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SUMMARY

An approximate factorization scheme based on the AF2 algorithm is presented for solving the three-
dimensional full potential equation for the transonic flow about isolated wings. Two spatial
discretization variations are presented; one using a hybrid first-order/second-order-accurate scheme
and the second using a fully second-order-accurate scheme. The present algorithm utilizes a C-H grid
topology to map the flow field about the wing. One version of the AF2 iteration scheme is used on
the upper wing surface and another slightly modified version is used on the lower surface. These two
algorithm variations are then connected at the wing leading edge using a local iteration technique.
The resulting scheme has improved linear stability characteristics and improved time-like damping
characteristics relative to previous implementations of the AF2 algorithm. The presentation is
highlighted with a grid refinement study and a number of numerical results.

INTRODUCTION

The long term objective of this research is to develop a chimera-based full potential flow solver which
will be compatible with the well-established OVERFLOW Euler/Navier-Stokes flow solver developed
at NASA Ames. 1 Thus, the user will have an option of which flow solver to use in the chimera-based
zonal grid approach: full potential, Euler or Navier-Stokes. Of course, the full potential option will not
be applicable for all applications, but for those that are applicable, the execution time should be up to
two orders of magnitude less than for the Navier-Stokes formulation. Indeed, a chimera-based full
potential solver should have modest execution times on even moderate-speed workstations. In a
parametric study the bulk of the required computations could utilize the full potential approach and
then a few selected conditions could be "checked" with a more complete, and thus more accurate,
Euler or Navier-Stokes simulation. Such an approach would be extremely cost effective especially
considering that all of these approaches would utilize the same problem setup and post processing
software and to a large extent the same grid generation software. Applications of this new approach
are quite numerous and include providing a fast mechanism for assessing wind tunnel wall and
support interference effects associated with wind tunnel testing, or it could be used directly in the
industrial preliminary design environment.

The specific goal of this report is to document recent advances in approximate factorization algorithms
for solving the full potential equation that will eventually be useful in a multi-zone chimera
environment. However, only single-grid-zone methodology will be presented herein. In particular,
the presentation will focus on numerical solution of the transonic flow about an isolated wing utilizing a
single-zone C-H-topology grid. For this grid all constant span stations on the wing exhibit the familiar
C-grid topology, and all constant chord stations across the wing exhibit the equally familiar H-grid
topology. Utilization of the chordwise C-grid topology is useful because it lends itself more readily to
boundary layer correction implementation, which is future goal of this work.

In the present study the AF2 full potential algorithm developed in Refs. 2-3, which uses an O-H grid
topology for isolated wing computations, is modified for the present C-H grid topology. Direct

§ Research Scientist, Advanced Computational Methods Branch.



applicationoftheRef.2-3AF2 iteration scheme on C-type grids is difficult because of a cell-aspect-
ratio stability limitation, which exists at the wing surface and is greatly accentuated by the C-type grid
topology. The nature of this instability, which was first described by South and Hafez, 4 will be briefly
described in the iteration scheme section of this report. The present AF2 scheme variation is
designed to control this instability and provides efficient and reliable convergence for a wide range of
isolated-wing transonic flow simulations involving C-H topology grids.

This preser_tation begins with a discussion of the governing equation formulation followed by a
detailed discussion of the numerical algorithm including spatial discretization scheme, boundary
conditions, vortex sheet conditions, and the newly modified AF2 iteration scheme. Next, typical
transonic wing computational results simulating the flow about the ONERA M6 Wing are presented.
These results include a grid refinement study showing the levels of error in lift and drag relative to
available Euler results. Finally, the presentation ends with concluding remarks and recommendations
for future work.

GOVERNING EQUATION FORMULATION

The steady, three-dimensional, full potential equation written in strong conservation-law form is given
by

(P_x)x + (P_y)y + (PV_z)z = 0 (la)

1

L 7+] Cy+$z)
(lb)

where p is the fluid density; x, y, and z are Cartesian coordinates; 7 is the ratio of specific heats; and

is the full or exact velocity potential related to the velocity vector q by

.-)

V¢=q

The velocity components can be expressed using Cartesian coordinates as follows:

V¢= =ui+vj+wk=_x i+_yj+_z k

-.) ..-) -_

where i, j, and k are the standard unit vectors in the x, y, and z directions, respectively. The mere
existence of the velocity potential implies that the curl of the velocity vector must vanish. Thus, flows
governed by the full potential equation must be irrotational. In addition, derivation of the density
relation [Eq. (lb) above] requires the assumption of isentropic flow. In Eqs. (1) the density (p) and

velocity components ( _x, _y, and _z) are nondimensionalized by the stagnation density (Ps) and the
critical speed of sound (a.), respectively. Additional relations valid for these flow assumptions and
this nondimensionalization include

Isentropic equation of state:

..P_P= 7 +1
pr 27
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Bernoulli'sequation:

q2 a 2 1 7+1

2 7-1 2 7-1

Speed of sound definition:

a2 = 7p

where p is the fluid pressure, a is the local speed of sound, and q is the magnitude of the local fluid

velocity.

To complete the above system, boundary conditions are required along all boundaries. Specifically,
these boundaries fall into three categories: freestream, symmetry planes, and geometric surfaces.
The freestream boundary condition, simply stated, is given by

x 2 +y2 +z 2 _oo, _ _ _,

where _ is the freestream distribution of the velocity potential, usually uniform flow. The latter two

boundary conditions, symmetry planes and geometric surfaces, are both treated in the same manner,
i.e., with a flow tangency assumption given by

where n is a unit vector normal to the geometry of interest. More on boundary conditions including
numerical implementation will be presented in the Numerical Approach section.

Equations (1) express mass conservation for flows that are isentropic and irrotational. Despite these
limiting assumptions, the full potential formulation can be used in a shock-capturing context providing
the shock waves are weak. The corresponding shock-jump conditions are valid approximations to the
Rankine-Hugoniot shock jump conditions (derived from the Euler equations) for many applications.
The key parameter in this situation is the normal component of the Mach number just upstream of the
shock wave in question, which must remain below about 1.3 for the full potential formulation to be a
reasonable approximation to the Euler equations. This is well within the scope of many transonic flow
applications and includes the cruise conditions for most transonic transport aircraft. More discussion
on this point including a comparison of the Euler and isentropic full potential shock polars is
presented in Steger and Baldwin. 5

Equations (1) are transformed from the physical domain (Cartesian coordinates) into the
computational domain using a general, independent-variable transformation. This general
transformation, indicated by

¢ = ¢(x,y,z)

17= rl(x,y,z)

= ¢(x,y,z)

(2)

maintains the strong conservation-law form of Eqs. (1). The final transformed version of the full
potential equation is given by



where the density expression becomes
1

P = [1-_11(U@ , +V@,7+W¢c)1-_-1 (3b)

and

U = AI@_ + A4@r/+ A5@_-

V = A4@_ + A2_r/+ A6@_,

W = AS@¢ + A6@r/+A3@ _-

2 2+2
A 2=V_,Vz?=qx +qy qz

A 4 = V¢*V_ = _xrlx +¢yqy +¢z_z

A 5 = V¢ * VC = CxCx + CyCy + ¢zCz

A6 = V71" VC = ?lxCx + rlyCy + qzCz

J = CxrlyG + Cyl?zG +¢zVxCy

-Cz??yCx - Cy rlxCz - Cx _zCy

= (xcyrlz C + x_y_z¢ +xcycz q

- xcYCZrl - XrlY_Z¢ - xcYrlZ¢ )-1

(4)

In Eqs. (4), U, V, and Ware the contravariant velocity components along the 4, r/, and ¢" coordinate

directions, respectively; A1- A6 are metric quantities; and J is the determinant of the transformation

Jacobian. The above full potential governing equation formulation can be used for general
geometries in which the aerodynamic surface of interest is mapped to a constant coordinate line in the
computational domain. This makes the flow-tangency boundary condition easy and accurate to
implement. In transformed coordinates the flow-tangency boundary condition becomes (e.g., for an
r/=constant surface)

--)

q,Vq=O

q. Vr/= xi+_yj+_zk • rlxi+_yj+qz =V

V=O

More simply stated, the contravariant velocity component in the r/-direction V must vanish at the

r/=constant surface where flow tangency is required. The above flow tangency boundary condition is

also used at y--0 as a symmetry plane boundary condition.

For all computations presented in this report the _ coordinate is aligned with the C-grid wrap-around

direction. Hence, it is aligned with the negative flow direction below the wing and with the positive
flow direction above the wing. The 7"/coordinate is aligned with the spanwise direction, and the _"

coordinate is in the wing normal-like direction. The orientation of each of these coordinate directions,

especially the ¢ coordinate, will have an influence on the construction of the iteration scheme as will
be seen in the next section.

4



NUMERICAL APPROACH

Spatial differencing scheme

A second-order-accurate spatial differencing approximation to the full potential equation written in the

general transformed coordinate system is given by

pU

', J )i,j+l/2,k + °¢LTJi,j,k+l/2 ----0 (5)

where (for example)

Ui+ll2,j,k = Ali+v2,j,k ( _i+l,j,k -- _i,j,k )

"FIA4i+v2j., (_i+l,j+l,k -- _i+l,j-l,k "f- _i,j+l,k -- _i,j-l,k)

..(_1 A5,+1/2.i. k ( _i+l,j,k+l -- _i+l,j,k-1 -t- _i,j,k+l -- _i,j,k-1)

(6)

<__ _-- <._

The operators (&¢.,&_,&;)are standard backward difference operators in the three coordinate

directions defined by

¢(-)_,j,k = (-);,j,k - (-)J-l,j,k

& _ (--)J,j,k = (-)tj,k -- (--)_,j-l,k (7)

'_: (-)_,j.k = (-)_,j,k- (-)J,j,k-_

The L j, and k subscripts used in the Eqs. (5)-(7) are used to denote position in the finite-difference
grid such that _ = iA_, q =/'Aft, _"= k_'. For convenience, the A_, AT/ and A_" values are taken to be

unity.

Values of p, A 1-A_, and J are computed using the freestream preserving spatial differencing

scheme described by FIores et al. 6 and Thomas and Hoist. 7 This scheme produces a zero residual for
each interior grid cell with a freestream distribution of the velocity potential and generally produces a
solution with improved accuracy, especially near grid singularities or in regions of rapid grid stretching.

At supersonic points the centrally-differenced, second-order-accurate spatial discretization scheme
just presented must be upwind biased to maintain stable operation. This is accomplished by replacing
the density in the _-flux computation with an upwind biased value of the density. Thus, the new

spatial differencing scheme is given by

<- "U *- pW (8)

where the density coefficient f)i+ll2,j,k is defined by one of two options. The first option is given by

Pi+ll2,j,k = Pi+l/2,j,k - Vi+l/2,j,k (Pi+l/2,j,k -- Pi-1/2,j,k ) (9)
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where

2.46625(2p* --Pi+l/2,j,k --Pi-1/2,j,k) C if Pi,j,k < P*Vi+ll2'j'k = 0 if Pi,j,k >P* (10)

The quantity p* is a constant equal to the sonic value of the density, which for 7=1.4, is
0.6339382 .... The quantity C is a user specified coefficient usually set near a value of one, and
vj+Y2,j,k is a switching parameter that controls the amount of upwinding that exists in the numerical

scheme. Equation (10) is designed such that the value of vj+l12,j,k will be zero at all subsonic grid

points, i.e., a second-order-accurate, centrally-differenced scheme is retained for subsonic regions of
the flow domain, and larger than zero at all supersonic grid points, i.e., a first-order-accurate upwind
scheme is utilized for supersonic regions of flow. The supersonic branch of Eq. (10) approximates

2
(Mj,j, k -1)C, and thus, the amount of upwinding increases dramatically as the extent of supersonic

flow increases. To keep the value of Pi+ll2,j,k bounded by Pi+l/2,j,k and Pi-ll2,j,k, the value of Vi+l/2,j, k

is constrained to be less than or equal to one.

The second option for defining the density coefficient (f3_.+l/2,j,k)(inspired by Kinney et al.8 and

Jamesong), is given by

Pi+ ll2,j,k = Pi+ ll2,j,k -- V i+ ll2,j,k [Pi +l/2,j,k -- Pi-1/2,j,k
(11)

- uLi+l/2,j,k (Pi-1/2,j,k -- Pi-3/2,j,k )]

where the limiter • is defined by

1-C2A if_i+l/2,j.k = if
ri+l/2,j, k > 0

(12)
ri+ll2,j, k < 0

and ri+l/2,j, k is the ratio of successive density gradients defined by

r i+ l/2,j,k = Pi+ l/2,j,k -- Pi-1/2,j,k (13)
Pi-1/2,j,k -- Pi-312,j,k

In Eq. (12) the quantity C2is a constant typically set to a value near one and A is the local _ -direction
grid spacing which is approximated using

A = (ITEU - ILE) -_

where ILE is the tth grid index at the wing leading edge and ITEU is the tth grid index at the wing
upper-surface trailing edge. To improve stability, especially for finer grids, the limiter function is
decreased in magnitude with increasing distance away from the wing surface. A function of the form

_'_ i+ ll2,j,k = _}/i+112,j,1 (C3)-(k-l) (14)

where C3 isa constant set to a value just above one, e.g., 1.08, and k is the normal-like_'-direction
grid index with k=l defining the wing surface, has worked well for this purpose. The resulting scheme
retains second-order-accuracy at the wing surface while allowing increased stability associated with
increased dissipation away from the wing surface.



At subsonic grid points, the second density coefficient option (identical to the first option) produces a

zero value of Vi+l/2,j, k , leading to a second-order-accurate, centrally-differenced, spatial-differencing

scheme. At most supersonic points rwill be greater than zero and the resulting spatial-difference

scheme will be upwind-biased and second-order-accurate. At a supersonic point which is an
extremem r<O. This produces a zero limiter function (_ = 0) at these points, which in turn produces

the original first-order density upwinding option.

The lead trbncation error term generated by the first density upwinding option at supersonic grid

points can be approximately written as

A¢(vpce¢)¢

This expression is characteristically dissipative and leads to a first-order-accurate scheme. Larger
values of this term, achieved by increasing the value of C in Eq. (10), will produce increased smearing

of the solution in supersonic regions of flow.

The lead truncation error term generated by the second density upwinding option at supersonic grid

points can be approximately written as

&¢2(vp¢¢_¢ )¢ + A¢C2A (vp¢¢¢)¢

The first term is characteristically dispersive, and the second term is characteristically dissipative.

However, providing C2_ approaches zero as A_ approaches zero, both terms are second-order

terms and the resulting scheme is second-order accurate.

The two supersonic spatial differencing schemes represented by Eqs. (8)-(10) and Eqs. (8), (10)-(14)
are valid for supersonic flows which are approximately aligned with the positive _-coordinate

direction. In practice, even for C-H topology wing grids involving large amounts of sweep, this type of
supersonic upwinding is suitable. It is the only type of supersonic flow stabilization used in the

present study. Nevertheless, generalization of the present scheme for arbitrary orientations of a
curvilinear coordinate system is easy to accomplish. See Refs. 2-3 for examples involving a

generalized form of the first-order density upwinding option.

Bovndary conditions

Flow tangency and symmetry plane boundary conditions (as described above) require that the
velocity component normal to the applicable boundary must vanish. For a general nonorthogonal

mapping, such as that described by Eq. (2), the general condition for flow tangency requires the ¢"

contravariant velocity component at _'= Crnin (for example) be zero (i.e., W¢=¢,,° =0). This is

implemented in the present study using a mass-flux reflection condition given by

pW
(P_-_li,j,l/2 =-I--Jli,j,3/2

(15)

where in this case k=l corresponds to the tangency or symmetry plane surface. In other expressions

where e¢ is required at k=l [e.g., in Eq. (6) or in the density computation at k=l], the W¢=¢,,,o =0

boundary condition is used again to obtain

As - A-_-_q
(16)
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Thus, a value of _. at the boundary condition surface can be obtained without using one-sided

differences on the velocity potential.

At the wing-surface/symmetry-plane line of intersection, two contravariant velocity components must
vanish (i.e., V,7=,1,_° = 0, W_.=_.m,"= 0). This is implemented using two mass-flux reflection conditions
given by

pV
/-_-/i,1/2,1---/7/i.3/2.1

pW
(-_),.1,,,2 = -(--_-1,.1.3,2

(17)

where in this case j=l, k=l corresponds to the line of intersection. In other expressions where _
and _. are required at the line of intersection [e.g., in Eq. (6) or in the density computation at j=l,

k=l], the V,7=,7,,"= 0, W;=;,,,n = 0 boundary conditions are used again to obtain

(_1/intersection -- A5ASA2A3_A_-A3A4 _

_" intersection - A4A6A2A3_A_-A2As (_

(18)

Thus, values of ¢_n and _ at the symmetry-plane/wing-surface line of intersection can be obtained
without using one-sided differences on the velocity potential.

At the outer boundary a standard freestream boundary condition is used which is given by

_(x,y,z) = u.x + w_z

where u= and w® are standard Cartesian velocity components in the freestream associated with the
x and z directions, respectively.

Vortex sheet conditions

For lifting computations involving the full potential formulation, circulation is accommodated with the
usual vortex sheet or wake cut emanating downstream of the lifting surface (for wings, downstream of
the wing trailing edge). The amount of lift or circulation is equal to the jump in velocity potential across
the vortex sheet. The jump or discontinuity in velocity potential, as well as the double-stored
characteristic of the vortex sheet, must be accounted for in the residual mass flux and density
computational logic described above. For example, the U contravariant velocity component
computation of Eq. (6) must be modified as follows at the vortex sheet

Ui+112,j,1= A1,+v2.i.,(_i+1.j,1- _i,j,1)

"f'lA4 (_1i+1 ,+1,1 - (_i+1.j-1,1 "f" (_i,j+1,1 - (_i.j-1.1)

+ "_"A5_+v2,i.,(_I+I,j,2- _Nl-i,j,2- ["j + _i,j,2- _Nl-i+1,j,2--Fj )

(19)



wherethe k = kmi n (k = 1) boundary has been mapped to the wing/vortex-sheet surface using a C-
grid topology. The point i,j, 1 is a typical point on the upper side of the vortex sheet and NI-i+l,j, 1 is
the identical point on the lower side of the vortex sheet. The quantity r'j iS the ]th value of the

circulation (where jis measured along the span of the wing) and i=NI corresponds to the maximum
value of the ffh coordinate. The above logic requires identical grid point distributions to exist on both
the upper and lower wing/vortex-sheet surfaces with a grid point at the wing leading edge, thus, the
I1hpoint along the upper (or lower) vortex sheet exactly matches the (NI-i+l)th point along the lower
(or upper) vortex sheet. The value of Fj is computed using

n n n
r j = @ITEU,j,1 - _ITEL,j,1

(20)

where ITEU,j,1 corresponds to the ]_h location of the upper wing trailing edge and ITEL,j, 1
corresponds to the same point on the lower wing trailing edge, i.e., ITEU=NI-ITEL+ 1. The ]th-location
jump in velocity potential established at the wing trailing edge is maintained downstream along the
vortex sheet, i.e.,

_i,nj,1 = _NI-i+l,j,ln + F 7 i = ITEU + I, ITEU + 2 ..... NI
(21)

Because of Eq. (21), only one velocity potential residual computation [using Eq. (8)] is required for
each two grid nodes on the vortex sheet downstream of the wing trailing edge. This single residual
value for each two vortex sheet points is computed by performing normal residual computations for

both points and then averaging the values.

I|eration scheme

The iteration scheme utilized in the present study is called the AF2 scheme and was first introduced

by Ballhaus and Steger 10 in 1975 for solving the transonic small-disturbance potential equation for
two-dimensional applications.§ The present implementation is closely related to the AF2 scheme
described in Hoist and Thomas, 3 which was designed for solving the three-dimensional full potential
equation for isolated-wing applications using an O-H grid topology (as mentioned in the Introduction).
The present algorithm is also designed for solving isolated wing applications, but uses a C-H grid
topology. The present implementation's C-type grid topology is more amenable to boundary layer
correction implementation and is the major motivation for the present modification. More on the
differences between the Ref. 2-3 AF2 scheme and the present version will be presented when the
actual scheme is discussed.

A general iteration scheme for solving the full potential equation can be expressed as

NC_,j, k + oJL@_j, k = 0 (22)

L@i,j,kis the nth iteration residual at the (i,j,k)th position inwhere the n superscript is an iteration index, n

the finite-difference mesh [spatial difference scheme for the full potential equation defined by Eq.

(8)], L is the residual operator, m is a relaxation parameter, C_j,k is the correction defined by

ci,nj,k _-- ,kn+l n_i,j,k -- @i,j,k

§The name AF2 (short for Approximate Factorization Scheme 2) was given to this scheme in Ref. 10
because it was the second scheme presented in that study.



and N is the "left-hand-side" operator that determines the type of iteration scheme. The AF2 iteration
scheme used in the present formulation (one of two variations) can be specified using the following
definition for N:

l l[/ )/ °
where _ is an acceleration parameter (to be discussed shortly); Rj, S i, and Tk are coefficients

defined by

L J Ji-1/2,l,k' _ J )i,j-ll2,k \ J /_,l,k-1/2

.-y .-) .._

5_, 5_, 5_- are standard forward-difference operators in the three coordinate directions defined by

--)

(_ _ (--)i,j,k = (--)i+l,j,k -- (--)i,j,k

-..)

,_,7(-)J,j,k= (-)J,j+_k- (-)Jj,_ (25)

-..)

_(-);j,k = (-);j,k +1- (-),j,k

and E_-1 is a shift operator defined by

-1 n n
E¢ (_)i,j,k = (--)i-l,j,k

A standard linearized von Neumann stability analysis of the interior AF2 scheme given by Eqs. (8),
(22)-(23) yields a stable scheme providing oc> 0 and 0 < oJ < 2. The quantity _ behaves like the
inverse of a time step in a typical time-dependent iteration, this implies that the linearized AF2 scheme
is stable for any positive time step and hence is said to have unconditional linear stability.

The fact that _ behaves like the inverse of the time step means that small values of a (large time
steps) advance the solution rapidly and often cause (nonlinear) high frequency error growth. Large
values of _ (small time steps) advance the solution slowly and provide solution smoothing especially
for the high frequency error components. Thus, a sequence of values for (x produces optimal
steady state convergence and can be obtained using

k-1

(Zk =(ZHI(ZL I M-1

kaH)
k = 1,2,...,M (26)

where o_L and a H are low- and high-frequency limits for the (zk parameter sequence, respectively,

and M is the number of elements used in the oc sequence (see Refs. 2-3 and 11 for more details and
a variety of applications).

The AF2 factorization given by Eq. (23) is implemented in a three-sweep format, each involving a set
of banded, scalar matrix inversions. These sweeps are given by

10



Sweep1:
--.)

(a - S _ Rj )f_j,k = c_2(-°L(p_j,k (27a)

Sweep 2:

sj = + (27b)

Sweep 3:

(a - 5_ T k &_)C_,j,k =gjn, k (27C)

In step 1, the f array is obtained from the residual by solving a simple bidiagonal matrix equation for
each _ line. The g array is then obtained from the f array by solving a tridiagonal matrix equation for

each 7"/line. Finally, the correction array is obtained in the third sweep from the g array by solving a

tridiagonal matrix equation for each _" line. Note that sweeps 2 and 3 can be performed together, i.e.,

immediately after the g values for the tth computational plane are obtained from sweep 2, values for
the correction array can be obtained for the same f[h computational plane from sweep 3. Thus, the g
intermediate result array needs to be only two dimensional.

As can be seen from Eq. (23) or Eqs. (27) the left-hand-side difference operator in the _ direction

(the C-grid wrap-around direction in the present implementation) has been split between the first and
second factors. This operator splitting is a telltale characteristic of the AF2 scheme. However, the

operator splitting does not have to be in the first factor; any of the factors can be split. For example,
the AF2 scheme of Ref. 3 splits the _" direction factor. Like the present approach, the Ref. 3

implementation uses the _ direction as the wrap-around direction, 7/is spanwise, and _" is in the wing
normal-like direction. However, unlike the present implementation, the Ref. 3 approach used an O-H

grid topology.

Implementation of the AF2 scheme (like all implicit schemes) requires matrix "boundary conditions" for
each sweep. In particular, conditions are required for f at I = NI, g at j = 1, g at j = NJ, C at I = 1, C at k = 1
and C at k= NK. The second and third of these conditions are associated with sweep 2 and are

satisfied using a standard Dirchlet condition if the boundary is freestream or a standard Neumann
condition if the boundary involves flow symmetry or flow tangency. The fifth and sixth conditions are
associated with sweep 3 and likewise, are satisfied using a Dirchlet condition if the boundary is
freestream or a Neumann condition if the boundary involves flow symmetry or flow tangency. The first
and fourth conditions are nonstandard and result from the special AF2 left-hand-side operator

splitting. These two special left-hand-side matrix "boundary conditions" are discussed next.

First, in sweep 1, a value of fat I= NI is required for each value of jand k. A simple technique to satisfy
this condition is given by

_..>

5_; nRif NI_I,j, k = 0

This condition works, but a stability limitation at the i=NI boundary results, which is of the form 4

>_Ri_

where R i is defined by Eq. (24)and (.o isthe relaxation factor from Eq. (22). Thus, there is a limit on

the size of a, which can have a dramatic effect on convergence (even if the limitation exists only at

the computational boundary). The key aspect of this stability limit is the ,41 / J contribution inside R_,

which behaves like a grid-cell aspect ratio (boundary tangential spacing over boundary normal

spacing).
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In the Ref. 3 AF2 implementation with the wing normal-like _" operator split, the boundary stability
limitation described above, exists at the wing surface. For the O-type grid in use for the Ref. 3
application, in which the cell aspect ratio is O(1) all around the inner boundary, this stability limitation
has a minor consequence. However, direct application of the Ref. 3 AF2 iteration scheme for solving
the full potential equation on C-type grids would be very inefficient because the cell aspect ratio for
the inner boundary of a C-grid becomes quite large downstream of the wing trailing edge along the
wake cut.

In the present approach the AF2 scheme is configured such that this approximate matrix inversion
boundary condition is implemented away from the wing surface. In particular, it is implemented along
the downstream outflow boundary where the flow is freestream and the cell aspect ratio is generally
quite small.

The second special "boundary condition" for the left-hand side is associated with sweep 2. A value
for the correction at I= 1 is required. If i = 1 represents an outer freestream boundary, then this
condition is succinctly satisfied without loss of stability by using C = 0, i.e., the solution is required to
be freestream along the i= 1 boundary with corrections for all iterations being zero. For the present
AF2 implementation, as will be seen shortly, this condition must be satisfied along a surface of grid
points that emanates from the wing leading edge that exactly divides the C-grid topology into two
halves. The intermediate condition on the correction at this location used in the present scheme,
involves a local iteration to ensure implicitness and will be subsequently discussed in detail.

An additional special condition is required at the vortex sheet downstream of the wing trailing edge.
Values of the correction array are discontinuous across the vortex sheet during the iteration process
due to the changing value of the circulation, namely

O n : r,n+l nC_,j,1 - NI-i+l,j,1 --! - r j

where k= 1 corresponds to the wing/vortex-sheet-cut grid surface and r7 is the nth iterate of the

circulation at the ]th spanwise station. In the above expression the i subscript must be taken along the
upper vortex sheet, and thus, NI-i+l automatically is along the lower vortex sheet. This discontinuity
must be taken into account when the sweep 3 matrix coefficients are computed downstream of the
wing trailing edge.

Some comments about the AF2 scheme given by Eq. (23) are in order. First of all, the role played by
each of the terms in this factorization can be understood more clearly by multiplying out each of the
factors, which yields

-5¢ R_5eSj 6_ 5¢T k 5_+13_ 2 &¢RiE_ 1 C_.2,kJ
(28)

Terms 1 and 5 when combined become
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whichwhenoperating on the correction produces a _;t-like term that provides implicit (i.e., left-hand-

side) or time-like dissipation to the iteration process in supersonic regions of flow.§ Existence of this
term in the AF2 factorization is the chief reason that the AF2 scheme enjoys a convergence efficiency
advantage over more traditional ADI-type algorithms for solving the full potential equation for transonic
flows with shock waves. 12 This term provides favorable implicit dissipation in supersonic regions of
flow providing the _ coordinate is approximately aligned with the local streamwise direction "s" and
providing the backward difference corresponds to an upwind difference. In other words, the _;t" term

must approximate an upwind-evaluated Cst-term in supersonic regions of the flow. See Jameson 13
for more information on this point.

The _;t term arising from the Eq. (23) factorization is a direct result of having the _-direction factor
split between sweeps 1 and 2. In contrast, the Ref. 3 AF2 scheme had the _'-direction difference
split between these two sweeps. Thus, the _t term (or equivalently the _st- term) required for a

convergent iteration in the Ref. 3 AF2 scheme had to be added as an extra term to the appropriate
left-hand-side factor when the flow became supersonic.

In summary, the present scheme's _ direction operator splitting is more efficient for two reasons.
First, it requires fewer operations because no additional time-like dissipation terms have to be added
in the _-direction. Second and most important, the boundary stability limitation resulting from the
AF2 operator splitting is effectively removed. The present AF2 factorization with a _-direction
splitting, represents a significant improvement over past AF2 approaches for solving the full potential
equation on C-topology grids.

Terms 6 and 10 from Eq. (28) become

R,+ R,E '=-0,2 R,

which, assuming the cross derivative metrics A4and A5 are small, is a close approximation to the first-
difference-operator term of Eq. (8). In the limit as an orthogonal grid is approached, i.e., as A4and As

go to zero, the approximation becomes exact.

This term coupled with terms 2 and 3 from Eq. (28) provides an approximation to the entire right-hand-
side residual operator and can be written as

--OC2 5_ Rt 5_ + 5,_Si 5,7+ 5_ Tk 5_ cj,nj,k= -o_2LC, ,k

where a strict equality exists in the special case of an orthogonal grid.

The remaining terms in Eq. (28) (terms 4, 7, 8, and 9) are factorization error terms (FET) which are
driven to zero as the iteration proceeds. Thus, Eq. (23) can be written as

(29)

§ The time-derivative in the _z;t term is obtained by assuming the relaxation or iteration process to be an

iteration in real time. Thus,

-1 n+l eJ-l,j,k)-e_to,  cr,j,,,=,,t ""+' " "-- _i-l,j,k -- _i,j,k +
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whichshowsthattheAF2schemeleft-hand-sideN operator represents a close approximation to the
right-hand-side residual operator. This is an indication of rapid convergence.

Because of the inherent direction on the _;t term differencing operator, i.e., always backwards, the

AF2 scheme given by Eq. (23) is suitable in supersonic regions of flow only when the positive
direction and the flow direction are approximately aligned. For supersonic regions of flow where the
negative _ direction is approximately aligned with the flow direction, i.e., below the wing, the AF2
scheme given by

/ Ill l_,j *- 2 +1 no_2NC, ,k =-- _'+_'_Ri+I o_-&_Sj _ OE-_T k (_ Ci,j, k (30)

is an appropriate alternative. Note that the only changes between Eq. (30) above and Eq. (23) are in
the first factor and in the sign of the shift operator superscript. When the factors of Eq. (30) are
multiplied out the resulting expression for the N operator is given by

3--)

a2NC_,i,k = o_2LCinj,k+ _ 5_ cnj.k + FET (31)

Thus, the same level of approximation to the residual operator is obtained by the factorization of Eq.
(30). The only significant difference is in the direction and sign of the _t term which is now upwind
(as desired) for all regions of flow in which the negative _ coordinate is aligned with the positive flow
direction.

The AF2 factorization of Eq. (23) is appropriate (for example) for solving the transonic flow on the
upper surface of a wing using a "C" or "O" type grid topology, and the factorization given by Eq. (30) is
appropriate for the lower surface. This assumes the grid lines are wrapped in a clockwise direction
with the flow from left to right. The two schemes need only be "connected" to each other to allow for
general wing (or for that matter, any lifting surface) computations. This is accomplished using the
following algorithm written in a three-step format, which is intended for C-type grid topology
applications about isolated wing geometries. The/subscript is assumed to be in the wrap-around
direction, j is assumed to be spanwise, and k is assumed to be in the normal-like direction. Each of the
indicated operations is to be performed for all values of jand k, but only for the values of i that are
indicated.

Step 1 (Sweep 1):

--)

(oE- &¢ Ri)f_,i,k = a2mL_j,k

f_,j,k=f_j,k

1 (fu fl
'7,j,k= ,,j,k+

i = NI- 1,NI- 2,...,ILE

i = 2,3,...,ILE

i = NI-1,NI- 2,...,ILE-1

i = 2,3,...,ILE - 1

i =ILE

(32a)
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Step 2 (Sweep 2/3 leading edge iteration, m=I,2 ..... MAXIT):

<- u,m n 2 n,m-1
(_ - & _ Sj & _)gj,k = fi,j,k+ OE Ci_1,j,k

<- I,m n 2 n,m-1
(a- _ Sj &Tt)gj,k = fi,j,k + (X Ci+l,j, k

(a - _ _ T k & _)C_'j_ = g_,_

"-> <-- I,m I,m
(_- _ Tk Ec)Ci,j,k = gj,k

=½( + )

i = ILE

C n _ on, mi,j,k - i,j,k

,,kn+l n n
_i,j,k = Oi,j,k -I-Ci,j, k

i = ILE, if m = MAXIT

-> <- _ fn o_2cn,m(o_- _ Sj _)gjU,_n _ i,j,k + i-l,j,k

(0_-- &¢ m k &¢)C_,im,k = gjU,_

i = ILE +1

--' _ )-/rn _ fn + =2Cn,m(O_--6rtSj 11Yj',k -- i,j,k i+1,j,k
i = ILE- 1

(32b)

cinj'k -- cn'm l- i,j,k

J,_n+l n .t- C_,j, k_i,j,k = _i,j,k

i = ILE + 1, ILE - 1, if m = MAXlT

Step 3 (Sweep 2/3 downstream of the leading edge):

-_ *- n + o_2Cn_l.j.k(a - S _ Sj S 11)gju.k = fi,j.k

(o_- &¢ Tk &¢)C_,j,k = gju,k

_n+l n +C_,j, kJ,j,k = _i,j,k

i = ILE + 2,1LE + 3,...,NI- 1

-_ *- I n 2 n I(0_- _ Sj _n)gj,k = fi,j,k + O_Ci+l,j, k

(o_--&¢ r k&¢)C_,j,k = gl,k

,,kn+l ,kn . ,,",n
_"i,j,k = _i,j,k _ k'i,j,k

i = ILE- 2,1LE- 3,...,2

(32c)

where i=lLEcorresponds to the wing leading edge, i=Nlcorresponds to the maximum value of L the
superscripts u and /denote upper- and lower-wing-surface values, and the superscript m is an index
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forthelocaliterationusedtoobtainthe nth level solution at i = ILE, ILE + 1. The initial values of the

correction at the leading edge used in the local iteration are simply assumed to be zero, i.e.,

n,0
CILE,j, k = 0

The quantity MAXlTis the maximum number of iterations used for the local leading edge iteration. A
value between 10 and 20 is typically used. Use of larger values will not improve the global

convergence rate.

In step 1 [Eq. (24a)], the farray is obtained by solving a simple bidiagonal matrix equation for each

line. The upper and lower surface computations are completely independent of each other. The two
values of f obtained along the grid surface emanating from the wing leading edge (i=lLE, j,k) are
averaged to produce a single unique value of fat this location. Next, as summarized in step 2, the
correction array is obtained by local iteration at the wing leading edge.§ This is achieved by alternate

implementations of sweeps 2 and 3 at i = ILE, ILE + 1. After the leading edge correction is obtained,

the remaining corrections in the three-dimensional field are obtained by sweeping the sweep 2/3
combination away from the leading edge on both the upper and lower wing surfaces. At the wing
trailing edge the upper and lower sweep 3 matrix inversions are combined into a single inversion, thus
providing the maximum amount of implicitness for the iteration scheme downstream of the trailing
edge.

Despite the improved time-like dissipation arrangement of the scheme just presented, additional
dissipation is required for some cases. For swept wing cases the _-coordinate direction may not be

closely enough aligned to the streamwise direction because of wing-induced spanwise velocity
components. Convergence instabilities, especially in areas with large cell-aspect-ratios in the i-j
computational plane and/or around the grid singularity along the wing leading edge extension
outboard of the wing tip, may exist. To correct this situation additional time-like damping in the
spanwise or q direction is required. This is easily and efficiently accomplished with the following N

operator modification

where the a parameter in the third factor has been changed to a" which is defined to be

a' = a + a,_av(_,_,_)

i.e., the sum of the original a parameter and a new quantity, aria v. The quantity a v is a three-

dimensional distribution array determined by trial and error that is permanently set, and ad is a user-

specified constant that allows the time-like dissipation level to be increased or decreased. The
quantity aria v effectively provides additional time-like dissipation to the iteration process and

stabilizes many of the difficulties encountered for swept wing computations. It also serves to stabilize
the leading edge region of the computation in the vicinity of the local iteration and the region
outboard of the wing tip along k = 1 where the grid cell aspect ratios are very large. The increment in
computational cost for this modification is negligible.

§Several versions of the leading edge local iteration algorithm have been implemented and produce
about the same results in terms of convergence efficiency. For brevity only one is presented.
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NUMERICAL RESULTS

PrQblem setuD and grid arranoement

To evaluate the attributes of the transonic full potential algorithm just presented the familiar ONERA
M6 wing geometry is chosen. As mentioned in the previous section, a C-H grid topology is utilized; C
topology in the chordwise direction and H topology in the spanwise direction. All grids have been
generated using the HYPGEN grid generation code 14 which uses a fast hyperbolic grid generation
scheme described in Steger and Rizk 15 and Chan and Steger. 16 Best grid results are typically
achieved (especially for the coarse grid cases) by generating finer grids than required and then taking
only every second or third point as desired. This is especially important for the normal-like direction in
order to keep grid lines from crossing during the grid marching process. For all of the results
presented herein the grids were generated using triple the desired number of points in the normal-
like direction and then reduced in size after the grid generation was completed by taking every third
point. In addition, because of the large amount of numerical dissipation required for the grid
generation process when marching large distances from the initial data surface, grid skewness
develops in the grid downstream of the wing trailing edge. To partially alleviate this situation, the grid
point distribution downstream of the wing trailing edge along each _-coordinate line is redistributed

using cubic spline interpolation. Despite this extra computational work, grid generation times range
from a few seconds to a few tens of seconds on a Cray C-90 single processor computer.

Figures 1-5 show selected views of a typical grid about the ONERA M6 wing generated using
HYPGEN. The grid displayed is a relatively fine grid consisting of 452,925 total points, with 225 points
in the wrap-around direction, 61 in the spanwise direction, and 33 in the normal-like direction. Figure
1 shows a blowup of the wing surface grid in planform including a portion of the grid outboard of the
wing tip and downstream of the wing trailing edge. In this figure only every third point in the wrap-
around direction and every second point in the spanwise direction are displayed. Clustering in the
wrap-around direction at the wing leading and trailing edges and in the spanwise direction at the wing
tip are clearly visible. Figure 2 shows a close up view of the grid along a constant-chord surface near
mid-chord. In this figure only every second point in the spanwise direction and every second point in
the normal-like direction are displayed. This view shows the approximate treatment at the wing tip.

Fig. 1 Blow-up view of the wing planform grid showing streamwise and spanwlse grid clustering in the
vicinity of the wing (225X61X33=452,925 points). Only every third point in the wrap-around direction
and every second point in the spanwise direction are displayed.
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Fig.2 Blow-upview le winggridnearmid-chordshowing
selectedgridlinesin thenormal-likeandspanwisedirections(225X61X33=452,925points). Only
everysecondpointinthespanwisedirectionandeverysecondpointinthe normal-likedirectionare
displayed.

Figures3 and4 showtwoviewsofthewinginthewing-rootcross-sectionalplane;Fig.3 showsa
blow-upof thewingcross-sectionwithsurroundinggridandFig.4 showsanextremeblow-upof the
sameview.Forclarityonlyeverythirdpointinthewrap-arounddirectionandeverysecondpointin
thenormal-likedirectionaredisplayedinFig.3whileallpointsaredisplayedinFig.4. Thegridisnot
orthogonal(especiallydownstreamofthetrailingedge)forthereasonmentionedabove.Forallcases
presentedinthisstudytheoutergridboundaryisplacedapproximately12rootchordsabove,below,
upstream,anddownstreamof thewingandapproximately5.5rootchordsoutboardof thewingtip.
Anouterboundarypositionstudyconductedforthe presentapproachandpresentedin Ref. 17,
showedthesedistancesto beacceptablefortypicaltransonicwingcomputations.

Thenormalandstreamwisetangentialgridspacingonthewingsurfaceareapproximatelycontrolledin
thepresentgridgenerationapproach.Forthegridof Fig.4 (aswellasallgridsusedinthepresent
study)thestreamwisetangentialspacingsatthewingleadingandtrailingedgesaresetto0.3and0.5
timestheaveragetangentialspacing,respectively.A smoothdistributionof tangentialgridspacing
valuesinbetweentheleadingandtrailingedges is obtained by numerically solving a fourth-order bi-
harmonic differential equation for the tangential grid distribution. Use of such an approach allows easy
specification of not only the location but also the spacing at both endpoints of this distribution. The
resulting distribution is then interpolated onto the wing surface using cubic spline interpolation. The
normal spacing all around the wing surface is set equal to the average tangential spacing. This value is
automatically reduced somewhat at the wing leading edge to better match the streamwise grid
clustering and to account for the inevitable flow gradients that exist in this area. Thus, the cells all
around the wing surface are (on the average) approximately square.

Figure 5 shows a similar view as that of Fig. 4 except the constant-span station is outboard of the wing
tip. Thus, the grid singularity outboard of the wing tip at the wing-extension leading edge is clearly
visible. Across the k= 1 boundary at this span station flow periodicity is applied, i.e., all flow variables
on the wing extension surface at grid point i must equal the corresponding flow variables on this
surface at NI-i+l.
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Fig. 3 Blow-up view of the wing root grid showing grid-cell clustering around the wing surface
(225X61X33=452,925 points). Only every third point in the wrap-around direction and every second

point in the normal-like direction are displayed.
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Fig. 4 Extreme blow-up view of the wing root grid showing grid-cell clustering around the wing surface

(225X61X33=452,925 points). All grid points are displayed.
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Fig. 5 Extreme blow-up view of a typical chordwise cross-sectional grid outboard of the wing tip
showing grid-cell clustering around the wing extension and the grid singularity at the wing-extension
leading edge (225X61X33=452,925 points). All grid points are displayed.

One last point about the grid displayed in Figs. 1-5 is in order. These grid views, as well as the Mach
number contour plots to be shown subsequently, have been generated using PLOT3D 18. As such,
a special Euler-like Q-vector solution must be generated from the velocity potential solution. This is
straight-forwardly accomplished from the stored values of density and from special velocity
component values computed from the velocity potential. Because the density values are computed
and stored at half points in the _ -coordinate direction (i.e., at i+l/2,j,k), the Q-vector values are also
computed and stored at these same half points. Using half points in the _ -coordinate direction is
also important because this allows use of the smallest computational stencil in the streamwise
direction, which reduces smearing caused by the Q-vector post-processing computation. Likewise,
the PLOT3D grid coordinate file is recomputed using simple second-order averages and is stored at
these same half points in the _ direction so as to be consistent with the Q-vector file. Thus, the grids
displayed in Figs. 1-5 have been moved a small distance from where they have actually been used.
This is why a grid space exists at the leading edge in Figs. 3-5 instead of a grid line as required by the
leading edge flow-solver iteration scheme described in Eq. 32.

Hybrid anU Se_:0nd-Order Scheme Comparisons

In this section differences in accuracy between the hybrid spatial differencing scheme and the
second-order-accurate spatial differencing scheme are examined. Keep in mind that the hybrid
scheme is a second-order-accurate, centrally-differenced scheme at all subsonic points and a first-
order-accurate, upwind-differenced scheme at all supersonic points. The first-order aspect in
supersonic regions of flow is exclusively tied to the _-coordinate direction. The r/- and _'-coordinate
directions are always second-order accurate and centrally differenced in both subsonic and
supersonic regions of flow. For typical weak-shock transonic applications (amenable to simulation
using the full potential formulation), the number of supersonic points is usually around 2-4% of the
total number of points. Thus, even though the hybrid scheme does have first-order-accurate regions,
most of the solution behaves as if it were second-order accurate. Nevertheless, differences caused
by these "first-order pockets of flow" can be important and are now discussed.
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Chordwisepressurecoefficientdistributionsoverthe ONERAM6Wingfor both the hybridand
second-order-accurateschemes(aswellasexperimentalresultsfromRef.19)arecomparedin Fig.6.
Thesecomparisonsarepresentedatfoursemi-spanstations:2y/b=0.2,0.44,0.65,and0.95. Both
computedresultsutilizethegridpresentedinFigs.1-5. Theflowconditionsforthisstandardcase
(M,_=0.84,_=3.06°), producea ratherbenignflow field witha moderate-to-weakshockwave
systemwithonlya slightamountofshock/boundary-layerinteraction.AscanbeseeninFig.6thetwo
numericalsGlutionsareinexcellentagreementatallsubsoniclocationsof theflow,i.e.,onthe entire
lowerwingsurfaceandon theupperwingsurfaceatandaft of the normalshockwave. In these
regionsthecomputational/experimentalagreementisalsogenerallyquitegood,exceptatthe normal
shockwavewheresomedisagreementexistsprimarilydueto viscouseffects.§Agreementbetween
thetwocomputationalresultsinthesupersonicregion(asexpected)isnotasgood. Generally,the
forwardshock,whichisa supersonic-to-supersonicobliqueshock,is "smearedout" by the hybrid
schemeasexemplifiedinFigs.6band6c. Thesecond-orderschemedoesa betterjobin thisregion
capturingtheweakobliqueshockwaveinabouttherightlocationinFig.6bandabout6-7%of chord
downstreamoftheexperimentallocationinFig.6c. Thissecond-orderobliqueshocklocationinFig.
6c(2y/b=0.65)isonlyabout2%of chorddownstreamoftheEulerresultsofRefs.20-24.

Effect of C. C.,Z,and C_ on Solution Accuracy

In this section the effect of various parameters associated with the hybrid and second-order spatial-
discretization schemes is examined. These parameters are essentially fixed from case to case, and
thus, are not meant to change as user-specified coefficients. However, it is of interest to see the
effect their variation has on the solution to better appreciate the differences between the hybrid and
second-order schemes. In all comparisons the 2y/b = 0.65 station from the ONERA M6 Wing at
M= = 0.84, _ = 3.06 ° will be used in this evaluation. This is an appropriate station because the
sensitive supersonic-to-supersonic shock is a prominent feature at this location on the wing.

Figure 7 shows a series of pressure coefficient comparisons for the hybrid scheme involving different
values of the parameter C [defined by Eq. (10)]. Larger values of C produce larger amounts of first-
order dissipation in the supersonic region of flow and smaller values produce smaller amounts of
dissipation. Thus, as expected the largest value of C (C=1.7) completely smears the supersonic-to-
supersonic shock wave and significantly "rounds out" the top of the normal shock. Conversely, the
lowest value of C (C=0.5) does a somewhat reasonable job at the supersonic-to-supersonic shock but
produces a rather significant overshoot at the normal shock. In addition, stability for the lowest value
of C is marginal requiring about 1000 iterations for convergence (more than triple the number of
iterations required for solution convergence using the default value of C=0.9). Values of C smaller
than 0.5 are unstable for this case.

§Most of the computational/experimental disagreement at the normal shock wave (both in terms of
shock position and strength) is caused by viscous effects. This qualitative conclusion is reached by
comparing the present results with a variety of Euler results 20"24. In these Euler-based computational
studies the normal shock position and strength are in between the full potential and experimental
results, but are more closely in agreement with the full potential results. That is, both types of inviscid
computations produce shocks that are too strong and too far downstream relative to experiment. This
overprediction of shock strength and position is a typical characteristic of transonic inviscid methods
when used for computations that contain shock/boundary-layer viscous effects. The fact that the full
potential results produce shocks which are somewhat stronger and further downstream of the Euler
results implies that this additional (although generally smaller) error is a direct result of the
isentropic/irrotational assumptions that are inherent in the full potential formulation.
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Fig. 6 Pressure coefficient comparisons at selected semi-span wing stations showing differences
between the hybrid and second-order schemes, ONERA M6 Wing, Moo =0.84, a=3.06 °. Both
computations utilized the same grid consisting of 225X61X33=452,925 points.

Figure 8 shows a series of pressure coefficient comparisons for the second-order scheme also
involving different values of the parameter C. The supersonic domain pressure variations are not as
dramatic for this case as compared to that of the hybrid scheme (Fig. 7). This is due to the small effect
that the Cparameter has in the second-order scheme, i.e., the term it multiplies is much smaller.
Nevertheless, for smaller values of C the overshoot problem at the normal shock still exists. In
addition, smaller values of C produce less stable convergence, and in particular, C=0.5 diverged for
this case. For second-order cases the default value of C is 1.3. This improves convergence stability
somewhat with a small sacrifice in accuracy.

Figures 9 and 10 present a similar set of pressure coefficient comparisons for the second-order
scheme involving 02 variations for Fig. 9 and C,3 variations for Fig. 10. These parameters are
inherently associated with the second-order scheme only and are defined by Eqs. (12) and (14),
respectively. The effect of C2 on the supersonic domain pressure distribution as seen from Fig. 9 is
quite small. Any value, including a very large value, produces acceptable results. The default for this
parameter is 1.0. The effect of C3 on the supersonic domain pressure distribution as seen from Fig.
10 is more pronounced. The smallest value (C3=1.0), which eliminates any growth in the second-
order dissipative term into the flow field interior [see Eq. (14)], produces a very strong supersonic-to-
supersonic shock and an oscillatory solution between the two shocks. Slightly elevated values of C3
eliminate this behavior. The default value of C3 is 1.08.
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Fig. 10 Pressure coefficient comparisons at the
2y/b=-0.65 semi-span wing station showing the
effect of C3 on solution accuracy (second-order
scheme), C=1.3, C2=1.0, ONERA M6 Wing,
Moo = 0.84, e = 3.06 °, grid consists of
225X61X33=452,925 points.

Grid Refinement Study

A grid refinement study for the ONERA M6 wing geometry utilized in the previous section is
described next. Four grids, outlined in Table 1, are used for this purpose. In Table 1, NI is the number
of grid points in the wrap-around direction, NJ is the number of points in the spanwise direction, and
NK is the number of points in the normal-like direction. The total number of points ranges from just
under 60,000 to over 875,000. The number of points defining the wing surface ranges from 1445 to
8651. The second-finest grid from Table 1 (case L4) is identical to the grid used in the last section
and to the grid presented in Figs. 1-5..
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Table1. Summary of _lrid statistics for the _rid refinement stud
CASE GRID:DIMENSIONS TOT SURF TOTAL
NO. NI NJ i NK POINTS POINTS
L2 113 31 17 1445 59551
L3 169 46 25 3175 194350
L4 225 61 33 5577 452925
L5 281 76 41 8651 875596

Selected chordwise pressure coefficient distributions are presented in Fig. 11 at four different semi-
span locations 2y/b=0.20, 0.44, 0.65 and 0.95. In each plot solutions for all four grids described in
Table 1 are compared with experimental results from Ref. 19. As can be seen from Fig. 11 most of the
solution variation affected by grid refinement is associated with the supersonic flow domain (all values
of -Cp above 0.3269). The shocks get sharper and the pressure minimums are more well defined as
the grid is refined. The largest solution variation associated with the grid refinement process is at
2y/b=0.95. This is probably a direct result of the approximate treatment of the wing tip geometry. The
entire wing tip region between 2y/b=0.95 and 1.00 is represented by less than two grid cell widths in
the span direction for the coarsest grid. Thus, as the grid is refined in this relatively high gradient
region the solution improves remarkably.
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Another more qualitative technique for showing the effects of grid refinement on solution accuracy is
shown in Fig. 12 where Mach number contours are displayed for the ONERA M6 Wing upper surface.
These contours were generated using the PLOT3D plotting program 18 with contours plotted in
0.025 increments. A contour plot is displayed for each grid described in Table. 1. Figure 12a shows
contours for the coarsest grid, Fig. 12b the second-coarsest grid, Fig. 12c the second-finest grid, and
Fig. 12d shows contours for the finest grid. Evolution of the solution with grid refinement, in
particular, the upper-surface shock system, is clearly evident from this sequence of plots. The
supersonic-to-supersonic oblique shock is the most noticeable feature that forms and sharpens as
the grid is refined. More on grid refinement will be presented in the last results section where lift and
drag coefficient variations with grid refinement will be compared with Euler results.

Seco idCoars 3X31a) b)

c) Second-finest grid 225X61X33 d) Fine grid (281X76X41)

Fig. 12 Mach number contours on the upper surface of the ONERA M6 Wing showing the effect of
grid refinement (second-order scheme), AM = 0.025; M= = 0.84, _x= 3.06 °.
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Convergence Efficiency

Convergence history results are presented next showing the spatial discretization scheme's effect on
convergence efficiency. In addition, the time-dissipation coefficient a d [see Eq. (33)], which affects
convergence stability and efficiency, but not the spatial accuracy, will also be explored. Figure 13
shows a plot of maximum residual, average residual and the lift coefficient as a function of iteration
number for both the hybrid and second-order spatial differencing schemes. Both of these results
used the L4 grid described in Table 1. In addition, the solution parameters [mainly a L, see Eq. (26)]
have been optimized by a trail-and-error process for both of these solutions. Each symbol in Fig. 13
represents 16 iterations in the convergence history for each solution. This corresponds to two
complete applications of the a sequence, which for all cases presented herein contained eight
elements, i.e., M=8.

1 0.35

0.3

0.25
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ITERATION NUMBER, n

Fig. 13 Convergence history comparisons between the hybrid and second-order schemes, ONERA
M6 Wing, M_o = 0.84, a = 3.06 °, grid consists of 225X61X33=452,925 points.

As can be seen from Fig. 13, the average residual is consistently about two orders of magnitude
below the maximum residual. This characteristic allows a simple check for healthy convergence.
When one or more points in the solution fail to converge smoothly (perhaps due to a localized grid
problem) the difference between the maximum and average residuals will increase. The location of
the maximum residual at this point in the convergence will then identify the region of difficulty. The
average residual history curve is also somewhat smoother than the maximum residual curve, which (of
course) is due to the high-frequency error content associated with the maximum residual. In fact, if
values were plotted for every iteration, the average residual curve would have about the same
smoothness, but the maximum residual curve would be much more oscillatory, peaking for each value
of a L as a consequence of high-frequency error growth. This high-frequency error growth is
accompanied by a substantial reduction in the low-frequency error, and thus, is quite important for
overall fast convergence. The lift convergence history (also shown in Fig. 13) epitomizes how the
convergence process eliminates the low-frequency error content in the solution. Lift changes are
small for values of e near aH , but are quite large for values of _ near (zL . Generally, a typical lift
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convergencehistorycurvefromthe presentalgorithminvolvesveryrapidinitialgrowth,a moderate
overshootandthenahighlydampedoscillationtothefinalanswer.

Convergencehistoriesfor bothsolutionsdisplayedin Fig.13 possesthe generalcharacteristics
describedabove.However,thehybridschemeconvergesabout40to 100%fasterthanthe second-
orderscheme. This behavioris typicaland is associatedwith increasedhigh-frequencyerror
componentsthatexistinthesecond-orderschemebecauseof reduceddissipation.Forthespecific
convergencehistoriesdisplayedinFig.13theliftconvergestowithin+0.1% (a suitable condition for
plotable accuracy) in 128 iterations for the hybrid scheme and in 240 iterations for the second-order
scheme. These iteration counts correspond to approximately 23 and 43 sec of computer time,
respectively, on a single processor Cray C-90. Again, for the convergence histories given in Fig. 13,
the maximum residual is first reduced below a value of 10-7 (an alternate convergence criteria that
represents tighter convergence than plottable accuracy) in 352 iterations for the hybrid scheme and
in 496 iterations for the second-order scheme. Thus, depending on the convergence criteria (and
many others can be used as well), the hybrid scheme is between 1.4 to 1.87 times faster than the
second-order scheme for the case presented in Fig. 13.

The last topic for this section is to investigate and determine what effect the (zd parameter has on
solution convergence. In this regard, Fig. 14 shows several convergence histories for cases with
different values of a d ranging from 0.4 to 3.0. All other solution parameters are fixed at default
values. As can be seen a d = 0.4 produces an unstable result almost immediately. The other three
values (0.8, 2.0, 3.0) all produce stable results with similar trends. Clearly, a d = 3.0 produces slower
convergence than any other value. The two middle values of (zd (0.8 and 2.0) produce similar
convergence histories with ocd=0.8 being somewhat faster for tighter convergence levels (especially
if the maximum residual is used in the convergence criteria), and OCd=2.0 produces faster

convergence for less tight levels of convergence. In terms of lift convergence, a d =2.0 is the fastest

producing convergence to 0.1% of the final lift value in 368 iterations; O_d=0.8 requires 384
iterations; and _d=3.0 requires 480 iterations.
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Fig. 14 Convergence history comparisons showing the effect of (zd on convergence (second-order
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Lift and drag comparisons with Euler formulations

This section presents the effects of grid refinement on lift and drag for the standard case under study,
i.e., the ONERA M6 Wing at Moo -- 0.84, o_= 3.06 °. In addition to results from the present full potential

formulation, a number of other results collected from the literature are also included. The other-result
formulations include both Euler and full potential methods using both structured and unstructured

grids (Refs. 8, 20-25). In addition, there are newly computed full potential results (both hybrid and
second-order) utilizing a multi-zone chimera variation of the present approach. In this approach the
flow domain is divided into two grid zones: an inner C-H-topology grid surrounding the wing and an
outer Cartesian-like grid that connects the inner grid to the far field using chimera interpolative

boundary conditions. See Ref. 17 for more information about the full potential chimera grid scheme
used in computing these results. The grids used in this series of full potential chimera computations

are described in Table 2. The inner grid dimensions are given by NIl, NJ1, NK1, and the outer grid
dimensions are given by NI2, N J2, NK2. For each two-zone grid in Table 2 there is a single-zone grid
in Table 1 with an exactly matching surface grid, both in terms of number and distribution of points.
Thus, the surface solutions for these two sets of computations are comparable, despite the fact that
the interior grid distribution/topology is quite different.

Table 2. i
G2L2

G2L3

G2L4

G2L5

rid statistics for the

101 23
37 19

151 32
55 25

201 41
73 33

251 50
91 41

two-zone chimera rid refinement study.

1445 39185

3175 115066

5577 26O547

8651 494872

The variation of lift and drag with grid refinement for the above list of methods are displayed in Figs. 1 5
and 16, respectively. Values plotted along the horizontal axis are determined by taking the total
number of wing surface nodes to the -1/2 power, which yields an approximate value for the average
surface-cell grid spacing. Since surface quantities are being compared, it was decided to use this
technique for computing the grid cell size. In this way structured and unstructured grid results can be
compared.§ All results associated with open symbols utilize structured approaches, and all results
associated with closed symbols utilize unstructured approaches. Results from Refs. 20-25 are Euler

and from Ref. 8 (as well as the present results) are full potential. As can be seen from Fig. 15 the
scatter is quite large. In fact, there is no clear cut single value for the asymptotic lift coefficient
established by Fig. 15. A "best guess" range for the asymptotic lift coefficient limit is between 0.292
and 0.300. In actuality, the full potential formulation, because of its inherently isentropic nature which
leads to the prediction of slightly stronger shock waves, should produce an asymptotic lift value that is
slightly larger than the Euler value. However, it is difficult to reach such a conclusion from Fig. 15.

§ It is difficult to determine whether this technique for measuring grid refinement is appropriate or not

for unstructured grid results or whether unstructured and structured grid results can be compared on
this basis. Nevertheless, with this disclaimer, these comparisons are presented for the reader to
evaluate.
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both Euler and full potential methods, ONERA M6 Wing, Moo=0.84, e= 3.06 °. Open symbols are
structured methods and closed symbols are unstructured methods.
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The variation of drag§ with grid refinement for the above list of methods is displayed in Fig. 16. The
same set of conventions as used in Fig. 15 are retained in Fig. 16. Again, the scatter is quite large;
even larger than for the lift. The largest single-method variations in drag are from the unstructured grid
results, which in some cases produce relatively large errors on moderately fine grids. For the drag
results of Fig. 16, establishment of a definitive asymptotic value is even more difficult than for the lift.
Nevertheless, a "best guess" range for the asymptotic drag coefficient limit is between 90 and 115
counts. The full potential asymptotic drag value, because of its stronger shock, should be slightly
larger than the Euler value for this case. It is interesting to note that most of the individual full potential
drag values are below most of the Euler values, but that the trends do seem to put the full potential
drag asymptotic limit above the corresponding Euler value as expected. The two-zone full potential
approach (G2 curves) produces generally more favorable drag results [relative to the single-grid
results (G1 curves)] because the inner grid generation, also performed with HYPGEN, produces a
better quality grid near the wing surface in the chimera approach.§§

A more quantitative picture of the present full potential lift, drag, and pitching moment results,
including the newly computed two-zone chimera results generated with the Ref. 17 algorithm, is
presented in Tables 3 and 4. Also included is a variety of convergence statistics for each case. No
attempt has been made to optimize convergence for these cases (except for the L4 grid cases
already presented in Fig. 13). All computer timings are from a single processor of the Cray C-90
computer using level 3 optimization for the inline, vector, and scalar options of the cf77 compiler. The
scheme used for each computation is listed in the "SCH" column. An "H" corresponds to the hybrid
scheme and a "2" corresponds to the second-order scheme. For the two-zone cases the first symbol
corresponds to the scheme used for the inner grid zone and the second symbol corresponds to the
scheme used for the outer Cartesian-like grid zone. Besides the lift, drag, and pitching moment
information displayed in Tables 3 and 4, there are five additional quantities: the number of iterations
required to achieve lift to within +0.1% of the final value (nLIFT), the computer time required for nLIFT

iterations (tLIFT), the number of iterations required to achieve an average residual level of 10-8
(nRAVG), the computer time required for nRAVG iterations (tRAVG), and the computer time required for
solution overhead (tO/H). The overhead time corresponds to grid generation, solution initialization
including metric computation, and PLOT3D input file generation (a more difficult task for a potential
solver than an Euler solver). The overhead time is larger for the single-zone results because the grid
generation is more expensive. In the single-zone case the entire grid is generated using HYPGEN,
and then (as mentioned previously) all points downstream of the wing trailing edge are redistributed to
improve grid quality. In the two-zone case HYPGEN is used for only the inner grid zone (generally
fewer than half the total points) without any point redistribution and the other Cartesian-like grid zone
is generated using a very fast algebraic approach.

A definite degradation in solution convergence efficiency for the second-order scheme relative to the
hybrid scheme can be seen in Tables 3 and 4 for most levels of grid refinement. This is true no matter
which convergence criteria is chosen as was already established for the L4 grid in Fig. 13. The two-
zone second-order results show less degradation relative to the two-zone hybrid results. This is
primarily due to the fact that the outer grid zone in all of these cases actually used the hybrid spatial
scheme. Using a two-zone chimera grid arrangement with the second-order scheme for the inner grid
and the hybrid scheme for the outer grid is attractive because it is both efficient and accurate at least at
the wing surface where the solution is essentially second order. Convergence efficiency
comparisons between the two-zone and the single-zone results are mixed. Sometimes the single-
zone results converge faster and sometimes the two-zone results are faster. One observation from
this section is the speed with which the present full potential results are obtained. Solutions times

§ It should be stressed that the drag being discussed here is inviscid drag consisting of wave drag and
induced drag. No drag components due to viscous effects are included.
§§ The grid quality near the wing surface for the two-zone chimera approach is better because HYPGEN
doesn't have nearly as far to march to the outer boundary (one chord instead of 12). Thus, even
though there are fewer normal-direction points in the two-zone inner grid relative to the single-zone
grid, the stretching is less which contributes to better grid quality. In addition, because the marching
distance is much smaller, less numerical smoothing for the grid generation process is required, again
contributing to better grid quality.
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range from 2 sec to less than 3 min. On a typical L4 grid for a two-zone case, each solution is obtained
in 30-40 sec of computer time.

Table 3 Summary of computational statistics for the present single-grid full potential results displayed
in Figs. 15 and 16, ONERA M6 Wing, Mo_=0.84, a=3.06 °. Computer times are from a single

_rocessor Cray C-90 computer.
' CASE SCH CL CD

NO.

L2 .2822 .0140

L3 .2877 .0120

L4 .2905 .0114

L5 .2922 .0113

L2 .2864 .0148

L3 .2911 .0125

L4 .2930 .0118

L5 .2943 .0115

CM nLIFT

I I I

H -.1656 64

H -.1687 160

H -.1704 128

H -.1716 272

2 -.1677 112

2 -.1699 224

2 -.1711 240

2 -.1721 480

tLIFT

(sec)
2

nRAVG

128

tRAVG

(sec)
4

tO/H

(sec)
7

14 192 17 17

22 176 30 39

92 256 86 6O

74 176 6

19 256 22 17

41 320 54

146432162

39

6O

Table 4 Summary of computational statistics for the two-zone, chimera-grid full potential results

displayed in Figs. 15 and 16, ONERA M6 Wing, Mo_ = 0.84, a = 3.06 °. These results use the chimera

lie processor Cray C-90 com _uter.
nRAVG tRAVG tO/H

 (sec) (sec) (sec)
G2L2 H/H .2839 .0103 -.1653 96 3 224 8 2
G2L3 H/H .2880 .0106 -.1683 160 11 176 13 5

G2L4 H/H .2910 .0108 -.1705 208 26 224 28 10

G2L5 H/H .2923 .0109 -.1715 288 66 256 58 1 8

G2L2 2/H .2892 .0113 -.1678 128 4 176 6 2
G2L3 2/H .2916 .0111 -.1696 160 11 224 16 5

G2L4 2/H .2937 .0112 -.1713 272 34 288 36 10

2/H .2944 .0112 -.1720 384 87 400 91 18G2L5

CONCLUDING REMARKS

In conclusion, a new scheme for solving the full potential equation has been presented and evaluated

using a standard three-dimensional transonic wing computation. The new scheme includes both a
hybrid spatial discretization option which is second-order accurate in subsonic regions of flow and
first-order accurate in supersonic regions and an option which is fully second-order accurate

irregardless of flow type. The new second-order scheme utilizes a solution limiter, somewhat similar to
Euler flux limiters, to maintain stable operation at shock waves and other solution extrema.

The new iteration algorithm utilized in the present study is a variation of the AF2 scheme especially

designed for obtaining transonic wing solutions on C-topology grids. Its special design removes (or at
least controls) a stability limitation that exists in other implementations of this scheme. A key feature of

the present scheme is the coupling of two different AF2-scheme variations, one above the wing and
the other below the wing, using a local iteration at the wing leading edge. A typical transonic wing
solution involving 450,000 point grids can be obtained in as little as 22 sec of computer time on a

single processor of a Cray C-90 computer.

Numerous numerical results are presented including a grid refinement study to fully demonstrate the

new scheme's capabilities. The results indicate that the new algorithm is a viable technique for solving
the full potential equation and could provide a very fast computational tool for the aerodynamic

analysis and design of geometrically complex aerodynamic configurations.
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RECOMMENDATIONS FOR FURTHER STUDY

As stated in the introduction, the primary motivation for undertaking the present research path is to
establish a full potential chimera capability, suitable for obtaining aerodynamic data for complex
shapes. Thus, extending the present scheme's geometric handling capability is one area that needs
additional work. In particular, development of a general methodology that is capable of handling
multiple lifting surfaces with their associated vortex sheets is first on the list.

Another area of additional work is associated with viscous effects. In order to make the present
capability suitable for realistic aerodynamic analysis, the inviscid flow assumption must be removed.
Thus, a boundary layer correction capability must be added to the present methodology.

Application of the present capability to a variety of problems ranging from fast, nonlinear wind tunnel
wall corrections to complex-geometry design applications is the next logical step for this research.

Finally, improvements in computational efficiency are required. Although not discussed in this report,
the processing rate of the present algorithm is only marginally adequate, being about 300 MFLOPS
on a single processor of a Cray C-90 computer when a fine grid is used. A variety of efforts in the
parallel processing area could lead to dramatic improvement in this processing rate and a
correspondingly dramatic improvement in the utility of this technology.
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