NASA Technical Memorandum 110300

A Wind Tunnel Investigation of Three NACA 1-Series Inlets at Mach Numbers Up to 0.92

Richard J. Re and William K. Abeyounis

Langley Research Center, Hampton, Virginia

November 1996

National Aeronautics and
Space Administration
Langley Research Center
Hampton, Virginia 23681-0001

SUMMARY

Pressure distributions on three NACA l-series inlets have been obtained in the Langley 16-Foot Transonic Tunnel. The cowl diameter ratio (ratio of cowl highlight diameter to cowl maximum diameter) was 0.85 for all three inlets. The cowl length ratio (ratio of cowl length to cowl maximum diameter) was 1.0 for two of the inlets (NACA 1-85-100) and 0.439 for the other (NACA 1-85-43.9) inlet. One of the inlets with a cowl length ratio of 1.0 had an internal contraction ratio (ratio of highlight area to throat area) of 1.009 and the other had a contraction ratio of 1.250 . The inlet with a cowl length ratio of 0.439 also had an internal contraction ratio of 1.250 . All three inlets had longitudinal rows of static pressure orifices on the top and bottom external cowl surfaces. The inlet with a contraction ratio of 1.009 also had a row of static pressure orifices on the side of the cowl (external surface). The two inlets with a contraction ratio of 1.250 had a longitudinal row of static pressure orifices on the diffuser surface.

The NACA 1-85-100 inlets were tested in the Mach number range from 0.79 to 0.92 and the NACA 1-85-43.9 inlet was tested in the Mach number range from 0.60 to 0.92 . Inlet mass-flow ratios ranged from 0.27 to 0.96 depending on inlet configuration and freestream Mach number. Angle of attack was varied within the range -3° to 3.1° at selected Mach numbers and mass-flow ratios. The Reynolds number of the test varied with Mach number from 3.2×10^{6} to 4.2×10^{6} per foot.

INTRODUCTION

Engine installation on jet-powered subsonic transport aircraft generally results in each engine being wrapped separately in a nacelle that is essentially symmetric (in external contour) about the axis of the engine rotating components. The nacelle is pylon mounted (displaced from the airframe) so that during cruise flight at least the forward portion of the nacelle will pass through air that has not been significantly disturbed by the passage of any main airframe components. Such installations permit some decoupling of nacelle design from airframe design in that substantial development of at least the inlet portion of the nacelle can be done independently. This independence of inlet geometry from airframe geometry makes the pitot-type subsonic inlet data base available in the literature directly useable for many aircraft applications.

Inlets for turbojet and turbofan powered subsonic aircraft must provide high quality flow to the engine fan and compressor, produce low external drag, be low in weight and have noise characteristics acceptable to the community. High quality flow for the engine is provided by designing the internal flow lines (cowl lip, throat contour, and diffuser) for separation-free flow. Based on internal flow considerations, cowl length and weight are minimized by making the inlet throat radius as large as possible and by designing the diffuser contour so that the diffusion angle is close to the maximum for separation-free flow while allowing some margin at the most adverse operating conditions. For commercial applications it is also important to consider noise suppression during diffuser design since this may have some effect on how short the cowl portion of the nacelle can be. The external drag is minimized, based on external flow considerations, by making the maximum cowl diameter and length as small as
possible while still obtaining the desired drag divergence Mach number and spillage critical mass-flow ratio.

Many of the pitot-type subsonic transport nacelle forebodies (cowls) used in the past have been based (at least in part) on the NACA 1 -series contour which was developed in the 1940's. The NACA 1 -series contour has a relatively small leading edge radius (external to the highlight) and because of this has good high speed spillage drag characteristics. However, high speed external performance of the NACA 1 -series contour must often be compromised by increasing the leading edge radius to achieve acceptable internal performance at low speed and static crosswind conditions. The NACA 1 -series contour was developed concentrating on the inlet external performance with the assumption that throat and diffuser shape would be essentially a separate design endeavor. Most of the published experimental data obtained on NACA 1-series inlets is contained in references 1 to 10 .

Evolutionary changes in transport aircraft speeds, engine cycle and mass flow needs, and advances in analytical and computational techniques applicable to inlet forebody design and analysis have produced the need for some expansion of the experimental data base. To this end, three inlet models having the same cowl highlight diameter have been investigated to obtain pressure data on the inlet forebody exterior and lip over a range of mass-flow ratios. Two of the inlets had an NACA 1-85-100 external contour but had different internal lip contours and internal contraction ratios. One of these inlets had a contraction ratio of 1.009 and has been tested previously over a limited range of mass-flow ratios (refs. 9 and 10). The other NACA 1-85-100 inlet had a contraction ratio of 1.250 and therefore had a different internal lip shape and throat diameter. The third inlet had an NACA 1-85-43.9 contour and a contraction ratio of 1.250. The two inlets with 1.250 contraction ratio had identical internal surface contours so that the effect of the 53.1 percent change in external cowl length on the surface pressure distributions could be determined. The difference in inlet lip contour and contraction ratio between the two NACA 1-85-100 inlets will show the effect, if any, of the internal contour change on the external surface pressure distributions.

The investigation was conducted in the Langley Research Center 16-Foot Transonic Tunnel at Mach numbers ranging from 0.60 to 0.92 , mass-flow ratios from 0.27 to 0.96, and at angles of attack within the range from -3° to 3.1° at selected mass-flow ratios and Mach numbers. Cowl external static pressures were measured in rows on the top and bottom surfaces of the inlets (in the plane of vertical symmetry). The NACA 1-85-100 inlet with a contraction ratio of 1.009 also had a longitudinal row of cowl external static pressure orifices on the side of the inlet. Diffuser wall static pressures were measured in the two inlets with a contraction ratio of 1.250 .

SYMBOLS

Symbols in parenthesis are used in computer generated tables.

C_{p} (CP)	local pressure co
$\mathrm{D}_{\text {max }}$	maximum diameter of model, 18.0 in .
	inlet internal diameter at end of lip radius (see Table I), in
(L)	length of cowl from lip (highlight) to start of cylindrical portion of model,in., see fig. 1
mfr	mass-flow ratio based on highlight area, $1 /\left(\rho \mathrm{A}_{\mathrm{h}} \mathrm{V}_{0}\right) \int \rho_{\mathrm{r}} \mathrm{V}_{\mathrm{r}} \mathrm{dA}$
M	freestream Mach number
p	local static pressure, psi
P_{0}	freestream static pressure, psi
q_{0}	freestream dynamic pressure, psi
R_{p}	pressure probe radial distance from model centerline, in.
Rw (RMAX)	radial distance from model centerline to duct outer wall, 8.40 in . maximum external cowl radius, in.
(R/RMAX)	nondimensionalized radius, in percent, from centerline of model to cowl or diffuser surface, RMAX $=9.0 \mathrm{in}$.
R_{0}	freestream Reynolds number, per foot
r	lip radius internal to highlight for NACA 1 -series inlet (see Table I), in.
V	velocity, ft/sec
x/L (X/L)	nondimensionalized distance, in percent, from cowl lip measured longitudinally (aft) with negative values indicating locations on the internal surface
(X)	longitudinal distance measured aft of the cowl lip (highlight), in.
Y	nce at RMAX minus inlet highlight radius (see
y	radial distance minus inlet highlight radius (see Table 1), in.
α	angle of attack with respect to forebody centerline, deg
ρ	density slug/ft ${ }^{3}$
ϕ	meridian angle, measured from top of model in clockwise direction when looking upstream, deg

Subscripts:
h highlight, most forward point on cowl lip
max maximum
r
0
axial mass-flow rake measuring station in duct
freestream condition

MODELS

A complete model test installation consisted of an inlet cowl and cylindrical section which were supported by a force balance, and an afterbody (also cylindrical) which was supported by the sting upon which a remote controlled mass-flow throttle plug was mounted. A simplified cross-sectional sketch of the model assembly is shown in figure 1 and a photograph of a typical model installation in the wind tunnel test section is shown in figure 2.

The basic nondimensionalized NACA 1 -series outer profile ordinates, as presented for a given lip radius of $0.025 Y$ in reference 1 , are reproduced in table I. The NACA 1-85-100 inlet with an internal contraction ratio of 1.009 (table II) was used in the investigations of references 9 and 10 . The second NACA 1-85100 cowl had the same external profile, but had a different lip radius and an internal contraction ratio of 1.250 (table III). The third inlet (table IV) also had an internal contraction ratio of 1.250 but had a shorter cowl profile (NACA 1-8543.9). This third inlet was designed to have the same overall assembled model length by including a section of constant (external) diameter at the end of the cowl profile. The internal contours (including the diffuser) of the two inlets with a 1.250 contraction ratio were identical.

Total model length was 52.0 inches (fig. 1) with the forward 27.50 inches, which included the cowl, supported by four struts that connected to a forcebalance mounted centerbody. The aft 24.50 inches (cylindrical in external shape) of the model was supported by four struts attached to the support sting. A 0.10 inch gap between the forward and aft portions of the model was spanned by a free floating flexible strip to inhibit flow leakage. Three of the four struts supporting the forward portion of the model were instrumented with pressure (fig. 3) probes to measure the internal mass flow. These struts were also used to route the tubes from the inlet surface static-pressure orifices to differential pressure-scanning units mounted in the nose of the centerbody. All pressure tubes associated with the aft portion of the model were routed through the four rear support struts; into the sting; and out through the tunnel support system to another differential pressure-scanning unit.

The mass-flow throttle plug was driven by an internally housed remote controlled electric motor and had a travel capability of about 10 inches (fig. 1). The open area at the exit of the model (normal to the centerline of the model) could be varied from $27.5 \mathrm{in}^{2}$ to $244.9 \mathrm{in}^{2}$ (plug in its two extreme positions).

WIND TUNNEL

The investigation was conducted in the Langley Research Center 16-Foot Transonic Tunnel which is a single-return atmospheric wind tunnel with continuous air exchange. The test section is octagonal in shape with 15.5 feet between opposite walls (equivalent in area to a circle 16 feet in diameter) and has axial slots at the wall vertices. The total width of the eight slots in the vicinity of the model is approximately 3.7 percent of the test section perimeter. The extreme limits of solid blockage of the model in the test section is between 0.88 percent for the hypothetical case of no flow through the model and 0.79 percent for the case of the throttle plug only (the throttle plug in its most rearward position). The tunnel sting support system pivots in such a manner that the model remains on or near the test section centerline through the angle of attack range. Details of the operation of the tunnel and its flow qualities are presented in references 11 to 13 .

TESTS AND METHODS

Each inlet was tested at Mach numbers up to 0.92 at an angle of attack of 0° and over a nominal angle of attack range (less than 3.1°) at selected Mach numbers and mass-flow ratios. Freestream Reynolds number per foot varied with Mach number from 3.2×10^{6} to 4.2×10^{6} (fig. 4). All the data presented herein are for artificially fixed boundary layer transition on the internal and external surfaces of the model. Boundary-layer transition on the external surface of the model was fixed by applying a 0.10 inch wide circumferential strip of number 120 silicon carbide particles 0.6 inch aft (streamwise) of the cowl lip. Boundarylayer transition was fixed on the internal flow surface of the model by applying a 0.10 inch wide circumferential strip of number 120 silicon carbide particles at the geometric throat of each inlet.

Angle of attack was computed by correcting the measured angle of attack of the support system for deflection of the sting and force balance due to aerodynamic forces and moments and for tunnel stream angularity. Although the test was conducted with the model mounted on a force balance, the data from it will not be presented since the balance was damaged during the test. Duct mass flow was calculated from the freestream total temperature, rake area-weighted stagnation pressures, and static pressures from the rake, centerbody surface, and duct wall.

No corrections have been made to the pressure data for test section wall interference effects. The presence and geometry of the mass-flow plug will have an effect on the afterbody external flow field. Therefore, the afterbody pressure data presented in the pressure tabulations should be considered qualitative, especially for pressures near the model aft end. The effect of the mass-flow plug should be the greatest for cases with large mass-flow ratios where the internal flow exits the afterbody before passing over the front face of the mass-flow plug and therefore has not been turned back streamwise by the internal afterbody surface.

PRESENTATION OF RESULTS

The results of this investigation are presented primarily in tabular form as local internal and external pressure coefficients in tables V to VII. The surface pressure coefficients are tabulated against nondimensionalized orifice location (X/L) where L is the length of the NACA cowl portion of the model. The ratio X/L is presented in percentage form in the tables. A negative value of X / L indicates the orifice is located on the internal surface (downstream of the highlight) of the inlet. The pressure coefficients are presented for either two or three meridian angles (PHI) depending on the number of rows of orifices on the configuration. Inlet mass-flow ratio and angle of attack are given at the top of each table. In addition, some data are presented graphically (figs. 5 to 11) to illustrate the variation of pressure coefficient with X / L over the lip and cowl portion of the model over a range of Mach numbers, mass-flow ratios, and angles of attack. Some graphical data are presented in figures 12 to 15 for the two inlets with a contraction ratio of 1.250 to show the effect of mass-flow ratio and angle of attack on the lip and diffuser pressure coefficient distributions.

Summaries of the tabular and graphical data presented are contained in the following three listings. The listing for each cowl includes nominal test condition information and table and figure numbers for the pressure coefficient data.

NACA 1-85-100 with contraction ratio 1.009

Pressure coefficients				
M	mfr	α, deg	Table	Figure
${ }^{0.79}$	$\begin{array}{r} 0.57 \\ .64 \\ .71 \\ .77 \\ \hline \end{array}$		$\underbrace{V(a)}$	$\begin{aligned} & 5(a) \\ & 5(a) \\ & 5(a) \\ & 5(a) \end{aligned}$
		-3.0 -2.0 -1.0 0 1.0 2.0 3.0 0 0 -3.1 -2.1 -1.1 0 1.0 2.0 3.0 -3.1 -2.1 -1.1 -0.1 1.0 2.0 3.0		$6(a)$ $5(b), 6(a), 7(a)$ $6(a), 7(a)$ $5(b)$ $6(b)$ $5(b), 6(b), 7(b)$ $6(b), 7(b)$ $6(c)$ 5(b),6(c),7(c) 6(c),7(c)
${ }^{0.87}$	$\begin{array}{r} 0.57 \\ 1 \\ .63 \\ .70 \\ .78 \end{array}$	-2.0 0 2.1 0 1 1		6(d) 5(c),6(d),7(d) $6((d) 7(d)$ $5(c)$ $5(c)$
${ }^{0.89}$	$\begin{array}{r} 0.57 \\ 1 \\ .62 \\ .71 \\ .77 \\ .96 \\ \hline \end{array}$	$\begin{gathered} -2.1 \\ 0 \\ 2.1 \\ 0 \\ 0 \\ -0.1 \\ 0 \\ \hline \end{gathered}$		$6(e)$ $5(d), 6(e), 7(e)$ $6(e), 7(e)$ $5(d)$ $5(d)$ $5(d)$
$\square^{0.92}$	$\begin{array}{r} 0.57 \\ .73 \\ .71 \\ .77 \\ .96 \\ \hline \end{array}$	${ }^{0}$		5(e) 5(e) 5(e) 5(e)

Pressure coefficients					Pressure coefficients				
M	mfr	α, deg	Table	Figure	M	mfr	α, deg	Table	Figure
	$\begin{aligned} & 0.28 \\ & .31 \\ & .40 \\ & .50 \\ & 1 \\ & . \\ & .56 \\ & .63 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1.0 \\ & 2.0 \\ & 3.0 \\ & 0 \\ & 1 \end{aligned}$	VI(a)	$\begin{gathered} 14(a) \\ 8(a) \\ 8(a) .9(a) .14(a) .15(a) \\ 9(a) .15(a) \\ 15(a) \\ 14(a) \end{gathered}$	$\underbrace{0.82}$	$\begin{array}{r} 0.27 \\ .30 \\ .40 \\ .49 \\ .54 \\ .61 \\ .68 \\ .74 \\ .80 \\ \hline \end{array}$			$\begin{aligned} & \hline 14(\mathrm{~h}) \\ & 14(\mathrm{~h}) \\ & 14(\mathrm{~h}) \\ & 14(\mathrm{~h}) \\ & 14(\mathrm{~h}) \end{aligned}$
	$\begin{aligned} & .69 \\ & .69 \\ & .75 \\ & .82 \\ & .82 \\ & .93 \\ & \hline \end{aligned}$	$\begin{gathered} \downarrow \\ 2.0 \\ 0 \\ 0 \\ 2.0 \\ 0 \\ \hline \end{gathered}$		$8(a), 9(b) .15(b)$ $9(b) .15(b)$ $14(a)$ $8(a) .9(c) .14(a) .15(c)$ $9(c) .15(c)$		$\begin{array}{r} 0.27 \\ .30 \\ .39 \\ .49 \\ \hline \end{array}$			$14(\mathrm{i})$ $8(\mathrm{~d})$ $8(\mathrm{~d}) .9(\mathrm{f}) .14(\mathrm{i}) .15(\mathrm{f})$ $9(\mathrm{f}) .15(\mathrm{f})$
	.27 .30 .40 .50 .55 .62 .68 .75 .81			$\begin{aligned} & 14(\mathrm{~b}) \\ & 14(\mathrm{~b}) \\ & 14(\mathrm{~b}) \\ & 14(\mathrm{~b}) \\ & 14(\mathrm{~b}) \end{aligned}$		$\begin{aligned} & .54 \\ & .61 \\ & .67 \\ & .73 \\ & .82 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 0 \\ & 1 \\ & 1 \\ & 1.0 \\ & 2.0 \\ & 3.1 \\ & 0 \\ & 0 \end{aligned}$		$\begin{gathered} 15(\mathrm{f}) \\ 14(\mathrm{i}) \\ 8(\mathrm{~d}) .9(\mathrm{~g}) .14(\mathrm{i}) .15(\mathrm{~g}) \\ 9(\mathrm{~g}), 15(\mathrm{~g}) \\ 15(\mathrm{~g}) \\ 14(\mathrm{i}) \end{gathered}$
	$\begin{array}{r} 0.28 \\ .30 \\ .40 \end{array}$			$\begin{aligned} & 14(\mathrm{c}) \\ & 8(\mathrm{~b}) \end{aligned}$	1	$\begin{aligned} & .83 \\ & .84 \\ & .81 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$	1	$\begin{gathered} 9(\mathrm{~h}), 15(\mathrm{~h}) \\ 15(\mathrm{~h}) \\ \hline \end{gathered}$
	$\begin{aligned} & .49 \\ & .49 \\ & .55 \\ & .61 \\ & .68 \\ & .74 \\ & .81 \end{aligned}$	$\begin{aligned} & t \\ & 2.0 \\ & 0 \\ & 1 \end{aligned}$		$\begin{gathered} 8(\mathrm{~b}), 9(\mathrm{~d}), 14(\mathrm{c}), 15(\mathrm{~d}) \\ 9(\mathrm{~d}), 15(\mathrm{~d}) \\ \\ 14(\mathrm{c}) \\ 8(\mathrm{~b}) \\ 14(\mathrm{c}) \\ 8(\mathrm{~b}), 14(\mathrm{c}) \\ \hline \end{gathered}$	${ }_{4}^{0.87}$	0.27 .31 .39 .50 .49 .54 .61			$14(\mathrm{j})$ $8(\mathrm{e})$ $8(\mathrm{e}) .9(\mathrm{i}) .14(\mathrm{j}) .15(\mathrm{i})$ $9(\mathrm{i}) .15(\mathrm{i})$ $14(\mathrm{j})$
$\int_{1}^{0.72}$	$\begin{array}{r} 0.30 \\ .40 \\ .49 \\ .54 \\ \hline \end{array}$	${ }^{0}$.68 .68 .74 .83	$\begin{aligned} & 20 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{gathered} 8(\mathrm{e}) .9(\mathrm{j}), 14(\mathrm{j}), 15(\mathrm{j}) \\ 9(\mathrm{j}), 15(\mathrm{j}) \\ 14(\mathrm{j}) \\ 8(\mathrm{e}), 14(\mathrm{j}) \\ \hline \end{gathered}$
	$\begin{array}{r} \hline 0.27 \\ .31 \\ .40 \\ .49 \\ .54 \\ .61 \\ .68 \\ .74 \\ .80 \\ \hline 0.27 \end{array}$			$14(\mathrm{e})$ $14(\mathrm{e})$ $14(\mathrm{e})$ $14(\mathrm{e})$ $14(\mathrm{e})$ $14(\mathrm{f})$	$\underbrace{0.89}_{1}$	0.27 .32 .39 .49 .49 .54 .61 .68 .74 .81			$14(\mathrm{k})$ $8(\mathrm{f})$ $8(\mathrm{f}) .9(\mathrm{k}), 14(\mathrm{k}), 15(\mathrm{k})$ $9(\mathrm{k}) .15(\mathrm{k})$ $14(\mathrm{k})$ $8(\mathrm{f}) .14(\mathrm{k})$ $14(\mathrm{k})$ $8(\mathrm{f} 914(\mathrm{k})$
	$\begin{aligned} & .30 \\ & .40 \\ & .48 \\ & .54 \\ & .68 \\ & .74 \\ & .80 \end{aligned}$			$\begin{aligned} & 14(f) \\ & 14(f) \\ & 14(f) \\ & 14(f) \end{aligned}$	${ }^{0.92}$	$\begin{array}{r} 0.27 \\ .32 \\ .40 \\ .49 \\ . \\ .54 \end{array}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 1.0 \\ & 2.0 \\ & 3.1 \\ & 0 \end{aligned}$		$14(1)$ $8(g)$ $8(\mathrm{~g}) .9(1) .14(\mathrm{l}) .15(1)$ $9(1), 15(1)$ $15(1)$
	$\begin{array}{r} \hline 0.27 \\ .30 \\ .39 \\ .49 \\ .49 \\ .54 \\ .61 \\ .68 \\ .74 \\ .80 \\ \hline \end{array}$			$14(\mathrm{~g})$ $8(\mathrm{c})$ $8(\mathrm{c}) .9(\mathrm{e}) .14(\mathrm{~g}) .15(\mathrm{e})$ $9(\mathrm{e}), 15(\mathrm{e})$ $14(\mathrm{~g})$ $8(\mathrm{c}) .14(\mathrm{~g})$ $14(\mathrm{~g})$ $8(\mathrm{c}) .14(\mathrm{~g})$		$\begin{aligned} & .61 \\ & .68 \\ & .68 \\ & .74 \\ & .82 \\ & .82 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 2.1 \\ & 0 \\ & 0 \\ & 2.0 \end{aligned}$		$\begin{gathered} 14(\mathrm{l}) \\ 8(\mathrm{~g}), 9(\mathrm{~m}), 14(\mathrm{l}), 15(\mathrm{~m}) \\ 9(\mathrm{~m}), 15(\mathrm{~m}) \\ 14(\mathrm{l}) \\ 8(\mathrm{~g}), 9(\mathrm{n}), 14(\mathrm{l}), 15(\mathrm{n}) \\ 9(\mathrm{n}), 15(\mathrm{n}) \\ \hline \end{gathered}$

NACA 1-85-100 with contraction ratio 1.250

Pressure coefficients				
M	mfr	α, deg	Table	Figure
	$\begin{gathered} 0.61 \\ .67 \\ 1 \\ .74 \end{gathered}$	$\begin{gathered} \hline 0 \\ -2.0 \\ 0 \\ 2.1 \\ 0 \end{gathered}$		$10(a), 12(\mathrm{a})$ $11(\mathrm{a})$ $10(\mathrm{a}), 11(\mathrm{a}), 12(\mathrm{a})$ $11(\mathrm{a})$ $10(\mathrm{a}), 12(\mathrm{a})$
		$\begin{gathered} -2.1 \\ -1.0 \\ 0 \\ 1.0 \\ 2.0 \\ 3.1 \\ 0 \\ 0 \\ -2.1 \\ -1.0 \\ 0 \\ 1.0 \\ 2.0 \\ 3.1 \\ 0 \\ -2.1 \\ -1.1 \\ 0 \\ 1.1 \\ 2.0 \\ 3.1 \end{gathered}$		$11(\mathrm{~b})$ $10(\mathrm{~b}), 11(\mathrm{~b}), 12(\mathrm{~b}), 13(\mathrm{a})$ $11(\mathrm{~b}), 13(\mathrm{a})$ $13(\mathrm{a})$ $10(\mathrm{~b}), 12(\mathrm{~b})$ $11(\mathrm{c})$ $10(\mathrm{~b}), 11(\mathrm{c}), 12(\mathrm{~b}), 13(\mathrm{~b})$ $11(\mathrm{c}), 13(\mathrm{~b})$ $13(\mathrm{~b})$ $12(\mathrm{~b})$ $11(\mathrm{~d})$ $10(\mathrm{~b}), 11(\mathrm{~d}), 12(\mathrm{~b}), 13(\mathrm{c})$ $11(\mathrm{~d}), 13(\mathrm{c})$ $13(\mathrm{c})$
		$\begin{gathered} \hline-2.0 \\ 0 \\ 2.1 \\ 0 \\ 1 \\ 1 \end{gathered}$	$\int_{i}^{\text {VII(c) }}$	$11(\mathrm{e})$ $10(\mathrm{c}), 11(\mathrm{e}), 12(\mathrm{c}), 13(\mathrm{~d})$ $11(\mathrm{e}), 13(\mathrm{~d})$ $10(\mathrm{c}), 12(\mathrm{c})$ $10(\mathrm{c}), 12(\mathrm{c})$ $10(\mathrm{c}), 12(\mathrm{c})$
	0.49 1 .55 .61 .67 .73 .81	$\begin{gathered} \hline-2.1 \\ 0 \\ 2.0 \\ 0 \\ 1 \\ 1 \end{gathered}$		$11(\mathrm{f})$ $10(\mathrm{~d}), 11(\mathrm{f}, 12(\mathrm{~d}), 13(\mathrm{e})$ $11(\mathrm{f}, 13(\mathrm{e})$ $10(\mathrm{~d}), 12(\mathrm{~d})$ $10(\mathrm{~d}), 12(\mathrm{~d})$ $12(\mathrm{~d})$ $10(\mathrm{~d}), 12(\mathrm{~d})$
${ }_{\square}^{0.92}$.81 .45 .61 .67 .73 .81	${ }^{0}$		$10(e), 12(e)$ $10(e), 12(e)$ $10(e), 12(e)$ $12(e)$ $10(e), 12(e)$

RESULTS

This investigation was conducted primarily to obtain cowl pressure distributions under conditions that isolate the cowl from the influence of a boattailed afterbody flow field. Therefore a considerable portion of the model aft of the cowl was cylindrical in shape equal in diameter to the cowl maximum diameter (figure 1). This test apparatus was used in the investigation of
reference 10 for high mass flows through the model. However, the geometry of the throttle plug used in that investigation was not capable of reducing the afterbody exit area enough over the range of plug travel to obtain low mass flows for the NACA 1-85-43.9 cowl, which should have significantly better performance at low mass-flow ratios at the lower Mach numbers. That is, it should have a lower critical mass-flow ratio which is a measure of cowl performance when operating below the compressibility drag-rise condition. At a given Mach number, drag changes only gradually as inlet mass flow is decreased until a critical mass flow is reached where drag abruptly increases. The drag increase results from flow separation caused by shocks or strong pressure gradients resulting from flow separation around the initial cowl lip curvature. Conversely the term lower critical Mach number would indicate the Mach number at which an abrupt drag increase results for a given mass-flow ratio as Mach number is decreased.

To expand the mass flow range capability of this apparatus to encompass lower mass flow rates, the throttle plug geometry was altered so that it was blunter and had a larger maximum diameter. Comparisons made in reference 10 of the results of references 9 (last 14 inches of afterbody boattailed) and 10 (cylindrical afterbody) at high mass-flow ratios indicate no significant effects fed forward from the exit plume/mass-flow plug combination to the cowl pressure distributions over the range of test Mach numbers.

Cowl Pressure Distributions

At 0° angle of attack.- NACA 1 -series cowls that are designed for moderate or high subsonic Mach numbers often have high negative pressure peaks near the lip at low Mach numbers and low mass-flow ratios because of the relatively sharp cowl lip. This often results in flow separation on the forward portion of the cowl when the pressure can not recover from the peak. The pressure distributions of reference 9 for the NACA 1-85-100 inlet with a contraction ratio of 1.009 show that flow separation occurred on the cowl at a mass-flow ratio of 0.56 for Mach numbers of $0.4,0.6$, and 0.7 . However at a Mach number of 0.79 , which was the lowest test Mach number for that inlet in the present investigation, flow separation did not occur (fig. 5(a)) at that mass-flow ratio. Larger contraction ratios of 1.046 and 1.093 (reference 9) did not significantly affect flow separation on the forward portion of the cowl under the aforementioned conditions. At higher Mach numbers where flow separation did not occur on the forward portion of the cowl, larger contraction ratio had only small effects on the cowl pressure distributions. However, these small effects did result in some decrease in cowl critical Mach number at a given mass-flow ratio (see ref. 9) for a contraction ratio of 1.093 .

The NACA 1-85-43.9 inlet, which because of its blunter lip profile is capable of better performance at lower Mach numbers than the NACA 1-85-100 inlets was tested at lower Mach numbers and lower mass-flow ratios. This inlet did not encounter flow separation at 0° angle of attack on the forward portion of the cowl at the lowest Mach numbers and mass-flow ratios tested (fig. 8) which indicates that it had lower critical Mach numbers relative to the NACA 1-85-100 inlets. Three non-NACA 1 -series inlets ($\mathrm{X} / \mathrm{L}=0.337,0.439$, and 0.547), whose external
contour changes with length were made in the same manner as the NACA 1series inlets, were tested on the same apparatus described herein and the pressure coefficients are reported in reference 14 . Those data showed the same improvements in performance at the lower Mach numbers and lower mass-flow ratios for the blunter lip profiles.

At small angles of attack.- The NACA 1-85-100 inlets were tested at angles of attack within the range from -3.0° to 3.1° at selected Mach numbers and massflow ratios (figs. 6 and 11). As would be expected, at low mass-flow ratios an increase in angle of attack caused an increase in the severity of the negative pressure peaks on the cowl upper surface and shifted the onset of strong recompression aft (see fig. 6(e) for example). At the high mass-flow ratios an increase in angle of attack decreased the extent of positive pressure on the forward portion of the cowl upper surface (see fig. 6(c) for example). The NACA 1-85-43.9 inlet was tested only at positive angles of attack so the row of pressure orifices on the bottom of the cowl can be considered to represent the equivalent negative angle of attack and are included in figure 9 for that purpose. The effects of angle of attack on the forward pressure peaks on this inlet were similar to those encountered on the NACA 1-85-100 inlets. This inlet was tested at angle of attack at lower Mach numbers than the others since it has more potential for good performance in the lower Mach number range. At a Mach number of 0.69 (fig. 9 (d)) there appears to be flow separation near the cowl upper surface leading edge at 2.0° angle of attack. This can be seen by comparing the extent of constant pressure coefficient at the peak relative to that at 0° angle of attack for the top and bottom rows of pressure orifices.

At small angles of sideslip.- The NACA 1-85-100 inlet with a contraction ratio of 1.009 had a row of external pressure orifices on the side of the cowl at a meridian angle of 90°. Because of the inlet axial symmetry this row of orifices can be considered to represent the top of an inlet at 0° angle of attack that moves in sideslip when the model is moved in what has been defined as the angle of attack direction in this investigation. To determine the effect of sideslip on the pressure distributions, data from this row of orifices are presented in figure 7 for the maximum positive angle of attack at each Mach number. The data indicate a negligible effect of sideslip over the small angle range of this test.

Diffuser Pressure Distributions

The variation of pressure coefficient (internal to the highlight) with $\mathrm{X} / \mathrm{D}_{\max }$ for various mass-flow ratios for the two inlets with a contraction ratio of 1.250 is shown in figures $12\left(\alpha=0^{\circ}\right)$ and 13 ($\mathrm{small} \alpha$'s) for the NACA 1-85-100 cowl and in figures $14\left(\alpha=0^{\circ}\right)$ and 15 (small α 's) for the NACA 1-85-43.9 cowl.

At 0° angle of attack.- An illustration of the effect of changing mass-flow ratio at a Mach number of 0.60 on the location of the stagnation point on the inlet lip of the NACA 1-85-43.9 inlet can be seen in the pressure coefficients of table VI(a). As expected the stagnation point was farthest inside the inlet on the contraction surface (at an X/L of -5.13 percent) at the lowest mass-flow ratio of 0.28 . The
stagnation point moved forward on the contraction surface with increasing mass flow until it reached the highlight $(X / L=0)$ at the maximum mass-flow ratio of 0.93.

The pressure distributions of figure 14 (or figure 12) indicate that the lowest internal pressure occurred approximately at the geometric throat ($\mathrm{X} / \mathrm{D}_{\max }=0.113$) for all mass-flow ratios up through a Mach number of 0.77. At a Mach number of 0.79 a shock occurred at the throat at a mass-flow ratio of 0.80 . Above a Mach number of 0.79 the shock moved downstream to an $X / D_{\max }$ of about 0.18 where the lowest pressure also occurred.

The effect of changes in external cowl shape on the pressure distributions internal to the highlight at 0° angle of attack was negligible as can be seen by comparing the data of figure 12 (NACA 1-85-100) with data at the appropriate Mach number and mass-flow conditions in figure 14 (NACA 1-85-43.9). The inlets both had a contraction ratio of 1.250 and identical diffuser geometry.

At small angles of attack.- The effect of angle of attack on the pressure distributions internal to the highlight is shown in tables VI and VII and figures 13 and 15 for the two different external cowl shapes. In general the effect of angle of attack is as would be expected. For example, examination of the pressure coefficients of tables VI and VII show that as angle of attack was increased for a given mass-flow ratio, the stagnation point of the incoming stream tube on the upper lip moved slightly farther into the contraction section while on the lower lip (the windward side) of the inlet the streamtube stagnation point moved slightly closer to the highlight.

CONCLUDING REMARKS

An investigation has been conducted over a range of subsonic speeds to determine pressure distributions on three isolated inlets having NACA 1 -series cowl profiles. Two had NACA 1-85-100 cowls that differed only in internal contraction ratio (1.009 and 1.250). The third inlet had an NACA 1-85-43.9 cowl and had a contraction ratio of 1.250 . Angle of attack was varied over a small range at selected Mach numbers and mass-flow ratios for each inlet.

At low Mach numbers and low mass-flow ratios, the NACA 1-85-100 inlets encountered flow separation over the forward portion of the cowl surface that was not significantly affected by the variation in contraction ratio. However the critical Mach number at a given mass-flow ratio was decreased somewhat by the increase in contraction ratio. The NACA 1-85-43.9 inlet did not encounter flow separation at the lowest mass-flow ratios since its blunter lip profile was more conducive to better performance at lower Mach numbers. At an angle of attack of 2.0°, the NACA 1-85-43.9 inlet did encounter separation at the lowest mass-flow ratio at the two lowest Mach numbers (0.60 and 0.69). Pressure coefficients from a row of pressure orifices on the side of the NACA 1-85-100 inlet with a contraction ratio of 1.009 showed no significant effect of angle change when the model was moved through a small range of angles of attack thus indicating insensitivity to small angles of sideslip.

REFERENCES

1. Baals, Donald D.; Smith, Norman F.; and Wright, John B.: The Developement and Application of High-Critical-Speed Nose Inlets. NACA Rep. 920, 1948. (Supercedes NACA ACR L5F30a.)
2. Nichols, Mark R.; and Keith, Arvid L., Jr.: Investigation of a Systematic Group of NACA 1-Series Cowlings With and Without Spinners. NACA Rep. 950, 1949. (Supercedes NACA RM L8A15.)
3. Pendley,Robert E.; and Robinson, Harold L.: An Investigation of Several NACA 1-Series Nose Inlets With and Without Protruding Central Bodies at HighSubsonic Mach Numbers and at a Mach Number of 1.2. NACA TN 3436, 1955.
4. Pendley, Robert E.; Robinson, Harold L.; and Williams, Claude V.: An Investigation of Three Transonic Fuselage Air Inlets At Mach Numbers From 0.4 to 0.94 and at a Mach Number of 1.19. NACA RM L50H24, 1950.
5. Nichols, Mark R.; and Pendley, Robert E.: Performance of Air Inlets at Transonic and Low Supersonic Speeds. NACA RM L52A07, 1952.
6. Pendley, Robert E.; Milillo, Joseph R.; and Fleming, Frank F.: An Investigation of Three NACA 1-Series Nose Inlets at Subsonic and Transonic Speeds. NACA RM L52J23, 1953.
7. Pendley, Robert E.; and Smith Norman F.: An Investigation of the Characteristics of Three NACA 1-Series Nose Inlets At Subcritical and Supercritical Mach Numbers. NACA RM L8L06, 1949.
8. Pendley, Robert E.; Milillo, Joseph R.; Fleming, Frank F.; and Bryan Carroll R.: An Experimental Study of Five Annular-Air-Inlet Configurations at Subsonic and Transonic Speeds. NACA RM L53F18a, 1953.
9. Re, Richard J.: An Investigation of Several NACA 1-Series Axisymmetric Inlets at Mach Numbers From 0.4 to 1.29. NASA TM X-2917, 1974.
10. Re, Richard J.: An Investigation of Several NACA 1-Series Inlets at Mach Numbers From 0.4 to 1.29 for Mass-Flow Ratios Near 1.0. NASA TM X-3324, 1975.
11. Capone, Francis J.; Bangert, Linda S.; Asbury, Scott C.; Mills, Charles T. L.; and Bare, E. Ann: Historical Overview, Facility Description, Calibration, Flow Characteristics, and Test Capabilities. NASA TP-3521, 1995.
12. Couch, Lana M.; and Brooks, Cuyler W., Jr.: Effect of Blockage Ratio on Drag and Pressure Distributions for Bodies of Revolution at Transonic Speeds. NASA TN D-7331, 1973.
13. Dougherty, N. S., Jr.; and Steinle, Frank W., Jr.: Transition Reynolds Number Comparisons in Several Major Wind Tunnels. AIAA Paper No. 74-627, July 1974.
14. Re, Richard J.; and Abeyounis, William K.: Wind Tunnel Investigation of Three Axisymmetric Cowls of Different Lengths at Mach Numbers From 0.60 to 0.92. NASA Technical Memorandum 4488, 1993.

TABLE I.- NACA 1-SERIES ORDINATES
[Coordinates in peroent]

x/L	y/Y	x/L	y/Y	x / L	y/Y
0	0	20.0	52.70	48.0	81.25
. 2	4.80	21.0	54.05	49.0	81.99
. 4	6.63	22.0	55.37	50.0	82.69
. 6	8.12	23.0	56.66	52.0	84.10
. 8	9.33	24.0	57.92	54.0	85.45
1.0	10.38	25.0	59.15	56.0	86.73
1.5	12.72	26.0	60.35	58.0	87.95
2.0	14.72	27.0	61.52	60.0	89.11
2.5	16.57	28.0	62.67	62.0	90.20
3.0	18.31	29.0	63.79	64.0	91.23
3.5	19.94	30.0	64.89	66.0	צ2.20
4.0	21.48	31.0	65.97	68.0	93.11
4.5	22.96	32.0	67.03	70.0	93.95
5.0	24.36	33.0	68.07	72.0	94.75
6.0	27.01	34.0	69.08	74.0	95.48
7.0	29.47	35.0	70.08	76.0	96.16
8.0	31.81	36.0	71.05	78.0	96.79
9.0	34.03	37.0	72.00	80.0	97.35
10.0	36.13	38.0	72.94	82.0	97.87
11.0	38.15	39.0	73.85	84.0	98.33
12.0	40.09	40.0	74.75	86.0	98.74
13.0	41.94	41.0	75.63	88.0	99.09
14.0	43.66	42.0	76.48	90.0	99.40
15.0	45.30	43.0	77.32	92.0	99.65
16.0	46.88	44.0	78.15	94.0	99.85
17.0	48.40	45.0	78.95	96.0	99.93
18.0	49.88	46.0	79.74	98.0	99.98
19.0	51.31	47.0	80.50	100.0	100.00
Lip radius: 0.025 Y					

TABLE III.- DESIGN ORDINATES FOR NACA 1-85-100 INLET WITH INTERNAL CONTRACTION RATIO OF 1.250

External ordinates

TABLE V. PRESSURE COEFFICIENTS ON MODEL WITH NACA 1-85-100 INLET AND CONTRACTION RATIO OF 1.009

$\mathrm{mfr}=0.04$ and $\alpha=0$

mfr $=0.57$ and $\alpha=0^{\circ}$

TABLE V. Continued

(b) $\mathrm{M}=0.84$

mfr $=0.67$ and $\alpha=.3 .0^{\circ}$

mfr $=0.57$ and $\alpha=-1.0^{\circ}$

TABLE V. Continued

"
甜茴

(b) Continued

TABLE V. Continued

(b) Continued

mfr $=0.95$ and $\alpha=-2.1{ }^{\circ}$	
$\begin{gathered} \$=90^{\circ} \\ \text { Forebody } \end{gathered}$	
$\mathbf{X / 2}$	CP
-3.75	-0.0514
-3.12	-0.0609
-1.88	-0.3998
-1.25	-0.5256
0.00	0.8989
0.62	0.4442
1.25	0.2930
1.88	0.1637
2.50	0.1300
3.12	0.1185
4.38	0.0843
5.00	0.0550
7.50	-0.0219
10.00	-0.0380
15.00	-0.0656
17.50	-0.0950
20.00	-0.0820
40.00	-0.0950
50.00	-0.0939
60.00	-0.0902
70.00	-0.0901
80.00	-0.0950
90.00	-0.0702
122.00	-0.0173
139.00	-0.0108

$m f r=0.95$ and $a=0.1^{\circ}$

TABLE V. Continued

TABLE V. Continued

TABLE V. Continued

(c) $\mathrm{M}=0.87$

$$
\operatorname{mft}=0.57 \text { and } \alpha=2.0^{\circ}
$$

$\mathrm{mfr}=0.57$ and $\alpha=2.0^{\circ}$

(c) Concluded

ห

TABLE V. Continued

TABLE V. Continued

(e) $\mathrm{M}=0.92$

mfr $=0.77$ and $\alpha=0^{\circ}$

mfr $=0.67$ and $\alpha=0^{\circ}$

TABLEVI. PRESSURE COEFFICIENTS ON MODEL WITH NACA 1-85-43.9 INLET AND CONTRACTIONRATIO OF 1.250


```
    &
```



```
    !
```



```
    &
```



```
"
```



```
    #
```


q

:

$\stackrel{8}{4}$

$\stackrel{2}{2}$

"
ตร

8

TABLE VI. Continued

180°

II

$\stackrel{\square}{\circ}$


```
* 名
```



```
    !
```


8
11

(b) Continued

高
"

$\stackrel{8}{1}$

:

$\stackrel{8}{\bullet}$

\$
\$

!
!

-

(c) Continued

○○○○ - ¢ ¢ ¢ ¢

\vdots


```
TABLE VI. Continued
        |illum=%%
```



```
    O
```


$\stackrel{8}{\square}$

TABLE VI. Continued


```
*)
```



```
&
```


TABLE VI. Continued


```
@
```



```
    #
```


TABLE VI. Continued

"

 同

panu!̣uo八 I I GTGVL

TABLE VI. Continued

(f) Concluded

을
"

8
0
0

$\stackrel{8}{1}$

 細

 \because


```
\begin{tabular}{|c|}
\hline  \\
\hline  \\
\hline  \\
\hline  \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}
```



```
l
```



```
lol
\,
```


$\stackrel{\square}{0}$

迹

8

:

$\stackrel{8}{11}$

\circ
I'

$\stackrel{\circ}{\text { sion }}$

:

 pllillitys
 ,

找

$\stackrel{8}{8}$

8
0
0

TABLE VI. Continued

TABLE VI. Continued

8
8

$\stackrel{3}{!}$

3^{5}

8
"

i

TABLE VI. Continued

(i) Continued

$-$

$\stackrel{\circ}{\circ}$

$\stackrel{8}{8}$

:

$\stackrel{2}{2}$

TABLE VI.Continued

)

3

TABLE VI. Conitued
(j) Concluded
potilitilit

ำ

f0

$\stackrel{3}{2}$

$\stackrel{\circ}{n}$

TABLE VI. Continued

8
$!$
$!$

TABLE VI. Continued

%
%

$\stackrel{3}{0}$

$\stackrel{\circ}{\circ}$

TABLE VI. Continued


```
#
```


8
n
0


```
M
```

TABLE VII. PRESSURECOEFFICIENTS ONMODEL WITH NACA 1-85-100INLET AND A CONTRACTION RATIO OF 1.250
TABLE VII. Continued


```
        8
```



```
    !
```


更

$\stackrel{8}{11}$

8
0
0
0

:

TABLE VII. Continued

${ }^{\text {Pall }}$
Inllit
Heremit

(b) Continued
m mr $=0.67$ and $\alpha=0^{\circ}$

TABLE VII. Continued

.


```
        )0
```



```
    \)
```



```
    )
```



```
    B
```


嵒

mfr $=0.49$ and $\alpha=-2.0^{\circ}$

$\stackrel{8}{0}$

 这人 人 					

Tillizizi

 BLE VII. Continued (c) Concluded

TABLE VII. Continued

$\stackrel{8}{1}$

0%%
0%%

8
8

%
%

(d) Continued

8
1
6

(d) Concluded

,
8
0
0
0

$\stackrel{8}{\circ}$

Figure 1. Simplified cross-sectional sketch of complete model. Linear dimensions are in inches.

L- $82-11463$
Figure 2. Complete model installed in 16-Foot Transonic Tunnel test section.

Figure 3. Pressure instrumentation (on struts at $\phi=0^{\circ}, 90^{\circ}$, and 180°) used to obtain data for mass-flow
computations. Linear dimensions are in inches.

Figure 4. Variation of test Reynolds number with free-stream Mach number.

X/L, percent
(a) $\mathrm{M}=0.79$.
Figure 5.- Pressure coefficient variation with X / L for the NACA 1-85-100 inlet with a contraction ratio of 1.009

[^0]
X/L, percent

$\bigcirc \square \diamond \triangleleft \Delta \square$

(b) $\mathrm{M}=0.84$ and $\mathrm{mfr}=0.78$.
Figure 6.- Continued.

Figure 7.- Pressure coefficient variation with X / L along the $\phi=90^{\circ}$ meridian for the NACA 1-85-100 inlet with a

X/L, percent
(a) $\mathrm{M}=0.60$.
Figure 8.- Pressure coefficient variation with X / L for the NACA 1-85-43.9 inlet with a contraction ratio of 1.250 for several mass-flow ratios at $\alpha=0^{\circ}$. Data combined from $\phi=0^{\circ}$ and 180° meridians.

0
0
0
0 0.000
ह

$\bigcirc \square \diamond \triangleleft$

X/L, percent
Figure 8.- Continued.

$\bigcirc \square \diamond \triangleleft$

$\begin{array}{llll}70 & 80 & 90 & 100\end{array}$
X/L, percent
Figure 8.- Concluded.

X / L, percent
(i) $\mathrm{M}=0.87$ and $\mathrm{mfr}=0.49$.

```
            #0}00.00
% O
                    Oロ\diamond\triangleleft
```



```
                    X/L, percent
                    (j) M=0.87 and mfr =0.67.
                                    Figure 9.- Continued.
```



```
(m) \(\mathrm{M}=0.92\) and \(\mathrm{mfr}=0.68\).
Figure 9.- Continued.
```


 $90 \quad 100$ X/L, percent
(n) $\mathrm{M}=0.92$ and $\mathrm{mfr}=0.82$.
Figure 9.- Concluded.

$\begin{array}{ll}000 \\ 0 & 0.0 \\ 0 & 0.0 \\ 0\end{array}$
E
$\Sigma \stackrel{Q}{0}_{\infty}^{\infty} 0_{0}^{\infty} 0^{\infty}$
$0 \square \diamond \triangleleft$

[^1]

$\bigcirc \square \diamond \Delta \Delta \Delta$

Figure 12.- Continued.

$\begin{array}{ll}0 & 0.00 \\ 8 & 0.0\end{array}$

$\sum \quad{ }^{\infty} 0_{0}^{\infty} \infty$
$\circ \square \diamond \triangleleft$

$\begin{array}{lll}00 & 0 \\ 8 & 0 & 0 \\ 8 & 0 & 0 \\ 0\end{array}$

$\Sigma \quad Q_{0}^{\infty} \mathscr{O}_{0}^{\infty} 0_{0}^{\infty} 0^{\infty}$

$\begin{array}{lll}0 & 0.000 \\ 8 & 0.0 & 0 .\end{array}$

之 ふুスNুス

$\mathrm{X} / \mathrm{D}_{\text {max }}$
Figure 12．－Concluded．

Figure 13.- Pressure coefficient variation with X / D in the contraction and diffuser portions of the
NACA 1-85-100 inlet with a contraction ratio of 1.25 for several mass-flow ratios and angles of attack.

$\circ \square \diamond \triangleleft \Delta \Delta$

$\mathrm{X} / \mathrm{D}_{\max }$
(b) $\mathrm{M}=0.84$ and $\mathrm{mfr}=0.67$.
Figure 13.- Continued.
 $\bigcirc \square \diamond \triangleleft$

(d) $\mathrm{M}=0.87$ and $\mathrm{mfr}=0.49$.
Figure 13.- Continued.

$0 \square \diamond \triangleleft$

(e) $\mathrm{M}=0.89$ and $\mathrm{mfr}=0.49$.
Figure 13.- Concluded.
$\begin{array}{ll}8 & 0.000 \\ 8 & 0.0\end{array}$
E

$$
\sum \quad n 9880
$$

$\circ \square \diamond \triangleleft \Delta$

v°
$\begin{array}{ll}0 & 0.000 \\ 8 & 000\end{array}$

Σ 芯芯志志志

Figure 14．－Continued．
$\begin{array}{llll}0 & 0.000 \\ 8 & 0 & 0.0 & 0\end{array}$
官

$\circ \square \diamond \triangleleft \Delta$

[^2]
$\mathrm{X} / \mathrm{D}_{\max }$
(d) $\mathrm{M}=0.72$.
Figure 14.- Continued.

$\circ \square \diamond \triangleleft \Delta$

[^3]$\begin{array}{llll}8 & 0.0 \\ 8 & 0 & 0 & 0 \\ 8 & 0\end{array}$参
इ NANAN

$\mathrm{X} / \mathrm{D}_{\text {max }}$
Figure 14.- Continued.

光

$\circ \square \diamond \Delta \Delta \square$

$\mathrm{X} / \mathrm{D}_{\text {max }}$
(g) $\mathrm{M}=0.79$.
Figure 14.- Continued.
$\begin{array}{lll}00 \\ 8 & 000000 \\ 8 & 000\end{array}$

Figure 14.- Continued.
$\begin{array}{ll}8 & 00000 \\ 8 & 0 \\ 0 & 0 \\ 0\end{array}$

$\circ \square \diamond \Delta \Delta \Delta$

(j) $\mathrm{M}=0.87$.
Figure 14.- Continued.

Figure 14.- Concluded.

$$
\bigcirc \square \diamond \triangleleft \Delta \Delta
$$

v
$\mathrm{X} / \mathrm{D}_{\max }$
(a) $\mathrm{M}=0.60$ and $\mathrm{mfr}=0.50$.
Figure 15.- Pressure coefficient variation with X / D in the contraction and diffuser portions of the NACA 1-85-43.9 inlet with a contraction ratio of 1.25 for several mass-flow ratios and angles of attack.

$$
\begin{aligned}
& \begin{array}{lll}
80 & O & 0 \\
8 & 0 & 0 \\
8
\end{array} \\
& \text { (c) } \mathrm{M}=0.60 \text { and } \mathrm{mfr}=0.82 \text {. } \\
& \text { Figure 15.- Continued. }
\end{aligned}
$$

$\bigcirc \square \diamond \triangleleft \Delta \Delta$

$\mathrm{X} / \mathrm{D}_{\text {max }}$
(g) $\mathrm{M}=0.84$ and $\mathrm{mfr}=0.67$.
Figure 15.- Continued.

(h) $\mathrm{M}=0.84$ and $\mathrm{mfr}=0.81$.
Figure 15.- Continued.

[^0]: X/L, percent
 (e) $\mathrm{M}=0.92$.

 Figure 5.- Concluded.

[^1]: X/L, percent
 (d) $\mathrm{M}=0.89$.

 Figure 10.- Continued.

[^2]: (c) $\mathrm{M}=0.69$.

 Figure 14.- Continued.

[^3]: (e) $\mathrm{M}=0.74$.

 Figure 14.- Continued.

