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The Effect of Cooling Passage Aspect Ratio on
Curvature Heat Transfer Enhancement

Michael L. Meyer
NASA Lewis Research Center
Cleveland, Ohio 44135

Abstract

A series of electrically heated tube experiments was performed to investigate the effect of
high aspect ratio on curvature heat transfer enhancement in uniformly heated rectangular
cooling passages. Three hardware geometries were tested: a baseline straight aspect ratio 10 tube,
an aspect ratio 1 (square) tube with a 45° curve, and an aspect ratio 10 tube with a 45° curve. Gaseous
nitrogen with the following properties was used as the coolant: ambient inlet temperature,
pressures to 8.3 MPa, wall-to-bulk temperature ratios less than two, and Reynolds numbers based
on hydraulic diameter ranging from 250,000 to 1,600,000. The measured curvature enhancement
factors were compared to values predicted by three previously published models which had been
developed for low aspect ratio tubes. The models were shown to be valid for the high aspect ratio
tube as well the low aspect ratio tube, indicating that aspect ratio had little impact on the curvature
heat transfer enhancement in these tests.

Introduction

Numerous efforts have focussed on the problem of understanding the heat transfer
enhancement which occurs in a curving coolant passage.l4 The enhancement is a result of
secondary flows which develop due to centrifugal force on the coolant. These secondary flows
carry cooler fluid to the concave wall, increasing the convective heat transfer at that surface.
However, little information is available on the effect that passage aspect ratio has on this
enhancement, particularly when the increase in aspect ratio is in the plane of curvature, which is
the situation when high aspect ratio cooling channels (HARCC) are applied to rocket engine thrust
chambers.5.6

Recent subscale rocket engine tests have shown the potential to significantly reduce hot-
gas-side thrust chamber wall temperatures by using HARCC in the throat region of a
regeneratively cooled rocket engine.?.8 The HARCC allow more passages to fit in the same throat
circumference without reducing the total coolant flow area. In doing this, the fin effectiveness of
the high conductivity metal lands between the channels is increased, and the chamber is more
effectively cooled.® Unfortunately, the data available from hot-fire tests are limited and
insufficient to evaluate the impact that increased aspect ratio has on the curvature induced
secondary flows that enhance heat transfer to the coolant.

The objectives of this study were to determine if cooling passage aspect ratio significantly
affects curvature heat transfer enhancement and to evaluate existing curvature enhancement
factor models when applied to high aspect ratio passages. Toward this end, a series of electrically
heated tube experiments was conducted with straight and curved tubes of rectangular cross-
section. Gaseous nitrogen with the following properties was used as the coolant: ambient inlet
temperature, pressures to 8.3 MPa, wall-to-bulk temperature ratios less than two, and Reynolds
numbers based on hydraulic diameter up to 1,600,000. For comparison, in a typical liquid



hydrogen cooled rocket engine, wall-to-bulk temperature ratios can be as high as eight and
Reynolds numbers range from 500,000 to 2,500,000. Wall-to-bulk temperature ratios greater than
two were not possible with the current experimental setup. Consequently, some caution must be
exercised when extrapolating the results to a rocket engine application.

The tests were conducted with a straight aspect ratio 10 tube, a curving aspect ratio 1
(square) tube, and a curving aspect ratio 10 tube. The results are presented as local Nusselt
number measurements compared with predictions from existing models. In particular, the
curvature enhancement factor observed in the experiments is used to determine the applicability of
three previously published models to high aspect ratio geometries.

Theory

The classical approach to modeling convective heat transfer for internal flows is to use
semi-empirically developed equations for either the heat transfer coefficient or the dimensionless
Nusselt number. Many refinements of the equations have been developed to provide optimum
accuracy for the specific flow and thermal conditions of interest. It has been shown that the
simplest equation that adequately models the conditions presently studied is a modified smooth-
walled straight-tube Dittus-Boelter correlation for the Nusselt number10:

-0.3
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Re is the Reynolds number based on hydraulic diameter, Pr is the Prandtl number, and the wall-
to-bulk temperature ratio accounts for variations in the coolant properties. The exponent (-0.3)
used here is valid for wall-to-bulk temperature ratios less than three. Although this exponent is
typically given to be -0.5 to -0.7 to include larger values of wall-to-bulk temperature ratioll, the
value -0.3 provides a better fit for the test conditions studied.

To apply equation (1) to a non-ideal problem, several correction factors are included:
Nucdc =Nll‘. Ve VW, VW,

The y's are correction factors and e, r, and ¢ represent entrance, roughness, and curvature effects.
The focus of this study is y. , the curvature enhancement factor, and how it is influenced by cooling
passage aspect ratio. Neither entrance effects or surface roughness effects were included.

Table 1 provides three forms of yw, which were previously developed for circular and low
aspect ratio tubes, where X, is the distance from the start of the curve, L. is the length of the curve,
and R, is the radius of curvature. The exponent in each of these factors has a positive value when
modeling the concave surface and a negative value when modeling the convex surface.

Apparatus and Operating Procedures

Testing was conducted in the Heated Tube Facility at the NASA Lewis Research Center
(figure 1). The facility and operating procedures are described in detail in reference 12. The
main components used for the tests were a 14 cubic foot run tank, a test section vacuum enclosure,
flow control and measurement systems, and a 40 volt, 2000 ampere, DC power supply. The test
sections are uniformly joule heated by flowing a large electrical current through the length of the
walls, and gaseous nitrogen flowing through the tube acts as the coolant. A typical test consisted of



pressurizing the run tank with gaseous nitrogen, initiating the programmable logic controller to
set the nitrogen flow rate and backpressure, and increasing the power supply to the desired heat
input level. The run conditions were held constant for approximately five minutes to insure that
the test section reached thermal equilibrium before any data were recorded. The data were
collected at a rate of one Hertz for ten cycles; the values were averaged for the final results.

A D-Optimal experimental test matrix was developed for the controlled experimental
conditions: back-pressure, flow rate, and applied voltage. This D-Optimal design provides the
benefits and efficiency of a designed experiment, but can be applied to an experiment where the
design space is constrained.13 In this case, the highest power input levels could not be operated
with the lowest coolant flow rates without overheating the tube walls. The matrix also included
several repeated tests, and a total of 18-20 test runs was conducted for each test configuration. The
range of test operating conditions for all three test sections is shown in table 2.

Test Hardware

Figures 2a-c are sketches of the three test sections used for the experiments; table 3 provides
the corresponding dimensional details. The test sections consisted of rectangular cross-section
tubes with connecting flanges. Copper electrical busses were brazed to the tubes for power
connection, pressure taps were located at the inlet and exit connecting flanges, and the heated
sections of the tubes were extensively instrumented with thermocouples (table 4). The
thermocouples were spot-welded directly onto the tube. Therefore, each junction was carefully
aligned to minimize temperature errors due to test section voltage that is sensed by the
thermocouple. A description of the procedure used to correct this test section voltage induced
temperature error was given in reference 10.

Test section TS3 (figure 2a) had a cross-sectional aspect ratio of 1 and a 45° curve in the
heated portion. The curve diameter to hydraulic diameter ratio, 2R, /dy, , was 33 for TS3, and the
curve began 29 hydraulic diameters downstream of the first copper bus. This insured that the flow
at the entrance to the curve was fully developed from both a thermal and velocity standpoint. Test
sections TS4 and TS5, figures 2b and 2c, were fabricated with cross-sectional aspect ratios of 10.
Test section TS5 had an identical radius of curvature to that of TS3, but because of the difference in
cross-sectional geometry, the curve diameter to hydraulic diameter ratio, 2R, /dy,, was 58 for TS5,
and the curve began 49 hydraulic diameters downstream of the first copper bus.

All three test sections were fabricated by machining an open channel from solid Inconel
718 material and electron beam welding the fourth side in place. The curved test sections were
machined with the curve so that no bending was necessary. One advantage of this technique over
bending a straight tube is that the wall thickness is known, whereas it is not possible to predict
exactly where the wall material will flow during the bending process. The wall thickness is
critical in this type of experiment because it determines the local resistance and, hence, heat input
to that portion of the tube, and ultimately the surface temperature. The interior surfaces of the test
sections were also polished to minimize any surface roughness effects which were not considered
in the analysis.

An important consideration for modeling the curvature enhancement in a rocket engine
cooling passage is the length that the enhancement persists downstream of the bend. Because the
test section curves ended near the exit of the heated portion of the tube, the downstream results could
not be observed in the forward flow configuration. Thus, to investigate the enhancement
downstream of the curve, additional tests were conducted with test sections TS3 and TS5 inverted
in the test rig such that the flow direction through the test section was reversed. Although there was



not an adequate entrance length for full viscous and thermal development of the flow prior to the
curve, the curvature enhancement at the exit of the curve was expected to be comparable to that
achieved in the forward flow configuration.

Analysis

An analysis was conducted to calculate experimental convective heat transfer coefficients
for the test sections from the thermocouple data. The experimentally measured tube surface
temperatures were first corrected for errors due to the test section voltage sensed by misaligned
thermocouples. The corrected surface temperatures were then used to calculate inside wall
temperatures assuming one dimensional conduction through the thickness of the wall. An
iterative procedure that incorporated the variation of the thermal conductivity and electrical
resistivity with temperature along the length of the tube, similar to that employed in reference 14,
was used to obtain both inside wall temperature and the local heat generation rate. Although the
variation in heat generation rate along the length of the tube was determined in the analysis, the
heat generation rate was assumed to be uniform through the wall thickness. The bulk temperature
of the coolant at each station was calculated from the local heat input, and the fluid properties were
obtained from the subroutine GASP.16

A heat balance between the electrical power input and the coolant enthalpy gain was
calculated as a check, to ensure that the heat losses from the system were not significant. For most
of the tests, there was less than + 3% discrepancy, but a few tests had a difference as large as + 10%.
Because the larger differences consistently occurred during the low flow rate tests, some
additional tests were conducted to investigate the effect of run duration on the heat balance.

During these tests, the heat balance continued to improve after the standard five minute run
duration. The problem was that, due to the large thermal mass of the exit mixer where the fluid
enthalpy was measured, the heat balance was slow in reaching thermal equilibrium. The
temperatures measured on the test section, however, reached thermal equilibrium in less than one
minute. Thus, the discrepant heat balances were not affecting the low flow test results.

Because these test sections are rectangular, the wall temperatures around the perimeter are
not uniform. In particular, for the aspect ratio 10 tubes, where the wall thicknesses were
approximately the same as the flow channel width, a comprehensive analysis would incorporate
three-dimensional conduction in the walls. However, in the present effort, the assumption of one-
dimensional conduction was maintained. Because the focus of this effort is the curvature effect,
comparison between the curved portion of the test section and the straight portion remains valid.

Applying the assumption of one-dimensional conduction to the rectangular tubes required
special treatment for the heat generated in the corners. This was handled by assuming that the
heat generated in each corner was evenly distributed between the adjacent walls. For the aspect
ratio 10 tubes, the result of this assumption was that the shorter walls had 80% higher effective heat
generation rates than the longer walls, because the corner heat was distributed over a much
smaller length. This effect was generally supported by measured temperatures on the longer
walls which were lower than the respective shorter wall temperatures; however, the simplicity of
this approach introduced errors which caused greater scatter of the data from the high aspect ratio
test sections. With the effective heat generation rates determined from the one-dimensional
analysis, the experimental heat transfer coefficients and bulk property Nusselt numbers could be
calculated for each surface of a test section.

At this point, the curvature heat transfer enhancement for the low and high aspect ratio
tubes can be qualitatively compared. A direct quantitative comparison of the heat transfer



enhancement is not an appropriate method to determine if the increased aspect ratio has an impact
on the enhancement. Although the tubes are geometrically similar in length, curvature, and flow
area, their hydraulic diameters are significantly different, and the models in table 1 indicate that
hydraulic diameter is a factor in the magnitude of the enhancement. Therefore, the curvature
enhancement models, which were developed with data from low aspect ratio tubes, were used to
predict Nusselt numbers for the test conditions. These predicted values were then compared to the
experimental results. Since the models do not account for aspect ratio, any effect of aspect ratio
would be expected to reduce the accuracy of their predictions for the high aspect ratio test section.

Results and Discussion

The objectives of these tests were to determine if cooling passage aspect ratio significantly
affected curvature heat transfer enhancement and to determine the applicability of the existing
models for curvature enhancement factor (presented in table 1) to high aspect ratio passages. Test
section TS3 was an aspect ratio 1 curved rectangular tube, and test section TS5 was a curved aspect
ratio 10 rectangular tube. In addition, test section TS4, a straight aspect ratio 10 tube, was used to
verify the applicability of the straight tube model to a high aspect ratio tube. The plots do not contain
the data from the temperature stations nearest the copper busses because entrance and end effects
were not included in the analysis.

A comparison of the straight tube Nusselt number model to the experimental Nusselt
numbers obtained for the two narrow sides of test section TS4 is presented in figure 3. Most of the
data are correlated to within + 20 %, but there is considerable spread of the data in general and
some asymmetry of the experimental results (most significantly at the first thermocouple on side
A). Despite the spread of the data for test section TS4, the results are adequately modeled by
equation 1. In an effort to improve the data for the remaining tests, the cause of the data scatter was
investigated. It was determined that the probable explanation for these results was the poor
manufacturing quality of the thermocouples and slight inaccuracy of their installation on this test
section. This resulted in greater error (up to 100 °R) due to tube voltage potential sensed by the
misaligned thermocouple. Because the correction for this error was linearly approximated, a very
large error may not have been fully corrected. Extreme care was taken when instrumenting the
two curved test sections to insure that the voltage induced error would be minimized. In addition to
the instrumentation issues on TS4, both high aspect ratio test sections (TS4 and TS5) had greater
spread of the data due to their thick walls. This is because the analysis assumption of one-
dimensional conduction is less valid for thicker walls.

The ratios of the experimentally determined Nusselt numbers to those predicted by the
straight tube model (equation 1) are presented for the curved test sections in figures 4a and 4b. In
figure 4a, results for the concave side of test section TS3 show significant enhancement to the heat
transfer in the curved portion of the tube, where the experimental values are more than 20% greater
than those calculated using equation 1. The results for the convex side are also plotted in figure 4a,
and, while there is a reduction of the heat transfer, the effect is not as pronounced as on the concave
side. Figure 4b presents similar results for the aspect ratio 10 test section (TS5), and similar
trends are apparent, although the reduction on the convex surface is less significant.

The plots in figures 5a-c show the results of applying the three forms of y. to the predicted
Nusselt numbers for the concave side of test section TS3. Because the Taylor factorl, figure 5a, is a
fully developed formulation, it overpredicts the enhancement at the entrance to the curve, where the
enhancement is just beginning to develop. The Niino et al. factor2, figure 5b, also overpredicts the
development of the enhancement. Finally, the factor developed by Kumakawa et al.3 is used in
figure 5¢. Reasonable correlation of the data is achieved, though the enhancement in the second



and third stations into the curve may be underestimated.

The ability of the W, ’s to model the curvature enhancement for the aspect ratio 10 tube is
examined in figures 6a-c. As with the square tube, Taylor’s factor! and the Niino et al. factor2
overpredict the enhancement at the entrance to the curve, and the Kumakawa et al. factor3 does an
adequate job of correlating the data.

Since the curvature enhancement models were developed for low aspect ratio tubes, it was
expected that they would reasonably model the low aspect ratio test section results. However, by
comparing the results in figures 5 and 6, it is apparent that all three models predict the
enhancement for both the low and high aspect ratio tubes comparably. Thus, for the conditions
investigated, aspect ratio did not have a significant effect on curvature heat transfer enhancement
on the concave surface.

The remaining tests were conducted with the curved test sections in the inverted
configuration to allow reverse flow of the coolant. The reverse flow orientation permitted
observation of the heat transfer downstream of the bend, and the results indicated the persistence of
the curvature enhancement for both low and high aspect ratio tubes.

A plot of the ratio of experimental Nusselt number to that predicted by equation 1 for the
concave surface of test section TS3 in the inverted (reverse flow) orientation is presented in figure
7. The data from the tests in the inverted configuration are overlayed on the results from the
forward flow configuration which were presented in figure 4. In figure 7, the locations of the
thermocouple stations are referenced to the curve entrance. To further improve the readability of
the large number of data points, the reverse and forward flow results are displaced by plus and
minus one hydraulic diameter, respectively, on the figure. The development of the enhancement
in the inverted tests agrees fairly well with the results from the original configuration, even
though the flow entering the test section was probably not fully developed. The curvature
enhancement persists in the straight downstream portion of the tube for about 15 hydraulic
diameters.

The concave surface results from tests with the high aspect ratio tube, test section TS5, in the
reverse flow configuration are plotted along with the forward flow configuration results in figure
8. As with the low aspect ratio tube, the enhancement continues downstream of the curve and
decays in approximately 15-20 diameters. However, in this case, the enhancement developed
immediately at the entrance to the curve. This was probably caused by the undeveloped flow
entering the curve. The transition to the high aspect ratio flow passage is more severe than for the
low aspect ratio case, and disturbances induced by this transition contributed to the difference in
enhancement development.

Conclusions

A series of electrically heated tube experiments was conducted to investigate the effect of
cooling passage aspect ratio on curvature heat transfer enhancement. A single curvature was
investigated with tubes of aspect ratio 1 and 10 (the long dimension in the plane of curvature) and
gaseous nitrogen coolant. Entrance effects and surface roughness effects were not investigated in
this study. The following conclusions were drawn for the conditions studied in these tests:

1. Cooling passage aspect ratio does not significantly affect the curvature heat transfer
enhancement on the concave surface.



2. Existing models developed for low aspect ratio passages are adequate in predicting heat
transfer curvature enhancement for high aspect ratio tubes. The model published by
Kumakawa, et al.3 most accurately captures the development of the enhancement.

3. Reverse flow tests show that the curvature enhancement persists significantly
downstream of the bend for both low and high aspect ratio tubes. Furthermore, these tests
qualitatively demonstrate the impact of flow conditions at the onset of the curve (i.e.
thermally and hydraulically undeveloped flow) on the enhancement realized through
the curve.
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Table 1. Curvature Enhancement Factors om the Literature

ot Facin v

1 - Taylor

2 - Niino, et al.

[ rorameter
e
i Bulk Reynold’s
i Number, Rey,

500,000 to 1,600,000

3 - Kumakawa, et al.

Table 2. Ranges of Operating Conditions For Each Test Section

250,000 to 900,000

[ TestSectinTS3 |  TestSectionTS4 | TestSectionTS5

iWall-to-Bulk
| Temperature Ratio,
l Tw /Ty

1tol5

i Back Pressure
(MPa)

2.1,48,83

2.1,45,6.9

q” ( MW/m2)

Coolant Bulk Inlet ~ 280 ~ 280 ~ 280
Temperature (K)
| Average Heat Flux, 0.28, 0.63, 1.10 0.35,0.79, 1.40 0.34,0.74, 1.31



Table 3. Test Section Details
Test Section | Material

Outside Heated

Dimension (cm)

Inside
Dimension (cm)

Inconel 718 0414x 0414 0.617x0.617

Inconel 718 0.134x 1.275 0.414 x 1.554 25.4 None

TS5 Inconel 718 0.127x 1.270 0.381 x 1.537 25.4 45° Bend with
13.7 cm mean

radius

ottt ————— e e ——————

TS3 TS3 T84 Side A | TS4SideC | TS5 TS5
Concave Convex Axial* Axial* Concave Convex
Axial® Axial® Location Location Axial* Axial*
Location Location Location Location
(cm) (cm)
1 0.8 5.7 0.8 5.7 0.8 5.7
2 5.7 11.3 5.7 11.0 5.7 11.6
3 7.6 13.8 9.5 135 9.5 14.1
4 9.5 16.4 11.0 16.0 10.9 16.6
5 11.3 18.9 138 18.6 13.8 19.2
6 14.0 21.5 16.6 21.1 16.6 21.7
7 16.7 N/A 19.5 N/A 19.5 N/A
8 194 N/A 22.3 N/A 22.3 N/A
9 22.0 N/A
10 24.6 N/A
e — gty T = e - o
* Streamwise length measured from the center of the upstream copper bus in the upright
configuration.
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Figure 1. Heated tube facility schematic.
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Figure 6a. Concave surface results from test section TS5 with Taylor’s! curvature factor applied.
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Figure 6b. Concave surface results from test section TS5 with the Niino et al.2 curvature factor
applied.
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Figure 6¢c. Concave surface results from test section TS5 with the Kumakawa et al.3 curvature
factor applied.
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Figure 7. Concave surface Nusselt number results for test section TS3 in the inverted
configuration.
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Figure 8. Concave surface Nusselt number results for test section TS5 in the inverted
configuration.
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