
NAS Requirements Checklist

for Job Queuing/Scheduling Software

James Patton Jones 1

NAS Technical Report NAS-96-003 April 96

jjones@nas.nasa.gov

NAS High Performance Processing Group
NASA Ames Research Center

Mail Stop 258-6

Moffett Field, CA 94035-1000

Abstract

The increasing reliability of parallel systems and clusters of computers has

resulted in these systems becoming more attractive for true production workloads.

Today, the primary obstacle to production use of clusters of computers is the lack

of a functional and robust Job Management System for parallel applications. This

document provides a checklist of NAS requirements for job queuing and schedul-

ing in order to make most efficient use of parallel systems and clusters for parallel

applications. Future requirements are also identified to assist software vendors

with design planning.

1.0 Introduction

The Numerical Aerodynamic Simulation (NAS) supercomputer facility, located

at NASA Ames Research Center, has, for the last few years, been working to

bring parallel systems and clusters of workstations into a true production

1. MRJ, Inc., NASA Contract NAS 2-14303, Moffett Field, CA 94035-1000

https://ntrs.nasa.gov/search.jsp?R=19970009592 2020-06-16T02:34:46+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42775183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

environment. One of the primary difficulties has been identifying a robust Job

Management System (JMS) capable of handling parallel jobs. For a complete

discussion of the role and need of a JMS, see [Sap95a].

The purpose of this document is to supplement the above referenced JMS

paper, by providing a checklist of the current requirements for the job queuing,

scheduling, and resource management software components of a JMS in order

to efficiently run parallel jobs on parallel computers and clusters of
workstations. This document will be used as the basis for an evaluation of

potential job management systems for NAS and the AHPC project, NASA

Cooperative Agreement NCC3-413. (For a complete description of the

cooperative agreement see [CAN95].)

This paper is divided into two sections: (1) initial definitions and (2) actual

requirements. The list of requirements is divided into three main categories:

absolute requirements, recommended capabilities, and future requirements. Each

is rated as high, medium, or low priority. The priorities indicated are those

assigned by the AHPC project team members.

2.0 Definitions

A job management system (JMS) generally fills three roles, often as separate

modules: Queuing, Scheduling, and Resource Management. (For reasons for

this trichotomy and a detailed analysis of Job Management needs in general,

see [Sap95a].)

The Queuing role has traditionally been filled with batch systems, such as NQS

[Kin86]. The Scheduling role is the process of selecting which jobs to run,

according to a predetermined policy. Resource management refers to the

monitoring, tracking and reservation of system resources; and enforcement of

usage policy.

For the purposes of this discussion, a job is a sequence of operations requested

by a user, of which a parallel application is the main part. The terms "job" and

"application" may be used interchangeably. A job may consist of processes on

one or more processors. There are several terms describing jobs that need to be
clarified for use in this document:

A serial job can be thought of as a special case of the above job definition

where there is only one process, instead of multiple, parallel processes.

A batch job is submitted through a JMS and run when the requested
resources are available.

An interactive job is generally the opposite of a batch job in that a user is

2

implicitly permittedto log directly into a computerandrun jobs without
going througha JMS. For example,a researcherwho runsa job on the
workstationonherdesk.

An interactive-batch job is a special type of batch job in which the job is

submitted to a JMS, but when the job runs, the user is given access to and

control of the job's input, output, and error file streams (stdin, stdout, and

stderr, respectively), allowing the user to interact with the job.

A foreign job is an interactive job running on a compute resource to

which it has not been granted access. For example, when a user runs a job

on a dedicated compute resource without going through a required JMS.

Also for the purposes of this paper, the term node refers to a single computer

that contains specific resources, such as memory, network interfaces, one or

more CPUs, etc. For definitions of other terms relating to Queuing and Job

Management Systems in general, see [Hen95].

3.0 Requirements

This paper focuses on the requirements for Queuing and Scheduling. However,

since these two elements are tightly integrated with the Resource Management,

requirements are given for the Resource Manager as well.

3.1 Job Management System

The complete JMS has several overall requirements, including:

High Priority

3.1.1 Must operate in a heterogeneous multi-computer environment. The

JMS must be capable of managing any number of machines, in any

number of combinations: including shared-memory multi-processor

computers, parallel machines, and both tightly and loosely coupled
clusters of workstations.

3.1.2 Must be capable of integrating with frequently used distributed file

systems, to include NFS, AFS, and DFS. Specifically, the JMS must
be able to execute in the DCE/DFS environment utilizing the

DCE/DFS ACL features for file permissions.

3.1.3 Must possess a command line interface to all modules of the JMS.

3.1.4 Must include a published API to every component of the JMS (i.e.

resource manager, scheduler, and queuing subsystems) that allows

3

local tools and utilities to be written to interface with the JMS
components.

3.1.5Must beableto enforceresourceallocationsandlimits on:

• Numberof CPUsperjob
• Numberof nodesperjob
• Typeof nodesperjob
• Numberof jobs executingperuser
• Numberof jobs executingpergroup
• Wall clock time
• CPUtime (pernodeandperapplication)
• Systemtime
• Memoryutilization
• Disk usage
• Swapspace
• Dedicatedaccess
• Sharedaccess
• Networkadapteraccess

3.1.6Softwaremustpermitmultiple instancesandversionsto exist andrun
simultaneouslyon the samesystems.This is needed,in part, for
testingnewreleasesbeforeproductionuse.

3.1.7 Sourcecodemust be availablefor completeJMS. This is primarily
neededfor bug-fixes.

3.1.8Must supplytheability to definemorethanoneuserid asthemanager
of the software. These ids, ideally, would not need overall root
privileges on the machine running the JMS software. It is also
desirableto beableto defineJMS operatorids aswell. The operator
ids would have a subsetof the manager'sprivileges which would
include, but not be limited to starting and stopping queues,
suspending,moving,restarting,andkilling jobs.

Medium Priority

3.1.9 Must provide a means of user identification outside the password file.

This would provide a much more convenient way of maintaining

authorized users for cluster configurations.

3.1.10 Must be scalable. Specifically the JMS must be capable of:

• Managing very large clusters (> 500 nodes)

• Allowing very large parallel jobs (> 200 nodes)

4

3.1.11Must meetall requirementsof appropriatestandards,including:

• POSIX 1003.2d "Batch Queuing Extensions for Portable Operating

Systems".

3.2 Resource Manager Requirements

High Priority

3.2.1 Must be "parallel aware," i.e. understand the concept of a parallel job

and maintain complete control over that job. This capability requires:

• Tracking all processes (and sub-processes) of the job.

• Being able to kill any job completely, including sub-processes,

without leaving orphaned processes. This implies that the JMS must

be aware of distributed processes and capable of forwarding signals.

• Being able to "clean up" after jobs, i.e. provide node condition

equivalent to the state before the given job existed.

• Collecting complete job accounting information for all processes of

a job, which must be combined to provide an aggregate job

accounting record, in addition to per-node totals. The job accounting

record must indicate total usage of all resources allocated to the job,

and which limits, if any, were exceeded. See also [Sap95b].

Providing a mechanism (i.e. a programming interface) which allows

a parallel program to communicate with the JMS to coordinate

resource usage and to start processes.

3.2.2 Must be able to support and interact (i.e. coordinate resource

allocations) with the following:

• MPI

• PVM

• HPF

3.2.3 Must provide file "stage-in" and "stage-out" capabilities that allows

the user to identify files that should be transferred to and from

appropriate locations on the computer system on which his/her job

will be run. Stage-in needs to occur before the actual job starts, but

after disk resources have been allocated for that job. Stage-out should

follow termination of the job, but before the disk resources are

released for re-allocation.

5

3.2.4 User-level checkpointing/restart(AHPC project completion date:

March 31 st 1996):

• Allowing application to periodically checkpoint its state without

system support.

• JMS should have a well-defined interface to facilitate checkpoint

and restart.

• JMS default should be able to checkpoint (if possible) when

stopping a job or if the JMS goes down; and to restart the job (from

the checkpoint if available, otherwise from the beginning of job).

The user should be able to override this default if job restart is not

wanted, in the event that the job is stopped.

Medium Priority

3.2.5 Must provide a history log of all jobs, to include:

• Time job entered batch system

• Time job entered (each) queue

• Time job started execution

• Time job suspended execution

• Time job restarted execution

• Time job terminated

• Exit status of job

• Total usage and identification of each resource allocated to job (as

specified in 3.1.5).

3.2.6 Asynchronous communication between application and Job Manager

via a published API:

• To request specific resource (number of nodes, amount of time, etc.,

as specified in 3.1.5)

• Acquire resources through non-blocking request with asynchronous

notification of resource availability

• Specify if and when an application can release resources

• Provide for Job Manager preemptive and cooperative resource re-

acquisition for reallocation

3.2.7 Must be integrated with authentication/security system. This includes

providing:

• Well documented interface with security/authentication system

• Site configurable authentication mechanism

• Necessary hooks for site to interface JMS with local environment

• Out-of-the-box support for common and standard authentication

systems, including DCE.

6

3.2.8Interactive-batchjobs mustrun with standardinput, output, anderror
file streamsconnectedto aterminal.

3.3 Scheduler Requirements

High Priority

3.3.1 Must be highly configurable, supporting:

• Complex scheduling, allowing different scheduling policies at

different times of the day, and distinction between prime and non-

prime time

• Dynamic and preemptive resource allocation (reshuffling queue,

tiling, etc.)

• Awareness/distinction between batch, interactive, interactive-batch,

and foreign jobs

3.3.2 Must provide simple, out-of-the-box scheduling policies, including:

• First in, first out (FIFO)

• Shortest job first

• Favor large memory (or CPU) jobs, or small jobs

• Favor long running jobs, or short jobs

• Load balancing (time-shared systems)

• User or group priority

• Fair sharing (past usage consumption)

3.3.3 Must schedule multiple resources simultaneously, including at least

the following:

• Number of nodes

• Type of nodes (compute, I/O, big memory, multiprocessor)

• Number of processors per node

• Memory per node

• Network connections (Ethernet, HiPPi, FDDI, ATM, etc.)

• Disk (local, system, scratch, temporary, fast, etc.)

• System specific resources (e.g. switch adapter mode on SP2)

• Operating system version

3.3.4 Must be able to change the priority, privileges, run order, and resource

limits of all jobs, regardless of the job state.

3.3.5 Coordinated scheduling is absolutely critical for almost all message

passing jobs as there is severe performance degradation when

resources are simultaneously used by different jobs. Space-sharing (or

7

tiling, allocatingnodesor ProcessingElementsasdedicatedresources
to support non-overlappingjobs) is the only effective way to
accomplishcoordinatedschedulingin the absenceof gang-scheduling
(synchronizedtime-sharing,seealso5.1.1).

Medium Priority

3.3.6 Must provide mechanism to implement any arbitrary policy. Policy

expressed by a simple set of rules is generally not sufficient, as it does

not allow for complete flexibility within a given site. This requires:

• Scheduler must be separable from JMS. A site needs the ability to

both modify and replace the scheduler.

• A published API must be available to the system administrator to

implement his/her specific site scheduling policy. A parsed

configuration file alone is not sufficient.

3.3.7 Must support unsynchronized timesharing of jobs. Unsynchronized

time-sharing (time-sharing with no guarantee of synchronization

across nodes) can be used on interactive nodes where the performance

degradation from the unsynchronized time-sharing across nodes is not

as important, and for general interactive debugging.

3.3.8 Sites need to be able to define which, if any, nodes are to be time-

shared as well as the number of processes and users per time-shared

node. There may be limitations in the number of applications that can

simultaneously use the network adapter, or a given node may have a

small amount of memory or swap space.

3.4 Queuing System Requirements

High Priority

3.4.1 Must handle two job types with a common set of commands:

• Interactive (stdin, stdout, and stderr connected to the terminal

session)

• Batch (stdout and stderr directed to files)

3.4.2 User Interface must provide information on at least the following

(AHPC project completion date is March 31 st 1997):

• Unique identifier for each job

• User id job executing under

• Group id job executing under

• Jobstate(includingrunning,queued,suspended,held,exiting)
• Jobpriority
• Why a givenjob is notrunning
• Informationabouttheconsumedand remainingresourcesavailable

to ajob
• List of allocatedor requestedresourcesfor eachjob (asspecifiedin

3.1.7)
• Status of all system resources(idle, reserved,available, down,

allocated)

3.4.3Must providefor restrictingaccessto the batchsystemin a varietyof
site-configurablemethods,to include:

• specificuserrestrictions
• specificgrouprestrictions
• restrictionsbasedonpastresourceconsumption
• restrictionsbasedonperuseror groupcurrentresourcesin use
• origin of job

3.4.4 Must be ableto sustainhardwareor systemfailure, i.e. no jobs get
lost; restart,rerun,or checkpointinterruptedjobs.

3.4.5Must beableto configureandmanageoneor morequeues.

3.4.6 Administratormust be able to create,delete,and modify resources
andresourcetypes.

3.4.7Administratormustbe ableto changeajob's state(queued,running,
suspended,held,etc.)

3.4.8 Must allow dynamic systemreconfigurationby administratorwith
minimal impact on runningjobs. Administrator needsto be able to
selectively remove or add nodes to the cluster without impacting
overall accessto JMS functionsor to the remainingnodes.Any jobs
which were running on the removed nodes must, at least, be
suspendedandstartedup againoncethosenodesareturnedbackover
for generaluse.Ideally, the jobs which were runningon the affected
nodes would be checkpointed,moved, and continue running on
availablenodesnotaffectedby thereconfiguration.

3.4.9Must providecentralizedadministration.Log files andadministration
commandsmustbecentrallylocated.

3.4.10Usersmustbeableto reliablykill their ownjob. See3.2.1.

Medium Priority

3.4.11 Must provide administrator configurable scripts/programs to be run

by JMS before and after a job, respectively. This may be used for

initialization or node clean-up.

3.4.12 Must include user specifiable job inter-dependency based on:

• Job state (see 3.4.2)

• Job return status (success, failure)

• Job submission time (e.g. "run my jobs in the order I submitted

them")

• Job start time (e.g. "don't run my job before noon on Tuesday")

• Status of other computer systems (e.g. mass storage)

3.4.13 Must allow jobs to be submitted from one cluster and run on another.

(AHPC project completion date is June 30 th 1996).

3.4.14 Must provide a site-configurable mechanism (at both the user and

group levels) to permit users to have access to information about jobs

from other submitters.

4.0 Requested Capabilities

The following capabilities would be extremely useful but are not absolutely

critical. The timeframe in which these capabilities should be provided is six

to eighteen months.

High Priority

4.1.1 Job scheduler should support dynamic policy changes (from any

computable scheduling policy to any other) without restarting the

batch system.

4.1.2 Possess a Graphical User Interface (GUI) to all modules of the JMS.

4.1.3 Provide a graphical representation of the configuration and usage of

the resources under the JMS. There should also be an option to view

other clusters within the same graphical display, instead of opening up

multiple displays from each defined cluster.

Medium Priority

4.1.4 The time-sharing configuration information should be available to the

10

job schedulerfor optimizing job scheduling (i.e. which nodes and jobs

are time-shared, if any, and for how long resources have been

committed to time-sharing).

4.1.5 Provide a graphical monitoring tool with the following capabilities:

• View history of host load

• Be able to adjust the sample time

• Be able to store data to separate output file

• Be able to capture a snapshot of the graphical representation in

postscript, TIFF, and GIF formats.

4.1.6 Should be able to support both hard and soft limits when appropriate.

• Each supported resource should have a corresponding hard limit.

Jobs exceeding a hard limit should typically be killed, suspended,

held, or rejected, but this should be a function of the job manager,

and site configurable.

• Each supported resource should also have a corresponding soft

limit. Jobs exceeding a soft limit should be notified and allowed to
continue until the hard limit is reached.

4.1.7 Should be readily available. The marketplace must be able to support

the continued development and support of the product. This can be a

defacto standard public domain package with a "marketplace" that

supports it or a commercially supported product with the appropriate

target market.

4.1.8 Should supply some kind of a proxy account optional setup. If it is

deemed necessary that certain machines be available for "open" use,

configuration would be made much easier if the JMS had a few ids

"owned" by the software that are available for use to any user id

defined by a group, subnet, etc. This would make the JMS much more

accessible without the overhead of unnecessary user ids across

multiple systems.

4.1.9 Should provide at least the following accounting capabilities:

• Recorded in flat ascii files to make UNIX command processing of
the data easier

• GUI interface to control data collection

and at least the following datapoints, per node and per cluster:

• Usage of each resource defined to JMS (as specified in 3.1.5)
• Fraction of time JMS was available

11

• Total and percent of available CPU time used

• Number of logins and users

• Load average of nodes

• Number of batch jobs

Low Priority

4.1.10 Must allow a site to choose to run separate resource managers for each

system (or cluster), as well as a single resource manager for all

systems. A single resource manager for an entire site would allow a

single entry point to which any job could be submitted, and then

routed to the correct system (or cluster) at the site.

4.1.11 Interactive jobs allow user to "detach" from the job, requiring that

output be logged to a file as well. See [DJM93].

4.1.12 Provide a mechanism to allow reservations of any resource (for

example, a capability similar to Session Reservable File System

(SRFS)).

4.1.13 Should provide at least the following attributes for jobs:

• Set of resource consumption counters
• Set of resource limits

4.1.14 Should be able to define and modify a separate access control list for

each supported resource (as specified in 3.1.5).

4.1.15 Should provide wide area support allowing clusters separated by large

distances with relatively slow (> 56Kb/sec) network connections to

share resources. (AHPC project completion date is June 30 th 1997)

4.1.16 Should allow an interactive user on a workstation console to instruct

the JMS to suspend or migrate a job to a different worl_station.

4.1.17 Should provide both client and server capabilities for Windows NT.

5.0 Future Requirements

The following capabilities are recognized as being difficult to implement,

and will be required in the future. They are listed here to assist vendors in

design and feature planning.

12

High Priority

5.1.1 Gang-scheduling (AHPC project completion date of June 30 th 1997):

fully synchronized time-sharing of parallel processes across

distributed nodes. This feature is critical to statically balanced

application and tightly coupled parallel applications, where resonance

in communication delays from time-sharing delays may significantly

degrade performance. Gang-scheduling or co-scheduling should be

implemented on:

• Fixed size partitions

• Variable sized or dynamic partitions

5.1.2 Dynamic load balancing (AHPC project completion date of December

31 st 1996), including the ability to:

• Change resource allocation dynamically

• Migrate a running application to other nodes

• Reduce/increase nodes as availability/priority changes

• Fault tolerance

5.1.3 Job migration: Ability to suspend a job or part of a job, and move its

full computing environment (binary, local files, etc.) to a different

node, or set of nodes, of the same architecture. Information about the

best migration point could be given by the user to simplify the

migration process. A published API should be available for

communication between a job and the JMS to provide the system with

necessary information on how and/or when to best suspend or restart

the job. (AHPC project completion date of December 31 st 1996)

Medium Priority

5.1.40S level checkpointing, providing the ability for the JMS to restart a

job from where it left off and not simply from the beginning.

• Needed for true fault tolerance

• Needed for true dynamic resource allocation

6.0 Acknowledgments

The requirements within this paper are the results of iterations of discussions

with the NAS Parallel Systems group and project members of NASA Coopera-

tive Agreement NCC3-413, including representatives from NASA Ames, NASA

Langley, NASA Lewis, United Technologies Pratt & Whitney group, CFD
Research Center, MacNeal Schwendler, Corp., Massachusetts Institute of Tech-

13

nology, and the State University of New York [CAN95]. Comments were also

received from the Platform Computing, NAS PBS group, Cray Research, IBM,

and SGI regarding requirements of their customers for JMS software.

14

7.0 References

[CAN95] NASA Cooperative Agreement NCC-413.

URL: http://www.lerc.nasa.gov/Other_Groups/NPSS/html/can95.html

[DJM93] "Distributed Job Manager Administration Guide," AHPCRC,

Minnesota Supercomputer Center, 1993.

[Hen95] "Portable Batch System: Requirements Specification," Robert

Henderson and Dave Tweten, Numerical Aerodynamic Simulation

Facility, NASA Ames Research Center, April 1995.

[Kin86] "The Network Queuing System," B.A. Kinsbury, Cosmic Software,

NASA Ames Research Center, 1986.

[Sap95a] "Job Management Requirements for NAS Parallel Systems and

Clusters", William Saphir, Leigh Ann Tanner, and Bernard Traversat,

NAS Technical Report NAS-95-006, Numerical Aerodynamic

Simulation Facility, NASA Ames Research Center, February 1995.

[Sap95b] "JSD: Parallel Job Accounting on the IBM SP2," William Saphir and

James Patton Jones, NAS Technical Report NAS-95-016, Numerical

Aerodynamic Simulation Facility, NASA Ames Research Center, July
1995.

15

• kl .::!:!::i:!:% :::.:!.:.:::::_%::i: "¸'x.k

i_:: :i::::_i/:;i_i_}_i:i:/:::_:,":i.:i:i_z:i:i:_i'i
. • • /k... •....../T./...... '

_:il_i_i__/!i_i!iiiii!i:iiil/ili!iiii!i_,_
:_ - i•_d-.:i.:: :: ::/_.- ._.':ii:: i:_:::::_:_:_:iS:::_.'_ :-.:

•i : ":!i!ii:!i::i_!%ii:_iili/_"?i!_Hi
• _i:i:!_,ii:ii:ii_/!_ii!ii_ii_i_i_iii/_

• :/ :: _ :_.I!:CI! i _ _

. - . ',_ _:i _x i _

a_NAS:'i::::I;,: -

x: . .
:::: CC: . "

Date:

Author(s): James Patton Jones

Reviewers:

"I have carefully and thoroughly reviewed

this technical report. I have worked with the

author(s) to ensure clarity of presentation and

technical accuracy. I take personal responsi-

bility for__i _l_ent."
Signed: t./ "-.-..N._d

Name: IF_;fl NJ_ I_ "t-'/

Signed" ,(_. _ A/.!___

Name: _,,. _, A]]d6Y-_fl /

Branch Chief:

Approved: \j "

NAS ReportNumber:

16

