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SENSITIVITY ANALYSIS AND OPTIMIZATION OF AERODNAMIC

CONFIGURATIONS WITH BLEND SURFACES

ABSTRACT

A novel (geometrical) parametrization procedure using solutions to a suitably

chosen fourth order partial differential equation is used to define a class of airplane

configurations. Inclusive in this definition are surface grids, volume grids, and grid

sensitivity. The general airplane configuration has wing, fuselage, vertical tail and

horizontal tail. The design variables are incorporated into the boundary conditions, and the

solution is expressed as a Fourier series. The fuselage has circular cross section, and the

radius is an algebraic function of four design parameters and an independent computational

variable. Volume grids are obtained through an application of the Control Point Form

method. A graphic interface software is developed which dynamically changes the surface

of the airplane configuration with the change in input design variable. The software is

made user friendly and is targeted towards the initial conceptual development of any

aerodynamic configurations. Grid sensitivity with respect to surface design parameters and

aerodynamic sensitivity coefficients based on potential flow is obtained using an Automatic

Differentiation precompiler software tool ADIFOR. Aerodynamic shape optimization of the

complete aircraft with twenty four design variables is performed. Unstructured and

structured volume grids and Euler solutions are obtained with standard software to

demonstrate the feasibility of the new surface definition.
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Chapter 1

INTRODUCTION

1.1 Motivation

Design and optimization of airplane components has become a primary ob-

jective for most researchers in aerodynamic community. The sudden interest can be

attributed to the introduction of complex and composite materials required by ad-

vanced aerospace vehicles, such as National Aerospace Plane (NASP) and High Speed

Civil Transport (HSCT) aircraft. Here, the interdisciplinary interactions are partic-

ularly important because of extreme flight conditions. The design of such vehicles

requires many analyses over a wide range of engineering disciplines.

In the past, design of flight vehicles typically required the interaction of many

technical disciplines over an extended period of time in a more or less sequential man-

ner. At present, computer-automated discipline analyses and interactions offer the

possibility of significantly shortening the design cycle time, while simultaneous mul-

tidisciplinary design optimization (MDO) via formal sensitivity analysis (SA) holds

the possibility of improved designs. Each analysis is based on solving mathematical

models describing physical laws associated with a discipline. The mathematical mod-

els are systems of algebraic, differential, or integral equations which are solved on

discrete domains called "grids" on, around, and interior to the vehicle surface. The

geometric requirements are the definition of the vehicle surface and the generation

of grids onto which solutions of the mathematical models are obtained. In the opti-

mization of aerospace-vehicle designs, engineering disciplines are interconnected and



affect one another. The effects can be realized in two ways: (1) The output from

one discipline is the input to another. (2) The vehicle geometry changes in response

to a discipline, therefore affecting other disciplines. In multidisciplinary analysis, the

vehicle surface remains constant and all disciplines analyze their physics based on the

same surface. Whereas, in multidisciplinary optimization the vehicle surface must be

allowed to change. A complete design and optimization analysis using all the relevant

disciplines is still a formidable task even for an isolated airplane component such as

a wing or fuselage. The computational cost associated with such analysis can easily

strain the capabilities of current supercomputers. The magnitude of this problem

can be best appreciated when a discrete aerodynamic or structural design analysis

can exhaust the computational capability of a medium size supercomputer. The un-

derlying problem is the expensive cost of the analysis for each discipline involved.

Clearly the aerodynamics involve non-linear physics and use of composite materials

would require non-linear structural analysis as well. For a simple aeroelastic problem,

the entire system matrix must be simultaneously solved using mostly implicit solvers.

The extensive computational demand for such coupling of the governing equations,

will likely limit MDO to only individual components such as a wing or wing-section.

The cost of optimization operations are relatively small and manageable. Two gen-

eral directions to overcome these difficulties have been proposed by different research

groups. The first direction leads toward modifying the existing computational tools in

order to obtain a relatively cheap and reliable technique for design and optimization.

The usually favored direct solvers, with all their advantages, require extremely large

computer storage even for 2D applications.

Creating an airplane surface or any other object surface with design pa-

rameters implies that there is an underlining set of rules or correspondences (model

functions) that are driven by the parameters and independent computational vari-

ables. Surfaces grids are discrete evaluations of the surface functions, and surface



grids can be described as organized sets of points. Different discipline analyses and

different techniques within a discipline most often require different grids to be gener-

ated from the surface model. In an environment where the ability to quickly change

features of the geometry is nearly as important as the geometry itself, it is desirable:

(1) to have the geometry model specified in terms of a small number of design pa-

rameters; (2) to visualize the geometry and interact with it to explore the envelope

of possibilities; and (3) to quickly extract grids and grid sensitivity for automated

analysis (both low-level and high-level) and optimization. As the geometry becomes

detailed, it is imperative that a CAD model, with its general characteristics be de-

veloped, and any parameter-defined model should be upgraded with a conventional

CAD system. Alternately, it would be desirable to incorporate a methodology like

the one described here in a conventional CAD system.

Design parameters can be classified according to whether or not they are cou-

pled. Uncoupled design parameters influence the solution independently and would

be the major contributors to optimization process. These parameters could be geo-

metric, flow-dependent, or grid-dependent. The geometric design parameters specify

the primary shape of a typical aerodynamic surface. Flow-dependent parameters are

usually free-stream conditions such as free-stream Mach number or angle of attack.

The grid-dependent parameters, relatively new in aerodynamic optimization, affect

the interior and boundary grids; therefore, influencing the solution and optimiza-

tion process. Traditionally, geometric parameters are considered the most affluent

in aerodynamic optimization, although, optimization with respect to other design

parameters is gaining respectability. For optimization with respect to geometric de-

sign parameters, a perturbation in parameters affect the surface grid and the field

grid which, in turn, affect the flow-field solution. There are two basic components in

obtaining aerodynamic sensitivity. They are: (1) obtaining the sensitivity of the



governingequationswith respectto thestate variables,and (9) obtaining the sensitiv-

ity of the grid with respectto the designparameters.The sensitivity of the state vari-

ableswith respectto the designparametersaredescribedby a set of linear-algebraic

relations. Thesesystemsof equationscan be solveddirectly by a LU decomposition

of the coefficientmatrix. This direct inversionprocedurebecomesextremely expen-

siveas the problemdimension increases.A hybrid approachof an efficient banded

matrix solverwith influenceof off-diagonalelementsiterated can be implementedto

overcomethis difficulty.

1.2 Literature Survey

1.2.1 Aerodynamic Design and Surface Modelling

Airplane design has historically been divided into three phases [111: concep-

tual design, preliminary design, and detailed design. The conceptual design of an

airplane usually begins with specifications for a proposed mission and rough sketches

of the configuration. Geometry begins to evolve in the form of sets of connected

points, and as the configuration approaches the end of the conceptual design phase,

Computer-Aided Design (CAD) models are created. In the preliminary-design phase,

high level analysis and testing of physical models are performed. Geometry for com-

putational analysis and the construction of test models is extracted from the CAD

model. In the detailed-design phase, the CAD model is the central design representa-

tion, now containing detailed information for manufacturing the airplane. According

to Raymer [2] design drawing is often carried out with a computer-aided drafting sys-

tem where the aircraft geometry is represented by character-lines on its surface. This

constitutes only a partial definition of the aircraft's surface and the process of lofting

between the character lines is required to create the complete aircraft surface. Thus

1The numbers in brackets indicate references.



there is a need for mathematical methods for representing or parametrizing curves

and surfaces, which are flexible enough to represent a wide range of shapes in an easy

and intuitive manner. It is also desirable to choose a method which uses few surface

defining parameters so as not to overcomplicate the problem which would lead to

an excessive use of computational time whilst at the same time to ensure sufficient

flexibility in the surface in order to avoid trivial solutions [3].

One method of surface representation commonly used in computer-aided de-

sign applications is that of Bezier surfaces [4]. Here the defining parameters are the

set of control points which form the characteristic polyhedron to which the surface

then approximates. One advantage of this method is that the effect of changing a

design parameter, i.e., the effect of moving a control point, on the surface shape is

intuitively predictable. An improvement to this method is found in B-spline surfaces

where each control point only influences the region of the surface close to it [5]. Both

these two properties are useful from the point of view of the end-user.

By the late 1970s, the CAD/CAM industry recognized the need for a modeler

that had a common internal method of representing and storing different geometric

entities. At about the same time, three major groups looked at the possibility of using

Non Uniform Rational B-Splines (NURBS). Boeing began developing the Tiger sys-

tem in 1979. Integrating B-splines [6] with rational Bezier representations [7] quickly

led to rational B-splines. SDRC (Structural Dynamics Research Corporation) pur-

sued NURBS commercially and in 1978, the company started working on a modeler.

The rapid proliferation of NURBS is due partly to their excellent properties and

partly to their incorporation in such national and international standards as IGES

[8], PHIGS+ [9], Product Data Exchange Specification, and International Standard

Office, and Standard for the Exchange of Product Model Data.

These methods, however, were not suitable to the problems investigated

by Bloor and Wilson [10], since even the simple cubic Bezier surface had sixteen



control points each of which had three degrees of freedom. Also, tile Bezier formu-

lation was based on design by changing small regions of the surface independently

whereas they were concerned with a more global approach to design. Bloor and Wil-

son [LI] introduced the method of generating free-form surfaces using solutions to a

suitably choosen partial differential equation. By regarding a blend as a solution to

a boundary-value problem and by choosing appropriate boundary conditions, they

demonstrated that a solution to a suitably chosen elliptic PDE gave a smooth blend-

ing surface that had the required degree of continuity with the primary surfaces to

which it joined. Bloor and Wilson [12] have extended their work for approximating

surfaces, which are the solutions of partial differential equations, in terms of B-splines

so that they can be represented in a form compatible with more established surface

design techniques.

1.2.2 Grid Generation and Solution Methods

In recent times techniques for the automatic generation of computational

meshes have received much attention. This is primarily due to the fact that there

has been an increased effort in the development of algorithms for the solution of the

flowfield equations. Historically, many of the fundamental developements in theoreti-

cal fluid dynamics have rested upon conformal mapping techniques for incompressible

potential flow in which solutions on the boundaries can be obtained without resort to

information in the field. Also panel methods [13], which utilize distribution of sources

and siks on boundary surfaces, have played and continue to play an important role in

aerodynamics. Recently, however, attention has been primarily focused on solution

techniques for the Full Potential, Euler and Reynolds-Averaged Navier-Stokes equa-

tions. These equations are formulated on the basis of the continum hypothesis. With

computers restricted in memory and speed it is not possible to consider all points in

the continum domain and hence it is necessary to select a subset of points within a
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domain at which flow quantities can be calculated. The combination of points and

connections between points defines a mesh or grid on which numerical methods for

tile solution of the flow equations can be constructed. The assumption is then made

that the information at these points is sufficient to describe the complete flowfield.

In the most widely used approach [14] the domain is divided into a struc-

tured assembly of quadrilateral cells. The structure in the mesh is apparent from the

fact that each interior nodal point is surrounded by exactly the same number of mesh

cells. Mesh generation, however, has proved to be a stubbornly difficult problem.

Considerable effort has been devoted to this area in recent years as evidenced by the

extensive literature on mesh generation. Numerical mesh generation techniques [15]

have proved to be a powerful approach for creating meshes around complex shapes.

Algebraic methods based on surface fitting [16], transfinite interpolation [17], and se-

quential mapping [18] have also been applied to treat a variety of geometric shapes in

both two and three dimensions. All of these methods, however, encounter difficulties

when applied to complete aircraft configurations consisting of a wing, fuselage, tail

and nacelles. A promising technique to tackle complex configurations is the use of

a multiblock structure or a splitting-up of the space around the configuration into a

number of smaller and topologically simpler regions. Separate meshes can be gen-

erated for each block. In some cases [19], the mesh is required to blend smoothly

together at block interfaces to provide a mesh that can be viewed as a single block

by the flow solver. In other cases [20], the mesh is not required to connect smoothly

at the interfaces and interpolation is needed to transfer flow information between

separate blocks. Smith et al. [21] have generated grids around very complex config-

urations and very promising results have been obtained.

Neverthless, the generation of a mesh around a complete aircraft config-

uration, including engine nacelles, has resisted the efforts of researchers until fairly

recently. The first published calculations using a structured, conforming mesh around
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a wing/ fuselage/nacelle/pylon combination is the work of Vigneron et al. [22] More

recently, Sawada and Takanashi [23] generated a structured mesh to calculate the flow

over a complete aircraft with wing mounted nacelles. These are striking successes in

the generation of structured hexahedral meshes around complex configurations.

The alternative approach is to divide the computational domain into an un-

structured assembly" of computational cells. The notable feature of an unstructured

mesh is that tile number of cells surrounding a typical interior node of the mesh is

not necessarily constant. The nodes and the dements are numbered and, to get the

information on the neighbours, we store the numbers of the nodes which belong to

each element. There is no concept of directionality within a mesh of this type and

that, therefore, solution techniques based upon this concept (e.g. ADI methods) will

not be directly applicable. The methods which are normally adopted to generate un-

structured triangular meshes are based upon either the Delauny [24] or the advancing

front [2.5] approaches. Discretization methods for the equations of fluid flow which are

based upon integral procedures, such as the finite volume or the finite element method,

are natural candidates for use with unstructured meshes. The principal advantage

of the unstructured approach is that it provides a very powerful tool for discretizing

domains of complex shape [26,27]. In addition, unstructured mesh methods naturally

offer the possibility of incorporating adaptivity[28]. Disadvantages which follow from

adopting the unstructured grid approach are that the number of alternative solution

algorithms is currently rather limited and that their computational implementation

places large demands on both computer memory and CPU [29]. Further, these algo-

rithms are rather sensitive to the quality of the grid which is being employed and so

great care has to be taken in the generation process.



1.2.3 Sensitivity Analysis and Optimization

Sensitivity analysis (SA) providesa natural systematic meansfor both an-

alyzing and predicting the behavior of physical approximations and computational

systemsor for identifying significant input parameters in a system. The literature

on sensitivity analysisand optimization is quite extensive. The pioneeringwork on

sensitivity analysisfor MDO wasstarted from Sobieski [30]to the CFD community

for extending their presentcapabilities to include sensitivity analysisof aerodynamic

forces. 'fates [31] developedan analytical approach usingan implicit differentiation

in combination with linearized lifting-surface theory to evaluate the sensitivity co-

efficients. This can be used as a benchmark criteria for assessingthe accuracyof

approximate methods. Murthy and Kaza [32] developeda semi-analytical technique,

using linear unsteadyaerodynamics,to study an isolatedwing-sectionand rotating

propfan blades.Someaeroelasticanalysisfor transport wing hasbeeninvestigatedby

Grossmanet al. [33], wherea coupledaerodynamicand structure model influences

the design. Livine et al. [34] and a few other researchersfocus on more complex

interactions suchasinclusionsof activecontrols on the overall optimization process.

A number of researchershave successfullypursued the quasianalyticalapproach to

calculatesensitivity derivativesfrom nonlinear flow-analysiscodesof varying degrees

of complexity. For example,Elbana and Carlson [35] have computed wing-section

aerodynamicsensitivity coefficientsin transonic and supersonicflight regimes,and,

more recently, they extendedthe work to 3D full potential equationsusing the sym-

bolic manipulator MACSYMA to obtain the sensitivity coefficients.The procedure

wasapplied to ONERA M6 wing platform with NACA 1406wing sections[36]. The

calculation of quasianalytical sensitivity derivatives is reported by Taylor et al. [37],

Hou et al. [38], and Baysal et al. [39] for interior channel flows from a conven-

tional upwind finite-volume solution strategy applied to the 2D Euler equations in

body-oriented coordinates. These researchers have subsequently extended this work
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to calculate sensitivity derivatives for 2D laminar flows from the thin-layer Navier-

Stokes (TLNS) equations, including external flows over isolated airfoils [40]. Baysal

and Eleshaky [41] presented an aerodynamic design strategy using direct differenti-

ation of Euler equations. The procedure was applied to design a scramjet-afterbody

configuration for an optimized axial thrust. This scheme was later extended to in-

clude domain decomposition capabilities in order to reduce the computational costs

associated with complex configurations [42]. Another strategy has been developed by

[(orivi et al. [4:3] and Newman et al. [44], where the sensitivity equations are recast

and solved in incremental iterative form. The incremental iterative form is very flexi-

ble and it increases the feasibility of solving the sensitivity equations for advanced 3D

CFD codes. Korivi et al. [4,5] have demonstrated the use of this strategy to efficiently

and accurately calculate quasianalytical sensitivity derivatives for a space-marching

3D Euler code with supersonic flow over a blended wing-body configuration.

Application of the quasianalytical methods requires the construction and

evaluation of many derivatives, and for advanced CFD codes, the task of construct-

ing exactly all of these required derivatives "by hand" is extremely complex. Ref-

erence [43] shows that failure to consistently differentiate the turbulence modeling

terms can result in unexpectedly large errors in the sensitivity derivatives that are

calculated. A promising possible solution to this problem may be found in the use

of a technique known as automatic differentiation (AD). Automatic differentiation

is a chain-rule-based technique for evaluating the derivatives of functions defined by

computer programs with respect to their input variables and has been investigated

since 1960. Progress towards a general-purpose AD tool has been made with the

development of ADIFOR by a joint effort of Argonne National Laboratory and Rice

University. ADIFOR differentiates programs written in Fortran 77; that is, given

a Fortran procedure (or collection of procedures) that describe a "function" and

an indication of which variables in parameter lists or common blocks correspond to
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"independent" and "dependent" variableswith respect to differentiation, ADIFOR

producesFortran 77 code that computesthe derivativesof the dependentvariables

with respect to the independentones. ADIFOR has recently beentested by Bischof

et al. [46] and Green et ah [47] in applications to an advanced CFD flow-analysis

code called TLNSaD [48]. In these studies, a high Reynolds number, turbulent, 3D

transonic flow over tile ONERA M6 wing was selected as the example problem.

1.3 Objectives of Present Study

After reviewing relevant literature, it is aparent that parametrization of air-

craft geometry plays an important role in the design process. Despite the differences

in various approaches towards aircraft design it is agreed upon to identify an early

stage in the design process during which general questions considering the aircraft's

configuration be studied; when, in order to meet whatever requirements exist, various

alternative design solutions must be considered. In the past, when considering the

question of the physical properties of new design, designers have had to rely upon

their own knowledge and experience, and, further along in the design process, model

testing. However, the increasing sophistication of numerical methods and the increas-

ing power of computer hardware have meant that the properties of new design can

be analysed by computer long before any physical model is created. Furthermore,

whereas the main use of numerical methods has been an alternative to model test-

ing, there is an increasing trend towards their use in the design process as a tool for

optimization. Development of an efficient and reliable surface definition, grid gener-

ation, grid sensitivity and optimization for conceptual design of aerodynamic shapes

appears essential.

An important ingredient of grid sensitivity and surface optimization is the

surface parameterization. The most general parameterization would be to specify

every grid point on the surface as a design parameter. This, although convenient,



t2

is unacceptable dne to high computational cost. [t is essential to keep tile number

of parameters as low as possible to avoid a surge on computational expenses. An

analytical parameterization, may alleviate that problem but it suffers from lack of

generality. A compromise would be using splhm functions such as a Bezier or Non-

Uniform Rational B-Spline (NURBS) function to represent the surface [-19]. In this

manner, most aerodynamically inclined surfaces can be represented with few control

(design) parameters. This method has its own disadvantages, like the definition of

wing fuselage intersection. The method of generating blend surfaces was a key area

which led to the investigation of free form surfaces. Generation of free form blend

surfaces was investigated by Bloor et al.[50]. The surfaces which they generated were

quite interesting and the applications ranged from telephone handset to hull of a

ship. They used the solution of fourth order partial differential equation to generate

blend surfaces. In this study the idea was explored and was used towards generating

aerodynamic shapes.

With the advance in computers much research have been directed towards

the development of graphic interface, which could accurately represent the surface on

a computer screen. Most of the available graphics software have the capability of dy-

namic translation and rotation. It was realized after reviewing the literature that the

need for a graphic interface which could help the designer view the dynamic change

in surface with the change in design variable was extremly helpful. This would act as

an additional tool in the initial conceptual development of surfaces.

The second main objective of this study is to do a grid sensitivity and surface opti-

mization. Unlike aerodynamic considerations, the grid sensitivity analysis has been

used on structural design models for a number of years. In this context, grid sen-

sitivity can be thought as perturbation of structural loads, such as displacement or

natural frequency, with respect to finite element grid point locations [51]. Two basic

approaches have been cited for grid sensitivity derivatives. The first approach, known
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as implicit differentiation, is basedon implicit differentiation of discretizedfinite el-

ement system. Tile other, which is basedon the variation of continuum equations,

is known as vari_ttionalor material derivative approach. The main objective here

is to developa fast and inexpensivemethod for grid sensitivity to be usedon an

automatedaerodynamicoptimization cycle. Among two major classesof grid gener-

ation systems(Algebraic, Differential), algebraicgrid generationsystemsare ideally

suited for achievingthis objective. The explicit formulation, resulting in a fast and

suitablegrid, enablesdirect differentiation of grid coordinateswith respectto design

parameters[52,53]. The development of software packages like ADIFOR, which could

compute the derivatives in a manner that could save the time and effort of analytical

methods was extremely helpful. This study involves the application of this software

to compute both the grid and flow sensitivity towards an optimization study.

The organization of this study is as follows. The physical and geometric

representations of a typical model are derived in Chap. 2. Chapter 3 discusses the

graphical user interface. The grid generation algorithm for both structured and un-

structured is described in Chap. 4. The method of solution is provided in Chap. 5.

Chapter 6 discusses the theoretical formulation and aerodynamic sensitivity equation.

The results are presented and discussed in Chap. 7. Finally, some concluding remarks

are provided in Chap. 8.



Chapter 2

PHYSICAL MODEL

2.1 Computer-Aided Geometric Design (CAGD)

In the late 1950s hardware became available that allowed the machining of

3D shapes out of blocks of wood or steel [54]. These shapes could then be used as

stamps and dies for products such as the hood of a car. The bottleneck in this produc-

tion method was soon found to be the lack of adequate software. In order to machine

a shape using a computer, it became necessary to produce a computer-compatible

description of that surface. The most promising description method was soon identi-

fied to be in terms of parametric surfaces. The theory of parametric surfaces was well

understood in differential geometry. Their potential for the representation of surfaces

in a C,omputer-Aided Design (CAD) environment were not known. The exploration

of the use of parametric curves and surfaces to represent objects in computational

environment [55] can be viewed as the origin of Computer Aided Geometric Design

(CAGD).

Surfaces can be defined by implicit algebric equations or explicit parametric-

algeabric equation [56]. Parametric equations have dominated CAGD because of their

intrinsic simplicity for modelling complex objects.

In the development of parametric curves and surfaces, two different ap-

proaches have evolved [57]. They are referred to here as _interpolative" and _'approx-

imative". In an interpolative representation, points and derivatives on the curve or

surface are used to control the formula defining the curve or surface. Langrangian and

14
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Hermite interpolation formulas are examples of this approach. In an approximative

approach points not necessarily on the curve or surface control the formula defining

the curve or surface. Tile Bezier and B-Spline representations are examples of this

approach.

In the design process using an interactive CAD system, the approximative

approach is highly advantageous. After prescribing an initial set of control points,

the designer can pick and drag points and simultaneously observe the change in the

shape of the surface.

2.1.1 Geometric Representation of Wing Section

The most commonly used approximative representation is the Non-Uniform

Rational B-Spline (NURBS) function. The NURBS provide a powerful geometric tool

for representing both analytic shapes (conics, quadrics, surfaces of revolution, etc.)

and flee-form surfaces [58]. The relation for a NURBS curve is

X(r) = Zi_=°Ni,p(r)_oiDi
E Lo Ni,. (r)_oi X(r) = { x(r)y(r)} Di={ X' } (2.1)

i -- 0, ..... , n

where X(r) is the vector valued surface coordinate in the r-direction, Di are the con-

trol points (forming a control polygon), w_ are weights, and Ni,p(r) are the p-th degree

B-Spline basis function defined recursively as

1 ri < r < ri+l }Ni,0(r) = 0 otherwise

Ni,p(r) - r - ri Ni,p-l(r) + ri+p+, - r Ni+l,p_x(r). (2.2)
ri+ p _ r i ri+p+l -- ri+ 1

The r i are the so-called knots forming a uniform knot vector
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r = {_,%+1, .... ,rm-p-l,b_ I (9.3)
p+l p+l )

where the end knots a and b are repeated with multiplicity p + 1. Tile degree, p,

number of knots, rn + 1, and number of control points, t_ + 1, are related by

m = n +p+ 1. (2.4)

For most practical applications the knot vector is normalized and the basis function

is defined on the interval (a = 0, b = 1). Equation (2.1) can be rewritten as

rt

X(r) = _ Ri,p(r)D_ Ri,p(r) = N,,p(r)wi
E %o i = 0, .... (2.5)

where R,,p(r) are the Rational Basis Functions, satisfying the the following properties

among many others found in [59]

71

R,,p(r) = 1 _R,,p(r) > 0. (2.6)
i=O

Figure 2.1 shows a six control point definition of the cambered airfoil ob-

tained by Eq. (2.5). The points at the leading and trailing edge are fixed. Two

control points at 0% chord are used to affect the bluntness of the section. The effect

of the movement of the control points to create another airfoil is shown in Fig. 2.2.

Figure 2.3 shows the effect of increasing the weight of the middle control point. It is

seen that the curve is pulled towards the control point. An arc length distribution of

the unit line is used for the knot vector

An interactive program based on Eqs. (2.1-2.5) have been developed. The

program is menu driven, where after prescribing an initial set of control points, the

designer can pick and drag these points and simultaneously observe the change in

shape of the curve. Figure 2.4 shows the snap shot view of the interactive program.

The cursor is drawn as a cross hair and different options are available in the pull down
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Fig. 2.1 Six control point wing section definition.

I"
f

I__ -_7 _-_..- .-I-

Q--

Fig. 2.2 Effect of moving the control points.

Fig. 2.3 Effect of increasing the weight of control point.
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Fig. 2.4 Snapshot of graphic interface of NURBS curve.
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menu. Weights associated with each of the control point can also be changed. The

distribution of points for the NURBS curve is set to arc length formulation which can

be also changed by th user. The program has the capability to output the NURBS

curve into a predefined file.

2.2 Surface Design and Parametrization

The description of parametric surfaces in Computer-aided design can be

broadly classified into the categories of shape representation and shape design [60].

Shape design is typically accomplished in an interactive manner i.e., the designer

starts with a sketch and refines it untill it meets the requirements. Characteristically

to the representation approach, there already exists a prototype of the model and

numeric information that describes it, for which the corresponding computer model

is processed automatically within the appropriate tolerance. Shape modifications

have been of interest in both CAD/CAM and graphics for atleast two decades. In

CAD/CAM, shape serves such purposes as aesthetics (free form design) , smooth-

ing (removing wiggles, bumps etc.), satisfying special design requirements such as

generating hard points or hard lines and adjustment of geometry (eg. spline based

variational geometry). In graphics, shape can be used to generate a large variety of

shapes or to perform animation based on subtle modifications. In any case, shapes

generated by a computer system are rarely immediately acceptable, and subsequent

modifications are required. The available techniques for modifications depend on the

underlying representation scheme. Using splines, the modifications can be accom-

plished by, moving control points (Refinement can be made by either degree elevation

or knot insertion), using special blending functions such as tensioned splines, and

using rational polynomials with weight.
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For an aerospace vehicle such as [tigh-Speed Civil Transport (HSCT), the

traditional approach to design is for aerodynamics and performance disciplines to ini-

tially create the vehicle surface[61]. The process is to define tile planform, wing, fuse-

lage, engine nacelles, and major control surfaces with aero/performance independent-

design parameters. For instance, the wing is specified by the planform description,

wing section, dihedral angles, and twist angles. Several sections are required for a

wing. Approximately 50-100 independent parameters are required to specify a rough

vehicle surface [62]. Usually a sparse set of points on the component surfaces which

can be thought of as a very coarse grid becomes the surface description for analyses. A

refined definition of a vehicle surface is obtained by applying Computer-Aided Design

(CAD) techniques to sparse definition. The input to the CAD system is the sparse

definition. CAD is used to create a patch definition of each vehicle components, and

add surfaces such as fillets and wingtips.

A patch is represented mathematically as

m

X(u,v) = _ __, hi,kH'_(u)H_.(v)
i=0 k=0

(2.7)

O<_u,v<_ 1.

where u and v are parametric coordinates, h is a matrix of surface definition param-

eter and H_(u), and H'_(v) are interpolation functions respectively in the u and v

directions.

For the case of bicubic surfaces (m and n=3) the matrix of defining param-

eters is

x(0,0) xv(0,0) zv(0,1) x(0,1)

x v(O,O) x v(O, 1) z (O, 1) (2.S)x,,(1,0) x v(1,0)L J k

x(1,0) x,(1,O) xu(1,1) x(1,1)

The elements of h_,k are the corner points of the patch derivatives with respect to
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the parametervariablesat the cornerpoints and crossderivativeswith respectto the

parametric variables at the corner points. For a bicubic patch there are48 defining

parameters,and a refinedvehiclesurfacemay consistsof severalhundredpatches.

In this study two methodsof representingthe vehiclesurfaceareconsidered.

The first is the most generalapproximativerepresentationi.e., Non-Uniform Rational

B-Spline [63] (NURBS) and the secondis a novel parametrization procedurewhich

usesthe solution to a suitably choosenfourth order Partial Differential Equation [64]

(PDE) to representthe surface.

The commercialenvironment in which the two parametrization procedures

wasinvestigated requiresthat it should satisfy the following:

(1.) provide flexibility to design geometry

(2) give a set of tools tile designer can invoke at any stage of the design process

(3) work in a reliable, fast and accurate manner

(4) operate such that any modifications should preserve the entire continuity of the

geometry, and

(.5) provide analytical equation defining surface to perform design optimization.

2.2.1 M-6 Wing NURBS Representation

A NURBS surface [65] is the rational generalization of the tensor product

nonrational B-Spline surface and is defined as

Ein__oEjmo Ni,p(u)Nj,q(v)o.,i,j (2.9)

where ¢oi,j are the weights, Pi,j form a control net, and N,,p(u) and Nj,q(v) are the

normalized B-Splines of degree p and q in the u and v directions. The knot vectors are

U = /_,up+_, .... , ur-p-l,_

_, p+l p+l

('_).10)



V -_" /_,uq+l, .... ,Us-q-i__

I, q+! q+t

wherer = n + p+ 1 ands = m+q+ 1.

Introducing the piecewise rational basis functions:
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(2.1t)

R/,./(u, v) = Ni,p(u)Nj,q(v)_.,/,j
E_-=oE?=o N_,p(,,)_Vl,q(o)_k,l

the surface Eq. (2.9) can be written as

(2.12)

n m

s(_,v) = _ _ R,,j(_, v)P,,j (2.13)
k=O j=O

A NURBS surface has the property _i_=o Ej_o Ni,p(u)?v_,q(v) -- 1 and reverts

to a B-spline when all the weights are 1. A NURBS surface has the advantage of

being able to represent free-form surfaces, and with the proper choice of weights,

conic surfaces.

The surface skinning technique [66] is used to obtain the NURBS surface.

The task of skinning is to fit a surface through an ordered set of space curves, called

as section curves. The positioning of section curves in the three-dimensional space is

customarily done with respect to a spine curve, from which appropriate orientation

vectors can be automatically computed. The skinned surface is obtained in three

steps:

1. All the cross-sectional curves are first made compatible. That is, all the

curves should have the same degree and number of control points and be defined over

the same knot vector.

2. Next u values and a knot vector V is calculated for interpolation with

degree-q NURBS curves.

3. Using the above values, curves are interpolated through the control points

calculated by Eq. (2.13).

ONERA M6 wing is used to demonstrate the skinning technique. The points
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Fig. 2.5 Control point polygon for ONERA M6 wing.
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Fig. 2.6 Shaded NURBS suface

for ONERA M6 wing.

Fig. 2.7 Coarse surface grid over
NURBS surface.
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generated from the CAD software is used in the skinning process and the control

points generated are shown in Fig. 2.,5. The shaded NURBS surface is shown in Fig.

2.6. A coarse CFD grid is generated on the surface of the wing and is shown in Fig.

2.7.

2.2.2 PDE Method

The PDE method generates a surface X in Euclidean 3-space, which is a

function of two parameters, i.e., X = (x(u,v), y(u,v), z(u,v)). The surface is obtained

by solving a partial differential equation (PDE), in parameter u,v space, subject to

boundary condition on X and its normal derivative with respect to u and v. In gen-

eral, the order of PDE determines the number of derivatives of the unknown function

that must be specified in the boundary condition. If control over both shapes of

the curves bounding the PDE surface patch and the directions and magnitude of the

coordinate vectors X_, and X_ at the edge of the patch are required then atleast a

fourth order PDE is needed to generate the surface. The PDE may be written as

5 02 12a2_+ 0v=] x=0 (2.14)

where X = (x(u,v), y(u,v), z(u,v)).

The appropriate boundary conditions for Eq. (2.14) are the value of X and

its normal derivative around the edges of the domain in the (u,v) plane. Since the

generating equation, Eq. (2.14), is an elliptic PDE, the solution becomes very sensi-

tive to the choice of boundary conditions. The boundary conditions act as a powerful

tool for surface manipulation by a designer and can be used as a design parameter

in an optimization process. The boundary conditions on function X are choosen that

the curves forming the edges of the surface patch have the desired shape. The direc-

tion of the vector X, and Xo are tangential to the isoparametric lines on the surface.

Therefore by altering the values specified for X_ and X_ along the boundaries, one

can effect the direction in which the surface moves away from the edges of the patch.



The generalsolution of Eq. (2.14)can be written in tile form

0

x = Ao(,,)+ +
nml

where the coeMcient function An(u) and B,,(v) are of the form
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a -(l n u_An(u) = anle _u + an2ue =nu + nae + an4ue -'_'_'

B,_( v) = b,_le '_v + bn2ve '_ + b,_se -'_ + b,_4ve -'_

The quantities a,_x, a,_2. a,_s, an4, b,_l, b,_2, b,,3, and b,4 are vector valued constants that

can be found for a particular solution by Fourier analysis of the condition imposed

on the isoparametric lines bounding the patch.

Consider now, the problem of creating simple blends between two circular

cross sections. For an illustrative purpose, consider the blend between a cylinder and

a plane. It is necessary to set up the problem as a boundary value problem in (u,v)

space with boundary conditions specified along curves in the (u,v) plane that corre-

sponds to closed curves in E 3. One of the boundary curve is taken to be the plan

outline of the circular cylinder. Another boundary curve which is the definition of the

plane is taken to be u = 1 and again is given parametrically in terms of v. Knowing

that seperable solutions to Eq. (2.15) are of the form sinusoidal function multiplied

by exponential function, the choice of boundary condition must reflect this. Thus,

for this example, the flat plane is considered to be at z = 0, and the curve is defined by

x. =

yp = rpsin(v)

zp_O (2.16)



This is the boundary condition on X that, is applied at u = 0.

the curve for the cylinder is definedby
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Similarly, at u = l,

.c = rccos( ,)

gc = r_sin(v)

zp = h (2.t7)

Since the generating equation is a biharmonic like partial differential equation, it re-

quires derivative boundary conditions which are given at the plane by

and at the cylinder by

t

t

gp = s2sin(v)

I

Z p ------O (2.1s)

I

_c=O

t

yc=O

I

zp = sl (2.19)

Figure (2.8) shows the blend between the circular cylinder and the plane.

The different constants which act as design parameters are the radius of the cylinder,

the height of the cylinder and the slope of the cylinder. For the plane it is the radius

of the circular plane and its slope. The effect of varying the slopes of the cylinder

and plane on the blend is shown in Figs. 2.8(b-d). In Fig. 2.8(b), the radius of the

cylinder is very large compared to the plane and a very large slope is choosen for the

cylinder. It is seen that the grid lines near the cylinder is orthogonal. In Fig. 2.8(c),

the radius of the cylinder is reduced and also the slope of the plane. In Fig. 2.8(d) a

negative value of the slope is choosen for the plane.
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a) Regula Blend.

b) Large radius and high positive
value of slope for cylinder.

c) Small value of slope for
the plane.

d) Negative value of slope for the plane.

Fig. 2.6 Blend between a circular cylinder and a plane with change in
design parameters.
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It is concluded from these figures that the slope plays an important role in determin-

ing the blend between two cross-sectional curves.

2.3 Generation of Complete Aircraft by PDE Method

Consider an aircraft shape made up of five patches: a fuselage, an inner

wing, an outter wing and vertical and horizontal tails. For simplicity the fuselage

is defined algebraically. The characteristic lines which form the boundaries between

adjacent surface patches are

(1) the curve where the inner wing meets the fuselage

(2) the curve where the inner and outer wing meet

(3) the curve at the tip of the outer wing and

(4) the curves for the horizontal and vertical tails

Figure 2.9 shows the different patches and sections used to represent the HSCT type

configuration.

A methodology based on the above mentioned theory has been developed to

define a class of airplane configurations. It directly evaluates the surface grid, volume

grid, and grid sensitivity, and the main objective of the methodology is to provide a

grid generation package for conceptual design that could be used in a wide spectrum

of analyses (potential flow to Navier-Stokes). The methodology and associated soft-

ware is developed by Smith et al. [67] and is called Rapid Airplane Parametric Input

Design (RAPID).

The fuselage definition is an algebraic function which creates two surfaces -

one above the fuselage intersection and one below. The airplane is considered to be

symmetric about the x-z plane at y = 0, and only one side of the airplane is computed.

The fuselage cross section is circular and is generated as a Fourier series whose axis

is parallel to the x-axis, where the y and z coordinates of points on the surface are

related by
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with

x = Rr, ,v = =

y_ + z 2 = r 2 (2.2o)

where

r(_) = aoain(O) + aL.sin(30) (2.2t)

e= 7r(([. - a_)_ +a2)

In the preceeding equation a0, and al are constants and 8 is a parameter which lie

in the range 0 < 0 < 180. The value of_ - 0 corresponds to the end point on

the fuselage, and ¢ = 0 corresponds to a point along the curve seperating the upper

and lower fuselage surfaces. The parameters for the fuselage are: RF, the fuselage

length; aoandal, control for the fuselage radius; and a_, a parameter to control a

finite radius at the end of the fuselage. The boundary curve separating the upper

and lower fuselage surfaces is a combination of the fuselage intersection with the lift-

ing components and cubic curves connecting the intersections. The fuselage center is

optionally allowed to translate upward along a quadratic function from the trailing

wing/fuselage intersection point to the end of the fuselage. This creates a "duck tail"

characteristic in the fuselage which can simulate take off and landing. Figure 2.10

shows the fuselage cross section with different constants.

2.3.1 Dirichlet Boundary Condition for the PDE Solution

The curve where the outer wing and inner wing meet is taken as a plane

curve (z=constant) having the shape of a simple airfoil. The airfoil shape at the crank

is given by the relation

x = Csin(rrv) + Xt
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Curve 2
Curve 3

pt 3

Fig. 2.9 Different patches and curves for the HSCT type
representation.



31

rl

_lea_ xte+b
rl

_ xte xte
trail rl

Fig. 2.10 Fuselage representation of HSCT type configuration.



32

z : ao + Ill

where Xt, }_ translates the crank boundary in a xy plane, also

(2.22)

M

= ZZ(2Lx - x ___t

M(I - 2L + 2Lx - x 2) < LX

(1-
T

9t = -_(sin(27rv) + Ptsin(47rv) + P2.sin(6rrv))

Parameters C, T, L and M are chord, thickness, location of maximum camber and

maximum camber respectively, PlandP2 are Fourier constants. The definition of the

section starts at the trailing point, proceeds beneath the camber curve, around the

leading point and over the camber curve back to the trailing edge. Figure 2.11 shows

the airfoil definition at the intersection of the outer and the inner wings.

The second character line lies on the surface of the fuselage. It is given

parametrically by the equations

B.x

x]- C

YS = y.T_p + Yd

zf = a(X) 2 - (v.T_p + Yd) 2 (2.23)

where B is the wing-root chord length, Xa, Y_ translates the wing fuselage intersection

and T_p scales the thickness at the wing fuselage intersection relative to the thickness

at the crank. This character line is basically a curve on the fuselage, whose projection

onto the vertical plane containing the fuselage axis is an airfoil shape similar to the

airfoil definition given by Eq. (2.23), but scaled by a factor (B/C).

The third character line lies at the tip of the outer wing. It is given para-

metrically by the equations
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Fig. 2.11 Airfoil section definition at the intersection
between outer and inner wings.
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Xtl .x
xti = Xc + --

C

Xel.y

gel - G + Yc

zti = ao + HI + H2 (2.24)

where Xtl is the chord length at the wing tip, Xc, ]z_ translates the wing tip in the xy

plane, and Hl,andH2 are the span length of the inboard and outboard wings respec-

tively.

The outer wing is generated by solving Eq. (2.14) using the boundary con-

ditions obtained from the character lines, Eq. (2.22-2.24). Similarly the inner wing

is generated with character lines given by Eq. (2.22) and solving Eq. (2.23).

2.3.2 Neumann Boundary Conditions for PDE Solution

Since the governing PDE equation, Eq. (2.14), is a fourth-order equation, it

requires boundary condition on the normal derivatives of X (u,v) in the (u,v) parame-

ter plane, which in the present case means boundary conditions on X,. The criterion

used to decide how the boundary values of the tangent vector X,, is chosen is based

on the fact that, if tangent continuity between the blend and the primary surface is

required, then the direction of surface normal must be continuous across the blend

trimline. Note that the magnitude of this vector determines the 'speed' with which

the isoparametric lines move away from the boundaries of the blend.

On character-line (1), which lies at the junction of the outer and inner wing,

the derivative boundary conditions are as follows:

Xu _ SI.X

gu = --o_'1 (2.25)
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where St is an adjustable design variable.

On character line (2) given by Eq.

derivative boundary conditions are as follows:

(2.25), which lies on the fuselage, the

_ Oy
xj(u) = s2.-g-_v.sinzc,

Oz
W( u) = - S_. -_v.sinTrv

a(X) 2 _ (S2_.sinv) 2 (2.26)

On the character line (3) which lies at the wing tip, the derivative boundary

conditions are as follows:

z.Xel

= )

y.(_,) = 0

zei(u) = 0 (2.27)

The quantities $1, S_, and Sa are adjustable design parameters whose values may

be changed to control the transition of surface between inboard and outboard wing

components and from wing into fuselage respectively. Figure 2.12 shows the complete

PDE surface of the HSCT type configuration. Horizontal and vertical tails are added

in a similar fashion as the inboard wing. All the major surface defining parameters

are shown in the Fig. 2.13.
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Fig. 2.12 PDE surface mesh for HSCT type configuration.

Fig. 2.13 Surface parametrization of HSCT type configuration.



Chapter 3

GRAPHIC INTERFACE

3.1 Introduction

Interactive computer graphics is based on the concept of working with a

model described by information stored in the computer. For a simple application such

as drafting, the model includes only the information required to generate a picture

of the physical object, such as the lines in a drawing or a detailed three dimensional

representation. The application areas of simulation or computer-aided design and

analysis involve a more extensive model in which the graphical data are associated

with additional facts or mathematical equations explaining nonvisual characteristics

of the physical object [68]. An abstract entity such as a chemical process can be

modeled by a graphic flow chart. The work with the computer model is of two types,

the creation of the model through input by the user and the display of the resulting

model by the computer. The subject of interactive input encompasses more than just

the way information is transferred from the input equipment to the graphics appli-

cation program. In fact, the lowest level of input functions handle this transfer. It is

the higher level functions that produce a satisfactory man-machine dialogue. During

the design process the operator frequently needs to delete a previously drawn object,

move an object, or modify an object in some way. The input commands that the

operator can use to accomplish these actions all involve interacting with the drawing

that is already stored in the data base. This is a more complicated process than sim-

ply adding new data because it is first necessary to indicate to the computer which

37
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Constructing user interfaces for programs is normally a time consuming

process. They are though very important to help the user work with the program

in an easy and pleasant way. [n the past few years a large number of packages have

appeared that help build up graphical user interfaces (so-called GUI's) in a simple

way. Most of them though are difficult to use and/or expensive to buy and/or limited

in their possibilities.

3.2 Interface Using Forms Library

The Forms Library [69] package which was developed at the department of computer

science, Utrecht University, Netherlands is a package that is simple to use, powerful,

graphically good looking and easily extendable.

The main notion in the Forms Library is that of a form. A form is a window

(normally without a border) on which different objects are placed. Such a form is

displayed and the user can interact with the different objects on the form to indicate

their wishes. Many different classes of objects exist like for example, buttons that

the user can push with the mouse, sliders with which the user can indicate a partic-

ular setting, input fields in which the user can scroll through large amount of text,

etc. Whenever the user changes the state of a particular object on one of the forms

displayed the application program is notified and can take action accordingly.

The forms library consists of a large number of C-routines and is simple to

use. Defining a form takes a few lines of code and interaction is fully handled by

the library routines. First one or more forms are defined, by indicating what object

should be placed on them and where. After the form has been defined it is displayed

on the screen and control is given to a library call fl-do-forms O. This routine takes

care of the interaction between the user and the form and returns as soon as some
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change occurs in the status of the form due to some user action. In this case control

is returned to the program (indicating the object changed) and the program can take

action accordingly, after which control is returned to the fl-do-forms 0 routine. Mul-

tiple forms can be handled simultaneously by the system and can be combined with

windows of the application program.

An interface based on the forms library called Parametric Representation

of Input Surface Mechanism (PRISbI) is developed. The main application program

where the points are generated to represent a surface is obtained from the program

RAPID [67]. The application program RAPID is converted to C language and is

combined with PRISM. The design variables which act as boundary condition for the

solution of PDE equation are represented as different buttons on the screen. Buttons

are provided for rotation and translation of the object and also to read and write a

particular surface. The user can activate the program by simply typing PRISM. The

program generates the surface points based on the application program which in this

case is the solution of PDE equation. Each of the different sections is considered as a

different surface and hence represented by a different color. As an example, a HSCT

type configuration is considered and is represented by five different surfaces (fuselage,

inner wing, outer wing, horizontal tail, and vertical tail). The user has the freedom to

change the color of the different surfaces by selecting each of the surfaces individually.

The program PRISM initially represents the surface in wireframe format which can

be changed or rendered as shaded. Once the surface is represented on the viewing or

main window, the user can pick any of the buttons of the different constants(design

variables) and change to view the surface being changed interactively. The program

runs in real time and gives a better understanding of the role played by each of the

different design variables. A separate window is provided in PRISM which displays

the numeric value of each of the design variables and also interactively shows the

number being changed. The surface can be rotated and zoomed in and out. Once
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the useris satisfiedwith tile particular shapeof the surface,it can be written out in

a seperatefile. Figure 3.1 showsthe snapshotview of the softwareprogram PRISM.

The wireframe surfacemesh is shown with different valuesof the design variables

in a seperatewindow. Figure a.2 showsthe changein airplane geometry when the

parametersdefining the wing, fuselageand grid concentrationare changed.For con-

vhmncethe program is alsomenudriven wherethe different options canbe displayed

by clicking the right mousebutton. The renderingof surfacesin PRISM is done to

better understandthe curvature and roughnessof the surfaceand is explained in Sec.

a.a.

3.3 Shaded-Image Rendering

High-resolution shaded raster images provide concrete visualizations of computer-

generated surfaces. When features such as shadowing, specular reflection, and depth

cueing are included, and the user is free to manipulate the viewpoint and the position-

ing and intensity of the light sources, such images are extremly useful in understanding

curved surfaces.

The basic problem in generating high-resolution raster images is computing

the intersections of a set of rays from the viewer's eye with the surface. The approach

to this problem depends on the surface formulation in use and the level of accuracy

desired.

A three-dimensional ray can be regarded as the intersection of two planes

alx + bly + clz + dl = Oa2x + b2y + c2z + d2 = 0 (3.1)

assumed to be nonparallel. The planes cut the surface in algebraic curves with poly-

nomial equations of the form
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Fig. 3.1 Snapshot of the interactive software PRISM.
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Fig. 3.2 Snapshot of the software with the surface being modified.
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F (u,v) = O, F2(,,,v) = 0

in the parameter space of the patch. These are obtained by direct substitution of the

parametric surface equation r = r(u,v) into the plane equations given by Eq. (3.1).

A simple lighting model for shading surface images typically includes ambient and

directional light sources. The ambient component produces a uniform level of sur-

face illumination, independent of viewing direction, while the directional components

produce both diffuse and specular reflections with intensities depending on the angles

between the surface normal and the viewing and illumination directions.

Buttons are provided on the screen which when activated, render tile surface

of the geometry displayed as shaded. Colors are also provided for the user to choose

for the surface rendering. A Toggle switch is provided which alternates the surface

between rendering and wireframe. The surface is illuminated from a particular fixed

direction which cannot be changed by the user.

3.4 Interactive HSCT Shape Design

To demonstrate the capabilities of the interactive program PRISM, a generic

airplane shown in Fig. 3.3 is considered. The airplane defined with twentyone design

variables and the values of each of these are shown in a separate window. The objec-

tive of the transformation process is to obtain the HSCT type configuration shown

in Fig. 3.4c, by interactively changing the values of the design variables.

The design variables which are changed are ch; the wing chord length at

mid section, XD; x-coordinate of wing trailing edge mid section YD; y-coordinate of

wing trailing edge mid section, HI; length of inner wing component, H2; length of

outer wing component, B; chord length for root wing section, TAP; ratio of thickness

at root to thickness at midsection, XTL; chord length of outboard wing section, XT;

x-translation of outboard wing section, TL; length of fuselage, XTE; x-translation
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of wing relative to fuselage,AO; maximum fuselagediameter, A1; fuselagetapper

parameterand A2; parametercontrolling end fuselagediameter. The snapshotof tile

different shapesattained during the interactive processis shownin Fig. a.4. The

method is extremely helpful in investigating the shapesfor differentairplane design.

Four differentairplane configurationsgeneratedwith the helpof PRISM are

shownin Figs 3.5-3.8. Figure 3.,5ashowsthe genericairplane definedby twentyone

designvariables.The softwareprogram PRISM has the capability to add or remove

z-buffering and the userhas the flexibility to adjust the direction of light. This fea-

ture is captured and shown in Fig. a.Sb. Configuration 2 consists of moving the

wing below the symmetry plane, giving the look of a high lift configuration. Here the

fuselage diameter is increased and Fig. a.6a shows the snapshot view. The position of

wing and the ducktail fuselage is shown in Fig a.6b. Configuration 3 which represents

the HSCT type configuration is shown in Fig. a.7_. This configuration is used in this

study for a detailed analysis and results are presented in latter sections. Figure 3.7b

shows the view from below. Figure 3.8a shows the fourth configuration made up of a

delta wing, and in Fig. a.8b a different view is shown. These figures not only shows

the capability of the software PRISM, but also the flexibility of generating different

airplane configurations using the PDE methodology.
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Fig. 3.3 Generic Airplane.

Fig. 3.4a Stage 1.
Fig. 3.4b Stage2.

Fig. 3.4c Final HSCT configuration.
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Fig. 3.5a Generic airplane.
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Fig. 3.5b Generic airplane with different z-buffering
and different intensity of light.
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Fig. 3.6a Configuration 2 (low wing). Fig. 3.6b Configuration 2 showing
the low wing.

:!ix̧
ii::

Fig. 3.7a Configuration 3(HSCT type). Fig. 3.7b Configuration 3 viewed
from below.
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Fig. 3.8a Configuration 4 (delta wing).
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Fig. 3.9b Configuration 4 viewed from below.



Chapter 4

GRID GENERATION

4.1 Introduction

In recent times, techniques for the automatic generation of computational

meshes have received much attention. This is primarily due to the fact that there has

been an increased effort in the development of algorithms for the solution of the flow-

field equations. Historically, many of the fundamental developments in the theoretical

fluid dynamics have rested upon conformal mapping techniques for incompressible po-

tential flow in which solutions on the boundaries can be obtained without resort to

information in the field. Also panel methods, which utilize distribution of sources

and sinks on boundary surfaces, have played and continue to play an important role

in aerodynamics. Recently, however, attention has been primarily focused on solu-

tion techniques for the Full Potential, Euler and Reynolds-Averaged Navier-Stokes

equations. These equations are formulated on the basis of the continum hypothesis.

With computers restricted in speed it is not possible to consider all points within a

domain at which flow quantities can be calculated. The combination of points and

connections between points defines a mesh or grid on which numerical methods for

the solution of the flow equations can be constructed. The assumption is then made

that the information at these points is sufficient to describe the complete flowfield.

In order to study the flow-field around any aerodynamic configuration, a sys-

tem of nonlinear partial differential equations must be solved over a highly complex

geometry [70]. The domain of interest should be discretized into a set of points where

49
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an implied rule specifiesthe connectivity of tile points. This discretization, known

as grid generation, is constrained by underlying physics,surfacegeometry,and the

topology of the region wheretile solution is desired [71-72]. A poorly constructed

grid with respect to any of the above constraints, may fail to reveal critical aspects

of the true solution.

The discretization of the field requires some organization in order for tile

solution to be efficient. The logistic structure of the data such as grid spacing, the

location of outer boundaries, and the orthogonality can influence the nature of the

solution [73]. Furthermore, the discretization must conform to the boundaries of the

region in such a way that boundary condition can be accurately represented [74].

This organization can be provided by a curvilinear coordinate system where the need

for alignment with the boundary is reflected in routine choice of Cartesian coordinate

system for rectangular region, cylindrical coordinate for circular region, etc. This

curvilinear coordinate system covers the field and has coordinate lines coincident

with all boundaries. To minimize the number of grid points required for a desired

accuracy, the grid spacing should be smooth, with concentration in regions of high

solution gradients. These regions may be the result of geometry (large surface slopes

or corners), compressibility (entropy and shock layers), and viscosity (boundary and

shear layers). A complex flow may contain a variety of such regions of various length

scales, and often of unknown location.

Two primary categories for arbitrary coordinate generation have been iden-

tified. These are algebraic systems and partial differential systems. The algebraic sys-

tems are mainly composed of interpolative schemes such as Transfinite Interpolation

[75], Multi-Surface Interpolation [76], and Two-Boundary Interpolation techniques

[77]. The basic mathematical structure of these methods are based on interpolation

of the field values from the boundary. For partial differential equation systems, a set

of partial differential equations must be solved to obtain the field values.
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The differential methods may be elliptic, parabolic, or hyperbolic, depending on the

boundary specification of the problem. Each of these grid generation systems has

its own advantages and drawbacks depending on geometry and application of the

problem. Algebraic generating systems offer speed and simplicity while providing an

explicit control of tile physical grid shape and grid spacing. However, they might pro-

duce skewed grids for boundaries with strong curvature or slope discontinuity. Partial

differential systems, although offer relatively smooth grids for most applications, are

computer intensive, specially for three-dimensional cases. An alternative, a common

practice in recent years, has been to originate the grid using an algebraic system and

then smooth the field using a differential system. Such hybrid approach has proven

to be successful and cost effective for most applications.

For complex geometries the multiblock mesh generation strategy is utilized.

The idea behind multiblock mesh generation is that, instead of utilizing one global

curvilinear coordinate system, several local curvilinear systems are constructed and

connected together. The domain is subdivided into blocks and within each block a

curvilinear system is derived. The block subdivision provides the necessary flexibility

to construct structured meshes for complex geometrical shapes. The approach repre-

sents a compromise between a globally structured mesh and an unstructured mesh.

An array of general purpose grid generation softwares have emerged over the

past few years. Among many others, the GRAPE2D of Sorenson [78], the EAGLE of

Thompson [79], and GRIDGEN by Steinbrenner et ah [80] are the most widely used.

The GRIDGEN series has both algebraic and differential generation capabilities on

an interactive environment. The GRAPE2D solves the Poisson's equation in two-

dimension and utilizes a novel approach for determination of the boundary control

functions. The EAGLE code combines techniques in surface grid generation as well

as two or three-dimensional field grid generation. The ICEM/CFD has the capabil-

ity of combining a full Computer Aided Design system (CAD), with grid generation
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module [81]. This providesan efficient and alsoquick procedureto reflect the CAD

modelchangesongrids. Most of thesepackagesfurnish a host of optionswith a high

degreeof flexibility. However,intelligent useof the majority of theseoptions requires

the userto be well versedin current grid generationtechniques.

Over the past few years, an alternative technique, unstructured tetrahe-

dral grids, has received considerable attention [82]. In an unstructured mesh, unlike

structured mesh, neighbouring points in the mesh in the physical space are not the

neighbouring elements in the mesh point matrix. For any particular point, the con-

nection with other points must be defined explicitly in the connectivity matrix. A

constant reference to this matrix is made during the flow solution computation. In

addition to their inherent capability of discretizing complex domain with ease, un-

structured grids are suitable for efficient adaptive refinement, incorporation of moving

boundaries, and local remeshing. These grids also offer better control over the mesh

size and point distribution. In other words, unstructured grids are more flexible

than their structured counterparts simply because of their irregularities. While in

structured grids, mesh lines and planes should be continuous and conform to the

boundaries and adjacent lines and planes throughout a domain, no such restriction

exists in unstructured grids due to their lack of directionality. Cenerally, since tri-

angles and tetrahedra are the simplest geometrical shapes having areas and volumes,

respectively, they can discretize an irregularly shaped domain easier than quadrilat-

erals and hexahedra. Furthermore, the number of neighbouring points surrounding

each node in a structured grid is fixed, whereas in an unstructured mesh, this number

varies from point to point. A consequence of this property of unstructured grids is

that a large number of grid points on the surface of a geometry, where a fine resolution

is required, do not have to be carried all the way to the outer boundaries where fewer

points are needed.
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There is a variety of methods for generation of unstructured grids in tile liter-

ature. Among these are Watson's algorithm for Vornoi tessellation [83], the modified

octree method [84] and the advancing front technique [85]. In this study, the software

VGRID3D, a program for generation of three dimensioaal unstructured tetrahedral

inviscid grids using the advancing front method [86] is used. This method is advo-

cated here because it does not require a seperate library of modules to distribute

grid points throughout the domain in advance like the Voronoi/Delauny family of

unstructured grid generation techniques.

4.2 Structured Grid Generation

The majority of problems in physics and engineering can be described in

terms of partial differential equations [87]. Many of these problems fall naturally into

one of the three physical categories: equilibrium problems, eigenvalue problems and

propogation problems. However, before solving such problems by numerical meth-

ods, a system of partial differential equations should be solved to determine the mesh.

The properties of meshes generated by this approach are intimately connected to the

properties of the partial differential equations used as the mesh generation equations.

Equilibrium problems are problems of steady state in which the equilibrium

configuration is determined by solving a differential equation subject to boundary

conditions. Such problems are known as boundary value problems and the governing

equations for equilibrium problems are elliptic.

Eigen value problems may be thought of as extensions of equilibrium prob-

lems wherein critical values of certain parameters are to be determined in addition to

the corresponding steady-state configurations. Propogation problems are initial value

problems that have an unsteady state or transient nature. The problems involve the

prediction of the subsequent behavior of a system given the initial state. The
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governingectuationsfor propogationproblemsare parabolic or hyperbolic.

Structured algebraicgrid generationtechniquescan be thought of as trans-

formation from a rectangularcomputationaldomain to anarbitrarily shapedphysical

domainasshownin Fig. 4.1 [88]. The transformation is governedby vectorof control

parameters,P, and can beexpressedas

where

{ x(_, 7/, (, P) }
X({,7/, (,P) = y(_, T/, (, P)

z((, r/, (, P)

(4.1)

0_<{_<1, 0<77<1, and 0<(<1.

The control parameter P, is composed of parameters which control the primary

shape of the boundary (design parameters), and parameters which control the grid

(grid parameters). A discrete subset of the vector-valued function X({i, r/j, C'_,,P) ----

T
X { X y Z }i,j,k =-- X* is a structured grid for {i _- Z_7i.,r/)i-1 = A:_LM_I,¢'k ---- _V-CT-_,k-1where

i = 1,2,3...,L, j = 1,2,3,...,M and k = 1,2,3,-..,N.

Surface mesh generation is one of the most difficult and yet important as-

pects of the total mesh generation problem. The surface mesh influences the field

mesh close to the configuration, where flow gradients are important and need to be

resolved accurately. Surface meshes have the same requirements for smoothness and

continuity as the field meshes for which they act as boundary conditions, but, in

addition, they are required to conform to the configuration surfaces, including, lines

of component intersection, and to model regions of high surface curvature.

In the software program RAPID geometric surfaces are generated using par-

tial differential equation described in See. (2.6). The surface grid is created by

evaluating the surface functions at discrete {(I) and ¢(K). In order to concentrate the

grid in certain regions, such as wing/fuselage intersection, it is necessary to create

control functions that map 0 <_ {, _" _< 1 into 0 _< s¢, C -< 1. The spacing of grid points

within the topology constraints is very important for achieving acceptable accuracy
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(a) Physical domain
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(b) Computational domain

Ejg. 4.1 Physical and computational coordinates.
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in the application of a flow analysis about the vehicle surface. A double exponential

function [89] which maps the computational variables _, r/, and ( onto themselves is

used here. The grid spacing control function is expressed as

A" _

e__l

_' = I(t e*"= - 1 '

0_<l?_< Ks, 0_<v<K1,

. e+'' _ - 1

Ks_<0_< 1, Kt_<v<_ 1,

Dr(Ks) C1K4 chosen 3 C • (4.2)
DO

Figure 4.2 is used to help describe the grid control parameters K1, K2, Ks,

and /_'4. Parameters K1 and Ka are coordinates of a point in the unit square. The

quantity t? is the independent computational variable and corresponds to the per-

centage of grid points in a particular direction. The quantity v is the dependent

computational variable and corresponds to the percentage of distance in the physical

space along a grid curve. The parameters K2 and K4 are coefficients in the expo-

nential functions defined for a particular part of the unit square. Where there is low

slope in the control functions, there is a concentration in the grid points, and where

there is high slope, there is dispersion in the grid points. In the RAPID methodology,

Eq. (4.1) is used several times. The approach specifies a desired spacings at the

= 0 and/or at 0 = 1 and/or Ks. The parameters Kt, Ks, and /_'4 are determined

by a Newton-Raphson process while satisfying a first derivative continuity condition

at (Ks, K1). Figure 4.3 shows the grid distribution achieved on the fuselage by using

Eq. (4.1) and Fig. 4.4 shows the grid distribution on the wing and wing fuselage

intersection.

The grid control parameters are distinguished from the configuration design

parameters. The design parameters are referred to as the set P, and the grid
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Fig. 4.2 Grid spacing control function
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Fig. 4.4 Grid distribution on the surface of the wing and the nose

of the fuselage.
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parameters are referred to as the sct/C. _ which includes the grid spacing parameters

described above and the volume grid control points discussed in the next section.

4.2.1 Boundary Discretization and Volume Grid Around The Airplane Ge-

ometry

The orientation of the computational coordinates relative to physical coordi-

nate, known as grid topology, is an important aspect of the transformation procedure.

In otder to establish a grid topology for any geometry, it is essential to examine each

component separately [90]. For any given geometry, there are several possible topolo-

gies with different characteristics in terms of efficiency, coordinate cuts, singularities,

etc. For example a typical wing-section geometry, may have at least three types of

different topologies (e.g., C-, O-, or H-types). The C- and O-type topologies usu-

ally produce the most efficient grid. This topology produces no singularity and it is

relatively simple to implement. For wing-sections with sharp noses, a H-type topol-

ogy would be more appropriate. For more complex geometries, selection of different

computational coordinate systems for different regions of physical domain might be

required. In this case, physical domain is mapped into several computational sub-

domains, where each sub-domain is reffered as a block. Therefore, it is possible to

have a boundary-fitted coordinate system for a highly complex configurations. For

the present study, the airplane geometry consists of two main components: the fuse-

lage and the wing. The fuselage has a circular like cross-section which suggests that

a natural O-type (cylindrical coordinate) grids. This topology produces a nearly

orthogonal grid with one line polar singularity at the nose. For the streamwise direc-

tion, it is feasible to have either a C-type or a H-type grid depending on the slope

of the nose. For a fuselage with small nose slope, a H-type grid in the streamwise

direction would be more appropriate. A wing has its own natural coordinates which

are usually not compatible with the fuselage's coordinate system. It is possible to

generate e/H-, O-, or a C-type grids in the streamwise direction, and a C- or a H-type
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in crosswise direction. To maintain a minimum of C o continuity at the interfaces, it

is essential to select a compatible topology for the wing and fuselage. For most cases

it is conceivable to generate a single block grid about these components, but this grid

tends to be skewed for any practical purposes. A dual-block grid possesses much less

skewness than a single-block grid. It consists of two large blocks, one covering the

top portion of the physical domain, and the other covering the bottom portion of the

physical domain. The dual-block topology is a direct consequence of using a H-type

grid for the wing of zero wing-tip area. Figure 4.5 illustrates the mapping of a generic

airplane geometry using a dual-block topology. A C-O type grid have been chosen for

a fuselage while the wing, horizontal, and vertical tails mapped to a H-H type grids.

A Control Point Form/Transfinite Interpolation technique[91] is used to

compute volume grids for the RAPID methodology. A considerable amount of in-

formation has been published on this grid generation method and its variations, and

only the major steps are presented here.

Having established a grid on the configuration surface, the volume grid gen-

eration is accomplished in four major steps described below.

Step 1 is the determination of a grid in the symmetry plane. The basic

functions used in RAPID are those for B_zier curves computed with the de Casteljau

scheme[92]. Control points for an intermediate curve and for a far-field curve are com-

puted from the dimensions of the fuselage, Fig. 4.6. A set of points are distributed in

the _-direction on the control curves obtained from the control points. Interpolation

from the fuselage surface across the control curves is obtained with a de Casteljau

application in the r/-computational direction, and Fig. 4.7 shows the symmetry grid.

Step 2 is the determination of a three-dimensional grid surface containing

the lifting components shown in Fig. 4.8. Note that in the H-topology, the top
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and bottom grids are consideredseparately.A processsimilar to that usedwith the

symmetry grid for computing control points from the fuselageand lifting surfacesis

applied.

Step 3 is the determination of a capgrid. Control points are extracted from

the extreme x and y grid coordinates in the lifting surface grid and the extreme z-grid

coordinates in the symmetry plane grid. This is shown in Fig. 4.9. Casteljau scheme

is applied with these control points, and the outer grid surface is shown in Fig. 4.10.

Step 4 is the application of Transfinite Interpolation to compute the inte-

rior grid. Figure 4.11 shows a sample grid around the HSCT type configuration..

It is necessary to use several grid-spacing control functions and their control

parameters in addition to the interpolation control points in order to achieve a good

grid for a given set of design parameters. This requires some trial and error before ac-

ceptable parameters are realized. However, once an acceptable set of grid parameters

/C is found for a given set of design parameters 7:', small changes in 7_ do not require

changes in _. Therefore, repetitive small changes in the design parameters such as

during configuration optimization, do not require the constant modification of the

grid parameters. Also note that the volume grids obtained with this algorithm are

computed only out to the wing tip. An additional far-field grid would be necessary

for most high-level fluid analyses.

A complete volume grid which extends beyond the tip of the wing surface is

computed by GRIDGEN software. A comparitive study of the grids generated from

RAPID is made with standard grid generation software GRIDGEN. Among the dif-

ferent softwares available, the GRIDGEN software developed by MDA Engineering

is used to develop grids around surfaces generated from RAPID.
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a) Physical domain

Fuselage

Polar Sin_ Wing Horizontal
Tail

b) Computational Domain
Fuselage

Fig 4.5 Dual-block grid topology for a generic airplane.
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Fig. 4.6 Symmetry plane control net. Fig. 4.7 Symmetry grid.

Fig. 4.8 Surface grid containing lifting Components.
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Fig. 4.9 Control point for outer grid surface.
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Fig. 4.10 Outer Grid Surface.
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Fig. 4.11 Sample Grid Surfaces.
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Fig. 4.12 Volume grid around the PDE surface using GRIDGEN.
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The GRIDGEN software consists of three main modules namely, GRID-

BLOCK, GRIDGEN2D, and GRIDGEN3D. The GRIDBLOCt< begins with a dis-

play of the 3D database of the airplane configuration. The 3D lines representing the

bounding edges of the blocks are drawn. Once several connectors are added to the

system, they are grouped together and assigned to blocks. Then computational direc-

tions and dimensions on that block are defined. In the end flow boundary conditions

and interblock connections are determined and assigned. The GRIDGEN2D is used

to generate grid on the edges and surfaces. There are five modes of elliptic solvers in

GRIDGEN2D. The first three solve directly for the Cartesian grid point coordinates

in an iterative process and the next two solve the grid in parametric coordinates.

This surface grid generation procedure is repeated for each surface in the face, and

for each face in the block. The third and final step of the grid generation process is the

distribution of grid points within the interior of each block. This task is performed

with the batch code of GRIDGEN3D. Figure 4.12 shows the volume grid generated

around the PDE surface.

4.3 Unstructured Grids

One of the greatest concerns in computational fluid dynamics is the gen-

eration of suitable grids. Although considerable effort has been devoted towards

development of robust and automatic grid generation methods, the process of gener-

ating 3-D grids around complex geometries remains a formidable challenge. With the

availability of large supercomputers, it is now possible to compute flowfields around

complex configurations in a matter of hours. However, the process of grid genera-

tion, using conventional structured grid methods, still makes up a large portion of a

typical computational effort for a complex configuration. Use of unstructured grids

has grown considerably in recent years due to their ability to produce quality grids
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around complexconfigurationswith relative ease.

In recent yearsa wide variety of algorithms hasbeendevisedfor the gen-

eration of unstructured grids around bodiesof complexgeometricalshapes. Among

the different techniquesare the Watson'salgorithm for Vornoi tesselations,the mod-

ified octreemethod [94] and the advancingfront technique. Baker's implementation

and optimization of the Vornoi algorithm [93] hasshownthat fast and reliable grid

generatorsfor tetrahedral meshescan be produced. In this study, advancingfront

techniqueis usedfor grid generation,becauseit caneasilybeusedfor grid generation

with directional refinement. Also it doesnot require a separatemodule to distribute

points like the Delauny triangulation.

4.3.1 Advancing Front Technique

In the advancingfront method,a grid isgeneratedstarting from the domain

boundariesmarching towards the interior of the computational domain. Unlike De-

launy triangulation techniquein which grid points are first distributed in the entire

field and then connectedto form cells, an advancingfront introducesnew points to

the domainastetrahedronsare made.The configurationof interest is first definedin

terms of a number of surfacepatches. Thesepatchesare then triangulated to form

the initial front. The front is then projected to the original surfacewhich in this

caseis the NURBS and PDE surface. Next, tetrahedral cells are generatedon top

of triangular faceson the front by introducing newor using existing points. During

this process,old facesare replacedby new ones,and the front is advancedin the field

until the wholeregion is filled with grid cells.

Theentire grid generationprocessis summarizedin the followingmain steps:

(a) The boundariesof the domain to be grided are divided into a numberof surface

patches. Thesesurfacesdefine the configuration of interest as well as the far-field

boundaries.

(b) A backgroundgrid is set up to definethe local grid characteristicssuchas grid
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point spacing. The spacing interpolation in the VGR[D system is based on a struc-

tured background grid [9,1]. This technique simplifies the specifications of grid density

by introducing nodal and linear sources. The contribution from nodal sources are in-

versely proportional to the square of the distance and the contribution from the linear

sources are modeled similar to the diffusion equation.

(c) Each surface patch is, in turn, subdivided into a number of triangles to form the

first front (surface grid).

(d) The triangles are then projected on to the actual surface which in tile present

case is the NURBS and the PDE surface.

(e) The front is advanced in the field by introducing new points and forming tetra-

hedras and new faces to complete the grid.

(f) The completed grid may optionally be post-processed.

The above described procedure is applied to an ONERA M6 wing. The wing

has a leading edge sweep of 30 degrees, an aspect ratio of 3.8, a taper ratio of 0.56,

and symmetrical airfoil sections. Tile wing has a root chord of 0.67 and a semispan

b of 1.0 with a rounded tip. The computational domain is bounded by a rectangular

box with boundaries at

-6.5 _< z _< 11.0,0.0 <_ 9 <- 2.5and- 6.5 _< z _< 6.5

Figure 4.13 shows the ONERA M6 wing bounded by the rectangular box. The M6

wing is attached to one of the surface of the box. Triangulations starts from the

surface of the box and the M6 surface and proceeds towards the interior of the domain.

Figure 4.14 shows the surface triangulation on the actual NURBS M6 surface. This

triangulation is obtained by projecting the initial triangulation of the surface on to

the actual NURBS surface.

Surfaces obtained from RAPID is also triangulated. In this case the HSCT

type configuration is placed in the middle of the rectangular box. Figure 4.15 shows

the surface mesh with the rectangular box and the HSCT type configuration. Figure
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4.16 shows the surface mesh without the horizontal and vertical tails. In order to

simulate the configuration with engines, two tapered rectangular boxes are placed

just below the wings, and Fig. 4.17 shows the surface mesh. Figure 4.18 shows the

surface mesh with horizontal and vertical tails.
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Fig. 4.13 Far Field boundary for the ONERA M6 wing.
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Fig. 4.14 Surface mesh on the ONERA M6 wing.
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Fig. 4.15 Far field boundary for the HSCT type configuration.
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Fig. 4.16 PDE surface without horizontal and vertical tails.

Fig. 4.17 PDE surface with engines mounted below the wing surface.
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Fig. 4.18 PDE surface with horizontal and vertical tails.



Chapter 5

GOVERNING EQUATIONS FOR FLOW

SOLUTIONS

5.1 Unstrurctured Grid Solution

The inviscid flow field is computed on the unstructured grids using USM3D,

a three-dimensional upwind flow solver developed at NASA/LaRC [95]. The fluid

motion is governed by the time dependent Euler equations for an ideal gas which

express the conservation of mass, momentum, and energy for a compressible inviscid

nonconducing fluid in the absence of external forces. The equations are given below

in integral form, for a bounded domain fl with a boundary 0f_, are expressed as

0
[[/QdV+H F(Q).fids=O (5.1)

Ot .,.,aa aao

where

and

{0}pu ri,

F(Q).fi = (V.fi) pv +p fly

pw ffz

e0+p 0

The equations are nondimensionalized with reference density p_ and a speed of sound

am. Here ff_, fly and fit are the Cartesian components of the exterior surface unit

normal fi on the boundary 0f_. The Cartesian velocity components are u, v, and
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w in the x, y and z directions, respectively. The term eo is the total energy per

unit volume. With the ideal gas assumption, the pressure and total enthalpy can be

expressed as

v' w2)h0 - 7 P + + +
 -le {

where 7 is the ratio of specific heats and is prescribed as 1.4 for air.

The spatial discretization is accomplished with a cell centered finite volume

formulation using the flux difference splitting procedure. The solution is advanced

in time using a three-stage Runge-Kutta time stepping scheme. Local time stepping

and implicit residual smoothing are used to accelerate the convergence of the solution

to a steady state.

Boundary Conditions

For the solid boundaries such as the wing and centerplane, the flow tan-

gency condition is imposed by setting the velocities on the boundary faces to their

cell center values and then subtracting the component normal to the solid surface.

Density and pressure boundary conditions are simply set to the cell-centered value. A

condition of zero mass and energy flux through the surface is ensured by setting the

left and right states of solid boundary faces equal to the boundary conditions prior

to computing the fluxes with Roe's approximate Riemann solver.

Characteristic boundary conditions are applied to the far-field subsonic boundary

using the fixed and extrapolated Riemann invariants corresponding to the incom-

ing and outgoing waves. The incoming Riemann invariant is determined from the

freestream flow and the outgoing invariant is extrapolated from the interior domain.

At an outflow boundary, the two tangential velocity components and the entropy are

extrapolated from the interior, while at the inflow boundary they are specified as

having far-field values.
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The unstructured grid generatedaround the NURBS M6 wing using the

advancingfront technique(shownin Fig. 4.13) is used as a test case. The solutions

were started from freestream initial conditions with first-order scheme until the L2-

norm (RMS average of all residuals) decreased one order of magnitude, at which time

the solver automatically switched to a higher order scheme. Converged solution is

obtained for M,._ = 0.84 and a = 3.06 °. The upper surface pressure contour with

(---Y--) = 0.02 is shown in Fig..5.1. The figure clearly showscontour intervals of _ v,,1,y

a double shock wave on the upper surface and is in good agreement with the results

obtained by Frink et al. [96].

Converged solutions are also obtained for HSCT type PDE surface shown in

Figs. 4.16-18. Converged solutions are obtained for _M,_ = 0.84 and c_ = 5 °. Figure

5.2 shows the shaded Cp plot. Contours are plotted by taking a cutting plane at the

mid section of the configuration. A shock wave is seen at the upper surface of the

wing. A total lift of o.aaass and a drag of 0.04301 were obtained. To simulate this

HSCT configuration with engines and to study the performance features, two engines

of tappered square cross-section are placed below the wing. The unstructured grid

shown in Fig. 4.17 is used for this case. Figure 5.3 shows the shaded Cp plot and for

this case. A total lift of 0.313434 and a drag of 0.0.5932 were obtained.

5.2 Potential Flow Solution

A low-order potential-flow panel code for modeling complex three-dimensional

geometries is used to calculate surface pressure variations. The flow field is assumed

to be inviscid, irrotational and incompressible. The velocity potential is given by the

Laplace's equation:

v 5 = o. (5.2)

The potential at any point P may be evaluated by Green's Theorem which results in
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Fig. 5.1 Cp contours over the M6 wing.
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Fig. 5.2 Cp plot for the HSCT configuration without engines.
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Fig. 5.3 Shaded Cp plot for the HSCT type configuration
with engines.
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the following integral equation

..... - dS4_p -- 4rr +w+s_ 47r +w+S_

It is assumed that the wake is thin and there is no entrainment, so the source term for

the wake disappears and the jump in normal velocity across the wake is zero. Hence

the simplified equation becomes

_P = 4-'_1 (_ - _i)fi " _ dS - _ fi" (_ - _i) doe

1

The Dirichlet type boundary condition is used to solve Eq. (5.3). The total

potential _ can be viewed as being made up of an onset potential _ and a pertur-

bation potential _b = _ - _. The potential of the fictious flow is set equal to the

onset potential, q_. With this boundary condition, the singularities on the surface

tend to be smaller than if the potential of the fictious flow is set to zero because

the singularities only have to provide the perturbation potential instead of the total

potential. The general equation for the potential at any point P can be written as

where K = 0 if P is not on the surafec, K = '2rr if P is on a smooth part of the

outer surface, and K = -2a" if P is on a smooth part of the inner surface. If the sur-

face is broken up into panels, Eq. (8.4) can be written in discretized form, breaking

the integrals up into surface integrals over each panel. A constant strength source

and doublet distribution is assumed over each panel and so the doublet and source

strengths are factored out of the integrals. Taking point P to be at the centroid on

the inside of one of the panels, the surface integrals over each panel are summed for

all panels. For the panel containing point P, the surface integral is zero and only
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the -2_rttp term remains in the bracketedpart of Eq. (5.4). For all other panels,

the surfaceintegral is usedand the -2rrt, p term is zero since the pont P is not on

the surfaceof any other panels. The processis repeatedfor point P at the centroid

of every panel to yield a set of linear simultaneousequations to be solved for the

unknowndoublet strength oneachpanel. The surfaceintegrals representthe velocity

potential influencecoefficientsper unit singularity strength for panel I( acting on the

control point of panel J. HenceEq. (5.4) becomes

Ns Ns Nw

E 0,,,-c.,,,-)+ (o-,,-B.,,,-)+ = o
K=I K=I K=I

(5.6)

where

and

Bjlq = /f1( l ds (5.7)

Cj, = f . (5.S)

The coefficients CjK and B j1( represent the velocity potential influence coefficients

per unit singularity strength for panel K acting on the control point of panel J.

Equations (5.6) and (5.7) are functions of geometry only and thus can be solved for

all panels to form the influence coefficient matrix. Since the source values are known,

they may be transferred to the right hand side of the matrix equation. Solutions for

Eqs. (5.6) and (,5.7) can be found in [97].

As a test case, the PDE surface shown in Fig. 2.12 is considered. Only half

of the configuration was modeled in PMARC. The other half of the configuration

was generated by reflecting the model across the plane of symmetry. The wing was

represented with 300 panels: 15 divisions in the chordwise direction on the upper and

lower surfaces of the wing with denser spacing near the leading and trailing edges,

and 10 divisions in the spanwise direction with denser spacing near the root and tip
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of the wing.The tip of the wing was closed off with a fiat tip patch. The fuselage

was represented with 320 panels. The wing/fuselage junction was modeled such that

wing and fuselage panels matched up exactly. An initial wake was attached to the

trailing edge of the wing and to the aft of the fuselage and carried downstream 20

chord length. Three time steps were specified to allow the wake start to roll up. The

model was tested at an angle of attack of 4 °, and the Cp plot is shown in Fig. 5.4.
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Fig. 5.4 Shaded Cp plot for the potential flow.



Chapter 6

METHOD OF SOLUTION FOR SENSITIVITY

EQUATIONS

6.1 Introduction

Computational Fluid Dynamics (CFD) is now routinely applied to simulate

flow about aerodynamic configurations. On current supercomputers, these simula-

tions can require several hours per steady-state solution for viscous-compressible flow

about airplane configurations. Such large amounts of computational time are accept-

able for proof-of-concept studies and selective analysis. With the advent of the next

generation of parallel supercomputers, airplane design and optimization using nonlin-

ear CFD should become routine. An essential element in design and optimization is

acquiring the sensitivity of functions of CFD solutions with respect to control param-

eters. For aerodynamic surfaces, the control parameters specify the surface shapes.

This affects the surface grid and the field grid which, in turn, affects the flow field

solution.

Sensitivity analysis (SA) provides a natural systematic means for both an-

alyzing and predicting the behavior of physical approximations and computational

systems or for identifying significant input parameters in a system. The system out-

puts are assumed to be functionally dependent upon the system inputs. The output

changes in response to specified changes in the input; however, everything within the

system is normally assumed to be fixed. Changes in the system outputs are related

to the changes in the inputs through a sensitivity derivative (SD) matrix, or system

88
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jacobian. The SD matrix may be used to control processes or designs that depend

upon the system output.

Procedures for MDO of engineering systems have been addressed by Sobieski

and others [97]. Sobieski proposes a unified system SA guided by system derivatives.

Aerodynamics plays a central role which is connected to other disciplines. The ob-

jective and constraints are provided by the output functions of these several other

disciplines. Each single discipline is then to supply not only the output functions

for the constrained optimization process, but also the derivatives of all these output

functions with respect to its input variables.

Numerous research efforts have examined the issue of efficient computation

of SD for CFD. Typical techniques for computing sensitivities include by hand, by

use of a symbolic expression differentiator and by approximation via divided differ-

ences. Unfortunately, none of these techniques can be used to deliver fast and reliable

derivatives in a flexible and timely fashion for large computer codes. Hand coding

of derivatives is impractical and symbolic approaches may require as much effort as

hand coding. Divided differences may not be accurate and are obtained too slowly.

Automatic differentiation (AD) promises to address the need for a flexible

and scalable technology capable of computing derivatives of large codes accurately,

irrespective of the complexity of the model. In this study AD has been successfuly

applied to obtain sensitivity derivatives required for an MDO procedure. Incremental

iterative form, also known as the "delta" or "correction" form, is another successful

approach for obtaining the solution state vector from the nonlinear governing flow.

References [98], discuss the benefits of using this form to solve the large systems of

linear equations needed to obtain SD. This incremental iterative formulation is very

flexible and Korivi et al. [99] have demonstrated the use of this strategy to efficiently

and accurately calculate quasianalytical sensitivity derivatives for a space-marching

3D Euler code with supersonic flow over a blended wing-body configuration.
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6.2 Automatic Differentiation and ADIFOR

Automatic Differentiation (AD) is a collection of computer science tech-

niques which permit one to atttomatically calculate the derivatives of information

generated by a computer program with respect to any parameter intervening in its

calculation. AD is essentially an automatic implementation of the chain rule of diffren-

tiation based on tracking the relationships between dependent and independent vari-

ables. Typically, to calculate the derivative of the output of a program with respect

to its input, one modifies the original program by insertion of specialized instruc-

tions which identify relevant independent and dependent variables. The program is

then modified automatically by a preprocessor which enhances it to calculate deriva-

tives. The enhanced program is compiled conventionally, linked with special run-time

libraries (if required) and executed to generate not only the original program's de-

pendent variable but also their derivatives with respect to the independent variables.

There are two modes of AD. In the first, the forward mode, the chain rule

is evaluated from the input to the output; in this mode, the computational cost in-

creases with the number of outputs. In this mode, the chain rule is evaluated from

the output to the input. While it can be much faster than the forward mode, this

reverse mode can place enormous demands on computer storage and requires special

memory handling. AD is distinct from finite difference or symbolic manipulation

techniques. The former, based on perturbations of a program's input, generates ap-

proximate derivatives which can be affected by round-off and truncation errors [100].

While an exact technique, the later tends to generate very cumbersome expression

for the derivatives.

The tool used in the present study is called ADIFOR [101] (automatic differ-

entiation of Fortran). The tool is jointly developed by Argone National Laboratory

and Rice University and it differentiates program written in Fortran 77. That is,
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given a Fortran subroutine (or collection of subroutines) that describe a function and

an indication of which variables in parameter lists or common blocks corresponds to

"independent" and "dependent" variables with respect to differentiation, AD[FOR

produces Fortran 77 code that allows the computation of the derivatives of the depen-

dent variables with respect to the independent ones. ADIFOR employs a hybrid of

the forward and reverse modes of AD. That is, for each assignment statement, code is

generated for computing the partial derivatives of the result with respect to the vari-

ables on the right-hand side and then the partials are employed in the forward mode

to propogate overall derivatives. The result is a significant decrease in complexity

when compared to the forward mode of implementation. The ADIFOR tool produces

portable Fortran 77 code and accepts almost all of Fortran 77, in particular, arbi-

trary calling sequences, nested subroutines, common blocks etc. ADIFOR-generated

code can be used in various ways. Instead of simply producing code to compute the

Jacobian J, ADIFOR produces code to compute J'S, where the "seed matrix" S is

initialized by the user. Therefore, if S is the identity, ADIFOR computes the fifll Jaco-

bian; whereas if S is just a vector, ADIFOR computes the product of the JACOBIAN

by a vector. The running time and storage requirements of the ADIFOR-generated

code are roughly proportional to the number of columns of S, so the computation

of Jacobian-vector products and compressed Jacobians requires much less time and

storage than does the generation of the full Jacobian matrix.

ically as

6.3 Theoretical Formulation

An implicit representation of a physical system can be modeled mathemat-

F(H,G(H)) =0 (6.1)

where G and H are dependent and independent variables, respectively. The function

F can have algebraic, differential, integral or integral- differential characteristics.
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The quantities G and H can be either scalar or vector depending on the nature of the

physical model. The sensitivity of G with respect to H can be obtained by implicit

differentiation of Eq. (5.1)

(6.2)

The coefficients, {_} and aF[_--d]' can be obtained, provided that the solution to

Eq.(5.1) is known. Equation (5.2), now a set of algebraic equations, can be eas-

OG OF OF
ily solved for the sensitivity derivative, {_-_}. If {_} and [_--_] are not available, a

finite difference approach can be adopted. The central difference approximation of

OG
{ _-_ } can be devised as

{OG}G(H+AH)-G(H-AH)_ 2AH (6.3)

where AH is a small perturbation of a specified parameter. Although the implemen-

tation of the finite difference approach is comparatively easy, it has the disadvantage

of being computationally expensive. Also, the choice of AH is crucial for accuracy

of the derivative. A large values of AH may lead to inaccurate derivatives while a

small value may result in round-off errors.

6.4 Application of ADIFOR to Potential Flow Code

(PMARC)

Application of ADIFOR to advanced flow code has been done by Green et

a1.[114]. The results have been very encouraging and in the present study ADIFOR

is applied to the potential flow code PMARC.

Figure 6.1 indicates an analysis system with input as S and D and output as

Q. Both S, D and Q may be scalar, vector, or array quantities, and each may involve

one or more variables. The input S and D for the system consist of several
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Fig. 6.1 Typical system with ADIFOR applied.
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types of variables such as those that specify initial and boundary conditions, material

properties, constraints, physical dimensions and approximations, design variables, and

numerical solution parameters, etc. Similarly the output Q for the system my consist

of local and global solution properties, accuracy measures, and performance indicators

etc. When ADIFOR is applied to the above described system, the output consists of a

combination of derivatives of the ouput system functions with respect to input system

variables. These are indicated as dotted line in the figure. Application of ADIFOtt to

Fortran codes requires the specification of the independent and dependent variables

to be used in forming the SD matrix.

In this study the computations of Cr_,CD,andCM have been used as the

dependent variables. Application of ADIFOR to PMARC was performed in a very

simple and straight forward manner. Minor changes to PMARC code was required

for ADIFOR processing to be accomplished. The PMARC code was passed on to the

ADIFOR as input. ADIFOR differentiated through the entire solution algorithm, the

specified dependencies were traced and a new SD code was generated as required. The

resulting SD modules were then assembled into a working code and the initial results

were generated quickly. The code was run on an SGI Indigo machine and various

test cases were examined, and comparisons with direct differentiation procedure have

been made.

6.5 Application Of ADIFOR to Grid Generator (RAPID)

Unlike aerodynamic considerations, the grid sensitivity analysis has been

used on structural design models for a number of years. In this context, grid sensi-

tivity can be thought of as perturbation of structural loads, such as displacement or

natural frequency, with respect to finite element grid point locations [102]. Two basic

approaches have been cited for grid sensitivity derivatives. The first approach, known
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as implicit differentiation, is basedon implicit differentiation of discretized finite el-

ement system. The other, which is basedon the variation of continuum equations,

is known as variational or material derivative approach. Gradient basedtechniques

applied to aerodynamicconfigurationsoptimization requirethe determination of grid

sensitivity ( 0X:,_, 0X 0X,_q _= _ op J In the past, in order to evaluate such deriva--O'P

tires, each expression would have to be differentiated and chain ruled through out

the mathematical system, either by hand or with the aid of a computer-aided alge-

braic manipulation system. The simplest way to obtain grid sensitivity is to vary the

control parameters, one at a time, and finite difference the results. This, however,

is proven to be computationally ineflq_cient compared to analytical or semi-analytical

differentiation of the grid equations. Also, the proper choice of a step size is not

trivial and an improper choice might result in round-off error accumulation. The

finite difference approach should only be used as the last resort when the extreme

complexity of the grid equations dictates no other alternatives. For a less compli-

cated grid equations, a semi-analytical approach would be more appropriate. The

semi-analytical approach consists of analytical differentiation of the original function

with respect to an intermediate function, the derivative of which is then evaluated

numerically. It combines the et__ciency of the analytical approach with tile ease of

implementation of the finite difference approach.

The analytical approach to the grid sensitivity problem is evaluation of the

grid sensitivity coet__cient by direct analytical differentiation of the grid equation.

For most cases, the grid equation is not directly differentiable, although there are

schemes that such differentiations are feasible. The algebraic grid generation scheme,

such as Two-Boundaw Grid Generation (TBGG), was successfully differentiated by

analytical methods by Sadrehaghighi [108] and very accurate results were provided.

The analytical approach has the advantage of being exact, thus, avoids the round-off

errors associated with numerical approaches. Due to the time consuming nature and
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tediousprocessof analytical approach,in this study grid sensitivity wasobtained by

applying ADIFOR software to the grid generatorRAPID.

Geometric inputs to the RAPID softwareconsistsof wing planform and

wing section definitions, fuselagedefining parametersand grid spacingcontrol pa-

rameters.Theseparametersare identified as independentvariablesin ADIFOR, and

the output surfacedefininggrid coordinates(x,y,z) asthe dependentvariables.ADI-

FOR successfulydifferentiatesthe entire RAPID softwareby identifying the various

dependenciesand an enhancedcode is generated.The enhancedADIFOR grid gen-

erator RAPIDAD not only generates the grid, but also generates the derivatives or

grid sensitivities to the geometric parameters.

6.6 Optimization Problem

An objective of a multidisciplinary optimization of a vehicle design is to extremize

a payoff function combining dependent parameters from several disciplines. Most

optimization techniques require the sensitivity of the payoff function with respect to

free parameters of the system. For a fixed grid and solution conditions, the only free

parameters are the surface design parameters. Therefore, the sensitivity of the payoff

function with respect to design parameters are needed.

The optimization problem is based on the method of feasible directions

[104,105] and the generalized reduced gradient method. This method has the advan-

tage of progressing rapidly to a near-optimum design with only gradient information

of the objective and constrained functions required. The problem can be defined

as finding the vector of design parameters XD, which will minimize the objective

function f(X_) subjected to constraints

9j(Xz)) < 0 j = 1,rn (6.4)



97

and

X_ _< XD _< X b (6.5)

where superscripts denote the upper and lower bounds for each design parameter.

The optimization process proceeds iteratively as

x; = x; -1 + (6.6)

where n is the iteration number, S" the vector of search direction, and _[ a scalar

move parameter. The first step is to determine a feasible search direction gn, and

then perform a one-dimensional search in this direction to reduce the objective func-

tion as much as possible, subjected to the constraints.

The present optimization strategy is based on maximizing the lift coefficient,

Co, in response to surface perturbation, subject to pre-determined design constraints.

Upper and lower bounds set for each design parameter and the sensitivity derivatives

of the objective function, 0_o, and the constraint, 0_, are obtained as previously

described. Throughout the analysis, the drag coefficient, Co, is to be no greater than

the value of the initial design. The strategy, illustrated in Fig. 6.2, requires that the

grid and grid sensitivity derivatives be provided dynamically during the automated

optimization process.



98

Fig. 6.2 Optimization strategy loop.



Chapter 7

RESULTS AND DISCUSSION

Two test cases are considered to demonstrate the feasibility of current pro-

cedure. For each case, the grid and flow sensitivity coefficients of the field have been

obtained. The sensitivities of the total forces (i.e., Lift and Drag coefficients) are

tabulated for optimization purposes. The first test case, a symmetrical generic air-

plane with 14 surface defining parameters (Fig. 7.1), has been used mainly to exhibit

the accuracy of grid sensitivity coefficients with those obtained using finite differ-

ence approach before proceeding to a realistic configuration. The second test case,

a HSCT type configuration (Fig. 7.2), has been used to extend the analysis to do

a three dimensional optimization. An optimization module has been integrated into

the overall procedure to optimize the geometry using the resultant sensitivity coef-

ficients. The improved design is used for the Euler study where an Euler type two

block volume grid is constructed using GRIDGEN software and solutions obtained

using the TLNS3D code. The CSCMDO[106] software is also used to transform the

grid from the original geometry to the new optimized geometry.

7.1 Grid Sensitivity

Grids obtained from RAPID software, shown in Fig. (3.1), is considered for

grid sensitivity analysis. Grid sensitivity study was performed on the HSCT type

configuration shown in Fig. (7.2) with fourteen surface defining design variables.

The surface grid sensitivity with respect to the vector of design parameters, XD, is

obtained from the ADIFOR differentiated code RAPID.

99
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Fig. 7.1 Generic airplane for case 1.



10l

i

Fig. 7.2 Symmetrical HSCT type configuration.
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Figure 7.3 shows the x-coordinate sensitivity with respect to chamber. The

highest contour levels are, understandably, located at the point of maximum cham-

ber. Since the wing sections are defined as a NACA four-digit wing sections, this is

positioned at about 0.3 of the chord length from the leading edge[t07]. The positive

and negative contour levels correspond to the upper and lower surfaces. The sensi-

tivity levels decrease when moving away from the location of maximum chamber.

Typical CFD calculations are performed on a computational mesh that is

"body-oriented". Changes in the geometric shape results in the movement of grid

points throughout the entire mesh. The benchmark for comparison of these grid sen-

sitivity terms is by performing finite difference. If forward difference approximations

are selected, for example, the mesh generation code is used to produce one additional

perturbed grid for a slightly perturbed value of geometric shape design variable which

in this case is the camber. Finite difference at each of the grid coordinate is calculated

and the result is shown in Fig. 7.4. It is seen that the results obtained by ADIFOR

and the finite difference are in very good agreement, thus confirming the accurate

results obtained by ADIFOR.

Having confirmed the results obtained from ADIFOR, and to further evalu-

ate the results, next the design variable chord is choosen as the independent param-

eter. Figure 7.5 shows the x-coordinate sensitivity with respect to the chord. The

concentration of contours are near the leading edge, in the x-direction of the wing

fuselage intersection thus confirming the maximum effect at that point. The increase

in chord moves the tip of the wing fuselage airfoil section towards the nose of the

airplane configuration while the trailing edge is kept fixed. Figure 7.6
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Fig. 7.3 X-coordinate sensitivity with respect to camber.

Fig. 7.4 Finite difference X-coordinate sensitivity with
respect to camber.
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Fig. 7.5 X-coordinate sensitivity with respect to chord.

Fig. 7.6 Y-coordinate sensitivity with respect to chord.

Fig. 7.7 Z-coordinate sensitivity with respect to chord.
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shows the y-coordinate sensitivity with respect to chord. Unlike the x coordinate

sensitivity the contour levels this time is concentrated in the y-direction indicating a

maximum change. Figure 7.7 shows the z coordinate sensitivity with respect to chord.

7.2 Flow Sensitivity

When AD is applied directly to the potential flow code PMARC, the re-

sulting AD-enhanced code calculates the required sensitivity derivatives through an

iterative process. The ADIFOR procedure generates a new version of the potential

flow code that has the capability to calculate the derivatives of lift, drag, and pitching

moment with respect to a wide variety of different types of input parameters (includ-

ing parameters related to the geometric design).

Both geometric and non-geometric design variables are considered to evalu-

ate the accuracy of ADIFOR enhanced PMARC (PMARCAn). Angle of attack (c_)

is considered as the non-geometric design variable and both sensitivities of lift and

drag are computed. For the geometric design variable, wing thickness and fuselage

diameter are considered. The values are compared with the finite difference results

and are tabulated in Table 7.1. It is seen that the values obtained by ADIFOR are

in good agreement with the finite difference values, thus confirming the successful

differentiation of the PMARC code.

7.3 Optimization Problem

An objective of multidisciplinary optimization of a vehicle design is to ex-

tremize a payoff function combining dependent parameters from several disciplines.

Most optimization techniques require the sensitivity of the payoff function with re-

spect to free parameters of the system. For a fixed grid and solution conditions,
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Table 7.1. Comparison Of ADIFOR results with finite difference

for geometric and nongeometric design variables.
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the only free parameters are the surface design parameters. Therefore, the sensitivity

of the payoff function with respect to design parameters are needed.

The present optimization strategy is based on maximizing the lift coefficient,

CL, in response to surface perturbation, subject to pre-determined design constraints.

Upper and lower bounds are set for each design parameter and the sensitivity deriva-

tives of the objective function, 0_c and the constraint, _ are obtained as pre-
OXD ' OXo

viously described. Throughout the analysis, the drag coefficient, CD , is to be no

greater than the value of the initial design. The strategy, illustrated in Fig. 6.2,

requires that the grid and grid sensitivity derivatives be provided dynamically during

the automated optimization process.

Optimization of the HSCT type configuration shown in Fig. 7.2 was carried

out on SGI machine with memory capacity of 512 MB. Sixteen design variables were

selected for the optimization process. A total of twelve design optimization cycles

were performed and each iteration took approximately 7.,5 min of cpu time. It was

noted that the lift which was initially 0.01712 became 0.0748. The initial and final

shapes with shaded Cp plots are shown in Figs. 7.8 and 7.9. The comparison of

the two shapes, before and after the optimization cycle is shown in Fig. 7.10. A

considerable increase in the length of the inner and outer wings with an increase in

the wing planform area is seen. A decrease in the wing and fuselage thickness with

an increase in camber is also noted.

7.4 Euler Flow Solutions

To verify the results obtained from the optimizer, it was suggested to perform

Euler calculations over the initial and final shapes of the HSCT configuration. A

semidiscrete, cell-centered finite volume algorithm TLNS3D , based on a Runge-Kutta

time-stepping scheme, is used to obtain the Euler solutions around the HSCT
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Fig. 7.8 Cp over the initial HSCT configuration.

Fig. 7.9 Cp over the final HSCT configuration.
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Fig. 7.10 Comparison of initial and final shapes.
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type configuration. Tile efficiency of the numerical scheme is greatly enhanced by

taking advantage of the multigrid acceleration technique. A two block, C-O mesh

with 142x82x42 grid, shown in Fig. 4.12, is used to obtain converged solution at

Mach number of 2.4. Figure 7.11 shows the Cp plot over the original geometry. A

lift of 0.01748 was obtained, and it compared very well with the potential flow case.

Next a volume grid was generated over the optimized HSCT surface shown

in Fig. 7.9. In this case the CSCMDO software was used to interpolate points from

the volume grid generated over the original geometry, thus saving time by not gener-

ating the grid from scratch. Figure 7.12 shows the shaded Cp plot over the optimized

configuration. Figures 7.13 and 7.14 show the line plot of Cp at the crank of the

wing. It is noted that the distribution of pressure is very smooth and well behaved

over the surface of the optimized configuration, thus confirming the trend of the re-

sults obtained from the optimizer.
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Fig. 7.11 Euler flow solution on the original
configuration.

Fig. 7.12 Euler flow on the optimized configuration
derived from potential flow optimization.
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Fig. 7.13 Cp plot at the crank for the original
configuration.
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Fig. 7.14 Cp plot at the crank for the optimized
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Chapter 8

CONCLUSIONS AND RECOMMENDATIONS

An algorithm is developed to define the surfaces of aerodynamic configura-

tions for design optimization. The two schemes investigated are Non-Uniform Ratio-

nal B-Splines (NURBS) and Partial Differential Equation (PDE). NURBS parametriza-

tion defines the surface by a set of ordered control points. These control points act

as a set of design parameters which is used in an optimization process. The PDE

technique offers a unique type of parametrization where a surface is defined by a

fourth order partial differential equation. This procedure generates a blend surface

between two sets of curves. The design parameters in this case is the constants used

in the definition of the two curves.

The PDE technique is used towards the parametrization of a HSCT type

configuration. Inclusive in this definition are surface grids, volume grids, and grid

sensitivity. The design variables are incorporated into the boundary conditions, and

the solution is expressed as a Fourier series. The fuselage has circular cross section,

and the radius is an algebraic function of four design parameters and an independent

computational variable. Volume grids are obtained through an application of the

Control Point Form method.

A graphic interface software is developed to represent the PDE surface. The

software has the capability to dynamically change the surface with the change in input

design variables. Various options and features are provided to enhance the quality of

the software which gives a competitive outlook.

Grid sensitivity with respect to surface design parameters and aerodynamic
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sensitivity coefficients based on potential flow is obtained using an Automatic Dif-

ferentiation precompiler software tool ADIFOR. Aerodynamic shape optimization of

the complete aircraft with twenty four design variables is performed. Unstructured

and structured volume grids and guler solutions are obtained to demonstrate the

feasibility of the new surface definition.

Future investigations should include the implementation of present approach

using larger grid dimensions, adequate to resolve full physics of viscous flow analysis.

A grid optimization mechanism based on grid sensitivity coefficients with respect to

grid parameters should be included in the overall optimization process. An optimized

grid applied to present geometry, should increase the quality and convergence rate of

flow analysis within optimization cycles. Other directions could be establishing a link

between the graphic software and the optimization procedure, such that the changes

in the design variables in each optimization cycle is visible to the user. Another

contribution would be the extension of the current algorithm to represent complex

configurations. A hybrid approach can be selected where certain sections or skeletal

parts of a surface are specified analytically and interpolation formulas are used for

intermediate surfaces.


