a large area such as the case of the Hybrid Laminar Flow Control (HLFC).

Concluding Remarks

A proof of concept experiment for the microblowing technique (MBT) has been successfully conducted, and the preliminary results show that 25to 35-percent skin friction reduction below a flat plate value could be achieved for a wide range of flow conditions. Research indicates that the skin is the most important factor to make the MBT achievable. Three skins have been identified as the MBT skins during this test. The hole aspect ratios of these skins are larger than 4. The MBT did reduce skin friction by effectively reducing the roughness of the skin with very low blowing flow rate. More experiments are required to determine the optimal MBT skin and to assess the penalty associated with this technique.

Acknowledgment

The author gratefully acknowledges the encouragement and the effort to obtain financial support provided by Mr. Thomas Biesiadny and Mr. Bobby Sanders. This experiment could not have proceeded in a timely manner without the funding given by Mr. Dennis Huff, especially during the early stage of the development. The author is very grateful to him. The author would like to appreciate the valuable discussions given by Dr. Hsiao C. Kao, Dr. Kamlesh Kapoor, and Dr. Gary Harloff during the development of this concept. The author would like to express sincere thanks to Dr. Greg Tillman of UTRC for reviewing the final draft and providing valuable comments. The author would like to thank Mr. Robert Voisinet of the Naval Surface Weapons Center for providing the balance and Mr. Charles Parente of Northrop Grumman for supplying the test skins. The financial support from the NASA Lewis Research Center Director's Discretionary Fund is greatly appreciated. The following individuals are also acknowledged for their contributions during the execution of the test program: Mr. Tony Herrmann, Miss Gwynn Severt, Mr. Kurt Loos, Mr. Carlos Gomez, Mr. Wayne Stopack, Mr. David Lam, and Miss Wendy Barankiewicz.

References

- 1. Bushnell, D.M.; and Hefner, J.N.: Viscous Drag Reduction in Boundary Layers. Progress in Astronautics and Aeronautics, vol. 123, American Institute of Aeronautics and Astronautics, Inc., Washington, D.C., 1990.
- 2. Special Course on Skin Friction Drag Reduction, AGARD Report No.786, 1992.

- 3. Jeromin, L.O.F.: The Status of Research in Turbulent Boundary Layers With Fluid Injection. Prog. in Aeronaut. Sci., vol. 10, 1970, pp. 65-189.
- Voisinet, R.L.P.: Influence of Roughness and Blowing on Compressible Turbulent Boundary Layer Flow—Skin Friction Drag. Final Report. Naval Surface Weapons Report NSWC TR-79-153, 1979.
- Bushnell, D.M.; Watson, R.D.; and Holly, B.B.: Mach and Reynolds Number Effects on Turbulent Skin Friction Reduction by Injection. J. Space. Rock., vol. 12, Aug. 1975, pp. 506-508.
- Healzer, J.M.; Moffat R.J.; and Kays, W.M.: The Turbulent Boundary Layer on a Rough, Porous Plate: Experimental Heat Transfer With Uniform Blowing. Stanford University Report No. SW-HMT-18, 1974.
- 7. Dahm, T.J., et al.: Mass, Momentum, and Heat Transfer Within a Turbulent Boundary Layer With Foreign Gas Mass Transfer at the Surface. Vade Report No. 111, Feb. 1964.
- Goodwin, B.M.: The Transpired Turbulent Boundary Layer With Zero Pressure Gradient. DSc Thesis, Massachusetts Institute of Technology, May 1961.
- Kays, W.M.; Moffat, R.J.; and Simpson, R.L.: The Turbulent Boundary Layer on a Porous Plate: Experimental Skin Friction With Variable Injection and Suction. Int. J. Heat Mass Transfer, vol. 12, 1969, pp. 771-789.
- Dershin, H.; Gallaher, W.H.; and Leonard, C.A.: Direct Measurement of Skin Friction on a Porous Flat Plate With Mass Injection. AIAA Paper 67-194, vol. 5, no. 11, 1967, pp. 1934-1939.
- 11. Simpson, R.L.: Characteristics of Turbulent Boundary Layers at Low Reynolds Numbers With and Without Transpiration. J. Fluid Mech., vol. 42, 1970, pp. 769-802.
- Jeromin, L.O.F.: An Experimental Investigation of the Compressible Turbulent Boundary Layer With Air Injection. ARC Reports and Memoranda No. 3526, Aeronautical Research Council, London, England, 1968.
- 13. Wilkinson, S.P.: Influence of Wall Permeability on Turbulent Boundary-Layer Properties. AIAA Paper 83-0294, 1983.
- Beltran, L.R.; Del Roso, R.L.; and Del Rosario, R.: Advanced Nozzle and Engine Components Test Facility. NASA TM-103684, 1992.
- 15. Schlichting, H.: Boundary Layer Theory. McGraw-Hill Book Co., Inc., New York, 1960.

Plate name	Hole cross section shape (side view)	Hole size, D, mm	Thickness of plate, T, mm	Porosity, percent	Aspect ratio, AR, T/D
NASA PN2	Straight	0.165	1.02	23	6.2
NASA PN3	Straight	0.254	1.02	23	4
GAC 2004	Conical	0.381	0.787	21	2.1
GAC 2003	Conical	0.152	0.305	21	2
GAC 2005	Conical	0.076	0.152	23	2
GAC 2002	Conical	0.229	0.394	31	1.7
GAC 1897	Hourglass	0.06	0.305	50‡	5.1

Table I. - Specifications of Test Plates

[‡]The porosity is 4 percent based on the small neck area.

Table	II.	-	Test	Matrix	
			the second s		-

Mach numbers	Blowing flow rate, kg/m ² /sec (percent of maximum blowing rate)§		
	0		
	0.019 (9.3 percent)		
	0.054 (26.2 percent)		
0.3, 0.4, 0.5, 0.6, and 0.7	0.066 (32.1 percent)		
	0.1025 (50 percent)		
	0.146 (71.4 percent)		
	0.176 (85.7 percent)		
	0.205 (100 percent)		

Maximum blowing rate was limited by the size of the flowmeter.

	Total skin frictio	Percent	
kg/m ² /sec	Measured	Calculated	difference
0	0.00441	0.00441	0
0.054	0.0039	0.00397	2
0.066	0.00379	0.00378	0
0.1025	0.00351	0.00348	-1
0.146	0.00323	0.00321	-1
0.176	0.00307	0.00303	-1
0.205	0.00292	0.003	2

Table III. – Comparison Between Direct Measurement and Calculated C_f

Fig. 1.—Micro-Blowing Technique (MBT) skin.

Fig. 2.—Shape of laser drilled holes.

Fig. 3.—Balance used to measure skin friction.

⁹ American Institute of Aeronautics and Astronautics

Fig. 9.—Skin friction ratio of NASA PN3 at exhaust pressure of 0.24 atm.

Fig.10.—Skin friction ratio of GAC 1897 at exhaust pressure of 0.24 atm.

10 American Institute of Aeronautics and Astronautics

number = 0.7; no blowing.

11 American Institute of Aeronautics and Astronautics

REPORT D	OCUMENTATION P	AGE	Form Approved OMB No. 0704-0188
Public reporting burden for this collection of info gathering and maintaining the data needed, and collection of information, including suggestions I Davis Highway, Suite 1204, Arlington, VA 2220	ormation is estimated to average 1 hour per d completing and reviewing the collection of for reducing this burden, to Washington Has 22-4302, and to the Office of Management a	response, including the time for information. Send comments regain adquarters Services, Directorate for and Budget, Paperwork Reduction P	viewing instructions, searching existing data sources, ding this burden estimate or any other aspect of this Information Operations and Reports, 1215 Jefferson roject (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AN	D DATES COVERED
	October 1996	Te	chnical Memorandum
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
A Proof of Concept Experim Micro-Blowing Technique	ent for Reducing Skin Frictior	1 By Using a	
6. AUTHOR(S)			WU-274-00-00
Danny P. Hwang			
7. PERFORMING ORGANIZATION NA	ME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
National Aeronautics and Sp	ace Administration		
Lewis Research Center			E-10412
Cleveland, Ohio 44135-319	91		
9. SPONSORING/MONITORING AGEN	ICY NAME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING
			AGENCY REPORT NUMBER
National Aeronautics and Sp	ace Administration		NASA TM 107315
Washington, D.C. 20546-0	001		AIAA-97-0546
11. SUPPLEMENTARY NOTES			
Prepared for the 35th Aerosp	ace Sciences Meeting and Exh	ubit sponsored by the An	nerican Institute of Aeronautics and
Astronautics, Reno, Nevada,	January 6-9, 1997. Responsib	ole person, Danny P. Hwa	ing, organization code 5850, (216)
433–2187.			
12a. DISTRIBUTION/AVAILABILITY S	TATEMENT		12b. DISTRIBUTION CODE
12a. DISTRIBUTION/AVAILABILITY S	TATEMENT		12b. DISTRIBUTION CODE
12a. DISTRIBUTION/AVAILABILITY S	TATEMENT		12b. DISTRIBUTION CODE
12a. DISTRIBUTION/AVAILABILITY S Unclassified - Unlimited Subject Category 34	TATEMENT		12b. DISTRIBUTION CODE
12a. DISTRIBUTION/AVAILABILITY S Unclassified - Unlimited Subject Category 34 This publication is available from	TATEMENT the NASA Center for AeroSpace In	oformation, (301) 621–0390.	12b. DISTRIBUTION CODE
 12a. DISTRIBUTION/AVAILABILITY ST Unclassified - Unlimited Subject Category 34 This publication is available from 13. ABSTRACT (Maximum 200 words) 	TATEMENT the NASA Center for AeroSpace In	formation, (301) 621-0390.	12b. DISTRIBUTION CODE
 12a. DISTRIBUTION/AVAILABILITY S Unclassified - Unlimited Subject Category 34 This publication is available from 13. ABSTRACT (Maximum 200 words A proof of concept experiment for 	TATEMENT the NASA Center for AeroSpace In) r reducing skin friction has been cor	formation, (301) 621–0390.	12b. DISTRIBUTION CODE
 12a. DISTRIBUTION/AVAILABILITY ST Unclassified - Unlimited Subject Category 34 This publication is available from 13. ABSTRACT (Maximum 200 words) A proof of concept experiment for the NASA Lewis Research Center 	TATEMENT the NASA Center for AeroSpace In) r reducing skin friction has been cor r. In this unique concept, called the r	nformation, (301) 621–0390. Inducted in the Advanced Noz micro-blowing technique (MI	12b. DISTRIBUTION CODE zle and Engine Components Test Facility at 3T), an extremely small amount of air was
 12a. DISTRIBUTION/AVAILABILITY ST Unclassified - Unlimited Subject Category 34 This publication is available from 13. ABSTRACT (Maximum 200 words A proof of concept experiment for the NASA Lewis Research Center blown vertically through very sma chereber obtain a clain friction. Bo 	TATEMENT the NASA Center for AeroSpace In) r reducing skin friction has been cor r. In this unique concept, called the r all holes to reduce the surface rough	formation, (301) 621–0390. Inducted in the Advanced Noz micro-blowing technique (MI ness and to control the gradie	12b. DISTRIBUTION CODE zle and Engine Components Test Facility at 3T), an extremely small amount of air was ent of the flow velocity profile on the surface
 12a. DISTRIBUTION/AVAILABILITY ST Unclassified - Unlimited Subject Category 34 This publication is available from 13. ABSTRACT (Maximum 200 words) A proof of concept experiment for the NASA Lewis Research Center blown vertically through very smatchereby reducing skin friction. Re skin consisted of two layers. The 	TATEMENT the NASA Center for AeroSpace In) r reducing skin friction has been cor r. In this unique concept, called the r all holes to reduce the surface rough search revealed that the skin was the inner layer was a low permeable poo	formation, (301) 621–0390. Inducted in the Advanced Noz micro-blowing technique (MI ness and to control the gradie e most important factor to ma rous skin for distributing the l	12b. DISTRIBUTION CODE zle and Engine Components Test Facility at 3T), an extremely small amount of air was ent of the flow velocity profile on the surface ke this concept achievable. The proposed lowing air evenly while the outer layer with
 12a. DISTRIBUTION/AVAILABILITY ST Unclassified - Unlimited Subject Category 34 This publication is available from 13. ABSTRACT (Maximum 200 words) A proof of concept experiment for the NASA Lewis Research Center blown vertically through very smat thereby reducing skin friction. Re skin consisted of two layers. The small holes controlled the vertical 	TATEMENT the NASA Center for AeroSpace In) r reducing skin friction has been con r. In this unique concept, called the r all holes to reduce the surface rough search revealed that the skin was the inner layer was a low permeable por or nearly vertical blowing air. Preli	nformation, (301) 621–0390. Inducted in the Advanced Noz micro-blowing technique (MI ness and to control the gradie e most important factor to ma rous skin for distributing the l minary experimental results s	12b. DISTRIBUTION CODE zle and Engine Components Test Facility at 3T), an extremely small amount of air was ent of the flow velocity profile on the surface ke this concept achievable. The proposed blowing air evenly while the outer layer with showed that the MBT has the potential of a
 12a. DISTRIBUTION/AVAILABILITY ST Unclassified - Unlimited Subject Category 34 This publication is available from 13. ABSTRACT (Maximum 200 words) A proof of concept experiment for the NASA Lewis Research Center blown vertically through very smat thereby reducing skin friction. Re skin consisted of two layers. The small holes controlled the vertical very large reduction in skin friction 	the NASA Center for AeroSpace In) r reducing skin friction has been cor r. In this unique concept, called the ra all holes to reduce the surface rough search revealed that the skin was the inner layer was a low permeable por or nearly vertical blowing air. Prelive the below the skin friction of a nonport	formation, (301) 621–0390. Inducted in the Advanced Noz micro-blowing technique (MI ness and to control the gradie e most important factor to ma rous skin for distributing the l minary experimental results so prous plain flat plate. Of the s	12b. DISTRIBUTION CODE zle and Engine Components Test Facility at 3T), an extremely small amount of air was ent of the flow velocity profile on the surface ke this concept achievable. The proposed plowing air evenly while the outer layer with showed that the MBT has the potential of a kins tested, three have been identified as the
 12a. DISTRIBUTION/AVAILABILITY ST Unclassified - Unlimited Subject Category 34 This publication is available from 13. ABSTRACT (Maximum 200 words) A proof of concept experiment for the NASA Lewis Research Center blown vertically through very smatchereby reducing skin friction. Re skin consisted of two layers. The small holes controlled the vertical very large reduction in skin friction MBT skins. They provided very layer 	the NASA Center for AeroSpace In the NASA Center for AeroSpace In r reducing skin friction has been cor . In this unique concept, called the ra all holes to reduce the surface rough search revealed that the skin was the inner layer was a low permeable por or nearly vertical blowing air. Preli- on below the skin friction of a nonpo- tion with the skin friction such that a The entries of the state of the state of the state of the state of the skin friction such that a	iformation, (301) 621–0390. Inducted in the Advanced Noz micro-blowing technique (MI ness and to control the gradie e most important factor to ma rous skin for distributing the l minary experimental results so orous plain flat plate. Of the s to large skin friction reduction	12b. DISTRIBUTION CODE 2le and Engine Components Test Facility at 3T), an extremely small amount of air was ent of the flow velocity profile on the surface ke this concept achievable. The proposed blowing air evenly while the outer layer with showed that the MBT has the potential of a kins tested, three have been identified as the blow a flat plate value, was achieved with Machematic achievable 2 for a schevel with
 12a. DISTRIBUTION/AVAILABILITY ST Unclassified - Unlimited Subject Category 34 This publication is available from 13. ABSTRACT (Maximum 200 words) A proof of concept experiment for the NASA Lewis Research Center blown vertically through very smat thereby reducing skin friction. Re skin consisted of two layers. The small holes controlled the vertical very large reduction in skin friction MBT skins. They provided very lay very small amounts of blowing air of 0.85 atm, and 60 percent reduction 	TATEMENT the NASA Center for AeroSpace In) r reducing skin friction has been cor r. In this unique concept, called the r all holes to reduce the surface rough search revealed that the skin was the inner layer was a low permeable por or nearly vertical blowing air. Preli on below the skin friction of a nonpo ow unblown skin friction such that a r. The reduction in skin friction of 5. tion was obtained for the exhaust or	formation, (301) 621–0390. Inducted in the Advanced Noz micro-blowing technique (MI ness and to control the gradie e most important factor to ma rous skin for distributing the l minary experimental results so rous plain flat plate. Of the so a large skin friction reduction 5 percent was achieved at the essure of 0.24 atm (correspon	12b. DISTRIBUTION CODE 2le and Engine Components Test Facility at 3T), an extremely small amount of air was ent of the flow velocity profile on the surface ke this concept achievable. The proposed blowing air evenly while the outer layer with showed that the MBT has the potential of a kins tested, three have been identified as the blow a flat plate value, was achieved with Mach number of 0.3 for the exhaust pressure wing to 10 700-m altitude) at the same Mach
 12a. DISTRIBUTION/AVAILABILITY ST Unclassified - Unlimited Subject Category 34 This publication is available from 13. ABSTRACT (Maximum 200 words) A proof of concept experiment for the NASA Lewis Research Center blown vertically through very smat thereby reducing skin friction. Re skin consisted of two layers. The small holes controlled the vertical very large reduction in skin friction MBT skins. They provided very lay very small amounts of blowing air of 0.85 atm, and 60 percent reduc number. A significant reduction in 	the NASA Center for AeroSpace In) r reducing skin friction has been cor r. In this unique concept, called the r all holes to reduce the surface rough search revealed that the skin was the inner layer was a low permeable por or nearly vertical blowing air. Preli on below the skin friction of a nonpo ow unblown skin friction such that a r. The reduction in skin friction of 5 tion was obtained for the exhaust pr a skin friction of over 25 percent wa	nformation, (301) 621–0390. Inducted in the Advanced Noz micro-blowing technique (MI ness and to control the gradie e most important factor to ma rous skin for distributing the l minary experimental results so prous plain flat plate. Of the so a large skin friction reduction 5 percent was achieved at the essure of 0.24 atm (correspons s achieved for the exhaust pre-	12b. DISTRIBUTION CODE 2le and Engine Components Test Facility at 3T), an extremely small amount of air was ant of the flow velocity profile on the surface ke this concept achievable. The proposed plowing air evenly while the outer layer with showed that the MBT has the potential of a kins tested, three have been identified as the below a flat plate value, was achieved with Mach number of 0.3 for the exhaust pressure adding to 10 700-m altitude) at the same Mach ressure of 0.24 atm at the Mach number of 0.7.
 12a. DISTRIBUTION/AVAILABILITY ST Unclassified - Unlimited Subject Category 34 This publication is available from 13. ABSTRACT (Maximum 200 words) A proof of concept experiment for the NASA Lewis Research Center blown vertically through very smat thereby reducing skin friction. Re skin consisted of two layers. The small holes controlled the vertical very large reduction in skin friction MBT skins. They provided very lay very small amounts of blowing air of 0.85 atm, and 60 percent reduc number. A significant reduction in This implied that the MBT could 	the NASA Center for AeroSpace In) r reducing skin friction has been cor r. In this unique concept, called the ra all holes to reduce the surface rough search revealed that the skin was the inner layer was a low permeable por or nearly vertical blowing air. Preli on below the skin friction of a nonpo ow unblown skin friction of a nonpo ow unblown skin friction such that a r. The reduction in skin friction of 5 tion was obtained for the exhaust pr i skin friction of over 25 percent was be applied to a wide range of fligh	nformation, (301) 621–0390. Inducted in the Advanced Noz micro-blowing technique (MI ness and to control the gradie e most important factor to ma rous skin for distributing the l minary experimental results so rous plain flat plate. Of the s to large skin friction reduction 5 percent was achieved at the essure of 0.24 atm (correspor s achieved for the exhaust pro t conditions. It is also believed	12b. DISTRIBUTION CODE zle and Engine Components Test Facility at 3T), an extremely small amount of air was ent of the flow velocity profile on the surface ke this concept achievable. The proposed plowing air evenly while the outer layer with showed that the MBT has the potential of a kins tested, three have been identified as the below a flat plate value, was achieved with Mach number of 0.3 for the exhaust pressure adding to 10 700-m altitude) at the same Mach essure of 0.24 atm at the Mach number of 0.7. we that additional 10 percent reduction could
 12a. DISTRIBUTION/AVAILABILITY ST Unclassified - Unlimited Subject Category 34 This publication is available from 13. ABSTRACT (Maximum 200 words) A proof of concept experiment for the NASA Lewis Research Center blown vertically through very smat thereby reducing skin friction. Re skin consisted of two layers. The small holes controlled the vertical very large reduction in skin friction MBT skins. They provided very lay very small amounts of blowing ai of 0.85 atm, and 60 percent reduc number. A significant reduction in This implied that the MBT could be obtained by eliminating the gap the MBT skin should be layers. 	the NASA Center for AeroSpace In the NASA Center for AeroSpace In r reducing skin friction has been cor . In this unique concept, called the ra all holes to reduce the surface rough search revealed that the skin was the inner layer was a low permeable por or nearly vertical blowing air. Preli- on below the skin friction of a nonpo- ow unblown skin friction such that a r. The reduction in skin friction of 5 tion was obtained for the exhaust pr a skin friction of over 25 percent was be applied to a wide range of fligh p between the inner layer and the ow	aformation, (301) 621–0390. Inducted in the Advanced Noz micro-blowing technique (MI ness and to control the gradic e most important factor to ma rous skin for distributing the I minary experimental results so rous plain flat plate. Of the s to large skin friction reduction 5 percent was achieved at the essure of 0.24 atm (correspon s achieved for the exhaust pro- tit conditions. It is also believed ther layer. The aspect ratio of	12b. DISTRIBUTION CODE 2le and Engine Components Test Facility at 3T), an extremely small amount of air was ent of the flow velocity profile on the surface ke this concept achievable. The proposed blowing air evenly while the outer layer with showed that the MBT has the potential of a kins tested, three have been identified as the below a flat plate value, was achieved with Mach number of 0.3 for the exhaust pressure and that additional 10 percent reduction could the vertical small holes for the outer layer of herein are marked to find out the same function the vertical small holes for the outer layer of
 12a. DISTRIBUTION/AVAILABILITY STUDIES Unclassified - Unlimited Subject Category 34 This publication is available from 13. ABSTRACT (Maximum 200 words) A proof of concept experiment for the NASA Lewis Research Center blown vertically through very smatthereby reducing skin friction. Reskin consisted of two layers. The small holes controlled the vertical very large reduction in skin friction MBT skins. They provided very lay very small amounts of blowing ait of 0.85 atm, and 60 percent reduction in This implied that the MBT could be obtained by eliminating the gap the MBT skin. The penalty associated 	the NASA Center for AeroSpace In) r reducing skin friction has been cor r. In this unique concept, called the r all holes to reduce the surface rough search revealed that the skin was the inner layer was a low permeable por or nearly vertical blowing air. Preli on below the skin friction of a nonpo- tor nearly vertical blowing air. Preli on below the skin friction such that a r. The reduction in skin friction of 5 tion was obtained for the exhaust pr a skin friction of over 25 percent was be applied to a wide range of fligh p between the inner layer and the ou an 4 based on the preliminary conclu-	iformation, (301) 621–0390. Inducted in the Advanced Noz micro-blowing technique (MI ness and to control the gradie e most important factor to ma rous skin for distributing the l minary experimental results so rous plain flat plate. Of the s a large skin friction reduction 5 percent was achieved at the essure of 0.24 atm (correspons a achieved for the exhaust pre- t conditions. It is also belier ther layer. The aspect ratio of asion from this test. Many expl. However, preliminary result	12b. DISTRIBUTION CODE 22le and Engine Components Test Facility at 3T), an extremely small amount of air was ant of the flow velocity profile on the surface ke this concept achievable. The proposed blowing air evenly while the outer layer with showed that the MBT has the potential of a kins tested, three have been identified as the below a flat plate value, was achieved with Mach number of 0.3 for the exhaust pressure doing to 10 700-m altitude) at the same Mach possure of 0.24 atm at the Mach number of 0.7. ved that additional 10 percent reduction could the vertical small holes for the outer layer of periments are needed to find out the optimal ts indicated that the MBT could provide a 25
 12a. DISTRIBUTION/AVAILABILITY STUDIES Unclassified - Unlimited Subject Category 34 This publication is available from 13. ABSTRACT (Maximum 200 words) A proof of concept experiment for the NASA Lewis Research Center blown vertically through very smatchereby reducing skin friction. Reskin consisted of two layers. The small holes controlled the vertical very large reduction in skin friction MBT skins. They provided very lay very small amounts of blowing air of 0.85 atm, and 60 percent reduc number. A significant reduction in This implied that the MBT could be obtained by eliminating the gap the MBT skin should be larger tha MBT skin. The penalty associated to 35 percent reduction for real-w 	TATEMENT the NASA Center for AeroSpace In) r reducing skin friction has been cor r. In this unique concept, called the r all holes to reduce the surface rough search revealed that the skin was the inner layer was a low permeable por or nearly vertical blowing air. Preli on below the skin friction of a nonpo ow unblown skin friction such that a r. The reduction in skin friction of 5 tion was obtained for the exhaust pr i skin friction of over 25 percent wa be applied to a wide range of fligh p between the inner layer and the ou an 4 based on the preliminary conclu- d with the MBT needs to be assessed orld application. The concept can be	nformation, (301) 621–0390. Inducted in the Advanced Noz micro-blowing technique (MI ness and to control the gradice e most important factor to ma rous skin for distributing the l minary experimental results so orous plain flat plate. Of the s to large skin friction reduction 5 percent was achieved at the essure of 0.24 atm (correspond s achieved for the exhaust pro- st conditions. It is also believed the tonditions. It is also believed the tonditions for the state of usion from this test. Many expl 4. However, preliminary resulte applied to not only an airpla	12b. DISTRIBUTION CODE 2le and Engine Components Test Facility at 3T), an extremely small amount of air was ent of the flow velocity profile on the surface ke this concept achievable. The proposed plowing air evenly while the outer layer with showed that the MBT has the potential of a kins tested, three have been identified as the below a flat plate value, was achieved with Mach number of 0.3 for the exhaust pressure adding to 10 700-m altitude) at the same Mach essure of 0.24 atm at the Mach number of 0.7. ved that additional 10 percent reduction could the vertical small holes for the outer layer of periments are needed to find out the optimal ts indicated that the MBT could provide a 25 one, but also a missile, a submarine (micro-
 12a. DISTRIBUTION/AVAILABILITY STUDIES Unclassified - Unlimited Subject Category 34 This publication is available from 13. ABSTRACT (Maximum 200 words) A proof of concept experiment for the NASA Lewis Research Center blown vertically through very smatchereby reducing skin friction. Reskin consisted of two layers. The small holes controlled the vertical very large reduction in skin friction MBT skins. They provided very lay of 0.85 atm, and 60 percent reduce number. A significant reduction in This implied that the MBT could be obtained by eliminating the gap the MBT skin should be larger that MBT skin. The penalty associated to 35 percent reduction for real-w blow water instead of air), and an 	the NASA Center for AeroSpace In r reducing skin friction has been cor . In this unique concept, called the ra all holes to reduce the surface rough search revealed that the skin was the inner layer was a low permeable por or nearly vertical blowing air. Preli- on below the skin friction of a nonpo- or unally vertical blowing air. Preli- on below the skin friction such that a r. The reduction in skin friction of 5 tion was obtained for the exhaust pr a skin friction of over 25 percent was be applied to a wide range of fligh p between the inner layer and the ou- an 4 based on the preliminary conclu- d with the MBT needs to be assessed orld application. The concept can be ocean liner.	aformation, (301) 621–0390. Inducted in the Advanced Noz micro-blowing technique (MI ness and to control the gradic e most important factor to ma rous skin for distributing the I minary experimental results so rous plain flat plate. Of the s to large skin friction reduction 5 percent was achieved at the essure of 0.24 atm (correspor s achieved for the exhaust pro- tit conditions. It is also believ ther layer. The aspect ratio of asion from this test. Many ex- I. However, preliminary resul e applied to not only an airpla	12b. DISTRIBUTION CODE 2le and Engine Components Test Facility at 3T), an extremely small amount of air was ent of the flow velocity profile on the surface ke this concept achievable. The proposed blowing air evenly while the outer layer with showed that the MBT has the potential of a kins tested, three have been identified as the below a flat plate value, was achieved with Mach number of 0.3 for the exhaust pressure adding to 10 700-m altitude) at the same Mach essure of 0.24 atm at the Mach number of 0.7. wed that additional 10 percent reduction could the vertical small holes for the outer layer of periments are needed to find out the optimal ts indicated that the MBT could provide a 25 one, but also a missile, a submarine (micro-
 12a. DISTRIBUTION/AVAILABILITY STUDIES Unclassified - Unlimited Subject Category 34 This publication is available from 13. ABSTRACT (Maximum 200 words) A proof of concept experiment for the NASA Lewis Research Center blown vertically through very smatthereby reducing skin friction. Reskin consisted of two layers. The small holes controlled the vertical very large reduction in skin friction MBT skins. They provided very levery small amounts of blowing air of 0.85 atm, and 60 percent reduc number. A significant reduction in This implied that the MBT could be obtained by eliminating the gap the MBT skin should be larger that MBT skin. The penalty associated to 35 percent reduction for real-w blow water instead of air), and an 	the NASA Center for AeroSpace In) r reducing skin friction has been cor r. In this unique concept, called the ra all holes to reduce the surface rough search revealed that the skin was the inner layer was a low permeable por or nearly vertical blowing air. Preli on below the skin friction of a nonpo- ow unblown skin friction such that a r. The reduction in skin friction of 5 tion was obtained for the exhaust pri- a skin friction of over 25 percent was be applied to a wide range of flight p between the inner layer and the ow an 4 based on the preliminary conclu- d with the MBT needs to be assessed ord application. The concept can be ocean liner.	formation, (301) 621–0390. Inducted in the Advanced Noz micro-blowing technique (MI ness and to control the gradie e most important factor to ma rous skin for distributing the l minary experimental results so rous plain flat plate. Of the s a large skin friction reduction 5 percent was achieved at the essure of 0.24 atm (correspor s achieved for the exhaust pro achieved for the exhaust pro the conditions. It is also believed the layer. The aspect ratio of usion from this test. Many expl 1. However, preliminary results e applied to not only an airpla	12b. DISTRIBUTION CODE all and Engine Components Test Facility at 3T), an extremely small amount of air was ent of the flow velocity profile on the surface ke this concept achievable. The proposed plowing air evenly while the outer layer with showed that the MBT has the potential of a kins tested, three have been identified as the below a flat plate value, was achieved with Mach number of 0.3 for the exhaust pressure nding to 10 700-m altitude) at the same Mach essure of 0.24 atm at the Mach number of 0.7. wed that additional 10 percent reduction could the vertical small holes for the outer layer of periments are needed to find out the optimal ts indicated that the MBT could provide a 25 and, but also a missile, a submarine (micro-
 12a. DISTRIBUTION/AVAILABILITY STUDIES Unclassified - Unlimited Subject Category 34 This publication is available from 13. ABSTRACT (Maximum 200 words) A proof of concept experiment for the NASA Lewis Research Center blown vertically through very smatchereby reducing skin friction. Reskin consisted of two layers. The small holes controlled the vertical very large reduction in skin friction MBT skins. They provided very lay of 0.85 atm, and 60 percent reduce number. A significant reduction in This implied that the MBT could be obtained by eliminating the gap the MBT skin. The penalty associated to 35 percent reduction for real-w blow water instead of air), and an 14. SUBJECT TERMS 	the NASA Center for AeroSpace In r reducing skin friction has been cort. In this unique concept, called the rall holes to reduce the surface rough search revealed that the skin was the inner layer was a low permeable por or nearly vertical blowing air. Preli- on below the skin friction of a nonpo- or unblown skin friction such that a r. The reduction in skin friction of 5 tion was obtained for the exhaust pr a skin friction of over 25 percent was be applied to a wide range of fligh p between the inner layer and the ou an 4 based on the preliminary conclu- l with the MBT needs to be assessed orld application. The concept can be ocean liner.	iformation, (301) 621–0390. Inducted in the Advanced Noz micro-blowing technique (MI ness and to control the gradie e most important factor to ma rous skin for distributing the l minary experimental results so rous plain flat plate. Of the s a large skin friction reduction 5 percent was achieved at the essure of 0.24 atm (correspon s achieved for the exhaust pro a conditions. It is also belier ther layer. The aspect ratio of asion from this test. Many exy 1. However, preliminary results applied to not only an airpla	12b. DISTRIBUTION CODE 2le and Engine Components Test Facility at 3T), an extremely small amount of air was ent of the flow velocity profile on the surface ke this concept achievable. The proposed blowing air evenly while the outer layer with showed that the MBT has the potential of a kins tested, three have been identified as the below a flat plate value, was achieved with Mach number of 0.3 for the exhaust pressure oding to 10 700-m altitude) at the same Mach essure of 0.24 atm at the Mach number of 0.7. ved that additional 10 percent reduction could the vertical small holes for the outer layer of periments are needed to find out the optimal ts indicated that the MBT could provide a 25 ine, but also a missile, a submarine (micro- 15. NUMBER OF PAGES 13
 12a. DISTRIBUTION/AVAILABILITY STUDIES Unclassified - Unlimited Subject Category 34 This publication is available from 13. ABSTRACT (Maximum 200 words) A proof of concept experiment for the NASA Lewis Research Center blown vertically through very smat thereby reducing skin friction. Re skin consisted of two layers. The small holes controlled the vertical very large reduction in skin friction MBT skins. They provided very lay very small amounts of blowing air of 0.85 atm, and 60 percent reduc number. A significant reduction in This implied that the MBT could be obtained by eliminating the gap the MBT skin. The penalty associated to 35 percent reduction for real-w blow water instead of air), and an 14. SUBJECT TERMS Micro-blowing; Skin friction 	the NASA Center for AeroSpace In) r reducing skin friction has been cor r. In this unique concept, called the ra all holes to reduce the surface rough search revealed that the skin was the inner layer was a low permeable por or nearly vertical blowing air. Preli on below the skin friction of a nonpo- ow unblown skin friction such that a r. The reduction in skin friction of 5 tion was obtained for the exhaust pri a skin friction of over 25 percent was be applied to a wide range of fligh p between the inner layer and the ou an 4 based on the preliminary conclu- i with the MBT needs to be assessed orld application. The concept can be ocean liner.	formation, (301) 621–0390. Inducted in the Advanced Noz micro-blowing technique (MI ness and to control the gradie e most important factor to ma rous skin for distributing the l minary experimental results s prous plain flat plate. Of the s to large skin friction reduction 5 percent was achieved at the essure of 0.24 atm (correspor s achieved for the exhaust pro- tic conditions. It is also believed the to a spect ratio of usion from this test. Many expl. However, preliminary results applied to not only an airpla	12b. DISTRIBUTION CODE 2le and Engine Components Test Facility at 3T), an extremely small amount of air was ent of the flow velocity profile on the surface ke this concept achievable. The proposed blowing air evenly while the outer layer with showed that the MBT has the potential of a kins tested, three have been identified as the below a flat plate value, was achieved with Mach number of 0.3 for the exhaust pressure of 0.24 atm at the Mach number of 0.7. We that additional 10 percent reduction could the vertical small holes for the outer layer of periments are needed to find out the optimal ts indicated that the MBT could provide a 25 ane, but also a missile, a submarine (micro- 15. NUMBER OF PAGES 13 16. PRICE CODE
 12a. DISTRIBUTION/AVAILABILITY STUDIES Unclassified - Unlimited Subject Category 34 This publication is available from 13. ABSTRACT (Maximum 200 words) A proof of concept experiment for the NASA Lewis Research Center blown vertically through very smatchereby reducing skin friction. Reskin consisted of two layers. The small holes controlled the vertical very large reduction in skin friction MBT skins. They provided very layer very small amounts of blowing air of 0.85 atm, and 60 percent reduction number. A significant reduction in This implied that the MBT could be obtained by eliminating the gap the MBT skin should be larger tha MBT skin. The penalty associated to 35 percent reduction for real-w blow water instead of air), and an 14. SUBJECT TERMS Micro-blowing; Skin friction 	the NASA Center for AeroSpace In) r reducing skin friction has been cor r. In this unique concept, called the rall holes to reduce the surface rough search revealed that the skin was the inner layer was a low permeable por or nearly vertical blowing air. Preli on below the skin friction of a nonpo- ow unblown skin friction such that a r. The reduction in skin friction of 5 tion was obtained for the exhaust pr a skin friction of over 25 percent was be applied to a wide range of fligh p between the inner layer and the ou an 4 based on the preliminary conclu- d with the MBT needs to be assessed orld application. The concept can be ocean liner.	Iformation, (301) 621–0390. Inducted in the Advanced Noz micro-blowing technique (MI ness and to control the gradice e most important factor to ma rous skin for distributing the l minary experimental results so rous plain flat plate. Of the s harge skin friction reduction 5 percent was achieved at the essure of 0.24 atm (correspor s achieved for the exhaust pre- ti conditions. It is also belie- titer layer. The aspect ratio of asion from this test. Many exp 1. However, preliminary resul e applied to not only an airpla	12b. DISTRIBUTION CODE zle and Engine Components Test Facility at 3T), an extremely small amount of air was ent of the flow velocity profile on the surface ke this concept achievable. The proposed plowing air evenly while the outer layer with showed that the MBT has the potential of a kins tested, three have been identified as the below a flat plate value, was achieved with Mach number of 0.3 for the exhaust pressure dding to 10 700-m altitude) at the same Mach essure of 0.24 atm at the Mach number of 0.7. ved that additional 10 percent reduction could the vertical small holes for the outer layer of periments are needed to find out the optimal ts indicated that the MBT could provide a 25 ne, but also a missile, a submarine (micro- 15. NUMBER OF PAGES 13 16. PRICE CODE A03
 12a. DISTRIBUTION/AVAILABILITY STUDICASSIFIED - Unlimited Subject Category 34 This publication is available from 13. ABSTRACT (Maximum 200 words) A proof of concept experiment for the NASA Lewis Research Center blown vertically through very smatthereby reducing skin friction. Reskin consisted of two layers. The small holes controlled the vertical very large reduction in skin friction MBT skins. They provided very large reduction in skin friction in This implied that the MBT could be obtained by eliminating the gap the MBT skin should be larger that MBT skin. The penalty associated to 35 percent reduction for real-w blow water instead of air), and an 14. SUBJECT TERMS Micro-blowing; Skin friction 	the NASA Center for AeroSpace In r reducing skin friction has been cor . In this unique concept, called the rall holes to reduce the surface rough search revealed that the skin was the inner layer was a low permeable por or nearly vertical blowing air. Preli- on below the skin friction of a nonpo- or unally vertical blowing air. Preli- on below the skin friction such that a r. The reduction in skin friction of 5 tion was obtained for the exhaust pr a skin friction of over 25 percent was be applied to a wide range of fligh p between the inner layer and the ou an 4 based on the preliminary conclu- i with the MBT needs to be assessed orld application. The concept can be ocean liner. a reduction; Porous plate 8. SECURITY CLASSIFICATION OF THIS PAGE	nducted in the Advanced Noz micro-blowing technique (MI ness and to control the gradie e most important factor to ma rous skin for distributing the l minary experimental results s orous plain flat plate. Of the s to large skin friction reduction 5 percent was achieved at the essure of 0.24 atm (correspond s achieved for the exhaust pro- tic conditions. It is also believed the rayer. The aspect ratio of asion from this test. Many exp 1. However, preliminary result e applied to not only an airpla	12b. DISTRIBUTION CODE 2le and Engine Components Test Facility at 3T), an extremely small amount of air was ent of the flow velocity profile on the surface ke this concept achievable. The proposed blowing air evenly while the outer layer with showed that the MBT has the potential of a kins tested, three have been identified as the below a flat plate value, was achieved with Mach number of 0.3 for the exhaust pressure of 0.24 atm at the Mach number of 0.7. wed that additional 10 percent reduction could the vertical small holes for the outer layer of periments are needed to find out the optimal ts indicated that the MBT could provide a 25 one, but also a missile, a submarine (micro- 15. NUMBER OF PAGES 13 16. PRICE CODE A03 TION
 12a. DISTRIBUTION/AVAILABILITY ST Unclassified - Unlimited Subject Category 34 This publication is available from 13. ABSTRACT (Maximum 200 words) A proof of concept experiment for the NASA Lewis Research Center blown vertically through very smat thereby reducing skin friction. Re skin consisted of two layers. The small holes controlled the vertical very large reduction in skin friction MBT skins. They provided very levery small amounts of blowing air of 0.85 atm, and 60 percent reduc number. A significant reduction in This implied that the MBT could be obtained by eliminating the gap the MBT skin should be larger tha MBT skin. The penalty associated to 35 percent reduction for real-w blow water instead of air), and an 14. SUBJECT TERMS Micro-blowing; Skin friction OF REPORT Unclassified 	the NASA Center for AeroSpace In the NASA Center for AeroSpace In r reducing skin friction has been cor r. In this unique concept, called the ra all holes to reduce the surface rough search revealed that the skin was the inner layer was a low permeable por or nearly vertical blowing air. Preli on below the skin friction of a nonpo- ow unblown skin friction such that a r. The reduction in skin friction of 5. tion was obtained for the exhaust pr a skin friction of over 25 percent was be applied to a wide range of flight p between the inner layer and the ou an 4 based on the preliminary conclu- d with the MBT needs to be assessed ordean liner. a reduction; Porous plate 8. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	Iformation, (301) 621–0390. Inducted in the Advanced Noz micro-blowing technique (MI ness and to control the gradie e most important factor to ma rous skin for distributing the l minary experimental results so trous plain flat plate. Of the so a large skin friction reduction 5 percent was achieved at the essure of 0.24 atm (correspondent so achieved for the exhaust pro- that conditions. It is also believed the transport of the solution of usion from this test. Many expl. However, preliminary results applied to not only an airpla 19. SECURITY CLASSIFICA OF ABSTRACT Unclassified	12b. DISTRIBUTION CODE 2le and Engine Components Test Facility at 3T), an extremely small amount of air was ent of the flow velocity profile on the surface ke this concept achievable. The proposed olowing air evenly while the outer layer with showed that the MBT has the potential of a kins tested, three have been identified as the below a flat plate value, was achieved with Mach number of 0.3 for the exhaust pressure of 0.24 atm at the Mach number of 0.7. We that additional 10 percent reduction could the vertical small holes for the outer layer of periments are needed to find out the optimal ts indicated that the MBT could provide a 25 ine, but also a missile, a submarine (micro- 15. NUMBER OF PAGES 13 16. PRICE CODE A03 TION