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ABSTRACT

NASA is developing a new monopropellant propulsion system for small, cost-driven spacecraft with AV

requirements in the range of 10-150 m/sec. This system is based on a hydroxylammonium nitrate

(HAN)/water/fuel monopropellant blend which is extremely dense, environmentally benign, and promises

good performance and simplicity. State-of-art (SOA) small spacecraft typically employ either hydrazine or

high pressure stored gas. Herein, a "typical" small satellite bus is used to illustrate how a HAN-based

monopropellant propulsion system fulfills small satellite propulsion requirements by providing mass and/or

volume savings of SOA hydrazine monopropellants with the cost benefits of a stored nitrogen gas.

INTRODUCTION

In recent years, government and commercial mission designers have searched for more cost effective ways to

accomplish their missions. Drivers such as design and development time, launch costs, and risk mitigation

have led program-managers to move towards small spacecraft which can typically be built quickly and

launched on small vehicles or as secondary payloads. Both development costs and associated program risks

are therefore reduced. However, small spacecraft often are volume and power limited and thus, propulsion

options are limited.

The state-of-art (SOA) propulsion systems for small spacecraft are stored nitrogen gas and hydrazine

monopropellant systems. Stored nitrogen gas systems offer the simplest, lowest cost option. They require

essentially no power, and use an inert propellant, typically nitrogen, which requires no special ground

handling procedures. Specific impulse (In), however, is only 60 seconds and the storage density is quite

low (-0.23 g/cc). Liquid monopropellant systems offer significantly higher I_ (-223 sec) and storage
density (1.0 g/cc) with only modest power requirements (for catalyst bed heaters). However, the SOA

monopropellant (hydrazine) is toxic, carcinogenic, and flammable and so requires extensive infrastructure
and ground handling procedures. 1.2 The cost associated with the use of hydrazine often eliminates it as a

viable propulsion candidate for small spacecraft.

An improved propulsion system for these small satellites would have the high performance and high density

of the SOA hydrazine monopropellant system, but with the safety and handling benefits, and hence cost, of

a stored nitrogen gas system. The hydroxylammonium nitrate (HAN)-based monopropellant system under

development is targeted to provide precisely this.

HAN-based monopropellants have been pursued by the Army as Liquid Gun Propellants (LGP) for many

years. Through the Army liquid gun program, HAN-based propellants have shown promise in the areas of
environmental health and safety, energy, and storage density. Two HAN-based formulations developed by

the Army are LP1846 and LP1898. These formulations both contain nominally 60% HAN and 20% water
and differ only in the carbon containing component. LP1846 uses triethanolammonium nitrate (TEA_N) and

LP1898 uses diethylhydroxlammonium nitrate (DEHAN). These formulations are salts dissolved in water.

HAN is oxygen rich, and is commonly referred to as the oxidizer, the other salt is fuel rich and is referred to

as the fuel. Variations on these formulations are being developed for rocket monopropellant applications.

They are being derived from the aforementioned Army formulations as aqueous mixtures of HAN and a fuel.



Issuesspecifictorocketmonopropellants,suchasreliable,repeatablelowpressureignitionandcombustion
withcleanexhaust,arebeingconsidered.3

FIGUREOFMERIT

Thequantitativefiguresofmerittobepresentedinthispaperarewetpropulsionsystemmassandvolume.
Simply,smalleris better.Somequalitativemeritsof theHAN-basedmonopropellantpropulsionsystem
willalsobediscussedin termsof relativeoperatingcost.Byexploringthesefiguresof meritforseveral
samplespacecraft,thepotentialadvantagesofHAN-basedmonopropellantsareillustrated.

ANALYSIS

Sample Spacecraft

The Orbital Sciences Corporation (OSC) MicroStar (Figure 1) bus is chosen as a representative example of
a small satellite for comparison of the monopropellant and stored gas propulsion systems. MicroStar is a

representative 50-100 kg class satellite with a dry bus mass of -40 kg and a typical payload of -50 kg.

The baseline spacecraft structure is a 0.981 m diameter x 0.114 m deep ring providing a disc shaped area

which contains the bus subsystems (e.g. the batteries, electronics, and propulsion) as well as the

payload. 4"5'_While this space may be increased by adding more structural tings, the baseline configuration

is first assumed in this study because it is anticipated to be realistic for constellation and secondary payload
applications. A second case with no volume limitations is also considered.

Figure 1. Orbital Science's Corporations MicroStar Bus

Several variations of the MicroStar bus are chosen for this study to evaluate systems for a range of
missions. Four of the five sample spacecraft are variations on the genetic MicroStar bus. They have an
initial mass of 90 kg. 4 The MicroStar and MicroStar Enhanced variations have defined AVs of 11 and 75

m/sec, respectively. In order to illustrate the benefits of new technology for aggressive small satellite

missions two other AV examples are added: 100 and 150 m/sec. These examples are termed MicroStar

(100) and MicroStar (150). The fifth spacecraft considered is the ORBCOMM satellite. It is a specific

application of the MicroStar bus that was first launched in April of 1995 from a Pegasus. 6 The initial

mass in this application is -40 kg and the AV requirement is 11 m/sec. This spacecraft is chosen as an

example because it is a "real" mission that used the MicroStar bus. Table I contains the five sample
missions with the assumed initial mass and AV.



Sample
Spacecraft

ORBCOMM
MicroStar

MicroStarEnhanced
MicroStar(100)
MicroStar(150)

SatelliteInitialMass
(k_)
40

9O

90

90

9O

AV (m/see)

11

11
75
100
150

Table I. Sample Missions used for analysis

Propulsion System Assumptions

For the analysis, three propulsion system configurations are used to fulfill the mission AV requirements; a

SOA nitrogen stored gas system, a SOA hydrazine monopropellant system, and a (projected) HAN-based

monopropellant system. Figure 2 shows a schematic of the propulsion systems and Table II provides a
breakdown of the assumed component masses.
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Figure 2. Schematic of Propulsion Systems



System
Component

Fill&Drain Valve #1
Fill & Drain Valve #2
Pressure Transducer

Filter
Latch Valve

Valve/Thruster Assembly #1

Valve/Thruster Assembl]/#2
Total

Propulsion System Mass (kg)
Stored Gas

0.145
0.000
0.230
0.227
0.250
0.270
0.270

1.392

H_cdrazine
0.145
0.145
0.230
0.227
0.250
0.340
0.340

1.677

HAN-based

0.145
0.145
0.230
0.227
0.250
0.340
0.340

1.677

Table H. Propulsion System Component Mass

The stored gas system assumes a gaseous nitrogen propellant with a specific impulse of 60 seconds and a

storage density of 0.225 g/cc at 3000 psi. Cylindrical graphite overwrapped, aluminum lined, composite

tanks are assumed as are off-the-shelf fill and drain valve, pressure transducer, filter, latch valve, and two

3.3N thrusters operating in a blowdown mode.

For the hydmzine monopropellant system, a specific impulse of 223 seconds and a storage density of 1.00

g/cc are assumed. SOA spherical titanium alloy tanks with bladders, pressumnt fill and drain valves,

propellant fill and drain valve, filter, latch valve, are assumed along with two 3.3N thrusters operating with
a 5:1 blowdown ratio.

The HAN-based monopropellant, with a projected I_ of 210 seconds and a storage density of 1.43 g/cc,
assumes a system dry mass identical to that of the hydrazine system except for the reduction in tankage

attributable to a higher propellant density.

For each test case, the spacecraft structural ring internal depth (0.114 m), is used as the maximum allowable

tank diameter. As mission AV is increased, additional tanks are added to the system when this tank diameter

limitation is exceeded. The stored nitrogen gas system's cylindrical tanks are further limited to 0.400 m in

length so that they would easily fit in the structural ring of the spacecraft. These tankage assumptions help

show the impact of fuel density and I_pon the available spacecraft volume.

Mission Analysis

For simplicity, the missions are represented by a velocity change increment (denoted as AV). Thus, AV
includes such mission functions as orbit insertion, drag makeup, constellation maintenance, and disposal as

required by the mission design. Mission AV is related to the spacecraft propulsion system by:

AV = (Isp) * (g) * In (initial spacecraft mass / final spacecraft mass) (1)

Equation (1) is used to calculate final spacecraft mass from the assumed AV and initial spacecraft mass

(Table I) and I_p (Propulsion System Assumption section). The difference between initial and final

spacecraft masses provides fuel mass. Required tank volume is calculated from fuel mass and propellant
density by eq. (2) for the stored gas and eq. (3) for the monopropellant systems:

tank volume = (fuel mass) * (fuel density) (2)

tank volume = (fuel mass) * (fuel density) * (1-blowdown ratio") "1 (3)

Tank masses are calculated from tank volume. Tank mass along with the assumed component masses

(Table 11) are summed to obtain the propulsion system dry mass. The figures of merit (wet propulsion

system mass and volume) for each of the three propulsion systems for each of the five sample spacecraft are
then compared.

4



RESULTS and DISCUSSION

Quantitative Results: Mass and Volume

The figures of merit (wet propulsion system mass and volume) of each of the three propulsion systems for

each of the five sample spacecraft are calculated as described above. The wet propulsion system masses ard

volumes for the 11 m/sec ORBCOMM and baseline MicroStar cases along with the 75 m/sec enhanced

MicroStar case are shown in Table IH; results for all the cases are shown graphically in the Figures 3 and 4.

(Note: Spacecraft AV increases from left to right, first is the ORBCOMM, second the MicroStar and

continuing to the MicroStar (150) at the far right.)

Propulsion System

Fuel Density (g/cc)

Thruster AV (m/sec)

Thruster Isp (sec)

Initial Mass (kg)

Fuel Mass (kg)

Tankage Volume

(m^3)

Tank Diameter (m)

Tankage Mass (kg)
# of Tanks

Prop. Component

Dry Mass (kg)

Propulsion System

Wet Mass (kg)

Net Mass

(initial - wet

propulsion) (kg)

Total Impulse

(N-sec)

Mission

ORBCOMM MicroStar Baseline MicroStar Enhanced

Stored hydra- HAN- Stored hydra- HAN- Stored hydra- HAN-

Gas zine based Gas zine based Gas zine based

0.225 1.000 1.430 0.225 1.000 1.430 0.225 1.000 1.430

11 11 11 11 11 11 75 75 75

60 223 210 60 223 210 60 223 210

40.3 40.3 40.3 90.0 90.0 90.0 90.0 90.0 90.0

0.746 0.202 0.215 1.67 0.451 0.479 10.8 3.03 3.22

3.32E-3 i2.53E-4 1.88E-4 7.41E-3 5.64E-4 4.19E-4 4.79E-2 3.79E-3 2.81E-3

0.114 0.780 0.710 0.114 0.103 0.930 0.114 0.113 0.110

1.64 1.22 1.21 3.37 1.24 1.23 20.6 6.27 5.00

1 1 1 2 1 1 12 5 4

1.39 1.68 1.68 1.39 1.68 1.68 1.39 2.26 2.11

3.78 3.10 3.11 6.43 3.37 3.39 32.8 11.6 10.3

36.5 37.2 37.2 83.6 86.6 86.6 57.2 78.4 79.7

439 442 442 981 988 987 6338 6636 6629

Table III. MicroStar Baseline and Enhanced Cases with Tank Dimension Constrained

In the low initial mass, small AV example (ORBCOMM, 40 kg, 11 m/sec case), the monopropellant

systems have similar mass performance and only a small volume advantage over the stored nitrogen gas

system. However, as the initial spacecraft mass is increased to 90 kg in the baseline MicroStar case, the

savings in mass and volume of the hydrazine and HAN-based liquid monopropellant systems increases even

with the small 11 m/sec AV requirement. In general, it can be seen in the figures that as more aggressive

mission (high AVs) are considered, the better performance of the hydrazine and HAN-based monopropellant

systems require less wet mass and fuel volume than the stored nitrogen gas system. The need for a liquid

monopropellant for small spacecraft is further illustrated in Figure 4 by how the stored gas system's fuel

volume begins to take up the entire spacecraft bus for the high AV (total impulse) missions.



Wet System Mass vs. Total Impulse for
Microstar Class Spacecraft
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Figure 3. Propulsion System Wet Mass with Tank Dimension Constrained
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Figure 4. Tank Volume vs. Total Impulse for MicroStar Class Spacecraft
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The HAN-based system outperforms the hydrazine system in both mass and volume in all cases. The 40%

higher density HAN-based monopropellant, even with the slightly lower Isv, leads to fewer tanks, as shown
in Figure 5, this also reduces fittings, structure, and complexity (cost).
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Tanks Required by Monopropellant

Propulsion Systems
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iB Hydrazine J

0 1 2 3 4 5 6 7 8 9 10 11

Number of Tanks (-113 ram)

Figure 5. Number of Tanks Required by Monopropellant Propulsion Systems

Adding extra structural rings would remove the tank dimension limits imposed by the single ring

configuration (see Sample Spacecraft Section). Thus when one tank of any size is assumed, the hydrazine

system slightly outperforms the HAN-based system in terms of mass as shown in Table IV and Figure 6.

This one rank assumption may require an unreasonable number of spacecraft structural rings: severely

impacting launch vehicle payload volume.

Propulsion System Stored
Gas

Fuel Density (g/cc) 0.225
Thruster AV (m/see) 11
Thruster Isp (see) 60
Initial Mass (kg) 40.3
Fuel Mass (kg) 0.746

Tank Volume (m^3) 3.32E-3
Tank Diameter (m) 0.114

Tank Mass (kg) 1.64
# of Tanks 1

Prop. Component 1.39
Dry Mass (kg)

Propulsion System 3.78
Wet Mass (kg)

Net Mass 36.5

(initial - wet
propulsion) (kg)

Total Impulse 439
(N-sec)

Mission

ORBCOMM MicroStar Baseline MicroStar Enhanced

hydra- HAN- Stored hydra- HAN- Stored hydra- HAN-
zine based Gas zine based Gas zine based

1.000 1.430 0.225 1.000 1.430 0.225 1.000 1.430
11 11 11 11 11 75 75 75

223 210 60 223 210 60 223 210
40.3 40.3 90.0 90.0 90.0 90.0 90.0 90.0

0.202 0.215 1.67 0.451 0.479 10.8 3.03 3.22
2.53E-4 1.88E-4 7.41E-3 5.64E-4 4.19E-4 4.79E-2 3.79E-3 2.81E-3
0.780 0.710 0.114 0.103 0.930 0.114 0.194 0.175

1.22 1.21 2.14 1.24 1.23 7.12 1.47 1.40
l 1 l 1 1 1 1 1

1.68 1.68 1.39 1.68 1.68 1.39 1.68 1.68

3.10 3.11 5.20 3.37 3.39 19.3 6.20 6.31

37.2 37.2 84.8 86.6 86.6 70.7 83.8 83.7

442 442 981 988 987 6338 6636 6629

Table IV. MicroStar Baseline and Enhanced Cases with Tank Dimension Unconstrained
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Figure 6. Wet System Propulsion Mass with No Constraints on Tank Size

Overall for the small satellite class of spacecraft, the monopropellant systems are superior to the stored
nitrogen gas system in terms of mass and volume. Among monopropellants themselves, the hydrazine and

HAN-based systems are roughly equivalent on a mass basis. It is in terms of operability and cost that the

monopropellants can differentiate themselves.

Qualitative Discussion: Operability and Cost

Propulsion systems traditionally have been judged mainly on rocket performance. However, with the move

towards small, more cost effective spacecraft, factors such as environmental safety and operability have

increased in importance.

For the small satellite program manager the cost of ground operations associated with the propellant can be

a large program cost. 7's It is for this reason that high performing propulsion system options, such as

hydrazine monopropeUants, have often been dismissed as too expensive due to the extensive ground

operations procedures required to handle a flammable, toxic, carcinogenic propellant. Low Isp options such

as stored nitxogen gas systems are very attractive because of the low cost associated with the operability of

an inert gas system.

Qualitatively, the ground operations costs of a HAN-based monopropellant system can be more closely
equated to a stored gas system than a hydrazine monopropellant system. HAN-based monopropellants pose

only a very limited hazard when compared to hydrazine because the HA/q-based formulations are non-

flammable and non-explosive at atmospheric pressure, are non-carcinogenic, and have a vapor head

composed only of water. Personnel hazards are limited to skin absorption. Coveralls, gloves and

faceshields are sufficient for protection. 3.9.10

By using HAN-based monopropellants, ground operations required to handle the SOA monopropellant

(hydrazine) can be modified in a number of ways. First, because there are no vapor hazards associated with

HA.N-based monopropellants the need for Self-Contained Atmospheric Protective Ensemble (SCAPE) and



theassociatedtrainingshouldbeeliminated,alongwithsimplificationof healthmonitoringproceduresfor
groundoperationscrews.Thisreducesthesupportrequiredbyenvironmentalhealthandsafetypersonnel.
Second,becausethereis novaporhazardandthepropellantis non-flammableat atmosphericpressure,
fuelingprocedurescanbesimplifiedbyreducingand/oreliminatingfirepersonnelduringfueling. Other
savingscanberealizedbytheeliminationofaccessrestrictionsduringfuelingandthesimplificationof the
disposalofrinsewaterandpropellant.

CONCLUDINGREMARKS

In recentyearsbothgovernmentandsomecommercialmissiondesignershavemadea commitmentto
reducethecostof spacemissions.Thisis especiallytruein thesmallsatellitearea.Simple,high
performance,costeffectivepropulsionsystemsforthesesmallsatelliteswill berequiredto meetmission
performanceandcostgoals.Thesimplest,leastexpensiveSOApropulsionoptionavailableis stored
nitrogengas,but thesesystemsareheavyandhavelow Isp,bothof whichlimit missionperformance.
Hydrazineis higherin bothdensityandIsp,but its vaporis toxic,flammable,andcarcinogenicwhich
introducesextensivegroundoperationsthatarenotcosteffective.HAN-basedmonopropellantpropulsion
systemsarebeingdevelopedto providean operationallyefficient,costeffective,high performance
propulsionoption.A side-by-sideperformanceestimatefortheMicroStarspacecraftdemonstratedthemass
andvolumeadvantagesofHAN-basedpropulsionsystemswhencomparedto SOAstorednitrogengasand
hydrazinesystems.TheHAN-basedsystem'sadvantagesaremostpronouncedfor thehigherAV, volume

limited MicroStar spacecraft. These higher AV missions represent extended small spacecraft lifetimes

and/or enable secondary payloads to reach preferred orbits.

REFERENCES

1. Liquid Propellant Manual, CPIA M-4, Unit 2: Chemical Propulsion Information Agency, Columbia,

Maryland 21044-3200.

2. Hy&azine Handbook: Rocket Research Company, Aerospace Division, Olin Defense Systems Group.

3. Jankovsky, Robert S.: HA_N-Based Mon0propellant A_4essment for Spacecraft, NASA TM-107287,

July 1996.

4. Meurer, Robert H.: First Class Science On A Coach Class Ticket, Orbital Sciences Corporation, Dulles,

Virginia 20166.

5. Wilson, A. (Ed.): _Iane's Space Directory, 10th Ed., 1994-1995.

6. Steffy, David A.: ORBCOMM Satellites Launch and Initial Flight Operations, Orbital Sciences

Corporation, Dulles, Virginia 20166.

7. Sellers, J.; Paul, M.; Meerman, M.; Wood, R.: Investigation Into Low-Cost Propulsion Systems for

Small Satellite Missions, 9th Annual AIAA/USU Conference on Small Satellites 1995, University of

Surrey, Surrey, U.K.

8. Sellers, J.; Paul, M.; Meerman, M.; Wood, R.: A Low-Cost Propulsion Option for Small Satellites,

British Interplanetary Society, Journal, Vol. 48 Issue 3, pgs. 129-138.

9. Environmental Program Plan for Liquid Propellant XM46, ARDEC, Picatinny Arsenal, NJ, November

1993.

10. Liquid Propellant XM46 Handbook, ARDEC, Picatinny Arsenal, NJ, July 1994.



Form Approved
REPORT DOCUMENTATION PAGE OMBNo.0704-0188

Public reportingburden Ior tt_ collectionof informationis astir_ed to average 1.hour per r.esponse,includin_g,the time for rev'_win_ inst.n_'tio_, .l_ing exist!ng data sou.m_...,
gatheringand maintainingthe data needed, and completing an.oreviewing1heco=_-[ion of imormat=on._.eno c__mmentsragaro=.ngth_ ouroen esumme or any omer _.0¢ mm
collection of Info_, Includingsuggestionsfor reducingthis burden, to WashingtonHeadquarters Services, uirectora_ for m10tmaIIonOpera;K)fls_ Repots. ]_]', Jenerson
Davis H_hway, Suite 1204. Arlington,VA 222CQ-4302,and 1o the Offtcoof Management and Buoget. PaperworkHeouct_n project (0704-0188). Wasnmglon, LX.; L_rJ.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVE_ED

January 1997 Technical Memorandum

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

HAN-Based Monopropellant Propulsion System With Applications

s. AUTHOR(S)

Robert S. Jankovsky and Steven R. Oleson

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

WU-632-1B-1B

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-10619

10. SPO NSORING/MONR'ORING
AGENCY REPORT NUMBER

NASA TM- 107407

11. SUPPLEMENTARYNOTES

Robert S. Jankovsky, NASA Lewis Research Center and Steven R. Oleson, NYMA, Inc., 2001 Aerospace Parkway, Brook

Park, Ohio 44142 (work funded by NASA Contract NAS3-27186). Responsible person, Robert S. Jankovsky, organization

code 5430, (216) 977-7515.
12s. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 20

This publication is available from the NASA Center forAeroSpace Inforrna_on, (301) 621-0390

13. ABSTRACT (Maximum 200 words)

NASA is developing a new monopropellant propulsion system for small, cost-driven spacecraft with AV requirements in

the range of 10-150 m/see. This system is based on a hydroxylammonium nitrate (HAN)/water/fuel monopropellant blend

which is extremely dense, environmentally benign, and promises good performance and simplicity. State-of-art (SOA)

small spacecraft typically employ either hydrazine or high pressure stored gas. Herein, a "typical" small satellite bus is
used to illustrate how a HAN-based monopropellant propulsion system fulfills small satellite propulsion requirements by

providing mass and/or volume savings of SOA hydrazine monopropellants with the cost benefits of a stored nitrogen gas.

14. SUBJECT TERMS

Monopropellant; Satellite; Thruster

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

qSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

11

16. PRICE CODE

A03
i 20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 7.39-18
298-102


