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Abstract--The primary objective of this study was to ascertain whether low molecular weight hydrocarbons

(LMWH) in the range C4 to C7, upon heating to temperatures above 9(X)K, emit IR radiations at frequencies

that correspond to the "unidentified infrared" (UIR) features--the recorded emissions from a variety of

astronomical sources--reflection ncbulac, HII regions, planctary nebulac, spiral galaxies and othcr extra

galactic objects. We describe IR emission spectra recorded from shock-healed gascs [C:Hz; (H3C)_,C=CH2;

H2C=C(CH_)_C(CH3)=CH2; (H_C)2C=CH-C(CH3)=CH2], that arise from excitation of the fundamental

C-H stretching vibrations. While the IR emissions from LMWH, anticipated over thc entire spectra range, do

not present a perfect match to UIR, the correspondence over several wavelength regions is better than the

emissions anticipated from polycyclic aromatic hydrocarbon (PAH) species. Finally, we briefly rcview the

range of proposals that have been presented for the origin of the UIR bands.

__ .. (_)

INTRODUCTION

TUE EXPERIMENTS described below were initiated to obtain answers to several questions:

(i) Are the recorded but unidentified IR emissions from a variety of astronomical

sources (UIR) due solely to polycyclic aromatic hydrocarbons (PAH), or should one also
consider additional plausible candidate species, in particular selected low molecular

weight hydrocarbons (LMWH)'? Astrochemists generally agree [1] that no single
Earthbound substance has heretofore been proposed that matches all the observed

features in wavelength and intensity, and concurrently does not indicate additional

strong features that are not observed, yet the PAH hypothesis holds sway.
(ii) Since the IR absorption spectra of selected alkenes and dienes match ooerall the

astronomical radiations about as well as do the (approximately) calculated emission

spectra of PAH (see Fig. 1), would the IR emissions from hot LMWH show a

comparable match, so that conventional absorption spectra may provide useful guides?
(iii) Can one record IR emission spectra from heated LMWH prior to their pyrolytic

decompositions?

RATIONALE FOR OUR EXPERIMENTS

If one grants the possibility that LMWH known to be present in significant densities in

regions characterized by equivalent temperatures T> 1000 K, are emitters of UIR bands,
then it should be possible to demonstrate the production of such spectra experimentally.

Restated, under what conditions of temperature and pressure do thermally excited
emissions from LMWH, in the IR, show spectroscopic signatures that match their IR

absorption spectra? An essential condition is that the emissions be recorded under

homogeneous conditions at low gas densities, prior to their pyrolysis. This can be done

by utilizing shock wave heating.
Before presenting some details of our experimental protocol [2] it will prove informa-

tive to list briefly the advantageous features and the limitations of the shock tube

technique. Foremost, heating is accomplished by gas dynamic pressure waves while the
tube walls remain at room temperature. The test gas is highly diluted in an argon carrier

(-_ 1% level). With rapid response pressure devices and optical measurements one can

determine both the temperature and the density of the test gas under shock tube

conditions [3]. For the device shown in Fig. 2(a, b) the accessible range of experimental

temperatures is 800-4000 K. However, the following limitations apply: (i) the inert gas is

an essential component of the shocked sample; and (ii) the heating pulses are of short//]
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duration--3 to 6 ms; therefore one must record emission intensity profiles rapidly, and is

thus limited to a single IR wavelength for each shock. To develop a spectrum at

successive spectrometer settings one must repeat shock-runs, which are intrinsically only

approximately reproducible. With a 20 strip array detector (a thermoelectrically cooled
PbSe array) the required number of repeat runs may be reduced by the same factor.

Unfortunately, the unit we acquired was low in sensitivity, noisy and of poor reproduci-

bility. Hence almost all of our data were recorded with an lnSb liquid nitrogen cooled

single-slit detector, set at a modest resolution: 2/A2_82. The fidelity in reproducing

absorption spectra is illustrated below.

®
Amplifier Recorder

_ Lock-in

Chopper

I -.2./7
] Ball Nernst _(. I

l valve Glower /

%i
_3 _Lverlse_,n__ __Sb , -

3

Key; (I) Shock-tube; 1" I.D. stainless steel.

(4) Diaphragm holder.

(5) Reflected shock damping tank (connected via large ball valve)--Runs were made both

with the large-ball valve to tank (#5) open (single-pulse operation), or closed

(conventional operation). We found no significant difference in the recorded pressure

profiles generated by gauges 7a and 7b for the initial 6 ms.

(6) Line to vacuum pumps; gas sample reservoir.

(7a, 7b) Piezo-electrie pressure sensors (ll_s rise time).

(8) Sampling bulb for analysis of processed gas.

(11) Gratings Blazed at Resolution (at midrange)

(a) 1800 1/mm 0.5/xm 69.6cm i

(b) 12(X) 0.3 77.1

(c) 600 1.5 33.6

(d) 300 2,0 16.g

(el 150 4.(1 16.7

Total scan range: 45(I nm to 6,5#m,

(121 20 Element array of radiation sensors.

(13) Low noise amplifiers--parallel processing.

(12/13) Alternate: replace by a single I mm wide slit and an lnSb LN2 cooled infrared

detector.

(14) Digitizers for amplified 20 channels (and/hold).

(15) Computer and printer.

(16) Oscilloscope for monitoring and photorecording from lnSb detector, or from any
selected element; second beam--for amplified pressure signals. Not shown: Signals

from 7a, 7b are added and amplified; digitized in Biomation 8100, and sent to plotter;

in addition, amplified pressure signals are sent to the oscilloscope.

Fig. 2(a). Experimental set-up.
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PROTOCOLFORSPECTRALDATACOLLE('TION(A BRIEFOUTLINE)

Prior to shock operation the entire tube was evacuated and the optical system

calibrated by recording IR intensities (at a sequence of wavelength settings of the
monochromator) that are emitted by the Nernst glower. Its temperature was measured
with an optical pyrometer. Subsequent emission intensities were then ratioed to the

transmissitivity/sensitivity function for the optical/electronic system, relative to the

black-body curve that was calculated from the measured glower temperatures. Since only

relative intensities were required for this study, correction for the glower emissivity

function was unnecessary because e does not vary significantly over the wavelength range
we investigated (1.0-5.0/_m).

The shock tube, illustrated in Fig. 2(a) was swabbed after each run. A suitable mylar

diaphragm was inserted and both sides were evacuated with a roughing pump. Then the
(longer) test section was connected to the diffusion pump (pressure reduced to

10 -5 Torr). After filling the test section (from the storage tank) with a mixture of

approximately 99% argon plus 1% test gas, to a total pressure of 20-80 Torr, the driver

section was slowly filled with helium to a pressure of approximately 83 psig. Then the

diaphragm burst and the shock wave was initiated. The oscilloscope and the electronic

recording devices were triggered by signals that originated from pressure gauge # 17. The
incident shock speed was read from the pressure records stored in the Biomation 8100

unit. Incident and reflected shock temperatures as well as corresponding densities were

calculated therefrom, based on the sample pressure (as set up), and the heat capacity
ratios for the test gas and the driver gas.

The heated sample, either in absorption or emission, is viewed along the tube axis.

Note that with the axial configuration each slice of the sample (normal to the axis) is
sequentially and rapidly raised to the shock temperature (in about 0.1/_s). The total

x(from Reflectin 9
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fTroce

',,..Emission
Troce

L
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Fig. 2(b). Typical oscilloscope traces, showing superposcd signals from the pressure sensors and

emission intensity over a 1.0 ms interval.

Key: The pressure trace is aligned with a wave-diagram that correlates shock speeds and arrival

times at the shock tube terminus. The pressure sensors are connected in series, The sum of the

output voltages shows an initial rise when the incident shock _trrives gauge 7aO; then a second

rise at 7b(_. After reflection at the end window, the reflected (reheating) shock arrives at 71_),

and later at 7aQ. , . two large jumps.



IRemissionsfromshockheatedhydrocarbons

9 - _ Absorption by acetylene

65

•_ 60

i" 50

[-,

- I I I I I2
2.6 2.8 3.0 3.2 3.4 3.6

Micron

Fig. 3. Reference absorption spectra of acetylene. (a) Recorded on a Mattson FFIR, with

0.004,urn resolution; (b) recorded with our 1/4 m monochromator, background corrected for

black-body emission intensity.
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sample viewed grows progressively with time, as the reflected shock moves away from
the window, at a rate of _ 5.7 x 104 cm/s. At very short times, immediately on shock

reflection, the sample is optically thin and becomes optically thicker as the shock

recedes; it is ultimately quenched by the oncoming expansion wave. Typical conditions
for these shock tube experiments were: gas composition: 1-5% H/C, with Ar as the

carrier gas; the driver gas was helium. Initial conditions: P0 (total driven gas)=
20-40 Torr; p4 (driver pressure)= 30-50 psi; T0 = 296 K. Incident shock speeds ranged
from 0.9-1.1 km/s. The shock traversal time between piezo-stations

[Ax(7a-7b) = 100.0 mm] was measured to + 0.2/_s. Typically for 1% C2Hz, 7"2= 1.29×
103K (incident wave), and (depending on whether one assumes conversion) T_5=
2.61 × 103 K, whereas T_ q= 2.56 × 103 K (in the reflected wave).

INVESTIGATION OF ACETYLENE (TEST OF MODEL)

Using the 150 line/mm grating, in the 1/4 M spectrometer, we calculated that with
1 mm slits the best resolution attainable would be 0.02_m. However, our recording of

the v3 band of C2H2 at 3.04/tm (Fig. 3) did not show the split between the P and R branch
maxima; they appear in the absorption spectrum recorded with the Mattson FF

spectrometer at a stated resolution of 0.004_m, indicating that our experimental
resolution was approximately 0.04_m; this is clearly adequate for the present experi-

ment.
The next concern was the survivability of acetylene at various reflected shock

temperatures. Reference to the report by COLKET [4] (which is a representative report
selected from a vast literature on the CzH2 pyrolysis) shows that only above 1800 K, at

dwell times of 0.70 ms, is there any significant conversion of acetylene to diacetylene; but
even at 2400 K, the amount of C4H2 generated remains an order of magnitude lower than

of acetylene (Fig. 4 for 3.7% C,H2 in argon). Furthermore, when one starts with vinyl

acetylene (C4H4), the original species is pyrolyzed above 1800 K to the major product,

which is acetylene; the ratio of acetylene to diacetylene [5] remains at a factor of 10.

The spectrum we previously recorded with a silicon diode array showed the Swan

System. Hence we looked for the C2 emission band at 2.47/tm [d3Y-g-a3Fl,,; (1-0)],
when C2H2 (1% in argon) was shock heated to reflecting shock temperatures 1600-

3200 K. No signals above background levels were observed. However, a structureless

background of radiation, reaching a maximum level of about 1/3 of the characteristic

C-H spectrum was recorded in the reflected shock regime. A typical emission profile is

shown in Fig. 5(a). Note that the background emission is initiated by the reflected shock;

it begins to decline at = 1 ms, and approaches zero at about 1.75 ms. The measured
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Fig. 4. Product distributions of shocked pyrolysis of acetylene, as a function of temperature

(3.7% in Ar). Dwell times _700_s; data obtained by CoI,KI I I4]. The solid lines conncct

experimental points; the dashed lines show model calculations.

maxima of this background radiation are listed in Table 1. We checked for the

appearance of soot due to pyrolysis. Very little was produced, hardly enough to show
color on the cleaning cloth used to swab the tube between runs.

Overall, spectra were recorded for reflected shock temperatures from 1250 to 3750 K.

A typical response curve for spectrometer settings between 2.80 and 3.6/_m is shown in

Fig. 5(b). Note the significant difference between traces a and b; whereas the former

starts at zero at the onset of the reflected shock, the latter shows 1 cm defection at the

initiation of the oscilloscope trace, indicating that emission at this wauelength started
during the incident shock. In Fig. 5(c) the time-span recorded was reduced from 0.5 to
0.1 ms/cm.

The temporal dependence of emission intensity on temperature is illustrated in Figs 6
and 7. At the lower temperature (reflected shock temperature _ 2350 K) the maximum

emission appears precisely at the same wavelength as was recorded in absorption. Its

intensity declines with time as expected for a cooling medium. At early times there is a
clear indication of a shoulder on the long wavelength side. In Fig. 7 (reflected shock

temperature _2650K) the shoulder is more promincnt, and in both figures the

magnitude of the shoulder declines more rapidly than does the main peak at 3.04/_m.
Vibrational assignments for C2H 2 have been made by CI[ILD and LAWTON [6]. The most

intense IR transition arises from the asymmetric C-H stretching vibration

[00000,,--00100], centered at 3.034/_m. Next in intensity is [10(X)0,--10100], centered at
3.147/tm. The dependence of the relative populations in the originating 00100 and 10100

states on temperature is shown in Fig. 8. The emission from the 3.15/_m band declines

when the shocked medium cools. The relative intensities scale reasonably well with the
corresponding gas densities, in the reflected shock regime.

The earliest emission that can be recorded is limited by the mean radiative lifetime of

the emitter; in the IR it is _0.1-1.0 ms. The observed maximum appears _ 160/is after

initiation by the reflected shock. A simple mechanism reproduces the recorded temporal
evolution of these emissions; it incorporates excitation and pyrolysis steps, and radiation

loss from the body of heated gas as it propagates along the shock tube (see Appendix 1).
The above experiments (based on acetylene as a test species) demonstrated that

emissions in the IR, developed by shock heating low molecular weight hydrocarbons,

bear direct relations to the room temperature absorption spectra of the corresponding
species; the temporal evolution of the emission spectra provide useful data on state

populations, and thus impose constraints on mechanistic models. Furthermore, such

spectra can be captured from shock heated samples for periods up to 5 ms after shock
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Fig. 5. Oscilloscope traces of shock pressure histograms, and IR intensities emitted by acetylene

(a) at 2.70,urn: background; (b and c), at 3.05/_m.

initiation and prior to extended pyrolysis. Our next objective was to demonstrate that

emission spectra can be generated from the more fragile molecular species by shock

heating at lower temperatures (starting at -_ 900 K).

EMISSION SPECTRA FROM METttYL-SUBSTITUTED ALKENES

(CH3)2C=CH2

Spectra of 1% 2-methyl propene (in Ar), shock heated to 1400 K, show as expected, a

strong emission at 3.40/_m (assigned to the CH3, d-stretch; v,._ with sym. b2) and an

overlapping (at our resolution) companion band at 3.24_m (assigned to CH 2, a5-stretch;
v,, with sym. b0. These are the two strongest bands in the 3-4gm region [7]. Inspection

of Fig. 9 indicates that their relative intensity changes little, as both bands decline due to
falling temperature of the emitter, as expected. The strong emission at 3.4/_m rises

Table I, Emissions from C:H:

T_ Relative I
(reflected shock) 2 (/,m) (max)

1661) 2.45 0
2650 2.45 I .I)
321x1 2.45 1.4

321xi 2.60 1.2

321x) 2.7t) 1.0
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The indicated times were measured post arrival of the reflected shock at position (_); Fig. 2(b).

sharply and attains a maximum at 0.49 ms; then it decays. As m the room temperature

absorption spectrum, another fundamental C-H frequency but of weaker intensity, at

3.25/_m, appears as a shoulder on the higher frequency side of the strong band. The split
became more apparent when these spectra were recorded at closer A2 intervals, but was
not as deep as in the absorption spectrum, due to the broadened rotational structure of

the two bands at the higher temperature. Emission starts at incident shock temperatures,

recorded as the shock wave approaches the end window; then it rises sharply upon shock

reflection. The maximum intensity at 3.4_m peaks at _ 1300 K, reflected shock tempera-

ture. As it declines, IR emission at 3.04t_m rises due to acetylene production, first at
14(X) K. Early single-pulse shock tube experiments with isobulene [8] indicated that the

unimolecular rate constant for dissociation (--* H_(!-CH = Ctt, + (_ H d had an activation

o
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25 --

20 --
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o

2.8 3,0 3.2 3.4

Fig. 7. As Fig. 6, but at a higher shock lcmpcr_nture (265_)K).

I
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energy of 89.6kcal/mol [h.,_,(1451) K) _ 12.2/ts]. This was derived by fitting measured

compositions of extracted samples to a complex mechanism. A more recent analysis
based on radical recombination extrapolations [9] led to a considerably lower activation

energy, 73.0 kcal/mol [t_ _,(1450 K)_6.9/ts]. Our recorded IR emissions at 1400 K (Fig.

9) show that substantial amounts of the isobutene remain for _ 1.5 ms, and that the

product generated at higher temperatures is acetylene, which radiates at its own

characteristic C-H frequency.

CH_

H,C=C-C = CH2
I

CH3

in general respects, the thermal emission from 2,3-dimethyl-i ,3-butadiene is simiar to
that of isobutene, but there are interesting differences. First, note that in Fig. 10 the split

between the higher intensity band at 3.4_m is quite distinct, which reflects the relatively

large split observed when the corresponding bands were recorded at room temperature
in absorption. The time-temperature dependence is more striking. This is illustrated

qualitatively in the sequence of oscilloscope traces, Fig. 11 (T_ = 925; 1110; 1574; 1873;

,o- t=O.49ms

3o- ,

._
20

_=

10

0 3.8
3.0 3.2 3.4 3.6

Wavelength (microns)

Fig. 9. Time-dependent emission intensities at selected wavelengths from shock heated

(CHJ,C=CH, (1% in Ar), at = 14IX) K. As in Fig. 6, the limes shown arc post arriwd ol the
- - reflected shock . • . at (S), Fig. 2(b).
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Fig. 10. As Fig. 9, for 1% H.,C=C--C=CH2 in At. at _I35(JK.
I
CH_

2555; 3685 K). At about 1574 K, there is clear indication that the decay at 1.25 ms is no

longer uniform, providing a hint of emission from a newly generated species. This

appears more clearly at 1873 K. When reflected shock temperatures reached 2555 K the

second emission dominated; then both declined at the higher temperature (3685 K). We
presume that at the higher temperatures a strong emission appears at 3.05/zm, due to

acetylene, but this was not directly recorded. Figure 12 shows the evolution of intensities
(corrected for sample density) for a range of reflected shock temperatures.

We found no reports on the pyrolysis of 2,3-dimethyl-l,3-butadiene. However,
TRENWmT_ [10a] did measure the fragmentation rate of the related isomer 1,3-hexadiene
(H"C=CH-CH=CH-CH2CH_--_(_tt_+H2C=CH-CH=CH-CH0 in a flow reactor

(694-759 K). His rate constant, extrapolated to 1574 K is 5 × 106/s. Loss of methyl

radicals from 3-methyl-penta-l,4_diene occurs with a somewhat lower activation energy
(k,_2 × 10_/s at 1574 K [10b]). The diene structure is retained in the initial fragmen-
tation, as indicated by our recorded emission sequence at 3.40/_m.

H

H._C\ I

/C=C-C= CH,
H3C I "

CH 3

In most respects the thermal emission from 2,4-dimentyl-l,3-pentadiene is like that

from the alkylated butadiene except that a split between the high and low frequency
bands was not apparent, though clearly there is a shoulder on the high frequency side of

the main band, at 3.37gm. Considering the relative weakness of the shorter wavelength
band in the absorption spectrum it is not surprising that we could not record the

corresponding emission as a separate feature. Figures 13 and 14 present data analogous
to Figs 10 and 11, and are self-explanatory.

It is evident that pentadiene, as does the butadiene, pyrolyzes to generate another

species that emits at the same C-H frequency (+ 0.04/_m). Initially the intensity rises to
a maximum at 0.75 ms (measured from the time the reflected shock reaches sensor 7b, in

Fig. 2), then falls and rises to a second maximum at 2.25 ms at the higher temperatures.
This is direct evidence that the pyrolysis product is another alk lated a
basis of the available emission s,-,ect ............. Y Ikene On the

v ..... ,. ,.a, omy specmate on the identity of the late
emitters that appear for reflected shock temperatures, 7"_:>15(_JK. at about 1.0ms
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Fig. I1. Temporal emission profiles from
CH3

I
H_,C=C--C=CH,,

k
CH,

showing pressure traces and relative intensities for a sequence of reflected shock temperatures

(Ts_925; I110; 1574; 1873; 2555; and 3685 K) tit 3.4()_m. The dcvelopment of a derivative

species (with increasing temperature) that emits at the same wavelength, and its demise, is
illustrated.
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H CH_
J I
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f

CH_

at T_ _ 1360 K. Two independent sets of runs were displaced, and presented to indicate degrees

of reproducibility, Times measured post-reflected shock arrival at position (_ Fig. 2(b),
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Fig. 14. Temporal emission prolilcs (;_s in Fig. I1) for
1t CH

I I
H_C--C=C--C=CH>

L
CH,

for a range of shock temperatures (T_977; 1528; 1921; 2894; and 3778 K), at 3.36/im.

post-shock reflection, then grow to a maximum at = 1.7 ms and finally decay. In each
case the initial conversion involves C-C bond breaking, to generate free radicals. These

rapidly rearrange and react to produce a host of smaller species that incorporate =CH_,
units. On the time scale of several milliseconds, at shock-tube temperatures and

densities, the ensemble has relaxed substantially, but not completely, toward an equilib-

rium compositon. The partition of C/H products (at equilibrium) for systems with

C/H _ 1/2 was calculated [11]. At T = 1500 K the major components are C_,H2 and C_H_.

However, benzene disappears rapidly at T> 1600 K. The major remaining species are

C4H_, and C_.H4. It is possible that higher resolution spectra would permit identification of

these late emitters.

CRITIQUE OF TIlE PAH HYPOTHESIS

An excellent review of interstellar emission features in the IR, covering both spectral

data and a variety of assignments thus far proposed, was prepared by SELLGREN [1]. She

summarized an extensive literature, which continues to evolve at a high rate. Her Table 2

is a compilation of the principal recorded features (3.3, 6.2, 7.7, 8.6, ll.3/_m), the
molecular frequencies that correspond (approximately) to these bands, and their poss-

ible astrophysical sources. The latter include: AC (amorphous carbon grains); coal

(vitrinite grains); HAC (hydrogenated amorphous carbon); orgueil (carbonaceous resi-
due from meteorites); QCC (quenched carbonaceous composites); and PAH (polycyclic
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aromatic hydrocarbons). A more extended review was presented by ALLAMANDOLA et

al. [12[. It covered the chemistry, IR emission theory, spectroscopy and astrophysical

applications of the PAH hypothesis.* At this stage it appears that this model has gained
the strongest proponents, yet it is clear that no single Earth-bound substance has been

discovered that matches all the observed features in wavelength and intensity, and
concurrently does not indicate additional strong features, which are not observed. In

attempts to unravel the mysteries of UIR emissions one should consider in detail

the many aspects treated in the above reviews, and focus on the following three:
(a) whatever the proposed species, there should be a chemically plausible route for its

production in the interstellar medium; (b) it should be possible to demonstrate experi-
mentally the survival of emitters, at least for milliseconds; (c) their IR emissions should
closely resemble the recorded astronomical spectra.

The ascendancy of PAH may be traced to the consensus that the carriers of UIR bands

are carbon rich objects, coupled with the suggestion that grains of approximately 10,_
radius, heated to about 10(X) K, are required to explain the near-IR continuum emissions

from reflected nebulae. It is worth noting that in neither review was the possibility that
the emitters are relatively low molecular weight hydrocarbon (LMWH) species con-

sidered. However, the best astronomical resolution currently available (2/A2 _ 1600 does

not rule out molecular band emissions for species in the class C,, H,,, with n/> 5. Standard

FTIR spectrometers (2cm-_ resolution), equivalent to (2/A2_ 1300) record smooth,

relatively broad band profiles for methyl propene, 2,4-dimethyl-1,3-pentadiene and 2,3-
dimethyl-1,3-butadiene. Indeed, it was recognized that the calculated emission spectra of

PAHs generally fail to match the interstellar spectra in detail, whereas a mix of closely
related dienes show absorption spectra (Fig. 1) that match overall the UIR features

better than any source proposed, including the troublesome 7.7_m region; but like all

other listed emitters, these call for an unobserved band (at approximately 7.0/_m).
Perhaps, because of its high absorption coefficient, the recorded intensity at 7.0/_m is

low due to self-absorption by a cooler column of material external to the radiatingmedium.

Since the UIR bands are associated with regions subjected to considerable fluxes of
UV radiation, any proposed IR emitter should not only comply with some mechanism

for its formation but also for its survival, while radiating from excited vibrational states in

the ground electronic state; see EIIRENFREUND et al. [141. FRENKLAClt and FEIGELSON

[15] calculated that PAH species could be generated in stellar winds from red giant

carbon stars, provided: (i) the ambient levels of acetylene were particularly high;
(ii) these remain in hot regions for thousands of years at 900-1100 K; and (iii) the stellar

winds involved are dense and slow. This mechanism was reviewed and extended [12].
With respect to mechanisms for excitation and survival of PAH species, there are

significant problems that have not been adequately addressed. L_GER and PUGET [16],

and ALLAMANDOLA et al. [17[, proposed that subsequent to electronic excitation via UV,
the PAH species, by internal conversion, lodge in high vibrational levels of the ground
electronic state and emit in the IR by seqeuntial Av = - I transitions. This mechanism

requires that the bands should be degraded toward longer wavelengths, particularly for

C-H stretch vibrations, due to their high anharmonicities. ALLAMANDOLA et al. [12] did

call attention to this difficulty. The calculated emission spectrum of crysene [18] in the

3.3ktm region does show satellite peaks at 3.43/_m (v=2--+ 1) and 3.57/_m (v=3--2),
with intensities that are strongly dependent on the assumed vibrational energy content.
Low level emissions, roughly at these frequencies, do appear from Orion, HD44179 andNGC7027.

LINGER et al. [ 19] and JOURDAIN DE MUIZON et al. [20[ provided an extended analysis of
their model, based on the assumption that the thermal history of an energized isolated

multi-atomic molecule is radiatively equivalent to an ensemble, at an equivalent

* The hypothesis that PAHs are formed in red giants has been further analyzed in Ref. [13]. They calculated

molecular abundance proliles for a w'ide range of C/H species.., radicals, hmg chain hydrocarbons and PAHs

in carbon-rich stellar photosphcres. Under thermal equilibrium conditions long chain hydrocarbons appear

abundant tit moderate temperature, but only benzene (among the aromatics) survives grapite condensation.
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temperature. Then thermal relaxation can be calculated using statistical mechanics

relations [21]. Even though L6ger derived several predictions that were later verified, he

also called attention to several problems to which his model does not respond. At such

high levels of vibrational excitation, dissociation and fragmentation should effectively

compete with IR emissions, where the radiative lifetimes are as long as 10-3s.

Application of the rudimentary RRK expression by L6ger to estimate longer dissociative

lifetimes is not valid, as demonstrated experimentally by S('ItLAG and LFVINE [22]; and

discussed theoretically by LOROUET et al. [23]. SEWELt, et al. [24] showed via classical

trajectory calculations, that depending on mode of excitation, some molecular trajector-

ies fail to representatively sample all the available phase space. Such observations place

into question the survivability of highly vibrationally excited PAH species for the

relatively long lifetimes required for IR emission, as presented in the more sophisticated

analysis of this question via the QRRK model [25]. However, recently an analysis was

presented [26], based on master equation calculations, that concluded that at low

temperatures IR emissions from nascent species are efficient in deactivating and

stabilizing adducts of recombination reactions. Consider also that transition moments for

electronic excitations are orders of magnitude greater than for vibrational transitions in

the IR; one should anticipate spectroscopic signatures of PAH in the visible at _ 550 nm

(C_,H,,.), and in the near UV at -_350 nm [27]. The large levels of PAH currently

proposed should make such features readily detectable. In this respect no data are

available. Finally, there is an enormous number of isomers for _ 100 atom PAHs

[28, 29]. One should anticipate a significant spread in C-It frequencies, were there

isomers generated on a random basis. However, most mechanisms that have been

proposed for PAH formation do not postulate random isomer distributions.

CONCI.UsIONs

When low molecular weight olefines and dienes (C4--,C7) are shock heated to

temperatures above 90_)K, their IR emission spectra are reflections of their room

temperature absorption spectra. Conversions to other similarly emitting species take

place when these are exposed to such elevated temperatures for periods of several

milliseconds. We propose that the spectra described in this report present these species

as plausible contributing candidates for UIR emitters. It is worth noting that with respect

to survivability under UV and visible irradiation, the dienes have bands in the 220 nm

region with log e--4, while the polycyclic aromatics have extended absorption bands in

the UV and visible, down to 600 nm [30] with log e-(4 _ 5.5). Relative propensities for

dissociation and ionization are not well established for radiation levels present in

astronomical media.
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APPENDIX 1: COMMENTS ON TIME-PROFILES

In this study, all the emission spectra were recorded from samples in the reflected

shock regime. Then the initially heated gas (via the incident shock) remains essentially
stationary, compressed toward the forward section of the tube, as the reflected shock

progresses away from the end window, and reheats the sample (to T,). [In the x/t

diagram in Fig. 2(b) sample motion is indicated by dashed lines.] The oscilloscope
emission intensity traces show that some low intensity emissions, particularly for the

higher temperature runs, were generated by the incident shock, as was anticipated. In

the present analysis we treat this as "background radiation" since those time/intensity
profiles were not recorded. The buildup and decay of intensity for t > ®, Fig. 2(b) is the

integrated output due to: (i) the growing depth of 1he reheated gas, upon which is

superposed (ii) the time-dependent excitation and decay mechanism for the emitters
within any selected slab of material, between x and ix+ Ax), measured from the

reflecting window. There is an additional correction factor for the x dependence of the
light collection efficiency, g(x). Because the shock tube is round, and its inner walls are
smooth, it functions as a "light-pipe". Experimentally we found that

g(x)_a+bexp(-cx), with a=0.88; b=0.12; c=0.20 (cm-_).
Thus, from any slab, the collected intensity is

1, (t) =g(x). E(t-x/us)" Ax,

A -_-_A*

k.
A*---_ B

A* k,_A+_

for t>x/u,

(excitation by thermal collisions)

(loss of pyrolysis)

(radiation).

(A1)

(A2)

(A3)

This leads to a characteristic double exponential solution:

1 d¢9 k a'kl

A,, dt = k_(A *) = ikz + k_) - k--_[e-',"-"""- e '_* ',"'-'%'] (A4)

k_. kl

-(k,+k_)-kl exp[-(k_'+k_)t]{e _-_'- _'_'e_' ....... el_'-*_'_'I"'}, (A5)

and the overall time profile is:

k_ t',,,

z,(,) =y,, j,=,,g(x). (A *) dx. (A6)

At 1500 K, estimated orders of magnitude: kj _ 107; k_ 105; and k_ l(f s -j.

Qualitatively the data do appear to follow the double exponential form for the lower

temperature shocks, but require two sets of double exponentials to account for emission
intensities recorded for the higher temperature runs (T> 1600 K).


