
NASA-CR-203964

'LS _:;.... =:...... _""

Visualization of

Unsteady Computational Fluid Dynamics

Final Techincal Report
for

Grant # NAG2-884

Submittted

by

Robert Haimes

Computational Aerospace Sciences Laboratory

Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

Cambridge, MA 02139

March 1997

https://ntrs.nasa.gov/search.jsp?R=19970012795 2020-06-16T02:56:57+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42774701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Introduction

The current compute environment that most researchers are using for the calculation of 3D

unsteady Computational Fluid Dynamic (CFD) results is a super-computer class machine. The

Massively Parallel Processors (MPPs) such as the 160 node IBM SP2 at NAS and clusters of
workstations acting as a single MPP (like NAS's SGI Power-Challenge array and the J90 cluster)

provide the required computation bandwidth for CFD calculations of transient problems.

If we follow the traditional computational analysis steps for CFD (and we wish to construct an

interactive visualizer) we need to be aware of the following:

Disk space requirements
A single snap-shot must contain at least the values (primitive variables) stored at the

appropriate locations within the mesh. For most simple 3D Euler solvers that means 5

floating point words. Navier-Stokes solutions with turbulence models may contain 7 state-
variables. The number can increase with the modeling of multi-phase flows, chemistry and/or

electo-magnetic systems. If we examine a 5 equation system with 1 million nodes (with the
field variables stored at the nodes) a single snap-shot will require 20 Megabytes. If 1000

time-steps are needed for the simulation (and the grid is not moving), 20 Gigabytes are

required to record the entire simulation. This means that the workstation performing the
visualization of this simulation requires vast amounts of disk space.

Disk speed vs. Computational speeds
The time required to read the complete solution of a saved time frame from disk is now

longer than the compute time for a set number of iterations from an explicit solver.

Depending on the hardware and solver an iteration of an implicit code may also take less

time than reading the solution from disk. If one examines the performance improvements in
the last decade or two, it is easy to see that depending on disk performance (vs. CPU

improvement) may not be the best method for enhancing interactivity. Workstation

performance continues to double every 18 months. The performance of commodity drives

has gone from about 1 Megabyte/sec in 1986 to about 5 Megabytes/sec in 1996.

Cluster and Parallel Machine I/O problems
Disk access time is much worse within current parallel machines and cluster of workstations

that are acting in concert to solve a single problem. In this case we are not trying to read the

volume of data, but are running the solver and the solver outputs the solution. I/O is the

bottleneck for a parallel machine with a front-end. The machine probably has the ability to

compute in the GigaFLOP range but all this data has to be funneled to a single machine and

put on disk by that machine. Clusters of workstations usually depend upon distributed file

systems. In this case the disk access time is usually not the bottleneck, but the network
becomes the pacing hardware. An IBM SP2 is a prime example of the difficulties of writing

the solution out every iteration. The machine has a high-speed interconnect, but it is not

currently used by the distributed file system. There are other access points into each node.

Most SP2s have an Ethernet port for every node, some also have FDDI connections. These
traditional network interfaces must be used for the file system.

Numerics of particle traces
Most visualization tools can work upon a single snap shot of the data but some visualization

tools for transient problems require dealing with time. One such tool is the integration of

particlepathsthroughachangingvector field. Afteracarefulnumericalstabilityand
accuracyanalysisof integrationschemes(fundedbypreviousNAS contracts)it hasbeen
shownthatthereexistcertaintime-steplimitationsto insurethatthepathcalculatedis
correct.Evenfor higherorderintegrationmethods,thelimitation is ontheorderof thetime
stepusedfor theCFDcalculation.This is becauseof aphysicallimit, thetime-scaleof the
flow. Whatthismeans(for thevisualizationsystem)is thatin orderto getaccurateparticle
traces,thevelocity field mustbeexaminedcloseto everytimestepthesolvertakes.

Becauseof thediskspacerequirementsandthetimeto write thesolutionto disk, theauthorsof
unsteadyflow solversperformsomesort of sub-sampling.This sub-samplingcaneitherbe
spatialor temporal.Becausethetraditionalapproachis to dealwith thedataasif it weremany
steady-statesolutions,thissub-samplingI/O is almostalwaystemporal.Theindividualrunning
thesimulationfiguresthefrequencyto write thecompletesolutionbasedon theavailabledisk
space.In manycases,importanttransitionsaremissed.Alsosincethesolutionis coarsely
sampledin time,streaklines(unsteadyparticlepathsasdiscussedabove)almostalwaysproduces
erroneousresults.Theproblemwith sub-samplingis thatthetime-stepselectedfor the
visualizationbecomesbasedon theavailablediskspaceandnot thephysicalproblem.

pV3 Status

Work is in progress on a set of software tools designed specifically to address visualizing 3D

unsteady CFD results in these super-computer-like environments. The above issues are resolved

by co-processing the visualization. The visualization is concurrently executed with the CFD

solver. The parallel version of Visual3, pV3 required splitting up the unsteady visualization task
to allow execution across a network of workstation(s) and compute servers. In this computing

model, the network is almost always the bottleneck so much of the effort involved techniques to

reduce the size of the data transferred between machines.

The following design goals for pV3 have been met:

• High Performance
Take advantage of the proper hardware to get the best performance out of the entire compute

arena, pV3 requires graphics hardware so that scene rendering time is not a limitation and the

data presented to the investigator is of high quality and timely. Also, most visualization

techniques are embarrassingly parallel (based on elements within the computational volume).
The execution of these tools is done within the partitioning performed to parallelize the CFD

solver.

• Interactive

The goal of any scientific visualization package should be to allow the assimilation of the

vast amounts of data produced by the models and solvers in order to better understand the

underlying physics. The ultimate goal, with this new knowledge, is to affect design and

produce a better car, aircraft, gas-turbine engine, etc. This can only be done by interactively

poking and probing into the data to interrogate areas of interest.

• Co-processing
An important part of pV3 is the, ability to visualize the data as the solver or model progresses

in time. It is also designed to allow the solver to run as independently as possible. If the

solution procedure takes hours to days, pV3 can plug-into the calculation, allow viewing of

the data as it changes, then can unplug with the worst side-effect being the temporary

allocation of memory and a possible load imbalance.

Visual3 functionalityandprogramming
pV3 providesthesamekind of functionalityasVisual3 with thesamesuiteof toolsand
probes.Thedatarepresentedto theinvestigator(the3D,2D and1Dwindowswith cursor
mapping)is thesame.Also thesameGraphicalUserInterface(GUI) is used.

For thedesiredflexibility andthemergingof thevisualizationwith thesolver,some
programmingis required.Thecodingis simple;like Visual3, all thatis requiredof the
programmeris theknowledgeof thedata.Learningthedetailsof theunderlyinggraphics,
dataextraction,andmovement(for thevisualization)is notneeded.If thedatais distributed
in aclusterof machines,pV3 dealswith this,resultingin few complicationsto theuser.

pV3 Rev 1.20wasreleasedin October1996.It is anticipatedthatRev1.25will bereleased
sometimeshortlyaftertheendof thiscontract.Thisportwill includesupportfor multiple
interactiveviewersandconcurrentbatchsubsystemexecutionwithin acomplexmix of solvers.
pV3 Rev 1.25will alsoincludethesupportof theworkdescribedin theStatusSection.The
following machinesare(andwill be) supportedas'clients' (thecomputerscontainingthevolume
of dataandperformingthesolver):

• CRAY J90sandC90s
• DECAlphasrunningDECUnix
• HP 9000/700seriesatHP-UX9.0 (orhigher)
• IBM RS/6000sincludingtheSP2s
° SGIsIRIX 5.x and6.x in 32bit mode
• SGIs(R8000sandR10000s)runningIRIX 6.x in 64bit mode
• SUNsrunningSolaris

pV3 supportsinteractiveviewersandbatchserversfor thefollowing workstations(thathave3D
graphicshardware)andsupportOpenGL:

• DECAlphasrunningDECUnix
• IBM RS/6000s
• SGIsIRIX 5.x and6.x in 32bit mode
• SGIs(R8000sandR10000s)runningIRIX 6.xin 64bit mode
• SUNsrunningSolaris

Note:HPsarenotsupportedbecauseof their lackof OpenGLandmulti-threadingsupport.

Presentations
A ModularApproachto Visualizationfor ParallelCFDApplications.
ParallelCFD '96, CapriItaly, May 1996.

Real-TimeVisualizationof anHPF-basedCFDSimulation(withM. KremenetskyandA.
Vaziri).
ParallelCFD '96, Capri Italy,May 1996.

Visualizationin aParallelProcessingEnvironment(with D. Edwards)-- invited.
AIAA AerospaceSciencesMeeting& Exhibit, January1997.AIAA Paper97-0348.

Demonstrations
Supercomputing'96, Pittsburgh,November1995.
AIAA AerospaceSciencesMeeting& Exhibit,Reno,January1997.

Status of this Work

pV3 is currently being used for parallel CFD solver development and debugging as well as for

quality assessment for long running applications. There is promise that this technology will also

be important in production environments with the advent of the 'batch' subsystem, pV3' s

development is progressing in a modular fashion where groups of interconnected tasks can be
selected based on the underlying CFD computation, on what equipment it is executing upon, and

the type of execution (interactive, batch or both).

The visualization efforts at NAS has been re-directed, also towards a building-block approach to

visualization applications (where elVis is the first example). This modular programming will

provide custom visualization solutions with a minimum of development time.

pV3's co-processing capabilities are unique within the CFD visualization community. There
have been years of development and testing (as well as user feedback) in an environment closely

coupled to solver technologies. The work done under this contract was the development of an

Application Programming Interface (API) to the co-processing modules of pV3 so that other
visualization modules (or complete systems) can have direct access to the running solver. The

goal of the work was to include portions of pV3 as part of NASA's library of visualization
building-blocks. The API is documented in the appended manual: "Server Builders Guide".

This work progressed in the following stages:
• Interface Specification, Design and Documentation

The API was specified, documented and then reviewed by the visualization group at NASA
Ames. A meeting was held early in this work that brought together MIT and NAS personnel

for the preliminary design.

• Interface Development

pV3 was modified to support the API.
• Interface Test

A second trip was used to couple FEL (the Field Encapsulation Library) with pV3. This

successfully displayed that pV3 client-side could co-exist with NAS' object-oriented library
and could be included with a solver, pVYs viewer was used to display the results.

• Software Release

The API will become part of the next pV3 distribution. The document mentioned above will

be included, so that other developers can take advantage of the pV3 co-processing modules.

Finally, this approach allows for what was intended in an earlier phase of this contract (trying to
use fGL for the disk based visualization extracts). The MIT and NAS efforts have been closely

coupled. Users will now be able to choose from either the pV3 viewers or the easier-to-use

products from the NAS visualization team. And either pV3's data extractors can be used or code
like FEL or both at the data/solver end.

Server Builder's Guide

for

pV3 Rev. 1.25

Bob Haimes

March 19, 1997

License

This software is being provided to you, the LICENSEE, by the Massachusetts Institute of

Technology (M.I.T.) under the following license. By obtaining, using and/or copying this

software, you agree that you have read, understood, and will comply with these terms and

conditions:

Permission to use, copy, modify and distribute, this software and its documentation for

any purpose and without fee or royalty is hereby granted, provided that you agree to comply

with the following copyright notice and statements, including the disclaimer, and that the

same appear on ALL copies of the software and documentation:

Copyright 1996-1997 by the Massachusetts Institute of Technolo_'. All rights reserved.

THIS SOFTWARE IS PROVIDED "AS IS", AND M.I.T. MAKES NO REPRESEN-

TATIONS OR _%\=kRRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT

NOT LIMITATION, M.I.T. MAKES NO REPRESENTATIONS OR WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT

THE USE OF THE LICENSED SOFTWARE OR DOCUMENTATION WILL NOT IN-

FRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER

RIGHTS.

The name of the Massachusetts Institute of Technology or M.I.T. may NOT be used

in advertising or publicity pertaining to distribution of the software. Title to copyright in

this software and any associated documentation shall at all times remain with M.I.T., and

USER agrees to preserve same.

Contents

1 Introduction 5

I.i Unsteady Classification 5

1.2 Extracts 5

1.3 Multi-Threading 7

1.4 Programming Notation 8

2 Built-in Server Side Extracts 9

2.1 Surfaces 9

2.2 StreamLines 12

2.3 Particles 14

2.4 Vector Clouds 16

3 Calls that can be Invoked by Either Thread 17

3.1 pV_DiscipStat 17

3.2 pV_ClientStat 17

3.3 pV_FieldStat 18

3.4 pV_CutStat 18

3.5 pV_SetDiscip 19

3.6 pV_GetExtract 19

4 I/O

4.1

4.2

4.3

4.4

4.5

4.6

Thread Routines and Calls 22

pVSafe 22

pV_Register 22

pVSetExtract 24

pV_SetExState 24

pV_CrExtract 25

pV_DeExtract 26

5 Graphics Thread Routines and Calls 27"

5.1 pVRender 27

5.2 pV_GetSub 27

Running Your Server 28

6.1 EnvironmentVariables.............................. 28

6.2 SpecialFile - The LockFile 28

An FEL Example 29

7.1 Servercode 29

7.1.1 I/O Threadcode 29

7.1.2 GraphicsThreadcode 31

7.2 ClientSide 32

A Plotting Masks for Built-in Extracts 35

A.1 Cut Surfaces 35

A.2 StreamLines.................................... 35

A.3 Particles...................................... 36

A.4 VectorClouds................................... 36

1 Introduction

This manual is a guide for those individuals wishing to use pV3's client-side API and

network based data movement, but do not want to view the data via pV3's interactive

server. This may be necessary when either the data presentation is not appropriate or some

other workstation-enhanced technique (such as a Cave or VR) is used.

1.1 Unsteady Classification

Transient applications are classified in the following manner:

• OPT = 0; Steady-State

This is the simplest case. Nothing changes in time.

OPT = 1; Data Unsteady

In this type of application the grid structure and position are fixed in time. The

data defined at the nodes (both scalar and vector) changes with each time step. An

example is when a boundary condition in the domain is changing.

OPT = 2; Grid Unsteady

These cases are 'Data Unsteady' plus the grid coordinates associated with each node

are also allowed to move with each snapshot. An example of this is stator/rotor

interaction in turbomachinery. The stator and rotor grids are separate, with the rotor

grid sliding past the stator grid. In this case the stator portion is actually 'Data

Unsteady' and the rotor grid moves radially.

OPT = 3; Structure Unsteady

If the number of nodes, number of cells or cell connectivity changes from iteration to

iteration the case is 'Structure Unsteady'. An example of this mode is store separation.

1.2 Extracts

pV3 has been designed to minimize network traffic. The client-side library extracts lower

dimensional data required by the requested visualization tool from the volume of data in-

place. This distilled data is transferred to the graphics workstation. To further reduce the

communication burden posed by the visualization session, the transient problem classifi-

cation described above is used. Only the extracted data that has changed from the last

iteration is sent over the network. An extract is therefore the results of a visualization

tool (geometric cut, iso-surface, streamline and etc.) collected in a manner that provides

5

flexibility and minimizesthevolumeof datasothat a networkbasedvisualizationsystem
canprovidegoodframe-rates.

Thereare2 typeof extractsallowedwithin the pV3 system.Thefirst arepre-deflned
and includethoselistedin Section2. At startup the followingbuilt-in extractswill have
beencreated:

• DomainSurface.Oneextractfor eachglobalsurfacewith theplotting attributesset

by the client side.

• ParticleData. Forunsteadyflowswith vectorfelds.

• VectorCloud.Forclientswith vectorfields. Theattributessetfor this tool arein the
off stateat initialization.

• Dynamic. Oneextractis usedby p V3Server for all dynamic tools.

The second type of extract is programmer defined. In this case code must be supplied

at both the client and server sides.

Each extract is divided into as many as 12 sub-extract components. This is done for

the following reasons:

Unsteady updates

Extract information should be segregated based upon reducing the amount of data.

For example, a geometric-based cut is generated in a Data Unsteady client. For the

second and subsequent iterations, all geometric data does not change, and therefore

need not be retransmitted. The only new data required is the scalar field values

associated with each vertex of the object. With only moving this data, the extract

can be properly rendered, coloring the surface based on the current field. In this case,

having the scalar values as a sub-extract produces a great benefit.

Network usage

Segregating data based on type is important. The underlying message passing (i.e.

PVM) may deal with hetrogenous machine environments. Being able to do the bit or

byte twiddling - based on type is required.

See Section 2 for an example of pV3's pre-defined extracts and their sub-extract types.

For programmer defined extracts that use derived types and/or complex structures, the

data must be decomposed at the client side so that it can pass through the network interface.

On the server side the data can be reassembled from the sub-extracts.

1.3 Multi-Threading

pV3's servers(pV3Server, p V3Batch and p V3Viewer) are all multi-threaded. In fact, they

have 2 threads. The application that gets built using this guide also uses 2 threads, like the

interactive server. See Figure 1.

Initialize system

Render scene

I Broadcast requests

I Collect extracts

Update state

I F I....

t

Get Xevents

I

I/0 Thread Graphics Thread

Figure 1: The pV3 Server's Threading Control

All extracts are double-buffered. This allows concurrent execution of the threads with-

out data contention. The I/O thread collects extracts in the client's current iteration as

the Graphics thread is rendering from the previous set of data. Once the thread hand-

shaking is complete, the buffers are swapped, the last rendered data is thrown away (where

appropriate) and the process continues.

The application built from this guide will have the same architecture as seen in Figure 1.

The difference is that the pV3 code used to 'Render scene', 'Get Xevents' and 'Update state'

is replaced by a single programmer supplied routine; pVRender. See Section 5.1.

1.4 Programming Notation

pV3 wasdesignedto beaccessiblefrombothFORTRANandC.FORTRANismorerestric-
tive in argumentpassingand naming,thereforeit hasshapedtheprogramminginterface.
The routinedescriptionsin this guideare from the C programmer'spoint of view. But
becauseFORTRANis supportedwith the sameAPI all routineargumentsare passby
reference.It is assumedthat a routine'sargumentis not modifiedunlessdocumentedas
such.

For IBM andHP ports,all pV3 entry pointsare the FORTRANnamesin lower-case.
On all otherplatformsexcepttheCRAY,externalentriesarelower-casewith anunderscore
('2) appendedto theend.CRAYentrypointsareupper-casewith noappendedunderscores.
Seethe file 'pV3ser.h' or 'wsdepend.h' in the servers subdirectory of the distribution for a

method to avoid these problems.

Consistant with the pV3 naming convension, the routines that are part of pV3's server

suite are prefixed with 'pV_', those that are supplied by the programmer start with 'pV'.

8

2 Built-in Server Side Extracts

The following section describes the internal data stored in the pV3 server structures for the

built-in extracts. This data can be used to produce the graphics objects that get rendered

to make the scene. Each tool generates a different type of extract from the 3D data in the

client(s). The data gets transmitted to the server and is stored for as long as it is needed.

Each extract consists of a number of sub-extract types, and there is a complete collection of

sub-extracts for each client. Note: each client's data is stored separately.

2.1 Surfaces

This data is generated by the pV3 scalar tools (planar cuts, programmed cut surfaces,

iso-surfaces and domain surfaces). This data is exposed so that new 'probes' may be easily

generated. The size of many of these arrays (and therefore the pointers) will change during

the execution of pV3, so when using this data, get the current pointers before accessing

the memory.

Extract

2

4

5

7

Type

Planar Cut

Geometric Cut

Domain Surface

Iso-Surface

Valid Sub-Extracts

01234567

012345678

012345678

01234567

0 - Surface Sub-Extract Tris

The following data defines the disjoint triangle space. Where the number of triangles in the

structure is KTRI.

int TRIS[KTRI][4] disjoint triangle definitions.

TRIS[] [0] = first node index for the triangle.

TRIS[][i] = second node index for the triangle.

TRIS[][2] = third node index for the triangle.

TRIS[][3] = the parent 3D cell number (in the client).

1 - Surface Sub-Extract Quads

The following data defines the disjoint quadrilateral space. Where the number of quadri-

laterals in the structure is KQUAD.

int QUADS[KQUAD][5] disjoint quadrilateral definitions.

QUADS[] [0] = first node index for the quadrilateral.

QUADS[][1] = second node index for the quadrilateral.

QUADS[] [2] = third node index for the quadrilateral.

QUADS[][3] = fourth node index for the quadrilateral.

QUADS[] [4] = the parent 3D cell number (in the client).

2 - Surface Sub-Extract XYZ

The following data defines the 3D coordinates for the nodes (and therefore also the number

of nodes) that support the surface. The number of nodes in the structure is KXYZ.

float XYZ[KXYZ][3] (x, y, z)-coordinates for the nodes.

3 - Surface Sub-Extract Mesh

The following data defines the disjoint lines that make-up the intersection of the cell edges

and the cutting surface. The number of line segments in the structure is KFACE.

int FACE[KFACE][2] disjoint line definitions.

FACE[I[0] = first node index for the line.

FACE[][1] = second node index for the line.

4 - Surface Sub-Extract Outline

The following data defines the disjoint lines that make-up the outline of the surface. The

number of line segments in the structure is KEDGE.

int EDGE[KEDGE]J3] disjoint line definitions.

EDGE[][0] = first node index for the line.

EDGE[][1] = second node index for the line.

EDGE[] [2] = the parent surface face number (in the client).

10

5 - Surface Sub-Extract Scalar

The following data defines the current scalar for the nodes (and therefore also the number

of nodes) that support the surface. The number of nodes in the structure is KS and is the

same as KXYZ.

float S[KS] scalar functional values for the nodes.

6 - Surface Sub-Extract Vector

The following data defines the current vector for the nodes (and therefore also the number

of nodes) that support the surface. The number of nodes in the structure is KV and is the

same as KXYZ.

 oat V[KV][3] vector values (Vx, Vy, Vz) for the nodes.

7- Surface Sub-Extract Threshold

The following data defines the current threshold values for the nodes that support the

surface. The number of nodes in the structure is KT and is the same as KXYZ.

floatT[KT] threshold functional values for the nodes.

8 - Surface Sub-Extract 21) Mapping

The following data defines the 2D mapping for the nodes that support the surface. The

number of nodes in the structure is KXY and is the same as KXYZ.

float XY[KXY][2] raw (x', y')-coordinates as specified by the client.

Notes:

(1) The 2D mapping for planar cuts is implicit and not required from the client.

(2) There is no 2D mapping for iso-surfaces.

11

2.2 StreamLines

This data is generatedby the pV3 clientsduring theintegrationof instantaneousstream-
lines. The sizeof manyof thesearrays (and thereforethe pointers)will changeduring
the executionof pV3, sowhenusingthis data, get the currentpointersbeforeaccessing

the memory.Unlikeall otherextracts,the numberof sub-extractsis not a functionof the
numberof clientsbut of the maximumallotted streamlinesegments(that is greaterthan

the numberof clients).Thisallowsa streamlineto reentera client morethanonce.

0 - StreamLine Sub-Extract Cell

The following data contains the 3D cell number for the position of the point for this segment

(used for the point probe). The number of entries in the structure is KCELL and is the

same as KXYZ.

int CELL[KCELL] the parent 3D cell number (in the client).

1 - StreamLine Sub-Extract Time

The following data defines the integration pseudo-time for the point (used for streamline

animation). Where the number of elements in the structure is KTIME and is the same as

KXYZ.

float TIME[KTIME] integration time (from the seed position).

2 - StreamLine Sub-Extract XYZ

The following data defines the 3D coordinates for the points that support this poly-line

segment. The number of nodes in the structure is KXYZ.

float XYZ[KXYZ][3] (x, y, z)-coordinates for the points.

3 - StreamLine Sub-Extract Div

The following data defines the cross-flow divergence felt by each point during the integration.

Where the number of elements in the structure is KDIV and this is the same as KXYZ.

float DIV[KDIV] used for streamtube rendering, where the size of the tube

is based on a starting size mutiplied by e to this power.

12

4 - StreamLine Sub-Extract Angle

The following data contains the curl for each point, calculated during the integration, in

this segment of the streamline Where the number of entries in the structure is KANG and

this is the same value as KXYZ.

float ANG[KANG] angle of the twist for ribbons in degrees.

5 - StreamLine Sub-Extract Scalar

The following data defines the current scalar for the points that support the line in this

segment. The number of points in the structure is KS and this is the same as KXYZ.

float S[KS] scalar functional values for the points.

6 - StreamLine Sub-Extract Vector

The following data defines the current vector for the points that make up this segment of

the streamline. The number of elements in the structure is KV and this is the same as

KXYZ.

floatV[KV][3] vector values (Vx, Vy, Vz) for the points.

7- StreamLine Sub-Extract Threshold

The following data defines the current threshold values for the points that support the

poly-line. The number of entries in the structure is KT and is the same as KXYZ.

float T[KT] threshold functional values for the points.

13

2.3 Particles

This data is updatedby the pV3 clientsduring the bubbleintegrationat eachtime-step.
Thesizeofmanyofthesearrays(andthereforethepointers)will changeduringtheexecution

of pV3, sowhenusingthis data,get the currentpointersbeforeaccessingthe memory.

0 - Particle Sub-Extract Number

The following data contains the unique particle number for each bubble in that client. The

number of entries in the structure is KNUM and this is the same as KXYZ.

int NUM[KNUM] the global particle number.

1 - Particle Sub-Extract Time

The following data defines the start time for each bubble. The number of elements in the

structure is KTIME and this number is the same as KXYZ.

float TIME[KTIME] bubble simulation time when the particle was seeded.

2 - Particle Sub-Extract XYZ

The following data defines the current 3D coordinates for the particles.

nodes in the structure is KXYZ.

float XYZ[KXYZ][3] (x, y, z)-coordinates for the bubbles.

The number of

3 - Particle Sub-Extract Div

The following data defines the cross-flow divergence currently felt by each bubble. Where

the number of elements in the structure is KDIV and this is the same as KXYZ.

float DIV[KDIV] optionally used for bubble rendering, where the size of the

particle is based on a starting size mutiplied by e to this

power.

14

5 - Particle Sub-Extract Scalar

The following data defines the current scalar for the particles in this client. The number of

points in the structure is KS and this is the same as KXYZ.

float S[KS] scalar functional values for the bubbles.

6 - Particle Sub-Extract Vector

The following data defines the current vector for the particles. The number of elements in

the structure is KV and this number is the same as KXYZ.

float V[KV][3] vector values (Vx, Vy, Vz) for the bubbles.

7 - Particle Sub-Extract Threshold

The following data defines the current threshold values for the particles. The number of

entries in the structure is KT and is the same as KXYZ (the number of bubbles).

float T[KT] threshold functional values for the bubbles.

10 - Particle Sub-Extract Group Index

The following data defines the current group number for the particles. The number of

entries in the structure is KGI and is the same as KXYZ (the number of bubbles).

int GI[KGI] group index for the bubbles (used for time lines).

15

2.4 Vector Clouds

2 - VC Sub-Extract XYZ

The following data defines the coordinates for the 3D nodes that satisfy the threshold limits

within each client. The number of nodes in the structure is KXYZ.

floatXYZ[KXYZ][3] (x, y, z)-coordinates for the vector cloud.

5 - VC Sub-Extract Scalar

The following data defines the current scalar for the vector cloud The number of points in

the structure is KS and this number is the same as KXYZ.

float S[KS] scalar functional values for the 3D nodes.

6 - VC Sub-Extract Vector

The following data defines the current vector for each node in the client that satisfies the

threshold limits. The number of elements in the structure is KV and this number is the

same as KXYZ.

float V[KV][3] vector values (Vx, Vy, Vz) for the vector cloud.

16

3 Calls that can be Invoked by Either Thread

3.1 pV_DiscipStat

PV_DISCIPSTAT(DID,NID,NCL,DNAME)

This routine returns the status for the disciplines known to the system.

int *DID

int *NID

int *NCL

char DNAME[20]

The discipline ID. The first discipline id always 0, therefore

it is always safe to make this call with this argument zero.

The total number of disciplines in the simulation. Re-

turned.

The number of clients in the discipline DID. Returned.

The discipline's name. Returned.

NID must be atleast 1 for any valid pV3 application therefore it is always valid to make

this call with DID = 0.

3.2 pV_ClientStat

PV_CLIENTSTAT (DID,CID,OPT,NCL,ON,CNAME)

This routine returns the status for a client within a discipline.

int *DID

int *CID

int *OPT

int *NCL

int *ON

char CNAME[20]

The discipline ID. Must be a value from 0 to NID-1.

The client ID. Must be a value from 1 to NCL.

The client's unsteady index (0-3). Returned.

The number of clients in the discipline DID. Returned.

Visibility flag - not used. Returned.

The clients's name. Returned.

NCL must be atleast 1 for any valid pV3 discipline therefore it is always valid to make

this call with CID = 1.

17

3.3 pV_FieldStat

PV_FIELDSTAT (DID_FID,NFL,FTY_FLIMS,FNAME)
This routinereturnsthe statusfor a field variablewithin a discipline.

int *DID ThedisciplineID. Must bea valuefrom 0 to NID-1.

int *FID Thefield ID. Must bea valuefrom 1to NFL.

int *NFL The numberof field variablesin the disciplineDID. Re-
turned.An error is indicatedby the value-1 whichindi-

catesthat the disciplineindexor field ID isout of range.

int *FTY Thefield's type (1-5). Returned.

1 Scalar

2 Vector

3 Surfacescalar

4 Surfacevector

5 Threshold

float FLIMS[2] Field limits from the clients.Returned.

charFNAME[32] The field's name.Returned.

NFL mustbeatleast1for anyvalid pV3 applicationthereforeit is alwaysvalid to make
this call with FID = 1.

3.4 pV_CutStat

PV_CUTSTAT (DID,CIN,NCT,CTITLE)
This routinereturnsthestatusfor a programmedcut within a discipline.

int *DID

int *CIN

int *NCT

charCTITLE[32]

The disciplineID. Must bea valuefrom0 to NID-1.

Thecut index. Must beavaluefrom 1 to NCT.

The numberof geometriccutsin the disciplineDID. Re-
turned.

Thegeometriccut's title. Returned.

There maybe no cuts (i.e. NCT = 0). To determinethe numberof cuts, call this
routinewith CIN = 1,thencheckNCT.

18

3.5 pV_SetDiscip

PV_SETDISCIP(DID)
This routinesetsthe currentdiscipline.Not neededfor a single discipline case.

int *DID The discipline ID. Must be a value from 0 to NID-1.

3.6 pV_GetExtract

PV_GETEXTRACT (EX,TYPE,EXNUM,IVEC,RVEC,NAME,NEXTEX)

Returns the internal pV3 extract structure info for the current discipline. The extracts form

a linked list. There is a unique list for each discipline. This routine allows the scanning of

all active extracts by continual calls until the desired extract is found.

void **EX

int *TYPE

int *EXNUM

int IVEC_

int RVEC_

char NAME[20]

void **NEXTEX

Extract pointer. On input, this is the desired extract. The

special case of the first extract is indicated by a NULL and

is updated with the actual extract pointer.

The extract type. Returned.

The extract number. Returned.

Integer data set based on TYPE (length also determined

by TYPE). Returned.

Float data set based on TYPE (length also determined by

TYPE). Returned.

Extract name. Returned.

Returned pointer to the next extract. NULL indicates

that this is the last extract. NEXTEX can be used in the

next call to pV_GetExtract (argument EX) to continue

scanning the list.

The following data is related to data in the Graphics buffer:

19

• PlanarCut - TYPE = 2

IVEC[0] = Plot Mask

IVEC[1] -- Scalar field index

IVEC[2] = Vector field index

IVEC[3] -- Threshold index

RVEC[0-8] -- Cut corners - Three of the 4 corners that denote the plane

RVEC[9-11] -- Plane normal

• Geometric Cut - TYPE = 4

IVEC[0] = Plot Mask

IVEC[1] -- Scalar field index

IVEC[2] -- Vector field index

IVEC[3] -- Threshold index

IVEC[4] -- Cut index

RVEC[0] -- Z prime

• Domain Surface - TYPE = 5

IVEC[0] -- Plot Mask

IVEC[1] -- Scalar field index

IVEC[2] ----Vector field index

IVEC[3] ---- Threshold index

IVEC[4] -- Mapping flag

IVEC[5] -- Special surface scalar index

IVEC[6] -- Special surface vector index

• Iso-Surface - TYPE = 7

IVEC[0] = Plot Mask

IVEC[1]

IVEC[2]

IVEC[3]

IVEC[4]

aVEC[0]

-- Scalar field index

-- Vector field index

---- Threshold index

-- Scalar index for Iso-Surface

---- Z prime

2O

• StreamLine- TYPE = 18

IVEC[0] = Plot Mask

IVEC[1] = Scalar field index

IVEC[2] -- Vector field index

IVEC[3] -- Threshold index

IVEC[4] -- StreamLine Group number

IVEC[5] -- Client-id for client with seed location

IVEC[6] -- Cell index in client to start StreamLine

IVEC[7] -- Minimum StreamLine number for group

IVEC[8] = Maximum StreamLine number for group

IVEC[9] -- Surface Index (0 - volume StreamLine)

IVEC[10] -- Number of StreamLine segments

RVEC[0-2] -- Seed location (XYZ)

• Particles - TYPE = 19

IVEC[0] -- Plot Mask

IVEC[1] = Scalar field index

IVEC[2] -- Vector field index

IVEC[3] = Threshold index

• Vector Cloud - TYPE = 20

IVEC[0] ----Plot Mask

IVEC[1] = Scalar field index

IVEC[2] = Vector field index

IVEC[3] -- Threshold index

RVEC[0] -- Threshold minimum

RVEC[1] -- Threshold maximum

• Programmer-defined - TYPE > 100

IVEC[0] -- Plot Mask - Not used

IVEC[1] -- Scalar field index

IVEC[2] -- Vector field index

IVEC[3] -- Threshold index

IVEC[4] = IVAL

RVEC[0-8] - Float values assoctated with the extract

21

4 I/O Thread Routines and Calls

4.1 pVSafe

PVSAFE()

This programmer-supplied routine is called when the graphics thread of the server is stalled.

This is the time where calls can be made that require neither thread to be active. The buffers

have not been swapped, so that queries of extracts will look at the last state.

No Arguments

NOTE:

The first call to pVSafe is done when there is only one thread.

register all extracts (at least for the first allocation).

This should be used to

4.2 pV_Register

EX = PV_REGISTER(INDEX,NAME,SUBTYPE,SUBSIZE,SUBOPT,

SUBLOC,ROUTINE,EXNUM)

Registers a programmer-defined extract with the pV3 server. This routine should only be

called when the threads are sync'ed, therefore the only valid place to execute this routine

is within pVSafe. For multi-disciplinary cases, the discipline index must be set so that the

extract is registered within the appropriate discipline. The client-side extraction code must

be linked with the client application. See the Advanced Programmer's Guide.

void *EX

int *INDEX

char NAME[20]

int SUBTYPE[12]

int SUBSIZE[12]

The extract pointer if EXNUM does not indicate an error.

The extract index. This number must be greater that

100 and defines an extract. Different disciplines must use

unique extract indices!

Extract name.

The subextract types. Each extract is composed of up to

12 subextracts for each client. This vector defines whether

the subextract is an integer (0) or a float (1).

The subextract size per length. For example, if the subex-

tract is for the 3D coordinates (X,Y,Z) that support the

extract, the size would be 3.

22

int SUBOPT[12]

int SUBLOC[12]

void (*ROUTINE)()

int *EXNUM

The level of unsteadyness that requires the data at every

time-step. Valid entries are 0 to 2. The following table

specifies what action is taken with an existing subextract:

Client's OPT - > 0 1 2 I 3

I

SUBOPT = 0 leave refill refill I refill
SUBOPT = 1 leave leave refill refill

SUBOPT = 2 leave leave leave refill

The subextract's locality. If this subextract comes from

the clients then the value is -I. If this subextract is local

to the server and it's length is set by another subextract,

then SUBLOC must contain the index (0 biased) to that

extract. SUBOPTs for local subextracts must match that

of the keyed subextract.

Not used - for compatibility with the Advanced Program-

mer's interface.

This is a status return. If the value is zero or greater,

that indicates success. The value is the number used for

multiple allocations of extracts with the same INDEX. If

the number is negative it is an indication of an error:

-i - Invalid INDEX number

-2 - Invalid SUBTYPE in one of the entries

-3 - Invalid SUBSIZE in one of the entries

-4 - Invalid SUBOPT in one of the entries

-5 - Invalid SUBLOC in one of the entries

-6 - SUBTYPE mismatch for subsequent calls using

INDEX

-7-

-8 -

-9 -

-10 -

-11 -

-12 -

-13 -

SUBSIZE mismatch for subsequent calls

SUBOPT mismatch for subsequent calls

SUBLOC mismatch for subsequent calls

ROUTINE mismatch for subsequent calls

Allocation error

Routine not called from pVSafe

SUBOPTs mismatch for local subextract

23

4.3 pVSetExtract

PVSETEXTRACT (INDEX,EXNUM,PLOTMASK,REQMASK,IVAL,RVEC)

This routine gets called for each registered extract during the request collection phase.

int *INDEX

int *EXNUM

int *PLOTMASK

int *REQMASK

int *IVAL

float RVEC[9]

The extract index. This number must be greater that 100

and defines an extract (and discipline).

The extract number associated with INDEX.

Not used, for compatibility with the Advanced Program-

mer's interface.

The request mask. Each bit specifies which subextracts

are required to statisfy the plotting attributes. For exam-

pie, 5 requests subextract 0 and subextract 2. If the most-

significant bit is set all subextracts are requested, even if

based on SUBOPT, the data exists (i.e. some state has

changed). Must be filled on return.

An integer sent to the clients associated with this extract.

Must be set upon return.

A float vector of data sent to the clients with the request

for this extract. Must be set upon return.

4.4 pV_SetExState

PV_SETEXSTATE(EX,PLTMASK,SCALAR,VECTOR,THRES)

Sets the plot mask and field variables for the specified extract. This routine should be called

from pVSafe to insure that the change to the attributes is effective for the next iteration.

void **EX

int *PLTMASK

int *SCALAR

int *VECTOR

int *THRESH

Extract pointer as returned by pV_GetExtract,

pV_Register or pV_CrExtract.

NOTE: these pointers do not change during the life of the

server application.

Plot mask to be set for the extract - built-ins only. See

the Appendix for the mask values.

Scalar field index to be used.

Vector field index to be used.

Threshold index, (-) indicates a scalar field index.

24

4.5 pV_CrExtract

EX = PV_CREXTRACT(TYPE,NAME,IVEC,RVEC,EXNUM)
Createsa built-in extractfor thecurrentdiscipline.

void *EX

int *TYPE

charNAME[20]

int IVEC[6]

float RVEC[9]

int *EXNUM

Theextract pointer if EXNUMdoesnot indicateanerror.

Theextract type. Valid typesare2,4, 7 and18.

Extract name.

Integerdataset basedonTYPE.

Float dataset basedonTYPE.

The returnedextract instance.If the numberis negative
it is an indicationof anerror:

-2 - Invalid TYPE

-ii - Allocation error

-12- Routinenot calledfrom pVSafe

• PlanarCut - TYPE = 2

RVEC[0-8] = Cut corners - Threeof the 4 cornersthat denotetheplane

• GeometricCut - TYPE = 4

IVEC[0] -- Cut index - 1to NCT

IVEC[I] -- Instancing Mask - 0 allow replication, 1 no instancing

RVEC[0] = Z prime

• Iso-Surface - TYPE = 7

IVEC[0] -- Scalar index for Iso-Surface

RVEC[0] -- Z prime

• StreamLine - TYPE = 18

IVEC[0] -- StreamLine Group number

IVEC[1] -- Client-id for client with seed location

IVEC[2] -- Cell index in client to start StreamLine

IVEC[3] -- Minimum StreamLine number for group

IVEC[4] = Maximum StreamLine number for group

IVEC[5] = Surface Index (0 - volume StreamLine)

RVEC[0-2] = Seed location (XYZ)

25

4.6 pV_DeExtract

PV_DEEXTRACT(EX)
Deletesthespecifiedextract.This routine shouldonly becalledfrom pVSafe.

void **EX Extract pointer asreturnedby pV_GetExtract,
pV__Registeror pV_CrExtract.

26

5 Graphics Thread Routines and Calls

5.1 pVRender

PVRENDER(TIME)

This is the routine that gets called to render the data. It might get called more than once

for each set of data depending on the length of time to render and the client-side update

frequency. In this case, the value of TIME does not change.

float *TIME The simulation time for the data.

5.2 pV_GetSub

PV_GETSUB(EX,SUBEX,NUMCS,PTR,LEN,CID)

Returns the internal pV3 sub-extracts. This routine returns the Graphics thread pointers

(from the two buffers).

void **EX

int *SUBEX

int *NUMCS

void **PTR

int *LEN

int *CID

Extract pointer as returned by pV_GetExtract,

pV_Register or pV_CrExtract.

Sub-extract number (0-11 based on TYPE).

Client index or StreamLine segment number (0 biased).

Returned pointer to the structure. NULL indicates that

the memory block is not allocated.

Length of structure. A 0 (zero) indicates that the struc-

ture is not currently filled. Returned.

Client-id for the client that produced the segment Re-

turned (StreamLines Only).

27

6 Running Your Server

The PVM daemon(s) and with co-processing, the solver, must be executing. Without a

pV3 server running, every time the solution is updated, a check is made for the number

of members in the PVM group p V3Server (Note: this name can be changed for multiple

jobs running under the same user ID - see the Section 6.1 for the environment variable

'pV3_Group'). If no servers are found, no action is taken. When a pV3 server starts,

it enrolls in the specified group. The next time the solution is updated, an initialization

message is processed and the visualization session begins. Each subsequent time in the solver

.completes a time step, visualization state messages and extract requests are gathered, the

appropriate data calculated, collected and sent to the active server(s).

When the user is finished with the visualization, the server sends a termination message

and exits. The clients receive the message, and if no other servers are running, cleans up

any memory allocations used for the visualization. Then the scheme reverts to looking for

server initialization, if termination was not specified at pV3 client initialization.

6.1 Environment Variables

A pV3 server built using this guide automatically looks at two Unix environment variables:

'pV3_TO' should be used to change the internal Time-Out constant. If the variable is

set, it must be an integer string which is the number of seconds to use for the Time-Out

constant (the server's default is 60). This may be required if the time between solution

updates is long. See the section in the pV3 Server User's Reference Manual on Time-Outs

and Error Recovery.

'pV3_Group' is usefull for differentiating multiple PVM jobs running under the same

user ID. If this variable is set for the solver (client-side) before execution, it overrides the

default client side group name p V3Client. The name used is the string assigned to this

variable with Client appended. By setting this variable before server execution, it will set

the server group to the variable's string with Server appended instead of using p V3Server.

Only clients with the appropraite matching group name will be connected to this session.

6.2 Special File - The Lock File

If the server is running on a multi-processor SGI workstation (PowerSeries, Onyx or PowerOnyx)

a file is used for the coordination of the 2 threads generated during execution. This file has

the name '.pV3.1ocks' and is open in the current directory. It should be noted that running

two invocations of the pV3 server from the same directory will NOT work. Both will use

the same file for the lock and semaphore arena!

28

7 An FEL Example

The following is a very simple coding example of both making a programmed defined extract

(at the server and client-side) as well as skeleton code for the customized server. It is

assumed that the visualization is steady-state and there is only one discipline.

7.1 Server code

7.1.1 I/O Thread code

#include <stdio.h>

#include <stdlib.h>

#include "pV3ser.h"

/* required to deal with visualization control and state */

extern void get_field(int *scalar, int *vector, int *thresh);

extern int get_pltmask(int type, int exnum);

void

PVSAFE()

{

static int EXNUM = -14;

static char *name = "FEL StreamLine ";

static int subtype[12] = { i, O, O, O, O, O, O, O, O, O, O, 0};

static int subsize[12] = { 3, I, i, I, I, i, i, i, I, i, i, i};

static int subopt[12] = { O, I, i, I, i, i, i, i, i, I, i, i};

static int subloc[12] = {-I,-I,-I,-i,-i,-i,-i,-i,-I,-i,-i,-i};

int ivec[ll], type, exnum, pltmask, scalar, vector, thresh, opt;

char exname[20];

float rvec[12];

void *ex, *nextex;

/* register the extract */

opt = i01;

if (EXNUM != -14) PV_REGISTER(&opt, name, subtype, subsize,

subopt, subloc, NULL, _EXNUM);

29

/* get the current field variables */

get_field(_scalar, avector, _thresh);

/2 loop through all defined extracts */

ex = NULL;

PV_GETEXTRACT(_ex, _type, _exnum, ivec, rvec, exname, anextex);

while (ex != NULL) {

PVGETEXTRACT(_ex, &type, &exnum, ivec, rvec, exname, &nextex);

/* set extract's attributes for the next set of data 2/

pltmask = O;

if (type < 100) pltmask = get_pltmask(type, exnum);

PVSETEXSTATE(aex, apltmask, ascalar, &vector, _thresh);

ex = nextex;

}

}

void

PVSETEXTRACT(int *index, int *exnum, int *pltmsk, int *mask,

int *ival, float *rvec)

{

/* called only for programmed extracts 2/

if (*index != 101) return;

/* get the one sub-extract 2/

*mask = 1;

/* set the start location */

rvec[O] = 0.0; /* X */

rvec[l] = 0.0; /, y 2/

rvec[2] = 0.0; /2 Z */

3O

7.1.2 Graphics Thread code

#include <stdio.h>

#include <stdlib.h>

#include "pV3ser.h"

typedef struct {

float X; float Y; float Z;} Triad;

void

PVRENDER(float *time)

{

int ivec[ll], type, exnum, len, cid;

char exname [20] ;

float rvec[12];

void *ex, *nextex;

Triad *streamline;

/* loop through all defined extracts */

ex = NULL;

PV GETEXTRACT(kex, _type, &exnum, ivec, rvec, exname, anextex);

while (ex != NULL) {

PVGETEXTRACT(_ex, &type, &exnum, ivec, rvec, exname, anextex);

/* our extract */

if (type == 101) {

PV GETSUB(aex, 0, 0, (void **) &streamline, _len, acid);

/* plot the streamline */

}

/* domain surfaces */

if (type == 5) {

/* plot domain surfaces */

}

ex = nextex;

}

}

31

7.2 Client Side

It is assumed that most of the pV3 client-side code has already been constructed. See

the pV3 Programmer's Guide for a complete description of this coupling. The code listed

below calculates a streamline using FEL as a programmed extract. It assumes that only

one extract has been defined and that extract has only one sub-extract.

It may be necessary to consult the Advanced Programmer's Guide and FEL's documen-

tation to understand this C++ code listing.

#include <stdio.h>

#include <stdlib.h>

#include <iostream.h>

#include <FEL.h>

#include "pV3.h"

#define MAX_LENGTH 2000

#define TIMESTEP 0.02

void

pVEXTRACT(int *index, int *exnum,

{

int *reqmask,

static int first = O;

static FEL_grid *grid;

static FEL_vector_field *velocity;

float v[3], *pVel, *buffer, *iblank;

int i, i3, j, opt, nnodes, nblank;

int length;

float streamline[MAXLENGTH][3];

vertex_data *pVgrid;

FEL_bary_pos current bary;

FEL_bary_pos last bary;

FEL_physpos currentposition;

if (first == O) {

// instantiate grid object

grid = new FEL_structured_grid("grid", i);

// set the grid type

int *ival, float *rvec)

32

grid->set_grid_type(FEL_GRID_P3D_NO_IBLANK);

grid->set_gridtype(FEL_GRID_P3D_SINGLE_ZONE);

// load the grid data

opt = 301;

pV_GETSTRUC(&opt, (void **)abuffer, _nnodes);

pVgrid = (vertex data *) malloc(nnodes * sizeof(vertex_data));

for (i=O,i3=O; i<nnodes; i++,i3+=3) {

(pVgrid + i)->x = buffer[i3];

(pVgrid + i)->y = buffer[i3+1] ;

(pVgrid + i)->z = buffer[i3+2] ;

(pVgrid + i)->iblank = 1;

}

opt = 306;

pV_GETSTRUC(aopt,

if (nblank != O)

(void **)aiblank, &nblank);

for (i=O; i<nnodes; i++) (pVgrid + i)->iblank=iblank[i];

grid->geom->new_timestep(pVgrid);

// instantiate a vector field

velocity = FEL_make_new_vector_field("velocity", grid, 2);

// select the file type

velocity->set_file_type(FELPLOT3D_SOLUTION_FILE);

// load the vector data

opt = 304;

pV_GETSTRUC(&opt, (void **)_pVel, _nnodes);

velocity->new_timestep(pVel);

}

first++;

// initialize the current physical position

length = O;

current_position.x = rvec [0] ;

current_position.y = rvec [I] ;

current position.z = rvec[2];

current_position.time = 0.0;

// initialize the streamline vertices

33

streamline [length] [0] = current_position, x;
streamline [length] [I] = current_position, y;

streamline [length] [2] = current position.z;

// initialize the barycentric coordinates

grid->phys_to_bary(current_position, current_bary);

last_bary = current_bary;

// Euler streamline computation loop

while (length < MAX_LENGTH-I)

{

// get the velocity value using last bary to optimize

// point location algorithm. Stop if get_value

// returns 0 as that means we fell off the grid

if (!velocity->get_value(currentposition, last_bary, v)) break;

// add the velocity times the timestep to the current position

current position.x += TIMESTEP * v[O];

current position.y += TIMESTEP * v[1];

current position.z += TIMESTEP * v[2];

length++;

// save the current position as a streamline vertex

streamline [length] [0] = current position.x;

streamline[length] [1] = current_position.y;

streamline[length][2] = current position.z;

// send the streamline data to the server

i = 3; j = O;

length++;

pV_SENDXR(index, exnum, _j, _i, _length, (float *)streamline);

34

A Plotting Masks for Built-in Extracts

The following are additive (or-able) so that the proper attibutes can be specified.

A.1 Cut Surfaces

This mask controls the pV3 scalar tools (planar cuts, programmed cut surfaces, iso-surfaces

and domain surfaces) attributes.

1 - Render - Surface rendering on

2 - Grid - Mesh display on

4 - Grey - Surface colored with grey

8 - Threshold - Surface is thresholded according to the threshold function and limits

16 - Contour - Contour lines are plotted on the surface

32 - Translucent - Plot surface using the translucent attribute

64 - Arrows - Arrow drawing on

128 - Tufts - Grid of tufts on (dynamic only)

256 - Mapping - A 2D mapping exists for this surface (domain only)

512 - Probing - 2D probing is active

1024 - Outline - Outline drawing is requested (with the mask equal to only this flag)

A.2 StreamLines

This mask controls the pV3 streamline plotting attributes and therefore the requested

sub-extracts.

1 - Render - StreamLine rendering on

2 - Tube - Tube rendering on

4 - Grey - StreamLine drawn with default color

8 - Threshold - StreamLine is thresholded according to the threshold function and limits

(not currently implemented)

16 - Back - StreamLine is backward going (can not be active with 32)

35

32 - Fore - StreamLinegoesdownstream(cannot beactivewith 16)

64 - Ribbon - Ribbonrenderingon (with 2 makestubeswith twist)

512 - Particles - Seedingon

2048 - Probing - StreamLineprobecurrentlyactivefor this StreamLine(Read-only).

A.3 Particles

This maskcontrolsthe pV3 bubblerenderingattributesandthereforetherequestedsub-
extracts.

1 - Render - Bubblerenderingon

2 - Size - Bubblesizebasedondivergencelike tubes- currentlynot used

4 - Grey - Bubblecoloredwith defaultcolor

16 - Time - Bubblesarecoloredwith thetime of spawning

32 - Time Lines - Plot linesbetweenparticlesin the samegroup

A.4 Vector Clouds

1 - Render - Vectorcloudrenderingon

4 - Grey - Vectorcloudcoloredwith defaultcolor

36

