-

View metadata, citation and similar papers at core.ac.uk brought to you by«‘% CORE
a4

provided by NASA Technical Reports Server

NASA Contractor Report 202312
ATAA-97-0026

Parallel NPARC:
Implementation and Performance

S.E. Townsend
NYMA, Inc.
Brook Park, Ohio

December 1996

Prepared for
Lewis Research Center
Under Contract NAS3-27186

National Aeronautics and
Space Administration

https://core.ac.uk/display/42775065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Parallel NPARC:
Implementation and Performance

S. E. Townsend *
NYMA Inc.
NASA Lewis Research Group
Brook Park, Ohio 44142

Abstract

Version 3 of the NPARC Navier-Stokes code in-
cludes support for large-grain (block level) paral-
lelism using explicit message passing between a het-
erogeneous collection of computers. This capability
has the potential for significant performance gains,
depending upon the block data distribution. The
parallel implementation uses a master/worker ar-
rangement of processes. The master process assigns
blocks to workers, controls worker actions, and pro-
vides remote file access for the workers. The pro-
cesses communicate via explicit message passing us-
ing an interface library which provides portability to
a number of message passing libraries, such as PVM
(Parallel Virtual Machine). A Bourne shell script is
used to simplify the task of selecting hosts, starting
processes, retrieving remote files, and terminating
a computation. This script also provides a simple
form of fault tolerance. An analysis of the compu-
tational performance of NPARC is presented, using
data sets from an F/A-18 inlet study and a Rocket
Based Combined Cycle Engine analysis. Parallel
speedup and overall computational efficiency were
obtained for various NPARC run parameters on a
cluster of IBM RS6000 workstations. The data show
that although NPARC performance compares favor-
ably with the estimated potential parallelism, typi-
cal data sets used with previous versions of NPARC
will often need to be reblocked for optimum parallel
performance. In one of the cases studied, reblocking
increased peak parallel speedup from 3.2 to 11.8.

*This work was supported by the NASA Lewis Re-
search Center under contract NAS3-27186 with Gary Cole
as monitor.

Introduction

Current trends in computational fluid dynamics
stress an ever-increasing need for greater compu-
tational power from constant or even decreasing
resources. In an effort to provide traditional su-
percomputer performance using lower-cost worksta-
tions, version 3 of the NPARC Navier-Stokes code
includes support for large-grain parallelism using ex-
plicit message passing between a heterogeneous col-
lection of computers.

Since NPARC is a multi-block code, a natural
choice for parallel decomposition is by block. This
leads to performance being sensitive to the block
data distribution. Typical existing NPARC applica-
tions have had their blocks designed for primarily ge-
ometric reasons. This usually results in a highly un-
balanced data distribution between a small number
of blocks. By suitably balancing the load between
blocks, possibly via a simple block splitting proce-
dure, NPARC applications can now achieve signif-
icant performance improvements through the com-
bined computational power and memory of a collec-
tion of workstations.

The following sections describe the parallel imple-
mentation, how measurements of performance were
made, and the performance results for three real-
world data sets.

Copyright ©1997 by the American Institute of Aeronau-
tics and Astronautics, Inc. No copyright is asserted in the
United States under Title 17, U.S. Code. The U.S. Govern-
ment has a royalty-free license to exercise all rights under the
copyright claimed herein for government purposes. All other
rights are reserved by the copyright owner.

Parallel Implementation

The addition of a parallel processing capability re-
quires addressing issues related to process organiza-
tion, file input and output, message passing, system
startup and shutdown, and parallel vs. serial results.

Process Organization

NPARC uses a master/worker process organization
similar to that of the NASTD code!. The master
process is responsible for worker block assignment
and sequencing while worker processes do the actual
calculations. The master process also acts as a file
server for the worker processes. This avoids requir-
ing a common file system across all processors.

Having a single master process serve multiple
worker processes introduces a potential performance
bottleneck. It is possible, via a command-line op-
tion, to collect statistics on the time workers spend
waiting for service by the master process. As ex-
pected, the wait time goes up as the number of work-
ers increases. However, in most cases the master
process response time is not the limiting factor to
performance.

The main determinant to parallel performance is
the block data distribution and how those blocks are
assigned to worker processes. NPARC does not con-
trol block data distribution, but does employ two
methods for block assignment in order to improve
the load balance across worker processes depending
upon the mode of calculation, interlocked or non-
interlocked, which is controlled by the input param-
eter ILOCK.

Interlocked mode, which is the default mode, is
required if bit-for-bit identical results are desired be-
tween runs using the same input. In this mode all
interface data updates are strictly synchronized and
deterministic (see Figure 1). When statically balanc-
ing an interlocked calculation, NPARC first sorts the
blocks according to size, and then assigns blocks in
phases related to the synchronization phases which
occur at runtime. Worker load within a synchroniza-
tion phase is balanced, but overall worker load may
be quite unbalanced.

In contrast to interlocked mode, non-interlocked
mode is non-deterministic (see Figure 2). Results
from runs using the same input will not necessarily
be bit-for-bit identical. Thisis due to the lack of syn-
chronization between interface data updates. Non-
interlocked mode is typically suitable for steady-
state calculations. When statically balancing a non-

Iteration N Hteration N+1
) | 1 1 i
| B | T | |
Womef‘lI H . 1
1 1 t | 1
[[[1 1
Worker2 | e 1 I 1 1 see
1 1 1 I 1 1 |
' L L
Worker 3 : :] |]
i 1 i 1 1
1 4 [} 1 1
~— Barrier
B Block Computation
IR Boundary Condition Read/Write

Figure 1: Interlocked computation sequence.

lteration N+1

Iteration N

Worker 1

Worker 2

Worker 3

i Block Computation
I Boundary Condition Read/Write

Figure 2: Non-interlocked computation sequence.

interlocked calculation, NPARC first sorts the blocks
according to size and then assigns blocks to workers
in order to balance overall worker load. This method
of balancing results in higher performance than in-
terlocked mode and is preferred when the determin-
ism of interlocked mode is not required. The lack of
interface synchronization in this mode also has the
effect of allowing worker processes to be working on
different iterations, depending upon how imbalanced
the blocks are. The input parameter ISYNC is pro-
vided to limit this effect. All worker processes are
required to be within ISYNC iterations of each other.
All worker processes are also required to have com-
pleted the same iteration before a restart file is writ-
ten. To use this mode for time-accurate calculations,
ISYNC must be set to zero.

The master/worker process organization chosen is
not the only way a multi-block code can be run
in parallel. For instance, all processes could be
peers, maintaining a synchronized view of the system
state via various mechanisms. However, the mas-
ter/worker arrangement is likely to be more flexible
for future enhancements such as interactive steering
or coupling with other codes in a multidisciplinary
environment.

Input/Output Methods

In a distributed environment file handling can some-
times be a problem. As stated above, NPARC’s
master process acts as a file server for the worker
processes. Thus, for a worker to read (or write) a
file it sends a read (or write) request to the master
process which then returns (or accepts) the data.
This file server arrangement is used for restart, in-
terface, and interpolation files. Worker output files
such as the convergence history are collected at the
end of a run by the runnparc script to be described
later. All other files have temporary lifetimes and
are handled independently by each worker process
in typical non-distributed fashion.

File placement may be controlled via the
NPARC_TMP environment variable. This is particu-
larly useful in clustered environments where files de-
fault to an NFS file server. An appropriate setting
of NPARC_TMP can then cause temporary files to be
placed on locally attached disks, avoiding NFS over-
heads and network contention.

In NPARC 2.0, setting the compile-time parame-
ter MDISK appropriately would avoid disk I/O over-
head when accessing block data by keeping this data
in memory. NPARC 3.0 adds a similar capability for
interface and interpolation data via the MIFACE and
MINTERP compile-time parameters, respectively.

Message Passing Interface Layer

A layer of low overhead subroutines are used to iso-
late the NPARC code from the differences between
various message passing library interfaces. These
routines also provide a library-independent mecha-
nism for process and messaging statistics.

By using this interface layer, NPARC has been
run over MPI (Argonne MPICH and SGI implemen-
tations), IBM MPL, and PVM (Oak Ridge and Cray
T3D implementations).

System Startup and Shutdown

NPARC uses a Bourne shell script runnparc to han-
dle issues related to system startup, fault recovery,
and shutdown. A single script is used to support the
various message passing environments NPARC can
use, providing the user with a single uniform inter-
face. Use of a script separate from the NPARC code
itself allows site and/or user customization of how
the code is run without affecting the code itself.
During system startup hosts specified by the user
or queueing system are scanned to ensure that
NPARC and the message passing environment are
available. This avoids various difficult-to-interpret

errors when starting a distributed application. Once
the host scanning phase is complete, any initializa-
tion files required by the message library (i.e. the
PVM hostfile) are created and any environment ini-
tialization (such as starting PVM daemons) is per-
formed. Finally, the master NPARC process is in-
voked.

During the run, if a fault occurs (such as worker
process abort) the NPARC master process will ter-
minate. Upon master process termination, the
runnparc script interrogates a file to determine why
the master process stopped and the number of com-
pleted iterations. If the reason for stopping was not
a normal completion of the calculation and not a
known unrecoverable error (such as an erroneous in-
put file), then the script will automatically restart
the calculation from the last restart file written. To
avoid constantly restarting in situations which re-
peatedly fail, runnparc requires that the number of
completed iterations increase within a configurable
number of restart attempts. This simple form of
fault tolerance allows NPARC to recover from var-
ious problems (such as host failure) automatically.
Obviously, loss of the runnparc host is fatal.

Once the calculation completes normally (or too
many failures have occurred) runnparc will perform
any necessary message library cleanup (such as PVM
daemon shutdown), collect output files, and remove
worker temporary files.

Result Comparison

Since block interface data is exchanged differently
when running in parallel, the results of serial and
parallel calculations are not expected to be bit-for-
bit identical. The differences are the result of differ-
ing block evaluation orders. This affect also occurs
with the serial code when the block order is explic-
itly changed via the NPARC input file.

Figure 3 shows pressure contours calculated af-
ter converging to a steady-state solution with an
L, residual of 1 x 10~28 for the “Case 4” example
from the NPARC user’s guide?. For this calcula-
tion, the blocks are solved serially in normal (1, 2,
3) order. Performing the same calculation, but us-
ing a reversed (3, 2, 1) block evaluation order results
in 2 maximum deviation from the original calcula-
tion of 6.79 x 10~%. Performing the same calculation
again, but this time evaluating the blocks in parallel
results in a maximum deviation of 4.65 x 107°.

This example shows that while the parallel re-
sults are not bit-for-bit identical to results from a
serial calculation, the differences are the same order
of magnitude as those resulting from a serial calcu-

S

A -

Figure 3: Case 4 pressure contours after converging
to an Ly residual of 1 x 10~8, block evaluation order:
1,23

lation using a different block evaluation order.

Performance Measurement

Metrics

The primary metric used in this study is Itera-
tions Per Hour (IPH). This is a more concrete and
application-oriented metric than a simple speedup
ratio. Speedup ratios can be misleading when com-
paring different block data distributions since better
parallel block distributions can adversely affect se-
rial performance.

IPH ignores startup and shutdown overheads
which are typically a small percentage of total run-
time for a real application, but are often a large per-
centage for the short runs used in performance anal-
yses such as described here. IPH also ignores the ef-
fect that block data distribution has on convergence
rate. Time to convergence would be a better metric,
but the time required would preclude studies such
as that described here.

The traditional parallel speedup metric is easily
derived as the ratio of parallel IPH to serial IPH.
Processor efficiency can then be obtained as the ratio
of parallel speedup to the number of processors used.

Also reported below is estimated speedup. This
metric is directly based upon the block data distribu-
tion. It is the ratio of the total number of grid points
assigned to the most heavily loaded worker process
to the total number of grid points in all blocks. This
is a measure of the potential parallelism. It neglects
all paralle] overheads.

Measurement Procedure

Performance was measured using IBM RS/6000
model 590 workstations using either an Ethernet or
ATM network. The message passing library used
was PVM version 3.3.11. Non-interlocked mode

runs were configured with NPARC input parameter
ISYNC=2.

In an effort to keep serial vs. parallel performance
comparisons fair, all serial tests were performed on
a machine with sufficient memory to avoid inflicting
the serial test with additional paging overhead. In
addition, to isolate computational performance from
possible NFS overheads and network contention, all
files were located on locally attached disks.

The IPH metric was obtained by enabling the
NPARC -trace iterations command-line option
which reports elapsed time per iteration. An aver-
age of the reported elapsed times per iteration was
taken after dropping anomalous values from startup
and shutdown phases of the calculation. While no
other users were allowed on the systems during the
measurements, various system programs would occa-
sionally be executed for automated system mainte-
nance. Because of this, the exact performance mea-
sured for any specific data point may not be repro-
ducible. However, the trends in performance are re-
producible, and are expected to be valid for other
system configurations as well.

Performance Results

F/A-18 Inlet

The first data set used for performance analysis is
based on an F/A-18 inlet flow study®. The default
Beam-Warming pentadiagonal solver is used with
the Spalart-Allmaras turbulence model. The data
has been modified from the original in order to con-
form to NPARC 3.0 input requirements. The block
data distribution for this case is shown in Figure 4.
Note the considerable variation in block size, and
the large number of block interfaces. These factors
result in a maximum estimated speedup of only 6.0
and over 900 messages per iteration.

Figure 5 shows the performance when running in
non-interlocked mode with various memory alloca-
tion options in effect. All runs were performed us-
ing an Ethernet network. Peak performance occurs
with seven processes, with a measured speedup of
4.9 compared to an estimated speedup of 5.9.

The relative insensitivity of performance with re-
spect to memory allocation options is likely due to a
combination of using a locally attached disk and disk
buffer caching in the operating system. Performance
when accessing files via NFS is likely to be much
more sensitive to what data is resident in memory

Grid Points

1214207 Total Points
99 interfaces

Block Number

Figure 4: F/A-18 block data distribution.

and what must be brought in from disk. Regardless
of disk access method, it is most important to have
block data resident (when there are less worker pro-
cesses than blocks). Next in importance is keeping
interface data resident. Keeping interpolation data
resident appears to be fairly unimportant to appli-
cation performance, though there is a measurable
effect.

Figure 6 shows the performance when running in
interlocked mode. These runs have all data resi-
dent in memory. Estimated performance for both
interlocked and non-interlocked modes are shown to
indicate the effect of the different block assignment
strategies in the two modes. Runs using Ethernet
and ATM networks are shown, displaying the sen-
sitivity of application performance on network per-
formance. Peak Ethernet performance occurs with
twelve processes, with a measured speedup of 3.0
compared to an estimated speedup of 5.1. Peak
ATM performance occurs with sixteen processes (no
more ATM hosts were available for testing), with a
measured speedup of 4.0 compared to an estimated
speedup of 5.4.

With the poor load balance between blocks and
the large number of interfaces, the F/A-18 data set
provides an example of how NPARC performs in a
near worst case scenario. Non-interlocked mode per-
formance is fair, but interlocked mode performance
is quite poor. Even with a high-performance net-
work such as ATM, application performance is dis-
appointing, indicating that code modifications are
required. Such modifications have begun, and pre-

250 . ’ . K
/ [===""1deal
/| = - -+ Estimated Non-Interlocked
200 | / O——0 Memory Resident Ethemet| 4
) o—0 MDISK=0 Ethemet
S &-—=0 MIFACE=0 Ethemet
K *——» MINTERP=0 Ethemet
3 150+ [eaeeas e ae oo aee]
g
1
]
2 100t .
50 |- e
0 : . . :
0 5 10 15 20 25

Processes

Figure 5: F/A-18 non-interlocked solution perfor-
mance using an Ethernet network.

250 r T — T
,
;[- ideal
/| +— Estimated Interlocked
200 +) » - - « Estimated Non-interflocked | |
) O0——0 Interlocked Ethemet
) o—a0 Intedocked ATM
,/
= ?
3 10r Y aae 4t eme e s :
%
S
s
S 100 J
50 |]
0 N . . "
0 5 10 15 20 25

Figure 6: F/A-18 interlocked solution performance
using Ethernet and ATM networks.

Grid Points

1536663 Total Points
7 Interfaces

400000

100000

Block Number

Figure 7: Original RBCC block data distribution.

liminary results are shown at the end of this paper.

Rocket Based Combined Cycle Engine

The second data set used for performance analysis
is based on a Rocket Based Combined Cycle Engine
(RBCC) inlet study®. The default Beam-Warming
pentadiagonal solver is used with the Chien k¢ two-
equation turbulence model. The data has been mod-
ified from the original in order to conform to NPARC
3.0 input requirements. The block data distribution
for this case is shown in Figure 7. Note the con-
siderable variation in block size. This results in a
maximum estimated speedup of only 3.4.

Figure 8 shows the performance when running in
both interlocked and non-interlocked modes. These
runs have all data resident in memory and use the
ATM network. Peak non-interlocked performance
occurs with 5 processes, with a measured speedup
of 3.2 compared to an estimated speedup of 3.4.
Peak interlocked performance occurs with 7 pro-
cesses, with a measured speedup of 3.2 compared
to an estimated speedup of 3.4. The significantly
lower overall performance shown here compared to
the F18 performance is likely due to the more com-
plex turbulence model.

The limited number of blocks and poor balance of
this data set is likely to be representative of many
current NPARC applications. Parallel performance
with respect to the potential parallelism is good, pri-
marily due to the limited number of block interfaces.
The limiting factor is the imbalance in the block data

50 -
-~ - ideal
» - - » Estimated Noninterocked
40 + »— Estimated Interlocked 4
O—-0 Noninterlocked ATM
0—0 Interiocked ATM
4

3ot Fen

g

[

2 .
10| 4
0 "

[¢] 2 4 6 8

Figure 8: Original RBCC solution performance us-
ing an ATM network.

distribution.

Reblocked RBCC

The third data set used for performance analysis is
taken from the RBCC case described above. How-
ever, the data has been reblocked using a simple
block-splitting routine in order to approximately
balance the amount of data in each block. The
blocks were split using a cutting plane perpendicular
to the main flow path. The resulting block data dis-
tribution is shown in Figure 9. Note that although
the balance between blocks has been improved, both
the total number of points (due to block overlaps)
and the number of block interfaces has increased.
This reblocking results in an increase in maximum
estimated speedup from 3.4 to 12.6 and an increase
in messages per iteration from 83 to 191.

Figure 10 shows the performance when running in
both interlocked and non-interlocked modes. These
runs have all data resident in memory and use the
ATM network. Peak non-interlocked performance
occurs with 16 processes, with a measured speedup
of 11.8 compared to an estimated speedup of 12.6.
The temporary plateau in performance at 8 pro-
cesses appears to be the result of the block assign-
ment strategy and master/worker process arrange-
ment, but this phenomenon needs further investi-
gation. Peak interlocked performance occurs with
16 processes, with a measured speedup of 10.6 com-
pared to an estimated speedup of 12.6. Beyond 8

Grid Points

150000
1632879 Total Points
16 Interfaces
100000 + k
50000 + B
1]

Block Number

Figure 9: Reblocked RBCC block data distribution.

processes parallel overheads become evident. This
is primarily the result of worker synchronization.

As can be seen from comparing figures 8 and 10,
simply splitting existing blocks in a manner to ap-
proximately balance their size can have dramatic ef-
fects on parallel performance. Note that even when
the original block distribution is performing well
(such as at 4 processes) the reblocked case has bet-
ter performance. This increased performance is not
entirely free of drawbacks. The increased number
of blocks will increase the number of iterations re-
quired for a given level of convergence. However, the
performance advantage of the reblocked case is ex-
pected to outweigh the disadvantage of the slightly
slower convergence rate.

Future Releases

Various modifications to the released NPARC 3.0
code have been made to improve its performance.
These include a less restrictive interlock barrier tech-
nique, better message packing, and tracking which
worker is running the slowest so that its messages
may be given a higher priority. Figure 11 shows the
before and after results of these changes, using the
F/A-18 interlocked calculation as the test case. Both
the Ethernet and ATM performance have been con-
siderably improved, with the ATM performance rea-
sonably close to the estimated speedup curve. The

150 T T T

-~-- |deal - ’
= - - » Estimated Noninterlocked 7
«—— Estimated Inteftocked e
0—0 Noninterdocked ATM o
o0 Interlocked ATM .
100
5
[=]
[
2
50 -
0 s . R
o] 4 8 12 16

Figure 10: Reblocked RBCC solution performance
using an ATM network.

majority of the performance improvement is likely
due to the improved interlock scheme. Figure 12
shows the before and after results when running
the reblocked RBCC non-interlocked calculation. In
this case performance is essentially unchanged, the
variations shown are not significant given the un-
certainty in the measurements. Note that the tem-
porary plateau in performance at 8 processes noted
previously is still evident. This shows that the phe-
nomenon is not the result of inefficient message pack-
ing or message servicing.

Additional changes which may be included in fu-
ture releases include enabling worker processes to
exchange interface data directly rather than via the
master process, and performing multiple block solu-
tion iterations between block interface updates.

Concluding Remarks

The new parallel capability of NPARC can provide
a considerable boost in performance over the serial
version provided a reasonably balanced block dis-
tribution is used along with a good network such as
ATM. The computed results are different than those
calculated by the serial code, but the differences are
qualitatively the same as those resulting from an al-
tered block order in a serial computation.

250 T
’ - -~ ldeal
/ «—— Estimated Interocked
200 - J/ 0—O Ethernet Before g
; o———0 ATM Before
/ &— Ethemet After
; *—+ ATM After
3150} 1
g
<
2 100 | E
50 + B
o . N .
0 5 10 15 20
Processes

25

Figure 11: Improved NPARC interlocked solution
performance on F/A-18 data set using Ethernet and

ATM networks.

150

T

- --- Ideal

©0—0 ATM Before

0——0 ATM After

« - - « Estimated Noninterlocked

100 +

lterations/MHour

Figure 12: Improved NPARC non-interlocked solu-
tion performance on reblocked RBCC data set using

an ATM network.

16

References

. Johnson, J., “Distributed Parallel Processing in

Computational Fluid Dynamics, > NPARC Al-
liance Technical Meeting, Fall 1994.

. Sirbaugh, J., et al., A User’s Guide to NPARC

Version 2.0, November 1, 1994.

. Smith, C.F., Podleski, S.D., “Installed F/A-18

Inlet Flow Calculations at 30 Degree Angle-
of-Attack: A Comparative Study,” AIAA-94-
3213, AIAA/ASME/ASEE 30th Joint Propul-
sion Conference, Indianapolis, IN, June 27-29,
1994. (See also: NASA CR-195297)

. DeBonis, J.R., Yungster, S., “Rocket-Based

Combined Cycle Engine Technology
Development—Inlet CFD Validation and Ap-
plication,” AIAA-96-3145, AIAA/ASME/-

SAE/ASEE 32nd Joint Propulsion Conference,
Lake Buena Vista, Florida, July 1-3, 1996. (See
also: NASA TM-107274, ICOMP-96-6)

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per rasponse, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspact of this
collection of information, including sugvstions for reducing this burden, to Washington Headquarters Services, Directorate for information Operati and Reports, 1215 Jef
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and 1o the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, OC 20503.

3. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1996 Final Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Parallel NPARC: Implementation and Performance
WU-509-10-11
6. AUTHOR(S) C-NAS3-27186
S.E. Townsend
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
NYMA, Inc.
2001 Aerospace Parkway E-10605
Brook Park, Ohio 44142
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
National Aeronautics and Space Administration
Lewis Research Center NASA CR-202312
Cleveland, Ohio 44135-3191 AIAA-97-0026

11. SUPPLEMENTARY NOTES
Prepared for the 35th Aerospace Sciences Meeting and Exhibit sponsored by the American Institute of Aeronautics and
Astronautics, Reno, Nevada, January 6-10, 1997. Project Manager, Gary L. Cole, Turbomachinery and Propulsion
Systems Division, NASA Lewis Research Center, organization code 5880, (216) 433-3655.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Categories 02 and 61

This publication is available from the NASA Center for AeroSpace Information, (301) 621-0390/

13. ABSTRACT (Maximum 200 words)

Version 3 of the NPARC Navier-Stokes code includes support for large-grain (block level) parallelism using explicit
message passing between a heterogeneous collection of computers. This capability has the potential for significant
performance gains, depending upon the block data distribution. The parallel implementation uses a master/worker
arrangement of processes. The master process assigns blocks to workers, controls worker actions, and provides remote
file access for the workers. The processes communicate via explicit message passing using an interface library which
provides portability to a number of message passing libraries, such as PVM (Parallel Virtual Machine). A Bourne shell
script is used to simplify the task of selecting hosts, starting processes, retrieving remote files, and terminating a computa-
tion. This script also provides a simple form of fault tolerance. An analysis of the computational performance of NPARC
is presented, using data sets from an F/A-18 inlet study and a Rocket Based Combined Cycle Engine analysis. Parallel
speedup and overall computational efficiency were obtained for various NPARC run parameters on a cluster of IBM
RS6000 workstations. The data show that although NPARC performance compares favorably with the estimated potential
parallelism, typical data sets used with previous versions of NPARC will often need to be reblocked for optimum parallel
performance. In one of the cases studied, reblocking increased peak parallel speedup from 3.2 10 11.8.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Parallel computing; CFD 16. PRICE cooé1
A03
37, SECURITY CLASSIFICATION |18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified

Standard Form 298 (Rev. 2-89)

Prescribed by ANS! Std. Z39-18
298-102

NSN 7540-01-280-5500

