NASA-CR-203938

NAS-8819-FM-09614-987

. ~ 137

LUNAR BASE HEAT PUMP

D. Walker
D. Fischbach
R. Tetreault
Foster-Miller, Inc.
350 Second Avenue
Waltham, MA 02154-1196
(617) 890-3200

March 1996

Approved Final Report Contract No. NAS9-18819

Prepared for

NASA Lyndon B. Johnson Space Center Engineering Procurement Branch Houston, TX 77058

LUNAR BASE HEAT PUMP

D. Walker
D. Fischbach
R. Tetreault
Foster-Miller, Inc.
350 Second Avenue
Waltham, MA 02154-1196
(617) 890-3200

March 1996

Approved Final Report Contract No. NAS9-18819

Prepared for

NASA Lyndon B. Johnson Space Center Engineering Procurement Branch Houston, TX 77058

CONTENTS

Section		Page
1.	INTRODUCTION	1
2.	SYSTEM DESCRIPTION	6
2.1	Heat Pump Cycle and State Points	6
2.2	Heat Pump Flow Diagram	
2.3	Heat Pump Components	
2.3.1	Compressors	11
2.3.2	Oil Separation and Separators	12
2.3.3	Compressor Sump Heaters	12
2.3.4	Heat Exchangers	
2.3.5	Check Valves	13
2.3.6	Filters	13
2.3.7	Receiver	
2.3.8	Bypass Valves	
2.3.9	Control Valves	
2.3.10	Isolation Valves	
2.3.11	Skid	
2.4	System Temperatures and Pressures	
2.5	Electrical Diagram	15
3.	AUTOMATED CONTROLS	19
3.1	GE Fanuc Control Program Functions	
3.2	Control Program Operation	
3.2.1	Automatic Cycle Control	21
3.2.2	Heat Pump Operating States	
3.2.2	Automatic Compressor Control	22
3.2.3	System Major Component Conditions	
3.3	Control System Interfaces	
3.3.1	Control System Inputs	24
3.3.2	Control System Outputs	25
3.4	Control Program	25
3.4.1	Program Organization	
3.4.2	Main Program and Program Subroutines	26
4.	HEAT PUMP TEST LOOP	30
5.	PERFORMANCE TEST RESULTS	. 32
6.	CONCLUSIONS AND RECOMMENDATIONS	. 38
APPENT	IX A - HEAT PUMP ELECTRICAL DIAGRAM	40
	OIX B - HIGH-LIFT HEAT PUMP CONTROL PROGRAM FLOW CHART	
	IX C - PERFORMANCE TEST DATA	00 QK

ILLUSTRATIONS

Figure		Page
1.	System mass versus fraction of Carnot cooling COP	2
2.	Three-stage refrigeration system with economizer-subcoolers, interstage liquid injection, and intercooling by bus fluid	
3.	Flow diagram of the lunar heat pump with control points	3
4.	Estimated heat pump condenser temperature during lunar operation	4
5.	High-lift heat pump pressure-enthalpy diagram	6
6 .	Mechanical schematic for the high-lift heat pump	8
7 .	LSSIF heat pump skid	16
8.	Heat pump test loop	31
9.	High-lift heat pump performance test, high-to-intermediate load test	34
10.	High-lift heat pump performance test, ITCS temperature control (full load)	34
11.	High-lift heat pump performance test low, load test	36
12 .	High-lift heat pump performance test, ITCS temperature control (low load)	36
13.	High-lift heat pump performance test, high-intermediate load test	37

TABLES

Table		Page
1.	Single refrigerant cycles	2
2.	Cascaded cycles	2
3.	High-lift heat pump parts list	9
4.	High-lift heat pump instrument list	11
5.	Heat exchanger descriptions	13
6.	High-lift heat pump operating temperatures and pressures	18
7 .	Water systems control	19
8.	Refrigeration system control	
9.	Variable frequency drive output to the variable speed compressor	23
10.	Heat pump major component condition for different operating modes	24
11.	Control system analog input measurements	
12 .	Control system analog input measurements	25
13.	Digital control system inputs	26
14.	Control system outputs	27
15.	Control program subroutines	28
16.	Control program subroutines	29
17.	High-lift heat pump performance test, high-intermediate load testing	
18.	High-lift heat pump performance test, low load testing	

1. INTRODUCTION

A heat pump is a device that elevates the temperature of a heat flow by means of an energy input. By doing this the heat pump can cause heat to transfer from a cool region to a warm one. This approach is used in many common devices such as refrigerators or air conditioners. For aerospace applications, heat pumps can be used in two cases. The first consists of raising the temperature of heat energy so that the amount of radiator surface required is reduced. The second involves situations where heat cannot be directly rejected by radiators, because the heat sink temperature is higher than that of the heat source.

During future missions to the moon and other planets, the crew and support equipment will be exposed to more severe thermal environments for longer periods of time. A heat pump must be used to enable rejection of moderate temperature waste heat to these more severe environments.

An example of such a situation is the rejection of heat from the lunar surface during lunar day. The lunar base thermal control system (TCS) will collect waste heat from the crew habitat at a temperature of about 275°K. Effective radiator temperatures during lunar day are very high, on the order of 350 to 375°K, due to extensive incident thermal radiation on the radiator surface. Direct rejection at this elevated temperature is not possible. This problem can be overcome by the use of a heat pump that will collect heat energy at a suitable temperature for life support, and raise the temperature of the heat energy to the effective radiator temperature for rejection to space.

The first step in the development of a heat pump for this application was to determine the radiator rejection temperature that optimizes the system mass of the TCS to its lowest possible value. To do this, curves of system mass versus radiator rejection temperature were generated for a system capable of rejecting 5 kW of thermal energy. The basic tradeoff examined the impact of radiator area and power generation masses on radiator temperature.

The analysis showed that the design point is controlled by the radiator area required for direct heat rejection during lunar night. Then, given this radiator area, the daytime design point depends only on the coefficient of performance (COP) of the heat pump. A more efficient heat pump requires less power and allows the fixed radiator to operate at a lower temperature. The lower radiator operating design temperature results from less compressor power needing to be rejected as heat. The lower system mass results from the reduced need for power.

For COPs in the range of 45 to 60 percent of Carnot efficiency, the optimum lunar noontime radiator design temperature varies from 381 to 374° K, respectively. Simultaneously, the total system mass (power supply plus radiators) varies from 1,000 to 810 kg. Figure 1 shows the relation between system mass and fraction of Carnot COP. The mass penalties applied to this study were 3.85 kg/m² and 25 kg/kW for radiator area and power, respectively.

Analyses of many potential refrigerants were then performed in refrigeration cycles in order to determine the most efficient heat pump design for the lunar base application. In general, the analyses showed that many fluids were not suitable because their critical temperatures were not high enough to allow use at the radiator temperatures considered. Several different

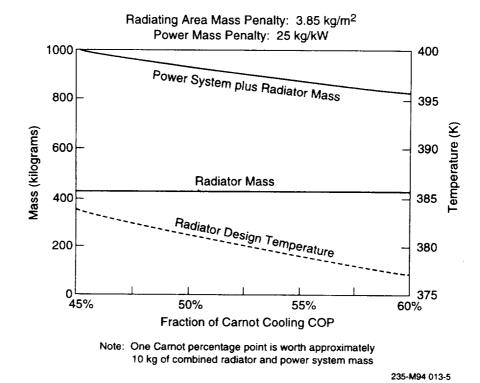


Figure 1. System mass versus fraction of Carnot cooling COP

fluids were identified, however, that could perform at COPs of 50 percent of Carnot. Tables 1 and 2 show the refrigerants and cycles producing the best results. The highest COP was obtained through the use of refrigerant CFC-11 in a three-stage compression cycle.

Figures 2 and 3 illustrate the elements of a three-stage cycle. Compression is performed over three levels with the discharge gas of the first-stage being the suction gas of the second and the discharge gas of the second being the suction gas of the third. Cooling of the gas is

Table 1. Single refrigerant cycles

Refrigerant	Configuration	COP	% Carnot
CFC-11	(three-stage)	1.41	56
n-Butane	(two-stage)	1.30	52
HCFC-123a	(two-stage)	1.28	51
Ammonia	(three-stage)	1.24	50

Table 2. Cascaded cycles

Upper Stage Refrigerant	Configuration	Lower Stage Refrigerant	COP	% Carnot
Water	Two-stage	HCF-123a	1.27	51
Water	Two-stage	Ammonia	1.25	50
HCFC-123a	Two-stage	Ammonia	1.20	48

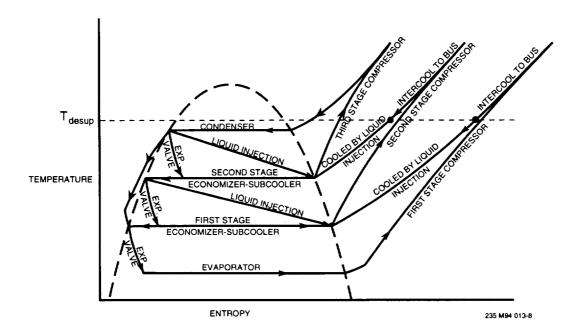


Figure 2. Three-stage refrigeration system with economizer-subcoolers, interstage liquid injection, and intercooling by bus fluid

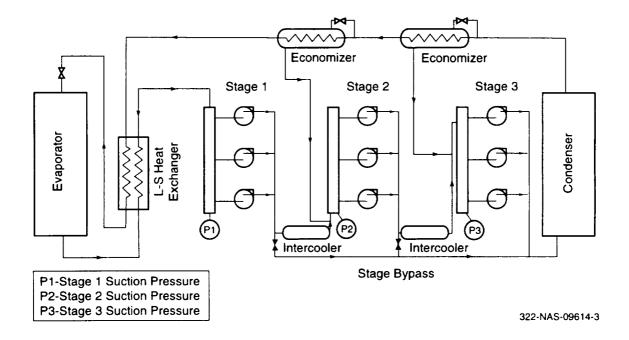


Figure 3. Flow diagram of the lunar heat pump with control points

provided between stages to reduce the inlet temperature of the gas in the second and third stages to prevent damage to the compressors. Intercooling is provided by the use of economizer–subcoolers that produce interstage cooling gas by subcooling the refrigerant liquid passing to the evaporator. A liquid–suction heat exchanger is used at the evaporator to prevent wet–compression in the first–stage. For off–design operation, direct rejection of heat to the thermal bus is possible at the second-stage discharge.

Multiple compressors are used in each stage to provide a means of capacity control and for operating redundancy. This approach is referred to as multiplexing. In a multiplexed system, the number of compressors operating at any given time is chosen to match the capacity of the compressors with the thermal rejection load. Compressors are controlled by on/off cycling, or in the more advanced version suggested here, variable speed operation of several of the compressors can also be employed for finer control.

System control must also be applied to compensate for the large variation in condensing temperature seen over the lunar day. The impact of this change is shown in Figure 4. Three stages of compression are needed for heat rejection during the time period of approximately 0 to 40 deg of lunar noon. From 40 to 70 deg, the condensing temperature drops to the point where only two stages are needed, while from 70 deg to the beginning of lunar night, one stage of compression is adequate. At the points of 40 and 70 deg, the control consists simply of turning off all compressors associated with either the third or second-stages, respectively. Heat pump start up is the reverse of this process. Initial operation is in the single stage mode until the condensing temperature reaches the point where two-stage compression is required. Full three-stage operation is reached as the condensing temperature rises further to its maximum value.

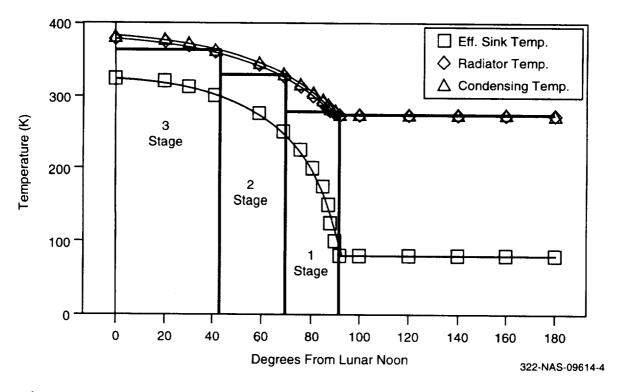


Figure 4. Estimated heat pump condenser temperature during lunar operation

Efforts for the development of the High-Lift heat pump were then turned to design and fabricate a prototype unit for use in the NASA Johnson Life Support Systems Integration Facility (LSSIF). The LSSIF is operated by NASA Johnson to provide system-level integration, operational test experience, and performance data that will enable NASA to develop flight-certified hardware for future planetary missions.

The design criteria for the LSSIF heat pump consisted of the following:

- Maximum and minimum heat rejection loads from the internal thermal control system (ITCS) of 1 and 5 kW, respectively. Heat rejection is accomplished by removing heat from a glycol-water loop operating at a flow rate of 0.22 kg/s.
- The outlet temperature from the heat pump of the ITCS glycol-water loop must be maintained at $4^{\circ}C \pm 1.7^{\circ}C$.
- Heat is rejected from the heat pump using an external thermal control system (ETCS) that consists of a glycol-water loop operating at an inlet temperature ranging from -8 to 88°C and a flow rate of 0.57 kg/s.
- The heat pump must be capable of operating in a direct rejection mode when the ETCS temperature is less than the 4°C outlet temperature of the ITCS.

The heat pump designed and fabricated for this application has all of the functional characteristics of the unit designed for the lunar base. The heat pump employs two stages of compression with an economizer for intercooling and liquid subcooling. Both stages of compression are multiplexed with three and five compressors in the first and second-stage, respectively. The heat pump is designed to operate in either one or two stages, depending upon the ETCS rejection temperature. All control modes called for in the lunar base unit can be tested and demonstrated with the LSSIF prototype.

Several major differences exist between the lunar base and LSSIF heat pumps. The LSSIF unit employs refrigerant HCFC-123, while CFC-11 was chosen for the lunar base system. CFC-11 is an ozone depleting chemical (ODC) that is no longer in production. Only two stages of compression were needed for the LSSIF unit because the maximum rejection temperature was lower than for the lunar base application (90°C versus 108°C). Also, a liquid-suction heat exchanger was not employed on the LSSIF unit because of low-side pressure drop limitations which were set by compressor cooling requirements. The immediate substitute refrigerant is HCFC-123. All components of the prototype are commercially available, rather than flight-qualified hardware. The use of commercial grade hardware allows the heat pump to be tested and reconfigured inexpensively. Changes to the prototype can be made without the engineering and certification efforts associated with flight-qualified equipment.

The development of the high-lift heat pump took place over a three-phase program. In Phase I, the design criteria of the lunar base unit were defined and a conceptual design of the heat pump was formulated. The prototype unit for the LSSIF was designed in detail in Phase II. In Phase III, the subject of this report, fabrication and testing of the prototype were undertaken.

2. SYSTEM DESCRIPTION

2.1 Heat Pump Cycle and State Points

The prototype high-lift heat pump employs a vapor compression refrigeration cycle as shown in Figure 5. The refrigerant used in the heat pump is HCFC-123, which has a high enough critical temperature to allow heat rejection by two-phase condensing to a 88°C (190°F) heat sink. The heat pump employs two stages of compression with intercooling when the ETCS is above a temperature of 38°C (100°F). At cooling loop temperatures below 38°C (100°F), the second-stage of compression is turned off and only the first-stage compressors are employed. For two-stage operation, an economizer heat exchanger is used for a combination of intercooling and subcooling of refrigerant liquid prior to entry in the evaporator. The state point pressures and temperatures in the diagram refer to operation of the heat pump at the design condition of ETCS cooling loop temperature of 88°C (190°F).

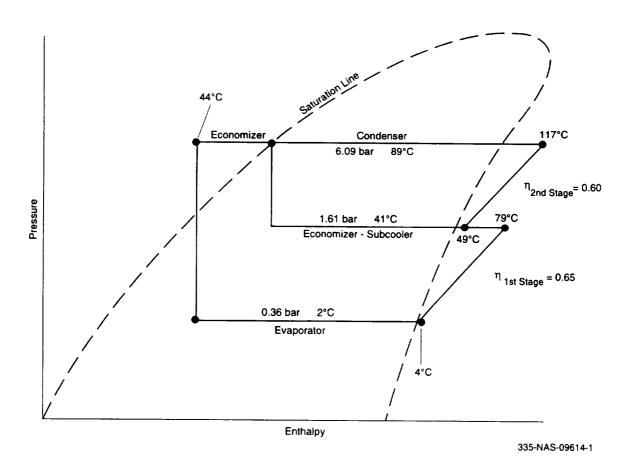


Figure 5. High-lift heat pump pressure-enthalpy diagram

2.2 Heat Pump Flow Diagram

Figure 6 shows the flow diagram for the high-lift heat pump. The evaporator consists of two direct expansion heat exchangers with the evaporating refrigerant on one side of the exchanger and the ITCS water-glycol mixture on the other. Operation of the heat exchangers consists of first direct expansion of the refrigerant in a control valve prior to entry into the heat exchangers. The flow of refrigerant is split between the two heat exchangers and manual valves are available at the entrance of each heat exchanger to balance flow if necessary. The water-glycol mixture flows through the exchangers in series to cool the liquid to the final temperature.

The evaporated refrigerant flows from the evaporator to the suction of the first-stage compressors. Three compressors are employed, one is equipped with variable-speed capability. The compressors are operated on the basis of suction pressure. The two fixed-speed compressors are cycled on and off, while the variable speed unit is operated in the speed range of 50 to 125 percent, in order to maintain the suction pressure at the set point value.

In single stage operation, the discharge of the first-stage compressors is piped directly to the condenser where the ETCS cooling loop is used to condense the refrigerant. The liquid refrigerant then returns to the evaporator.

In two-stage operation, the discharge of the first-stage compressors is piped to the suction of the second-stage compressors. At the suction manifold, the gas from the economizer is combined with the first-stage discharge gas and is used to cool the gas to a temperature acceptable to the second-stage compressors. The five second-stage compressors are operated continuously. The discharge gas from these compressors is sent to the condenser.

The liquid refrigerant flows from the condenser and passes through the economizer prior to entry in the evaporator. At the economizer, a portion of the liquid flow is split from the main flow and is expanded through a control valve. The liquid and vapor from this expansion is passed through one side of the economizer and is fully evaporated in order to subcool the remainder of the refrigerant liquid going to the evaporator. The gas generated at the economizer is added to the second-stage suction.

Temperature control of the ITCS liquid loop is achieved by the use of a flow control valve that bypasses a portion of the liquid flow around the evaporator. The final temperature of the liquid is controlled by monitoring the outlet temperature and comparing that to the set point of a proportional-integral-differential (PID) controller that positions the bypass valve.

A direct heat exchange mode is also available when the temperature of the ETCS loop is below 0°C (32°F). The heat pump is shut down and the ITCS flow is sent to the direct heat exchanger where heat is removed from the ITCS loop directly to the ETCS loop. Outlet control temperature is achieved using the same bypass flow control valve described previously. Further control of the ETCS liquid flow is available when the ITCS bypass is too low to maintain final outlet temperature above 2.2°C (36°F). At this point the ETCS flow is bypassed around the direct heat exchanger until the ITCS liquid temperature is above 3.3°C (38°F). This condition can occur when the ETCS temperature is below 0°C (32°F) and the ETCS load is small. At this point, the amount of water by-passed by the ITCS control valve is not large enough to maintain the outlet temperature at the desired minimum value.

2.3 Heat Pump Components

Table 3 contains a list of all major components found in the high-lift heat pump. Table 4 lists the instrumentation employed on the heat pump.

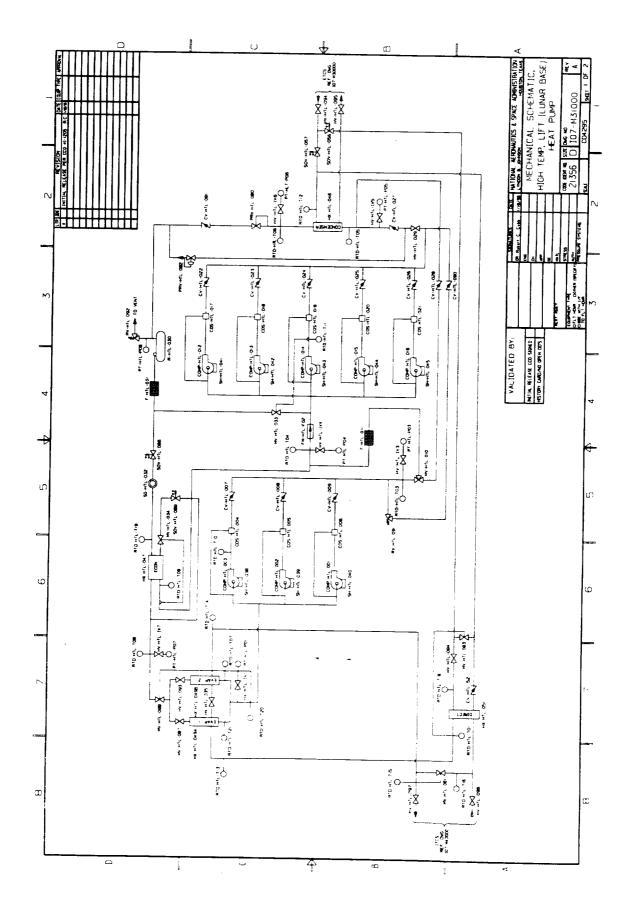


Figure 6. Mechanical schematic for the high-lift heat pump

Table 3. High-lift heat pump parts list

		1	T
			ļ
			· · · · · · · · · · · · · · · · · ·
		174011715 (15150.0)	1500 0510 5001
SOV-HTL-057	COOLING WATER SOLENOID VALVE	ATKOMATIC (15458-G)	1500 PSIG, 500°
SOV-HTL-056	COOLING WATER SOLENOID VALVE	ATKOMATIC (15441)	1500 PSIG, 500"
			<u> </u>
CV-HTL-052	COOLING WATER CHECK VALVE	SUPERIOR (805C-14S)	500 PSIG
HX-HTL-051	DIRECT HEAT EXCHANGER	FLATPLATE (PS400-14)	450 PSIG
HX-HTL-49B	EVAPORATOR 2	FLATPLATE (PS600-60)	450 PSIG
HX-HTL-049A	EVAPORATOR I	FLATPLATE (PS600-60)	450 PSIG
			İ
HX-HTL-047	ECONOMIZER	FLATPLATE (PS400-10)	450 PSIG
HX-HTL-046	CONDENSOR	FLATPLATE (PS600-60)	450 PSIG
SH-HTL-045	COMPRESSOR 8 SUMP HEATER	KLIXON (14614H16-400)	37 WATTS
SH-HTL-044	COMPRESSOR 7 SUMP HEATER	KLIXON (14614H16-400)	37 WATTS
SH-HTL-043	COMPRESSOR 6 SUMP HEATER	KLIXON (14614H16-400)	37 WATTS
SH-HTL-042	COMPRESSOR 5 SUMP HEATER	KLIXON (14614H16-400)	37 WATTS
SH-HTL-041	COMPRESSOR 4 SUMP HEATER	KLIXON (14614H16-400)	37 WATTS
SH-HTL-040	COMPRESSOR 3 SUMP HEATER	MARS (3240)	86 WATTS
SH-HTL-039	COMPRESSOR 2 SUMP HEATER	MARS (3240)	86 WATTS
SH-HTL-038	COMPRESSOR SUMP HEATER	MARS (3240)	86 WATTS
HV-HTL-035	BALL VALVE	BUTTERBALL (BB2)	175 PSI
MV-HTL-034	ECONOMIZER EXPANSION VALVE	ALCO (XB-1019-1/2-1B	
MV-HTL - 33	LIQUID INJECTION VALVE AND CONTROLLER	SPORLAN (YIO37-FV-1/3)	500 PSIG
SG-HTL-032	REFRIGERANT SIGHT GLASS	PARKER (35493)	500 PSIG
F-HTL-031	LIQUID FILTER	SPORLAN (C-305-5)	500 PSIG
R-HTL-030	RECEIVER	STANDARD (UR-20)	300 1 310
HV-HTL-029	BALL VALVE	SUPERIOR (590-14ST)	500 PSIG
CV-HTL-028	STAGE 2 BYPASS CHECK VALVE	SUPERIOR (805C-145)	500 PSIG
CV-HTL-027	CHECK VALVE	SUPERIOR (805C-145)	500 PSIG
CV-HTL-026	STAGE 2 CHECK VALVE	SUPERIOR (8038-105)	500 PSIG
CV-HTL-025	STAGE 2 CHECK VALVE	SUPERIOR (8038-105)	500 PSIG
CV-HTL-024	STAGE 2 CHECK VALVE	SUPERIOR (8038-105)	500 PSIG
CV-HTL-023	STAGE 2 CHECK VALVE	SUPERIOR (803B-105)	500 PSIG
CV-HTL-022	STAGE 2 CHECK VALVE	SUPERIOR (8038-105)	500 PSIG
COS-HTL-021	COMPRESSOR 8 OIL SEPARATOR	AC&R (S5181)	450 PSIG
COS-HTL-020	COMPRESSOR 7 OIL SEPARATOR	AC&R (S5181)	450 PSIG
COS-HTL-019	COMPRESSOR 6 OIL SEPARATOR	AC&R (55181)	450 PSIG
COS-HTL-018	COMPRESSOR 5 OIL SEPARATOR	AC&R (S5(8))	450 PSIG
COS-HTL-017	COMPRESSOR 4 OIL SEPARATOR	ACAR (S5181)	450 PSIG
COMP-HTL-016	SECOND STAGE ROTARY COMPRESSOR 8	MARS (22545)	405 PSIG, 250°F
COMP-HTL-015	SECOND STAGE ROTARY COMPRESSOR 7	MARS (22545)	405 PSIG, 250°F
COMP-HTL-014	SECOND STAGE ROTARY COMPRESSOR 6	MARS (22545)	405 PSIG, 250°F
COMP-HTL-013	SECOND STAGE ROTARY COMPRESSOR 5	MARS (22545)	405 PSIG, 250°F
COMP-HTL-012	SECOND STAGE ROTARY COMPRESSOR 4	MARS (22545)	405 PSIG. 250°F
F-HTL-OU	STAGE 2 SUCTION FILTER	SPORLAN (SF-289-T	400 PSIG
MV-HTL-QIO	STAGE 2 BYPASS VALVE	SPORLAN (BD7B)	300 PSIG
CV-HTL-009	STAGE I CHECK VALVE	SUPERIOR (8038-105)	500 PSIG
CV-HTL-008	STAGE I CHECK VALVE	SUPERIOR (8038-105)	500 PSIG
CV-HTL-007	STAGE I CHECK VALVE	SUPERIOR (803B-105)	500 PSIG
C05-HTL-006	COMPRESSOR 3 OIL SEPARATOR	AC&R (S5185)	450 PSIG
COS-HTL-005	COMPRESSOR 2 OIL SEPARATOR	AC&R (S5185)	450 PSIG
COS-HTL-004	COMPRESSOR OIL SEPARATOR	AC&R (55185)	450 PSIG
COMP-HTL-003	FIRST STAGE SCROLL COMPRESSOR 3	TRANE (CSHS-093)	350 PSIG
COMP-HTL-002	FIRST STAGE SCROLL COMPRESSOR 2	TRANE (CSHS-093)	350 PSIG
	, I.E. STATE CONTINUE OF THE SOURCE	((
COMP-HTL-001	FIRST STAGE SCROLL COMPRESSOR	TRANE (CSHS-093)	350 PSIG

Table 3. High-lift heat pump parts list (continued)

FM-HTL-F02	FLOW METER	GH FLOW AUTOMATION	
		7,0 (0,1),115(1	
RTD-HTL-T20	FIRST STAGE SUCTION (RTD)	MINCO	0-100°F
RTD-HTL-T19	ECONOMIZER LIQUID IN (RTD)	MINCO	0-200°F
RTD-HTL-TIB	• • • • • • • • • • • • • • • • • • •		
	ETCS-DIRECT HX INLET (RTD)	MINCO	0-250°F
RTD-HTL-TI6	ITCS-DIRECT HX INLET (RTD)	MINCO	0-100°F
RTD-HTL-TIS	ITCS-HEAT PUMP OUTLET (RTD)	MINCO	0-100°F
RTD-HTL-T14	ITCS-EVAPORATOR OUTLET (RTD)	MINCO	0-100°F
RTD-HTL-T13	ITCS-EVAPORATOR INLET (RTD)	MINCO	0-100°F
RTD-HTL-TI2	ETCS-CONDENSER INLET (RTD)	MINCO	0-250°F
RTD-HTL-TII	COMPRESSOR 6 DISCHARGE (RTD)	MINCO	50-300°F
RTD-HTL-TIO	COMPRESSOR DISCHARGE (RTD)	MINCO	50-300°F
RTD-HTL-T09	ECONOMIZER VAPOR OUT (RTD) .	MINCO	0-200°F
RTD-HTL-T08	ECONOMIZER LIQUID OUT (RTD)	MINCO	0-200°F
RTD-HTL-T07	EVAP 2 SUCTION (RTD)	MINCO	0-200°F
RTD-HTL-T06	CONDENSER OUTLET (RTD)	MINCO	
RTD-HTL-T05	<u> </u>		0-200°F
<u> </u>	CONDENSER INLET (RTD)	MINCO	0-200°F
RTD-HTL-TO4	SECOND STAGE DISCHARGE (RTD)	MINCO	50- 3 00°F
RTD-HTL-T03	FIRST STAGE DISCHARGE (RTD)	MINCO	50-300°F
RTD-HTL-T21	EVAP SUCTION (RTD)	MINCO	0-100°F
RTD-HTL-TOI	ITCS-DIRECT HX OUTLET (RTD)	MINCO	0-100 ° F
HV-HTL-097	ITCS-OUTLET VALVE	JONES (02-G-GA)	350 PSIG
HV-HTL-096	ITCS INLET VALVE	JONES (O2-G-GA)	350 PSIG
HV-HTL-095	ETCS OUTLET VALVE	JONES (02-G-GA)	350 PSIG
HV-HTL-094	ETCS INLET VALVE	JONES (02-G-GA)	350 PSIG
HV-HTL-093	BALANCE VALVE-EVAPORATOR 2	NUPRO (SSBBW)	100 PSI 0 100°F
RV-HTL-092	RELIEF VALVE	PARKER (H2)	200 PSIG
RV-HTL-091	RELIEF VALVE	REFRIG. MANU. CO. (A01691)	150 PSIG
CV-HTL-090	RELIEF VALVE CHECK VALVE	SUPERIOR (805C-145)	500 PSIG
50V-HTL-089	ECONOMIZER SOLENIOD VALVE		
MV-HTL-088	EVAPORATOR EXPANSION VALVE	SPORLAN (E3SIZO)	500 PSI
	•	NUPRO (SS8BW)	100 PSI 6 100°F
HV-HTL-087	BALANCE VALVE-EVAPORATOR I	NUPRO (SSBBW)	100 PSI 6 100°F
SOV-HTL-086	REFRIGERANT SOLENOID VALVE	SPORLAN (ME145250)	500 PSI
HV-HTL-084	BALL VALVE	BUTTERBALL (BB2)	175 PSI
MV-HTL-083	COOLING WATER BYPASS VALVE	DRAGON (PIOF7511T)	600 PSI
PRV-HTL-082	REFRIGERANT FORWARD-PRESSURE REGULATOR	PARKER (A9)	400 PSIG
CV-HTL-0BI	REFRIGERANT CHECK VALVE	SUPERIOR (803B-10S)	500 PSIG
PRV-HTL-080	REFRIGERANT BACK-PRESSURE REGULATOR	PARKER (A8A)	450 PSIG
		· · · · · · · · · · · · · · · · · · ·	
PT-HTL-P07	EXPANSION VALVE INLET (ANALOG)	EETDA (200E)	0.100.0010
PT-HTL-P06	EXPANSION VALVE INLET (ANALOG)	SETRA (280E)	0-100 PSIG
PT-HTL-P05	CONDENSER OUTLET (ANALOG)	SETRA (280E)	0-100 PSIG
	CONDENSER INLET (ANALOG)	SETRA (280E)	0-100 PSIG
PT-HTL-P04	SECOND STAGE INLET (ANALOG)	SETRA (280E)	0-100 PSIG
PT-HTL-P03	FIRST STAGE DISCHARGE (ANALOG)	SETRA (280E)	0-100 PSIG
PT-HTL-P08	RECEIVER (ANALOG)	SETRA (280E)	0-100 PSIG
PT-HTL-POF	FIRST STAGE SUCTION	SETRA (2BOE)	0-100 PSIG
HV-HTL-IV7	ISOLATION VALVE	HENRY (647IA)	450 PSIG
HV-HTL-IV6	ISOLATION VALVE	HENRY (6471A)	450 PSIG
HV-HTL-IV5	ISOLATION VALVE	HENRY (647IA)	450 PSIG
HV-HTL-JV4	ISOLATION VALVE	HENRY (6471A)	450 PSIG
HV-HTL-IV3	ISOLATION VALVE	HENRY (6471A)	450 PSIG
HV-HTL-IVI	ISOLATION VALVE	HENRY (6471A)	450 PSIG
MV-HTL-061	CHILLED WATER BYPASS VALVE	 	{
REF. DES.	DESCRIPTION		600 PSI
RELL DES.	T DEDUME LINN	MFG./P.N.	SPECIFICATION

Table 4. High-lift heat pump instrument list

INSTRUMENT NUMBER	MEASUREMENT	TYPE
TEMPERATURE		
T1	ITCS - DIRECT HX OUTLET	RTD
T2	EVAP 1 SUCTION	RTD
Т3	FIRST-STAGE DISCHARGE	RTD
T4	SECOND-STAGE DISCHARGE	RTD
T5	CONDENSER INLET	RTD
T6	CONDENSEROUTLET	RTD
T7	EVAP2 SUCTION	RTD
Т8	ECONOMIZER LIQUID OUT	RTD
T9	ECONOMIZER VAPOR OUT	RTD
T10	COMPRESSOR 1 DISCHARGE	RTD
T11	COMPRESSOR 6 DISCHARGE	RTD
T12	ETCS - CONDENSER OUTLET	RTD
T13	ITCS - EVAPORATOR INLET	RTD
T14	ITCS - EVAPORATOR OUTLET	RTD
T15	ITCS - HEAT PUMP OUTLET	RTD
T16	ITCS - DIRECT HX INLET	RTD
T17	ETCS - CONDENSER INLET	RTD
T18	ETCS - DIRECT HX INLET	RTD
T19	ECONOMIZER LIQUID IN	RTD
T20	FIRST-STAGE SUCTION	RTD
PRESSURE		
P1	FIRST-STAGE SUCTION	ANALOG
P2	RECEIVER	ANALOG
P3	FIRST-STAGE DISCHARGE	ANALOG
P4	SECOND-STAGE DISCHARGE	ANALOG
P5	CONDENSER INLET	ANALOG
P6	CONDENSEROUTLET	ANALOG
P7	EXPANSION VALVE INLET	ANALOG
	POWER	
W1	TOTAL HEAT PUMP	ANALOG

2.3.1 Compressors

The first-stage consists of three Trane CSH5-093 scroll-type compressors. The second-stage consists of five Mars 22545 rotary piston compressors. The minimum number of compressors required in each stage is determined by the design mass flow rate based on comparisons of capacity charts and expected operating conditions. These are best estimates as actual capacity charts for R-123 do not yet exist for most commercially available compressors. Both scroll and rotary piston machines are used because they are less susceptible to damage

from liquid slugging or wet compression compared with other compressor types. At least three compressors per stage are required to provide reasonable redundancy and control for a ground test system, and to conform to standard commercial practice. Redundancy requirements for a space or planetary based system will not be met by this system, as it is expected all seven compressors will be required for operation at the maximum design load. However, off-design conditions should permit selective compressor isolation if maintenance or repair is required.

Three first-stage compressors are actually used to meet the minimum flow requirements, the redundancy requirements for commercial level reliability, and the flow variability to allow reasonable load following over the entire operating range. One of the first-stage compressors is capable of variable speed control. The other two require on/off operation only. None of the first-stage compressors requires unloading capability, neither partial nor full. The compressor control scheme is described in a separate section of this report.

Five second-stage compressors are used to meet the minimum flow requirements, the redundancy requirements for commercial level reliability, and the flow variability to allow reasonable load following over the entire operating range. Each compressor is either on or off. No unloading or speed variation is required with these compressors. Five compressors operating in on/off mode will yield 20 percent load increments for the second-stage.

Each first stage compressor, operates on 208 Vac, three-phase power, and each second-stage compressor operates on 208 Vac single phase power.

2.3.2 Oil Separation and Separators

Each compressor discharge has its own oil separator. These are commercial grade, cyclone type similar to the Simons 5000 Series of separator. Each separator has its own return lines to its corresponding compressor sump. The first and second-stage separators are not interchangeable due to the different flow and pressure ratings.

2.3.3 Compressor Sump Heaters

Each compressor has a sump heater in order to prevent refrigerant condensation when it is shut down. Condensation can cause liquid slugging and excess power surges upon compressor start-up. Each heater is commercial grade, wraparound type of at least 50W rating, similar to the Mars model 3240 sump heater.

2.3.4 Heat Exchangers

Five heat exchangers are used in the LSSIF high-lift heat pump system as shown in Table 5. They are all of similar construction, using brazed parallel plates to maximize heat transfer while minimizing size, weight and cost.

Capacity numbers shown in Table 5 represent the maximum design heat transfer rates expected. To ensure the design point of 5 kW of cooling could be met, each heat exchanger was oversized by approximately 30 percent to account for system development uncertainty. The direct heat exchanger was sized to provide 6.5 kW of cooling when the water inlet temperature is at or below 35°F.

The evaporator consists of two Flat Plate Inc., Model FP5X20-20, plate-fin heat exchangers. The evaporator is single phase water on one side and two-phase HCFC-123 on the other side. It absorbs heat from the chilled water loop, that simulates the habitat cooling loop, and transfers it to the refrigeration cycle, boiling the refrigerant in the process.

Table 5. Heat exchanger descriptions

Heat Exchanger	Heat Transfer Capacity (Btu/hr)	Туре	Fluids Hot Side	Fluids Cold Side
1. Evaporator (2 HXs)	22,185 Btu/hr 6.5 kW (combined)	Parallel Plate	H ₂ O (15% Glycol)	R-123
2. Economizer	6,995 Btu/hr 2.05 kW	Parallel Plate	R-123	R-123
3. Direct	22,185 Btu/hr 6.5 kW	Parallel Plate	H ₂ O (15% Glycol)	H ₂ O (50% Glycol)
4. Condenser	38,942 Btu/hr 11.41 kW	Parallel Plate	R-123	H ₂ O (50% Glycol)

The economizer heat exchanger is a Flat Plate Inc., Model FP5X20-8, plate-fin heat exchanger. It is a single phase liquid to two-phase refrigerant "flash" evaporator. Refrigerant condensate is routed from its loop, undergoes a pressure drop through the economizer control valve, flashing to vapor, and is injected into the second-stage suction stream. This cools the second-stage suction vapor to prevent overheating of the second-stage compressor motor windings.

The condenser is a Flat Plate Inc., Model FP5X12-80, plate-fin heat exchanger. The evaporator is single phase water (50 percent Glycol) on one side and two-phase HCFC-123 on the other side. It transfers heat from the HCFC-123 vapor, condensing it in the process, to the rejection loop.

The direct heat exchanger is a Flat Plate Inc., Model FP5X12-30, plate-fin heat exchanger. It is a liquid to liquid heat exchanger that transfers heat directly from the chilled water loop to the rejection loop when vapor compression heat pumping is not required.

2.3.5 Check Valves

Each compressor has a check valve at its discharge to prevent high pressure back flow when shutdown. The second-stage branch of compressors also has a separate check valve to prevent back flow into the stage when it, only, is shutdown. This check valve is redundant with the four compressor discharge check valves. The second-stage bypass line has a check valve to prevent back flow to the first-stage. All check valves are commercial grade.

2.3.6 Filters

There is a vapor filter at the suction to the second-stage compressors and a liquid filter/drier at the receiver discharge. These filters are standard refrigeration components.

2.3.7 Receiver

A liquid refrigerant receiver is located downstream of the condenser. Its purpose is to store high pressure condensed refrigerant, and is used specifically to accommodate different operating charges in the evaporator and condenser during varying load conditions. The receiver comes with its own outlet isolation valve. This valve used in conjunction with the condenser isolation ball valve is used to isolate the refrigerant in the high pressure side of the

heat pump, and away from most major components, to allow maintenance on the major components without removing the refrigerant charge.

2.3.8 Bypass Valves

Three way, two position solenoid operated valves are placed in the chilled water supply and return lines to divert chilled water from the evaporator to the direct heat exchanger. These valves are commercial grade and allow full system flow to either the evaporator or direct heat exchanger. They also isolate chilled water flow to the bypassed heat exchanger. These valves and their function work in unison with the condenser rejection loop working fluid bypass valves so that chilled water and rejection loop working fluid flows will be either fully to the direct heat exchanger or fully to the evaporator or condenser.

Three way, two position solenoid operated valves are placed in the rejection loop supply and return lines to divert the rejection loop working fluid from the condenser to the direct heat exchanger. These valves are commercial grade and allow full system flow to either the condenser or direct heat exchanger. They also isolate rejection working fluid flow to the bypassed heat exchanger. These valves and their function shall work in unison with the evaporator chilled water bypass valves so that chilled water and rejection loop working fluid flows will be either fully to the direct heat exchanger or fully to the evaporator or condenser.

A three way, two position solenoid operated valve is used to divert first stage discharge gas around the second-stage compressors when they are not required.

2.3.9 Control Valves

All control valves are proportional type. Each valve will perform its control function independently based on a monitored temperature and local controller.

The controllers modulating refrigerant flow into the evaporator will adjust flow rate depending on outlet temperature; approximately 2.8°C of superheat will be maintained. The actual temperature will depend on heat exchanger pressure. The superheat is determined from evaporator pressure and outlet temperature readings which are evaluated by the central controller. The controller then sends a superheat value to the local controller that actuates the evaporator control valve.

The economizer control valve regulates the "flashing" of refrigerant condensate to the second-stage compressor suction in order to control second-stage compressor temperatures to within safe operating limits, protecting motor windings and avoiding lubricate breakdown. This process is supplemented by the liquid injection system.

The liquid injection control valve controls a relatively small liquid flow from the relatively cool liquid return line to be injected into the first-stage discharge/second-stage suction line. This liquid flow mixes with the first-stage vapor, evaporating, to cool the second-stage suction. Cooling the second-stage suction helps control second-stage compressor temperatures to within safe operating limits, protecting motor windings and avoiding lubrication breakdown. The liquid injection has an adverse effect on heat pump COP and is only used intermittently when economizer flow is inadequate to control second-stage suction temperature.

The chilled water loop control valve bypasses water around the evaporator to maintain a post-mixed stream temperature of $4^{\circ}C \pm 1.7^{\circ}C$. If the control valve cannot maintain the desired temperature range, it will:

- 1. Divert all water through the evaporator if the outlet temperature is greater than 5.7°C.
- 2. Completely bypass the evaporator if the outlet temperature is less than 2.3°C.

The direct heat exchanger control valve operates 4°C to 1.7°C, to control the temperature of the chilled water, but will bypass rejection water around the direct heat exchanger in order to do so. This is because rejection water can be as low as -8°C, and, if chilled water is bypassed, the lower chilled water flow rates, coupled with very low temperatures in the rejection water loop, could present a freezing condition. In the event that the valve cannot maintain the desired temperature, it will:

- 1. Divert all rejection water to the direct exchanger if the chilled water outlet temperature is greater than 5.7°C.
- 2. Completely bypass the direct heat exchanger if the outlet temperature is less than 2.3°C.

2.3.10 Isolation Valves

Isolation valves at the exit of the receiver and inlet of the condenser are supplied in order to isolate the refrigerant charge from the rest of the system to allow maintenance.

2.3.11 Skid

The skid will be capable of supporting 1500 lb by fork lift lifting points. Its construction is mild steel and fastening is by welding. Its foot print is 120 cm x 182 cm. Figure 7 shows the skid details.

2.4 System Temperatures and Pressures

The high-lift heat pump is designed to remove a thermal load from the ITCS loop of between 1.0 and 5.0 kW. The heat pump can maintain the outlet temperature of the ITCS at $4^{\circ}\text{C} \pm 1.7^{\circ}\text{C}$ (39°F $\pm 3^{\circ}\text{F}$) over this load range for either direct cooling or heat pump modes. Direct cooling is operated when the ETCS entering fluid temperature falls between -8.3 and 0°C (17 and 32°F). The heat pump is operated when the ETCS liquid temperature rises above 0°C (32°F). The heat pump operates in first-stage until the condenser pressure is greater than 150 kPa (22 psia). The second-stage is operated up to an ETCS inlet temperature of 88°C (190°F). The heat pump can be stopped and restarted at any point in its operation, however, it is not recommended to start the heat pump when the ETCS inlet temperature is greater than 54°C (130°F). If the ETCS temperature is above this value, heat pump restart should be delayed until the ETCS loop cools. The heat pump controller will start the heat pump in either direct cooling, single stage, or two-stage mode depending upon the values of the ETCS inlet temperature and the condenser pressure. The controller will delay restart of the heat pump 15 min after it is stopped.

Table 6 gives the estimated values of significant temperatures and pressures that will be seen during operation.

2.5 Electrical Diagram

Appendix A contains the complete electrical diagram for the high-lift heat pump.

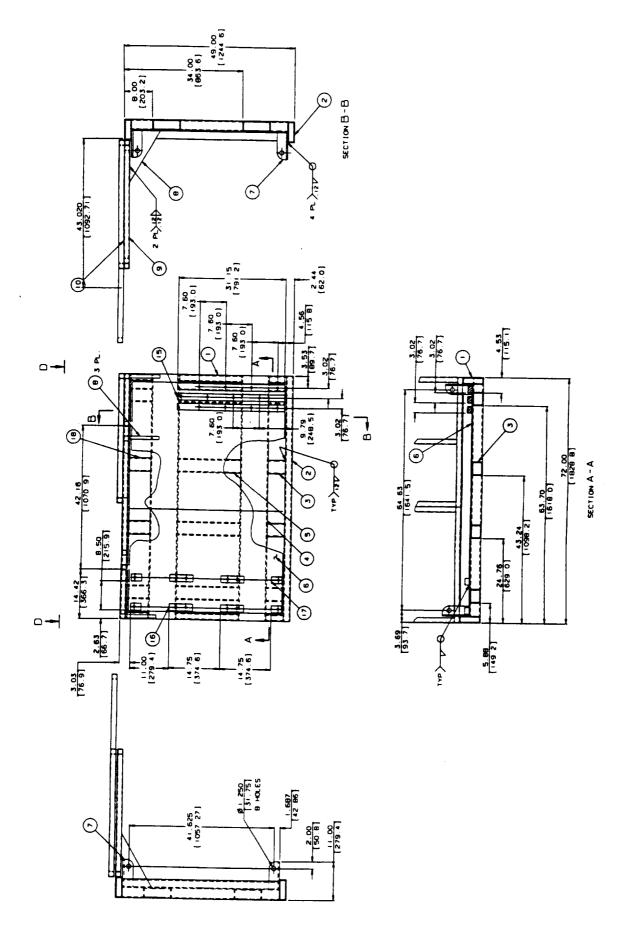


Figure 7. LSSIF heat pump skid

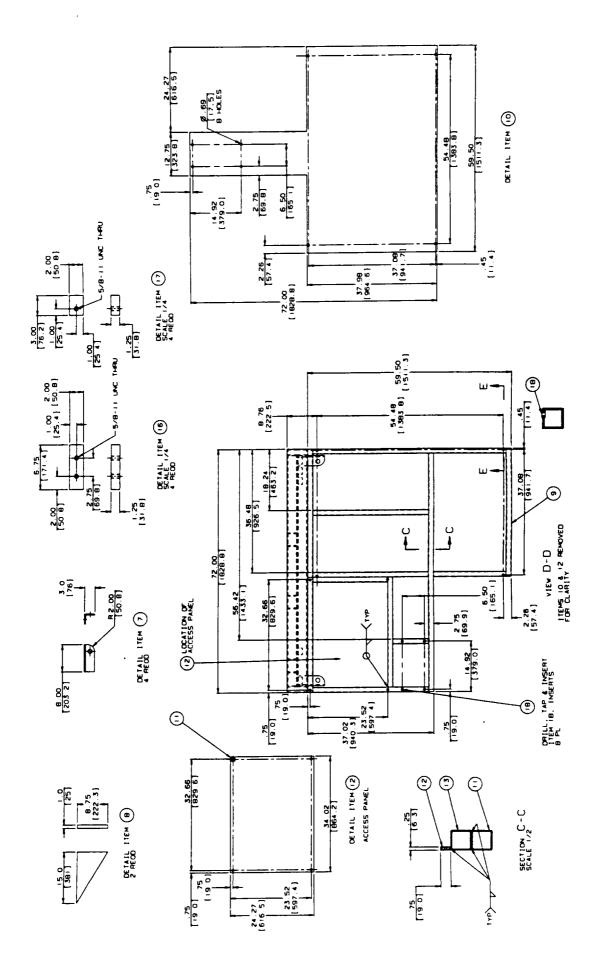


Figure 7. LSSIF heat pump skid (continued)

Table 6. High-lift heat pump operating temperatures and pressures

Temperature ℃ (°F)			
Location	Nominal	Maximum	Minimum
ΠCS		· ·	
Heat Pump Inlet	13 to 5 (55 to 41)	27 (80)	2 (36)
Heat Pump Outlet	6 to 2 (43 to 36)	18 (65)	1 (33)
ETCS			
Heat Pump Inlet			
Direct Mode	-8 to 1.7 (17 to 35)	1.7 (35)	-8 (17)
Heat Pump	1.7 to 88 (35 to 190)	90 (195)	1.7 (35)
Heat Pump Restart			
First-Stage		38 (100)	
Second-Stage		54 (130)	
Refrigerant			
First-Stage Superheat	0.6 to 5.6 (1 to 10)	11 (20)	0
First-Stage Discharge	49 to 116 (120 to 240)	135 (275)	38 (100)
Second-Stage Suction	16 to 79 (60 to 175)	104 (220)	2 (35)
Second-Stage Discharge	49 to 104 (120 to 220)	116 (240)	38 (100)
Refrigerant Pressure kPa (psia)			
First-Stage Suction	25.8 to 28.6 (3.8 to 4.3)	68.0 (10.0)	10.2 (1.5)
Single Stage Operation	54.4 to 149.6 (8.0 to 22.0)	183.6 (27.0)	27.2 (4.0)
Second-Stage Suction	40.8 to 149.6 (6.0 to 22.0)	183.6 (27.0)	20.4 (3.0)
Second-Stage Discharge	136.0 to 714 (20.0 to 105.0)	748 (110.0)	54.4 (8.0)

3. AUTOMATED CONTROLS

Automatic controls were developed for the high lift heat pump so that it could be run with minimal human monitoring and intervention.

The heat pump is not controlled by a single piece of equipment. A GE Fanuc Series 9030 PLC controller performs the majority of the data acquisition and control actions; however, several closed-looped, self-learning PID controllers supervise the function of select system valves. These individual controllers were used because of their expected suitability for this application, as well as to reduce PLC software complexity, minimizing development and troubleshooting costs of that system. Their operation is explained in subsection 2.3.9.

Tables 7 and 8 contain lists of the system control actions used to operate the high lift heat pump in the automatic mode. As seen in the tables, some are performed by the GE Fanuc software, whereas others are not. In these cases, the table further identifies the equipment

Table 7. Water systems control

Control Action	Fanuc Controlled?	Comments
ITCS Inlet Temperature (T16)	No	Control external to heat pump.
ITCS Final Outlet Temperature, Heat Pump Mode (T15)	No	PID closed—loop controller operating inlet/outlet mixing valve, setpoint adjustable on electrical panel. Fanuc drops compressors if outlet temperature falls below lower limit.
ITCS Final Outlet Temperature, Direct HX Mode (T15)	No	Same PID controller as in heat pump mode, however, Fanuc cuts out ETCS flow if temperatures drop below lower limit.
ITCS Evaporator Outlet Temperature (T14)	Yes	Regulated by controlling evaporator pressure in acceptable range; allows pressure to float high if outlet water temperature is too cold.
ITCS Direct HX Outlet Temperature (T1)	No	PID closed—loop controller bypasses ETCS water if ITCS water temperature drops too low.
ITCS Flow Rate	No	Control external to heat pump.
ETCS inlet Temperature (T17 or T18)	No	Control external to heat pump.
ETCS Outlet Temperature (T12)	No	Not controlled; temperature rise dictated by heat pump rejection requirements.
ETCS Flow to DHX or Condenser	Yes	Controls solenoids; decision based on ETCS inlet water temperature.
ETCS Flow Rate	No	Control external to heat pump.

Table 8. Refrigeration system control

	Fanuc	
Control Action	Controlled?	Comments
Evaporator Pressure (P1)	Yes	By means of compressor control.
Second-Stage Suction Pressure (P4)	No	Not controlled; floats depending on lift requirement (but could be controlled).
Condenser Pressure (P5)	No	Not controlled; floats depending on ETCS water inlet temperature.
Evaporator Refrigerant Flow Rate	No	PID Closed-Loop Controller (superheat calculated, and signal provided, by Fanuc).
Liquid Refrigerant to Evaporator	Yes	Fanuc controls solenoid on discharge of liquid receiver.
Economizer Refrigerant Flow Rate	No	Mechanical thermal expansion valve (TXV) controls using economizer outlet superheat (T20).
Liquid Refrigerant to Economizer	Yes	Fanuc controls solenoid on economizer inlet.
Second-Stage Discharge Gas Control	Yes	Fanuc controls bypass solenoid.
Heat Pump First and Second- Stage Control	Yes	Fanuc controls starting/stopping of first and second-stage as required based on pressures.
First-Stage Compressor Control	Yes	Fanuc cycles compressors on/off, and speed o Comp 3, to maintain evaporator suction pressure and ITCS evaporator outlet temperature.
Second-Stage Compressor Control	Yes	On/off only.
Heat Pump Start/Stop Cycle	No	Manually controlled at electrical panel.
Heat Pump Emergency Stop	No	Manually initiated at electrical panel.

performing the action as appropriate. Controls identified as being regulated by the Fanuc automatic control can also be manually overridden by use of on/off switches inside the electrical panel (one of the Fanuc modules). However, this mode is recommended only for troubleshooting and initial system checkout.

3.1 GE Fanuc Control Program Functions

The previous subsection summarized the actions required for control of the water systems and refrigeration system for automatic operation of the high lift heat pump. The contribution of the Fanuc in providing these functions was also identified. It executes these functions by performing all of the following:

- Determines the state in which the heat pump should operate.
- Adjusts system capacity to ensure loads varying between 1 to 5 kW are met, with a final outlet temperature ranging between 2.3 to 5.7° C.

- Performs transition actions between required states in an orderly, safe manner.
- Records, stores, and acts on system temperatures and pressures, as appropriate.
- Works in conjunction with other system controls, and in some cases, overrides these control to ensure setpoints are met.
- Provides communications with the ALSSIF system supervisory controller.
- Provides a manually controlled option for troubleshooting and system checkout.

3.2 Control Program Operation

3.2.1 Automatic Cycle Control

The heat pump automatic control system must first be started from the electrical panel by depressing the "Start Cycle" button. This enables the software to begin the control actions for which it is responsible. Once activated, it will continue to act in an automatic mode, transitioning between necessary states, until interrupted by one of the following actions:

- The "Stop Cycle" button is pushed, upon which all setpoints are ignored, and system is shutdown in an orderly fashion.
- The "Emergency Stop" button (E-STOP) is pushed, in which all system equipment is shut down and returned to its original startup condition. (Note: the control program is still operating when the E-STOP button is pushed.)
- The Auto/Manual Switch is moved to the manual position, in which case automatic setpoints are overridden for on/off switch control inside the electrical panel.

3.2.2 Heat Pump Operating States

When the system is in automatic operation, it can be in one of three states:

- Direct heat exchange only.
- Heat pump in operation, first-stage only.
- · Heat pump in operation, both stages.

The method the control program uses to determine which state is required is based primarily on ETCS water inlet temperature. If the incoming water stream is 0°C or below, it is judged to have sufficient cooling capability to provide up to 5 kW of cooling for the ITCS stream. Therefore, the system will start or operate in direct heat exchange only. The only time ETCS water is routed to the direct heat exchanger is in this mode.

At temperatures greater than 0° C, the system will transition to the second mode, with only the first-stage of the heat pump being required at ETCS inlet temperatures below approximately 38° C. (The actual control action is based on condensing pressure, but it is directly related to this temperature.) As temperatures rise above this number, condensing pressures become too high for a single stage. When pressures rise above 22 psia, the second-stage is activated. The second-stage is turned off when condensing pressures fall back below 20 psia.

The control system is capable of handling transitions from any one state to any other state in automatic operation. In cases of manual intervention, the control program also assesses if it

must perform a "hot stop" or "hot start." Hot stop is performed whenever the "Stop Cycle" is initiated when in two-stage operation. Hot start is performed whenever the system was shut down from either a normal or emergency shutdown, and the ETCS inlet temperature has not dropped below 38°C. (Note: the control program does not prevent the user from initiating a hot start at any ETCS water inlet temperature. However, it is not recommended that the heat pump be restarted at ETCS temperatures above 54°C. The reason is that second-stage compressors may not be able to overcome the large head differentials that will be experienced with higher condensing temperatures.) Both the hot start and hot stop cycles are similar to the normal starting and stopping procedures, except these procedures activate and secure equipment in a different order.

3.2.2 Automatic Compressor Control

When the heat pump is operating, both evaporator pressure and evaporator ITCS water outlet temperature are monitored to control the operation of the first-stage compressors. For "gross" adjustments, they are cycled to maintain an evaporator pressure of between 3.8 psia and 4.3 psia. (These pressures were selected through experimentation to provide sufficient ITCS water cooling during normal operation.) This pressure range is maintained by turning on or shutting off compressors to either increase or decrease the amount of refrigerant removed from the evaporator.

Six major operating tiers were established, ranging from one compressor at half speed (minimum capacity) to three compressors at full speed (maximum capacity). In-between maximum and minimum capacity, the system increments or decrements in half speed steps. To provide these major steps, compressors No. 1 and No. 2 are operated only in the on/off mode. However, the variable speed compressor (No. 3), whose speed is proportion to the output frequency from the variable frequency drive, is operated in either low speed mode (base frequency of 30 Hz) or high speed mode (base frequency of 60 Hz).

For minor adjustments at the high evaporator load end, the low speed and high speed modes of compressor 3 contain three additional speed increments. Rather than controlling by use of evaporator pressure, however, ITCS evaporator outlet temperature (T14) is used. In low speed mode, if this temperature rises above its setpoint of 39°F, the output speed signal will be increased to between 37 and 52 Hz as shown in the schedule in Table 9. Similarly, in high speed mode, output frequency to the compressor varies in three additional speed increments between 65 and 75 Hz. To prevent frequent compressor speed changes, a one-half degree (F) deadband was established before the compressor returns to the next lower speed as shown under the "decreasing temperature" portion of the table.

Suction pressure control of the compressors is also overridden if ITCS final outlet temperatures (T15) drop below its minimum setpoint of $36^{\circ}F$. (This is likely to occur when the required ITCS load is low, and ITCS inlet temperature drops below approximately $42^{\circ}F$.) In this case, the control system permits the evaporator to warm up by allowing suction pressure to float above its normal setpoint of 4.3 psia. The system will continue to shed capacity (reducing the number of compressors in operation) until the final outlet temperature returns to within its desired operating range. Once recovered (above $38^{\circ}F$), suction pressure control again takes precedence.

The five second-stage compressors are all single speed, hence, are only operated in the on/off mode. Due to the fact that this type of compressor may have difficulty starting against a high pressure differential, they are not cycled individually to control second-stage suction pressure. Instead, this pressure is permitted to seek its own level between first-stage suction pressure and condenser pressure. No degradation of performance was noticed as a result of this scheme. Rather, running the second-stage at it greatest capacity minimizes the pressure

Table 9. Variable frequency drive output to the variable speed compressor

W. W	Low Speed Mode	High Speed Mode
ITCS Evaporator Outlet Temperature (°F)	Output Frequency (Hz)	Output Frequency (Hz)
Increasing Temperature		
Below 39.0°F	30	60
Above 39.0°F	37	65
Above 40.0°F	45	70
Above 41.0°F	52	75
Decreasing Temperature		
Above 40.5°F	52	75
Below 40.5°F	45	70
Below 39.5°F	37	65
Below 38.5°F	30	60

ratio required of the first-stage, maximizing the flow rate through each compressor in operation. It also permits reducing first-stage capacity to a minimum. (Most compressors are cooled by the refrigerant gas they compress. The low density of the gas at typical first-stage suction pressures inhibits effective heat removal from these compressors. Therefore, it is desirable to increase flow rate through any operating first-stage compressor to the greatest extent possible to assist in this cooling.)

3.2.3 System Major Component Conditions

Table 10 shows the desired condition of each major system component for the three automatic operating modes, the manual mode, and the system secured condition. The GE Fanuc software provides the necessary actions to bring the component status in line with that required for the desired state. This table can be used to verify proper equipment alignment during the three automatic modes (visual indications for most components are on the electrical panel door). It can also be used to decide on equipment alignment in the manual mode; however, caution should be used in the sequencing of component or equipment activation, as an undesirable condition may result. (Consistency with automatic routines is recommended if the manual mode is used.)

3.3 Control System Interfaces

The GE Fanuc is used for data acquisition of system temperatures, pressures, and the power consumption reading. It does so by use of multiple instrument input modules, both digital and analog, located in the expansion slots adjacent to the Fanuc controller (located inside the electrical panel). The wiring details are contained in the electrical diagram in Appendix C. All system temperatures, pressures, and compressor status are recorded and stored in data registers for monitoring by the supervisory controller. However, only a small portion of these are actually used for control actions. The remainder were placed in the system for performance analysis.

Table 10. Heat pump major component condition for different operating modes

	Heat Pump System Mode				
	Direct Heat Exchange	First-Stage Heat Pump	Second- Stage Heat Pump	Manual Mode	System Secured
GE Fanuc	On	On	On	On	On or Off
1st Stage Compressors	Off	On	On	As desired	Off
2nd Stage Compressors	Off	Off	On	As desired	Off
Condenser Solenoid	Closed	Open	Open	As desired	Closed
Direct HX Solenoid	Open	Closed	Closed	As desired	Closed
Liquid Refrigerant Solenoid	Closed	Open	Open	As desired	Closed
Economizer Solenoid	Closed	Closed	Open	As desired	Closed
2nd Stage Bypass Solenoid	Closed	Closed	Open	As desired	Closed
EVAP 1 PID Controller	Off (but powered)	On	On	As desired	Off
EVAP 2 PID Controller	Not Used	Not Used	Not Used	Not Used	Off
Economizer TXV	No flow	No flow	No flow	Operating	No flow
Superheat Signal to PID Control	False signal	On	On	On	False signal

The control system also uses a number of digital outputs, as well as two analog outputs, to send control signals to the high lift heat pump. These are shown in the next section, as well as in the electrical diagram in Appendix C.

3.3.1 Control System Inputs

For initiation of control actions using the GE Fanuc software, a total of five temperatures and four pressures are used. These are shown in Tables 11 and 12. This table identifies not only the register location of the raw analog signal, but also the location of the processed data to which the calibration has been applied. The table also shows the name of the measurement, as well as the purpose for which the data is used in the control program. Nicknames and reference descriptions used in the software are given in the variable table in Volume II of the operations manual.

The digital inputs required for heat pump operation are similarly shown in Table 13. As can be seen, these are either for control of the system in the manual mode, or for manual intervention of the system when it is operating in automatic mode. Nicknames and reference descriptions are given in the variable table of the control program.

Table 11. Control system analog input measurements

Instrument No.	Raw Input/ Processed Reading	Measurement	Used To
Temperatur	es		
T14	Al0014/R0047	ITCS-Evaporator Outlet	Control of low evaporator outlet temperature.
T15	Al0015/R0046	ITCS- Heat Pump Outlet	Control of both high and low heat pump final outlet temperature.
T17	Al0017/R0044	ETCS-Condenser Inlet	Determine direct HX or heat pump mode; to determine if hot start is required.
T18	Al0018/R0043	ETCS-Direct HX Inlet	Determine direct HX or heat pump mode.
T20	Al0020/R0051	First-Stage Suction	Calculate degrees superheat.
	Table 12.	Control system analog	input measurements
Instrument No.	Raw Input/ Processed Reading	Measurement	Used To
Pressures			
P1	Al0033/R0080	First-Stage Suction	Adjust compressor capacity to maintain near-constant evaporator temperature.

3.3.2 Control System Outputs

Al0036/R0077

Al0037/R0076

Al0024/R0074

The GE Fanuc uses a combination of both digital and analog outputs to perform its control functions. As shown in Table 14, the majority of these are digital outputs (data register begins with "Q"). The interface of these outputs with the GE Fanuc output modules are shown in the electrical diagram in Appendix A.

Second-Stage Suction

Expansion Valve Inlet

Condenser Inlet

Calculate pressure differential for

Calculate pressure differential for

Determine if one or two stage operations are required.

economizer.

economizer.

3.4 Control Program

P4

P5

P7

The control program for the GE Fanuc Series 9030 PLC controller was written using ladder logic, a software package provided with the system.

The control program executes whenever the GE Fanuc is powered up, unless the Fanuc is paused or stopped by an external command. While executing, however, it will not perform

Table 13. Digital control system inputs

Data Register	Description	Function
Ю001	E-Stop	Stop system using Emergency Stop pushbutton (Auto or Manual Mode)
10002	Start Cycle	Manually start the cycle using the pushbutton (Auto Mode only)
Ю003	Stop Cycle	Manually stop the cycle using the pushbutton (Auto Mode only)
10018	Compressor 1 Switch	Start/Stop Compressor 1 in Manual Mode
10019	Compressor 2 Switch	Start/Stop Compressor 2 in Manual Mode
10020	Compressor 3 Switch	Start/Stop Compressor 3 in Manual Mode
10021	Compressor 4 Switch	Start/Stop Compressor 4 in Manual Mode
10022	Compressor 5 Switch	Start/Stop Compressor 5 in Manual Mode
10023	Compressor 6 Switch	Start/Stop Compressor 6 in Manual Mode
10024	Compressor 7 Switch	Start/Stop Compressor 7 in Manual Mode
10025	Compressor 8 Switch	Start/Stop Compressor 8 in Manual Mode
10026	Stage 2 Bypass	Activate bypass in Manual Mode
10027	Direct HX/Condenser	Activate Direct HX or Condenser in Manual Mode
10028	Liquid Refrigerant	Activate Liquid Refrigerant in Manual Mode
10029	Economizer	Activate Economizer in Manual Mode
10032	Manual Mode Switch	Select Manual or Automatic Mode

automatic control actions unless the "Start Cycle" is activated from the electrical panel. The program will permit manual operations by switching to Manual Mode (described previously) without activating the "Start Cycle" pushbutton.

3.4.1 Program Organization

The program contains a main program and 29 subroutines for control of the high lift heat pump operation. The subroutines were created to break program into logical tasks or decision-making processes. Subroutine execution is controlled by the main program, and to some degree, several other major subroutines. During each program sweep, only those subroutines that are relevant to the heat pump state are executed. The software does permits branching from one subroutine to another, but once a subroutine is completed, program execution returns to the previous branch point.

3.4.2 Main Program and Program Subroutines

The logic flow diagram used for main program and subroutine development is found in Appendix ${\bf B}.$

Basic descriptions of each program subroutine are included in Tables 15 and 16. Also included in the tables are the routines from which each subroutine can be called.

Table 14. Control system outputs

Data Register	Description	Function
Q0002	Compressor 2 Motor/Starter	Activates motor/starter control relay
Q0003	Compressor 3 Motor/Starter	Activates motor/starter control relay
Q0004	Compressor 4 Motor/Starter	Activates motor/starter control relay
Q0005	Compressor 5 Motor/Starter	Activates motor/starter control relay
Q0006	Compressor 6 Motor/Starter	Activates motor/starter control relay
Q0007	Compressor 7 Motor/Starter	Activates motor/starter control relay
Q0008	Compressor 8 Motor/Starter	Activates motor/starter control relay
Q0009	Variable frequency drive run	Gives auto or manual control of VFD
Q0017	Stage 2 Bypass	Activates solenoid control relay
Q0018	Condenser Bypass	Activates solenoid control relay
Q0019	Direct Heat Exchanger Bypass	Activates solenoid control relay
Q0020	Liquid Refrigerant Bypass	Activates solenoid control relay
Q0021	Economizer	Activates solenoid control relay
Q0022	Compressor 1 High Speed	Activates high speed motor/starter control relay
Q0023	Compressor 1 Low Speed	Not used, tied "low" in software, left in for future development.
Q0024	Compressor 1 speed select	Not used, tied "high" in software, left in for future development.
AQ0001	Variable Frequency Drive	Gives VFD a 4 to 20 mA signal proportional to 0 to 75 Hz.
AQ0002	Superheat	Gives evaporator PID flow controller a 4 to 20 mA signal proportional to superheat.

Table 15. Control program subroutines

Subroutine	Called From:	Purpose
MANUAL	MAIN	Controls digital outputs to compressors and solenoids; controls compressor startup timers.
DIRHX	MAIN	Controls automatic signal to direct HX solenoids.
HPREQ	MAIN	Determines if heat pump or direct HX should be operated.
ST1CTL	MAIN	Controls the starting, stopping, and adjustment of the first-stage compressors.
ST2REQ	MAIN	Determines if the second-stage is required during heat pump operation.
ST2CTL	MAIN	Controls the starting and stopping of the second-stage compressors.
ST1ST	ST1CTL	Sequences first-stage start (second-stage not required).
ST1STP	ST1CTL	Sequences first-stage stop (second-stage off).
ST1ADJ	ST1CTL	Determines if first-stage compressor capacity should be increased or decreased.
ST2ST	ST2CTL	Sequence for starting second-stage (first-stage on).
ST2STP	ST2CTL	Sequence for stopping second-stage (first-stage to stay on).
ST2ADJ	ST2CTL	Not used in final version; left in for future development.
ST1 INCR	ST1ADJ	Decides how to increase capacity by 1/2 step.
ST1 DECR	ST1ADJ	Decides how to decrease capacity by 1/2 step.
ST2INCR	ST2ADJ	Not used in final version; left in for future development.
ST2DECR	ST2ADJ	Not used in final version; left in for future development.
RESET	MAIN	Resets all retentive variables to starting condition in the event that E-STOP is used.
INIT	MAIN	Initializes certain registers to store data information.
READING	MAIN	Reads analog inputs, converts them using calibration data, and stores them in assigned data registers.
SUPHT	SUPHC	Calculates superheat based on suction pressure and suction gas temperature.
SUPHC	MAIN	Controls how often superheat is calculated, routes program to calculation subroutine and output subroutine. Also, generates a false, neutral signal (3 deg) if heat pump is not in operation to prevent controller hunting.
ST_STP	MAIN	Determines if Start Cycle or Stop Cycle buttons pushed.
ECONM	ST2CTL	Calculates if required pressure differential is available to run the economizer.

Table 16. Control program subroutines

Subroutine	Called From	Purpose
HOT_STP	ST1CTL	Sequence for stopping both stages simultaneously.
HOT_ST	ST1CTL	Sequence for starting both stages simultaneously.
ST_TEMP	ST1CTL	Determines whether, upon activation of Start Cycle, if water temperatures require starting one or two stages.
SUPHOUT	SUPHC	Calculates output signal required for variable frequency drive, places it in appropriate analog output register.
TURBO	MANUAL	Determines compressor three speed (frequency) in high speed mode based on ITCS evaporator outlet temperatures, provides output signal if speed change desired.
LOWTURB	MANUAL	Determines compressor three speed (frequency) in low speed mode based on ITCS evaporator outlet temperatures, provides output signal if speed change desired.

4. HEAT PUMP TEST LOOP

Figure 8 gives a diagram of the flow loop constructed to test the prototype heat pump. Two water loops are employed, referred to as the ITCS and the ETCS. The ITCS represents the cooling load to be met by the heat pump. Heat is provided to the loop by an electric heater that is actuated by a temperature controller. The heater is used to maintain the temperature of the water entering the heat pump. Heat is rejected from the heat pump through the ETCS loop. Heat is removed from the ETCS loop by a condensing unit. Temperature of the loop is controlled by a combination of on/off cycling of the condensing unit and a bypass valve in the ETCS loop that diverts a portion of the flow around the condensing unit. Instrumentation is provided in both flow loops to measure the inlet and outlet temperatures and the flow rates.

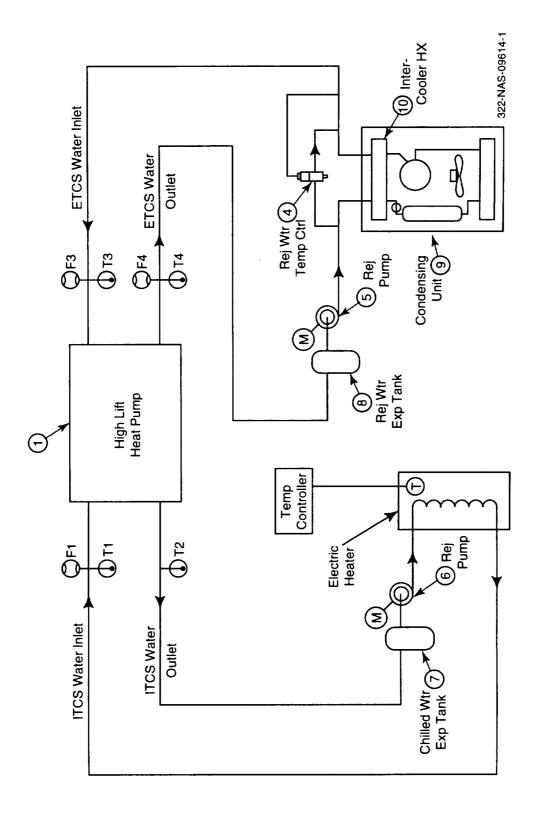


Figure 8. Heat pump test loop

5. PERFORMANCE TEST RESULTS

Two performance tests were conducted for NASA personnel prior to the shipment of the high-lift heat pump to Johnson Space Center. These tests were done to show that the heat pump could:

- Provide a cooling capacity of 5 kW with an ETCS inlet water temperature ranging from 10 to 91°C.
- Provide an ITCS water temperature of 4°C ±1.7°C at cooling loads as small as 1 kW.
- Operate in a fully automated mode, in which operation can switch between direct heat exchange and heat pumping, as well as between single and two-stage operation based upon system measurements only.

The first performance test consisted of operating at a constant ITCS cooling load of 5 kW while increasing the ETCS temperature from 8 to 91°C. At the highest ETCS temperature, the ITCS cooling load was reduced by lowering the inlet temperature to the heat pump to approximately 5°C. The ETCS temperature was then lowered to a final value of 52.8°C. Data were collected throughout the test.

The significant system temperatures and pressures are shown in Table 17. Figure 9 shows a plot of the ETCS and ITCS temperatures during the test. Test results showed that the heat pump was capable of providing a cooling capacity in excess of 5 kW over the range of ETCS temperatures tested. The average cooling load met during this part of the test was 5.1 kW. Figure 10 shows the values of the ITCS inlet and outlet temperatures during the test and also indicates the temperature control band limits. The ITCS outlet temperature was maintained at an average value of 4.09°C with a standard deviation of $\pm 0.42^{\circ}\text{C}$. When the cooling load was lowered for the second part of the test to an average value of 2.4 kW, the average ITCS outlet temperature dropped to 3.08°C , $\pm 0.76^{\circ}\text{C}$. The highest ITCS outlet water temperature measured during the test was 4.55°C , while the lowest was 1.34°C . It should be noted that the minimum value was recorded at an inlet ITCS temperature of 2.64°C , which is lower than is anticipated during operation of the ALSSIF.

The second test consisted of operating the heat pump at a minimal cooling load by limiting the heater input to the ITCS loop. The ITCS inlet water temperature varied during the test from a low of 1.04 to a high of 5.82° C. The ETCS temperature initially was set at a value of 21° C and was allowed to rise to a maximum of 90° C. The ETCS temperature was then lowered to its final value of 0.41° C.

The loop temperatures and heat pump pressures recorded during this test are shown in Table 18. Figure 11 shows the ETCS and ITCS temperatures recorded during the test. The average cooling load met by the heat pump during the test was 1.2 kW. Figure 12 shows the ITCS temperatures and the control limits for the low load test. The average ITCS outlet temperature was 3.04°C. All outlet temperatures recorded were within the desired temperature range with the exception of the first two measurements. Both of these temperatures were

Table 17. High-lift heat pump performance test, high-intermediate load testing

			· <u>-</u>		-		Pressure (psia)		
		ETCS	5 00.	псs	Heat				
Data	Time	ln Temp.	ITCS In Temp.	Out Temp.	Pump Load		Stage 1		
Pt	min	(°C)	(℃)	(°C)	(kW)	Stages	Suction	Interstage	Condenser
2	0	8.56	10.99	4.07	5.16	1	4.25	-	12.99
3	8	12.48	12.09	4.13	5.16	1	4.64	-	14.02
4	26	15.44	11.53	3.26	5.32	1	3.96	-	14.70
5	29	22.93	11.04	2.82	5.35	1	3.86	-	16.95
6	35	24.56	11.04	3.93	5.16	1	3.96	-	18.71
8	46	35.56	11.52	4.41	5.07	2	3.96	15.53	24.32
9	58	38.23	12.17	4.46	5.01	2	4.10	16.61	31.75
10	66	47.81	11.82	4.03	5.05	2	4.05	16.75	37.17
11	73	48.76	12.22	4.42	5.13	2	3.91	16.80	40.05
13	85	59.10	12.26	4.55	5.11	2	4.00	18.07	49.28
14	94	61.61	11.88	4.29	5.00	2	4.10	18.80	57.29
15	99	67.38	11.71	4.04	5.04	2	4.00	17.83	61.68
16	106	66.77	11.77	3.92	5.19	2	4.15	17.19	67.01
17	112	71.96	11.85	3.89	5.33	2	4.25	17.34	76.83
18	117	75.99	12.01	4.35	4.97	2	4.10	19.24	85.86
19	124	78.88	11.99	4.32	5.09	2	4.20	19.10	90.31
20	129	85.19	11.98	4.41	5.03	2	4.20	19.44	97.29
21	132	90.99	12.06	4.26	5.03	2	4.20	19.98	108.82
22	137	91.06	5.29	3.21	3.13	2	3.42	15.82	105.70
23	147	87.97	5.13	3.26	2.52	2	4.00	14.60	98.75
24	161	80.47	5.53	3.78	2.57	2	3.86	12.94	86.59
25	180	78.00	5.40	3.28	2.69	2	3.81	11.09	77.80
26	204	74.43	5.40	3.70	2.72	2	3.61	9.67	73.41
27	238	66.46	4.11	2.95	1.46	2	4.35	9.38	61.25
28	284	52.79	2.64	1.34	1.66	2	4.05	7.62	46.15

recorded at ITCS inlet temperatures that were below the desired value of the outlet temperature. This is considered a nonstandard operating situation.

Operation of the heat pump was fully automatic during both tests and the heat pump switched between single and two-stage operation as required by the discharge pressure of the first-stage compressors. The second-stage is brought on-line when this pressure exceeds 20 psia. Operation of the three first-stage compressors was fully automated with the number of compressors running determined by the value of the suction pressure. Pressure profiles for the high-intermediate load test are shown in Figure 13. Condensing pressure rises and falls with changing ETCS temperature. The interstage pressure was recorded from the point that the heat pump changed from single to two-stage operation. Interstage pressure varies slightly

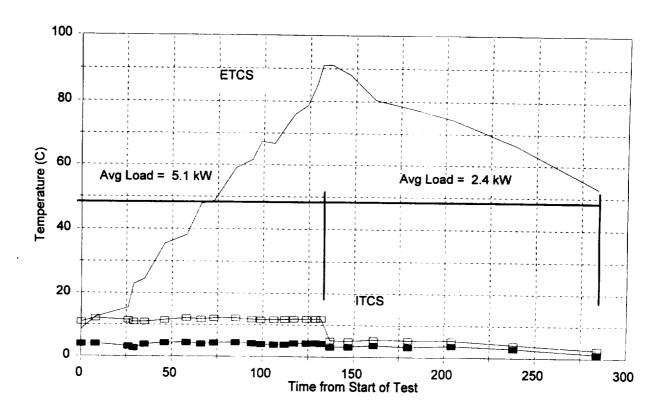


Figure 9. High-lift heat pump performance test, high-to-intermediate load test

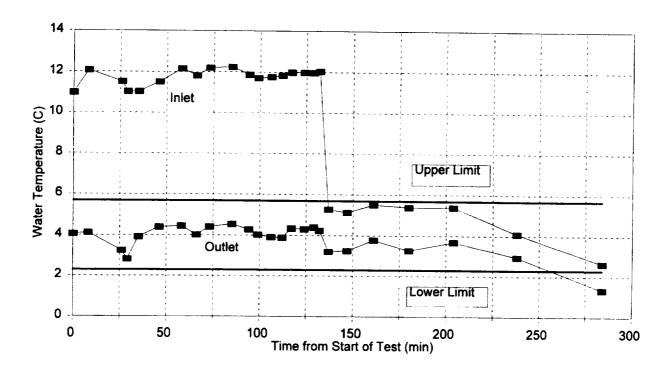


Figure 10. High-lift heat pump performance test, ITCS temperature control (full load)

Table 18. High-lift heat pump performance test, low load testing

			'				Pressure (psia)		
Data Pt	Time min	ETCS In Temp. (°C)	ITCS In Temp. (°C)	ITCS Out Temp. (℃)	Heat Pump Load (kW)	Stages	Stage 1 Suction	Interstage	Condenser
1	0	21.58	1.04	0.14	1.02	1	3.50	-	15.48
2	25	21.75	2.53	1.66	0.92	1	4.20	-	15.19
3	35	22.87	3.63	2.57	1.15	1	4.44	-	15.34
4	41	20.19	4.92	3.24	1.29	1	4.20	-	14.31
5	46	22.69	4.66	3.12	1.09	1	4.49	-	15.38
6	61	30.53	4.57	3.03	1.05	1	4.44	-	17.73
7	71	39.32	4.95	2.85	1.53	2	4.15	6.15	24.37
9	87	57.98	5.04	3.24	1.34	2	4.10	7.33	42.93
10	92	64.39	5.18	3.57	1.15	2	4.30	6.64	50.55
11	100	81.39	5.13	3.38	1.20	2	4.10	18.07	80.68
12	107	85.36	5.24	3.46	1.21	2	4.05	24.47	89.77
13	110	90.01	5.16	3.66	0.90	2	4.64	21.98	100.22
14	115	84.48	5.67	3.67	1.19	2	4.54	21.34	100.95
15	118	71.82	5.82	3.62	1.46	2	3.91	15.43	72.23
16	125	69.24	5.66	3.52	1.18	2	4.25	17.00	63.25
17	130	48.76	5.18	2.88	1.67	2	3.76	10.60	40.29
18	135	37.83	4.97	3.04	1.40	2	4.25	7.96	32.72
19	139	25.54	5.07	3.68	0.93	2	4.54	5.42	25.93
20	143	15.67	5.33	3.49	1.24	2	4.49	3.91	20.37
22	150	0.41	4.91	2.98	1.25	1	4.15	9.67	14.21

with changes in condensing pressure. First-stage suction pressure is controlled by compressor operation and was found to be essentially constant. The average suction pressure value during the test was 4.2 psia with the highest and lowest pressures recorded being 4.6 and 3.5 psia, respectively.

A complete set of test data recorded during the acceptance tests is provided in Appendix ${\bf C}$ of this report.

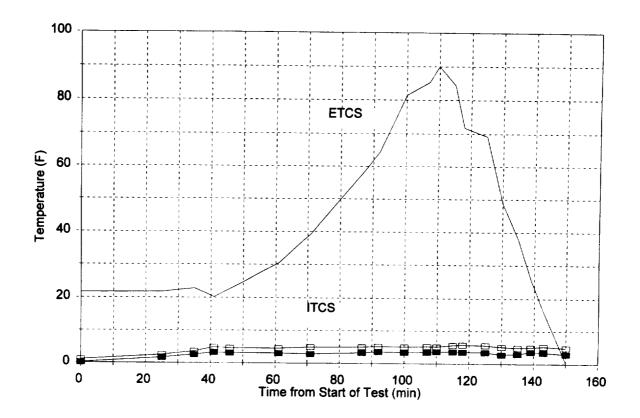


Figure 11. High-lift heat pump performance test, low load test

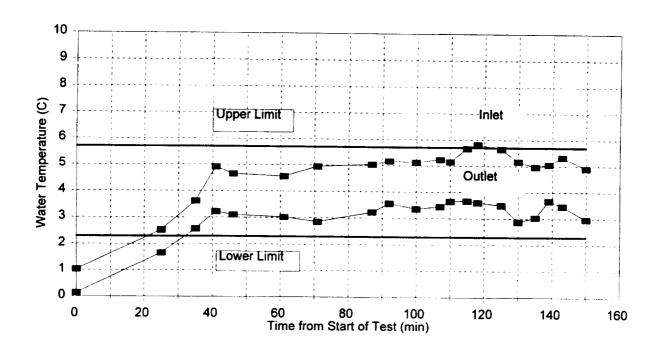


Figure 12. High-lift heat pump performance test, ITCS temperature control (low load)

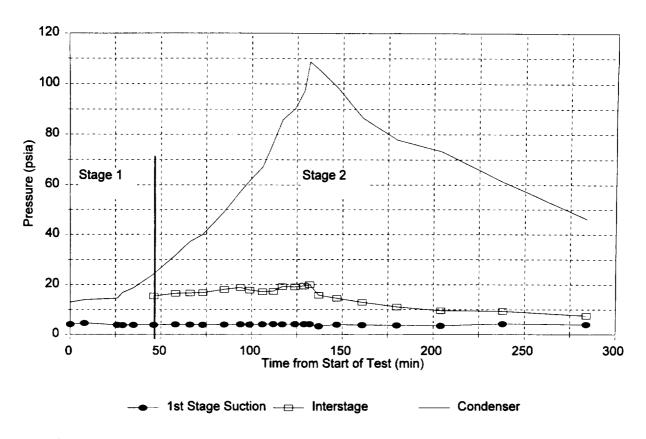


Figure 13. High-lift heat pump performance test, high-intermediate load test

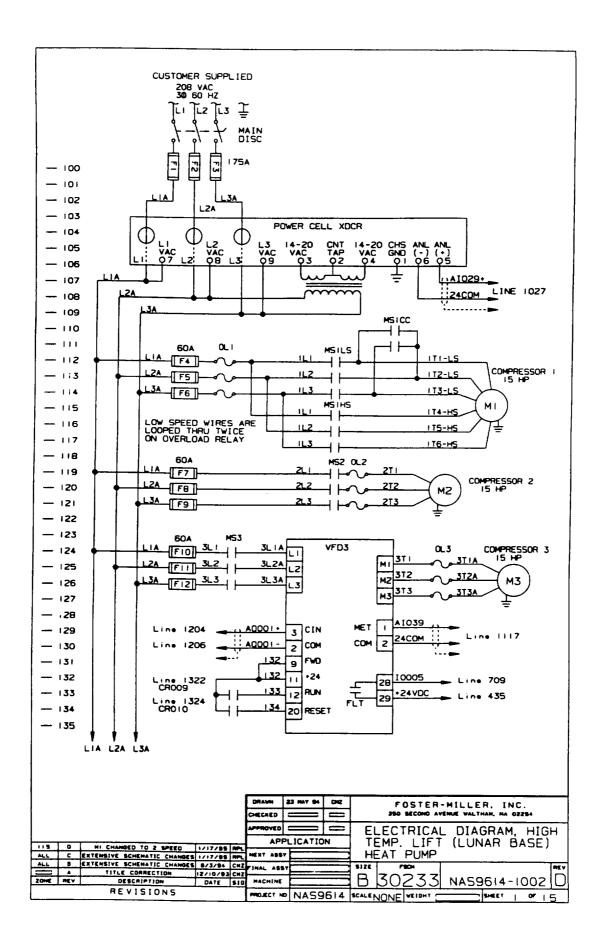
6. CONCLUSIONS AND RECOMMENDATIONS

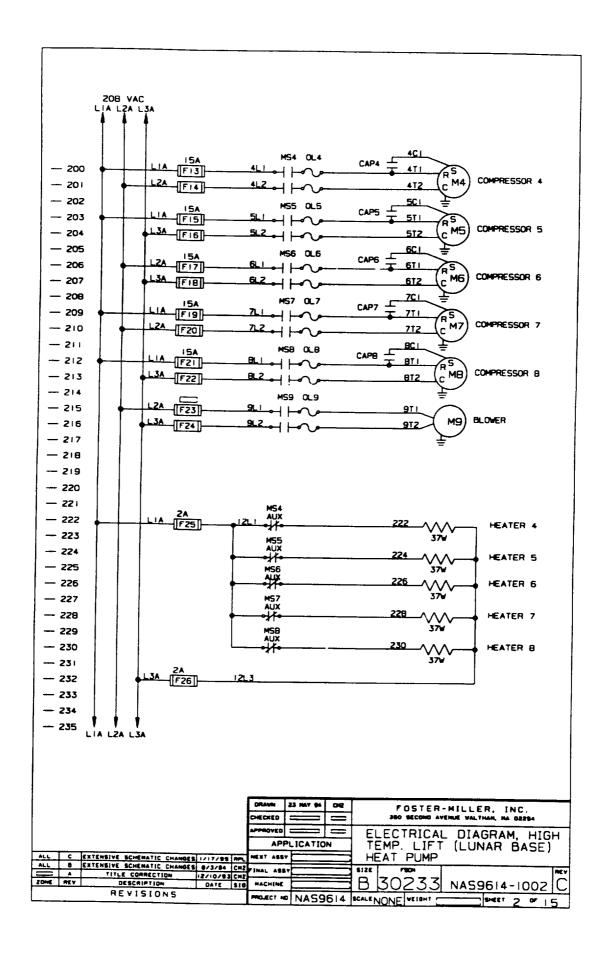
The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for life support systems. The temperature of the waste heat must be raised substantially before rejection can be accomplished. Initial analysis of a heat pump of this type called for a temperature lift of approximately 105°K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381°K), extreme flexibility in the configuration and operation of the heat pump is required.

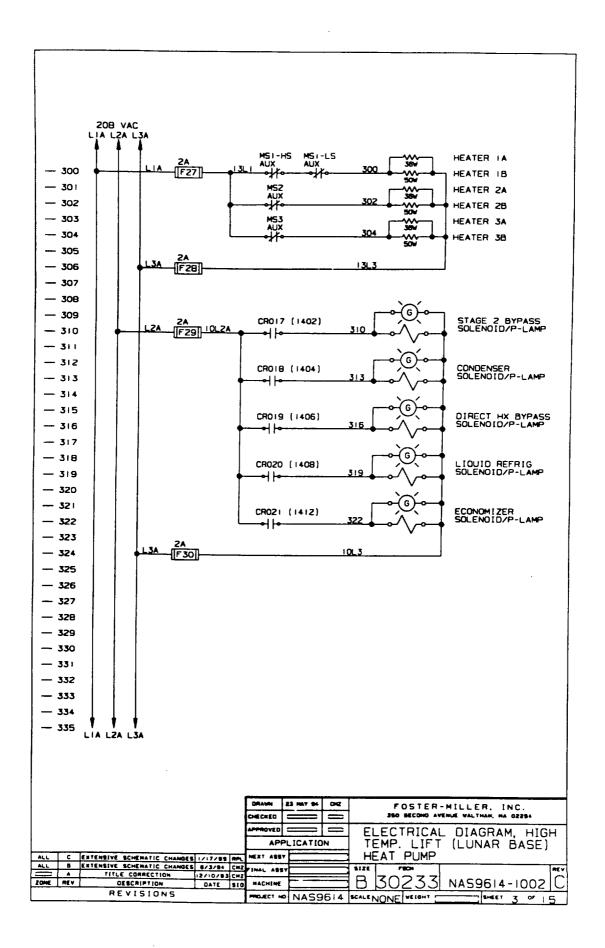
Initial design work called for the use of refrigerants with high critical temperatures, such as CFC-11 and HCFC-123, to meet the temperature lift requirement and obtain the highest heat pump COP. A three-stage compression cycle was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy and extreme control flexibility requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions.

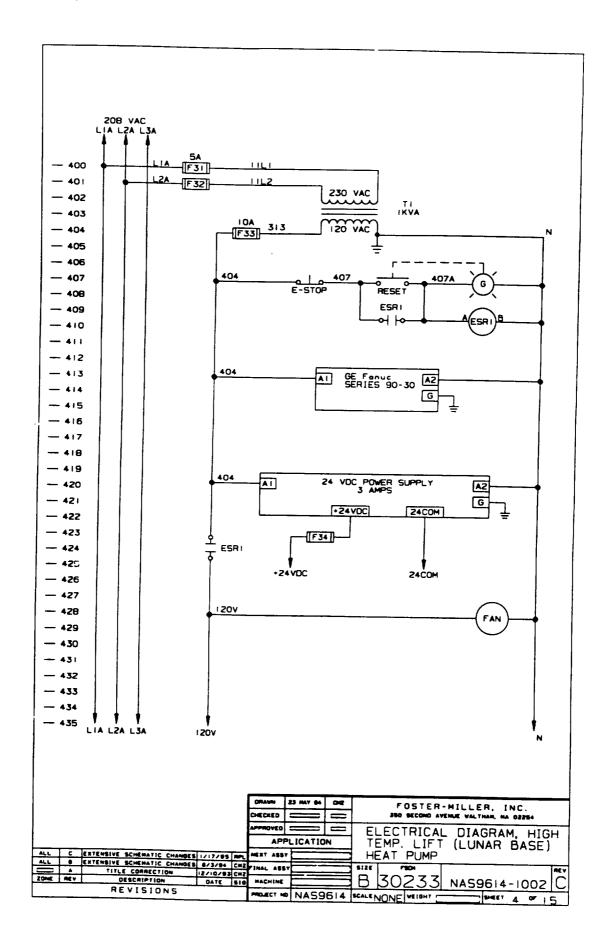
A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. While the prototype used commercially available hardware, it contained all of the major elements of a flight unit including, two stages of compression and multiple compressors in each stage. The unit was configured to operate as either a one- or two-stage unit, or could provide direct heat rejection when the ETCS temperature was low enough for this purpose. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining the ITCS water temperature well within the required specification of $4^{\circ}\text{C} \pm 1.7^{\circ}\text{C}$. This performance was verified through testing.

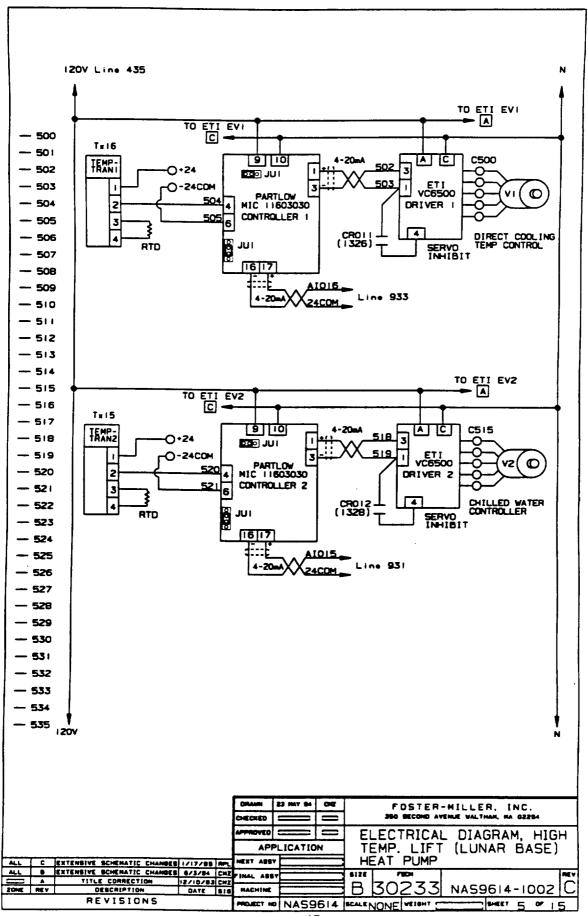
The prototype unit is now ready for installation in the LSSIF at Johnson Space Center. Valuable operating data will be obtained through this testing that will allow refinement of the heat pump design. From this point, the design requirements of flight-ready hardware can be accurately defined. Specialized compressors, heat exchangers, etc. can then be designed and fabricated.

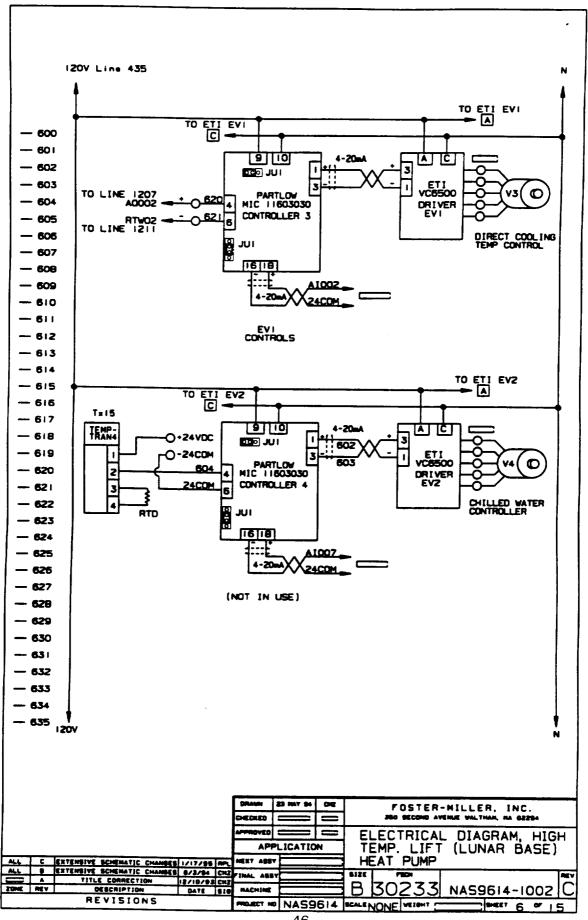

Heat pump-based heat rejection systems can be shown to be effective in other space flight applications besides interplanetary manned missions. Analysis performed by Foster-Miller comparing direct to heat-pump-based heat rejection shows that the use of a heat pump can be justified any time that the heat source is at 0°C or less. Heat pumps can also be shown as a cost-effective method of increasing heat rejection from an existing thermal control system when retrofit of additional equipment occurs. An example of such a situation would be the addition of electronics to an existing satellite design with no change to the heat rejection system or the expansion of an orbital lab, such as a space shuttle lab module or space station. Another possible application of heat pumps is in manned thermal control systems to handle specialized

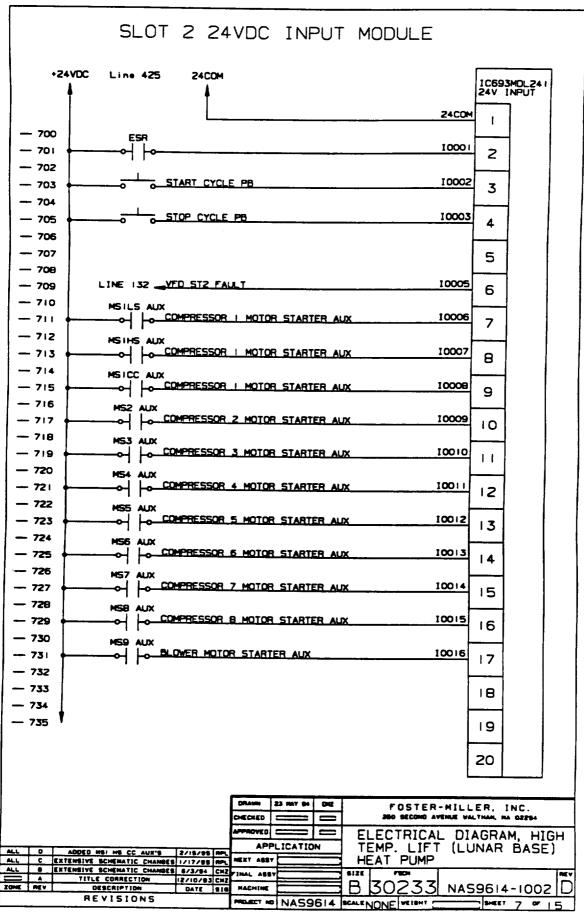

thermal loads such as dehumidification. Presently, dehumidification requires the lowest heat rejection temperature and strongly influences the design and sizing of the thermal control system. If a heat pump were dedicated to dehumidification, the lowest temperature of the thermal control system could be raised which could be used to increase the total thermal capacity of the radiators or reduce the total amount of radiator surface required, resulting in a substantial weight reduction.

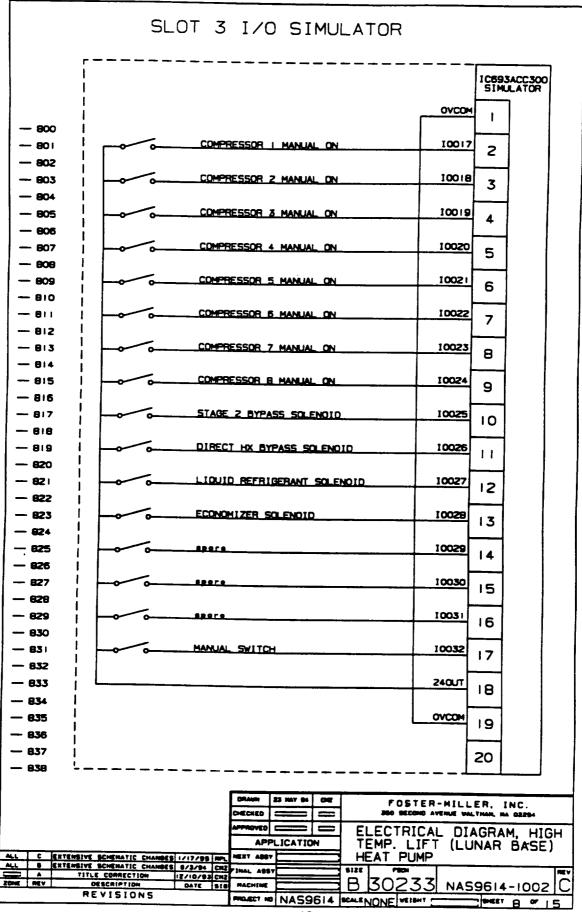

Heat pump investigation on a terrestrial basis is now ongoing, however, little or no effort is being expended to operate heat pumps and other vapor compression systems and components at a flight level. Investigation of compressor lubrication, heat exchange with refrigerant-oil mixtures, etc., in a microgravity environment are all necessary in order to advance the use of heat pump in space flight application. Testing of this type should be initiated as soon as possible.

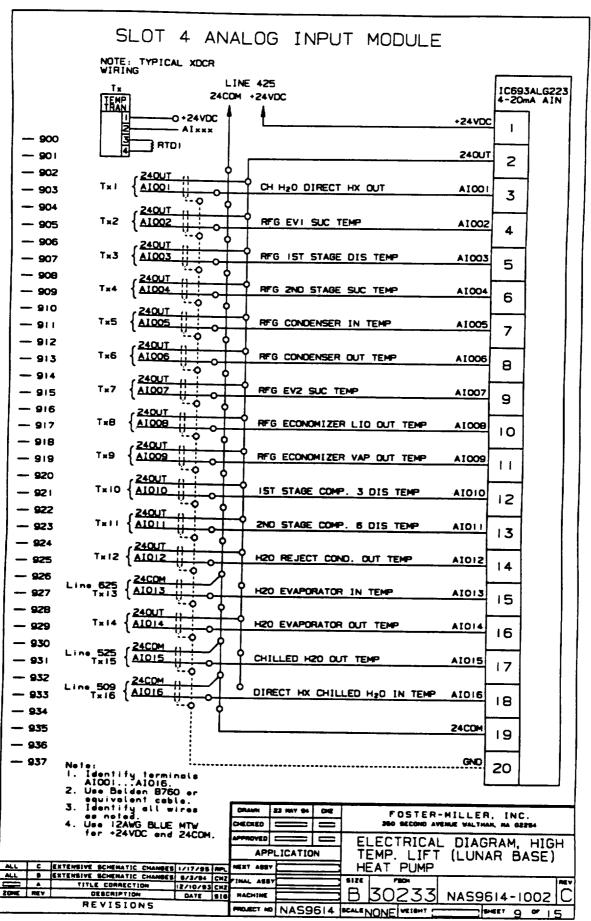

APPENDIX A

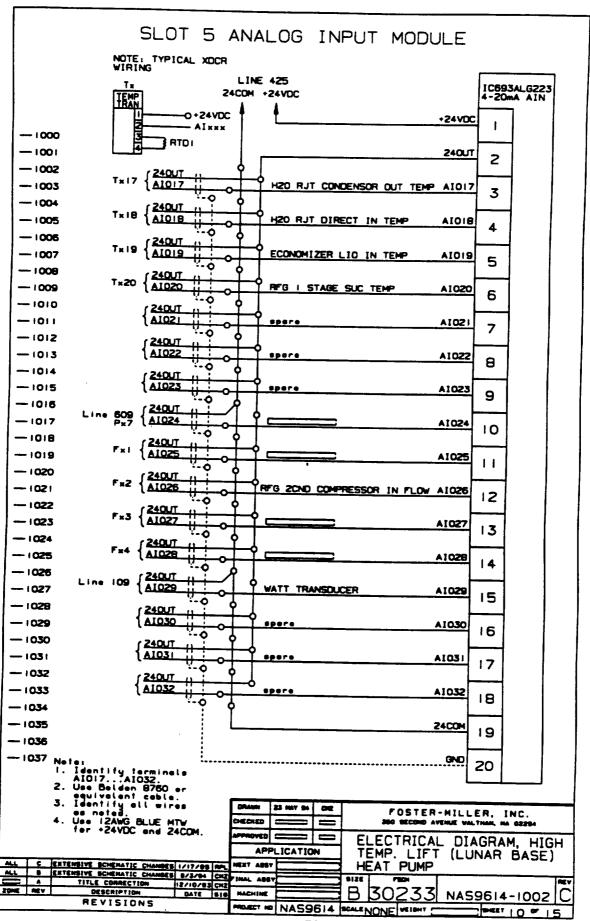

HEAT PUMP ELECTRICAL DIAGRAM

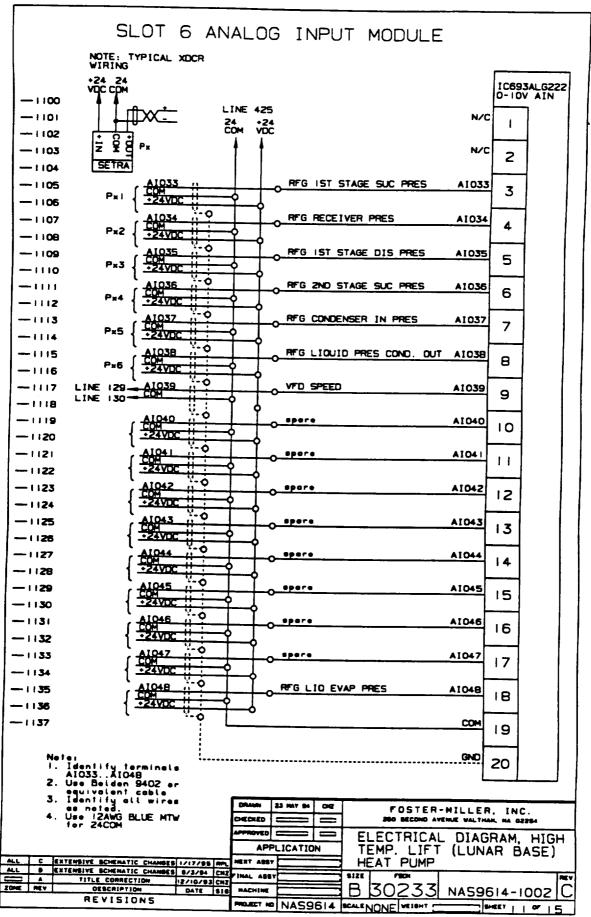


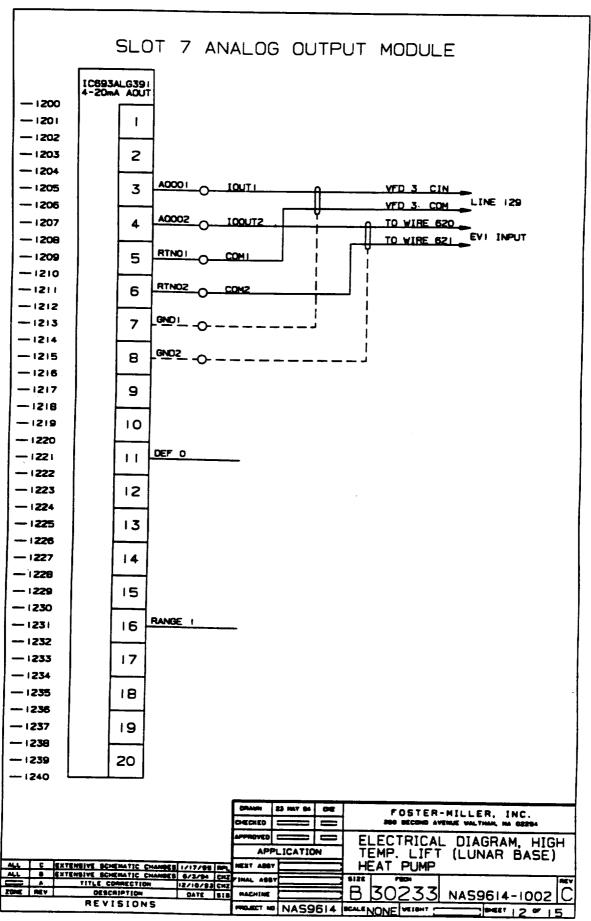


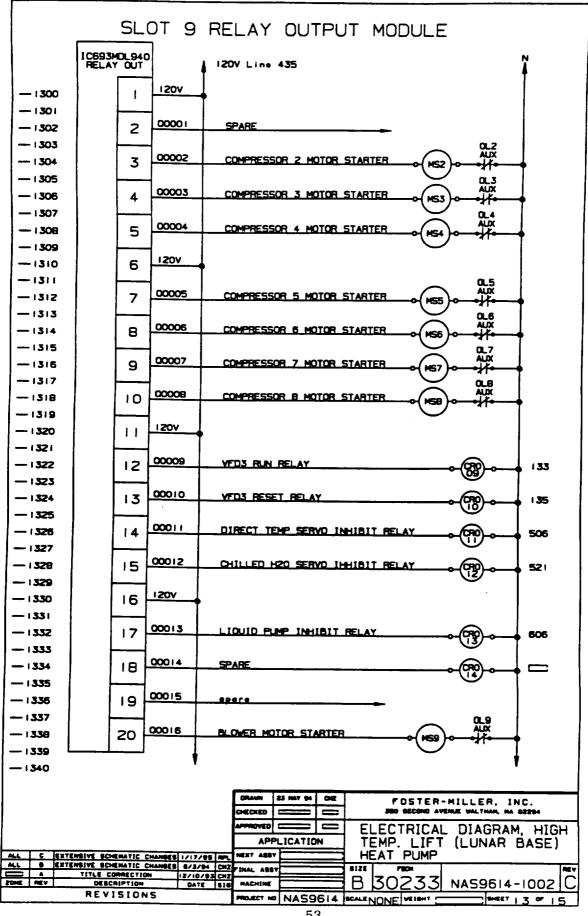


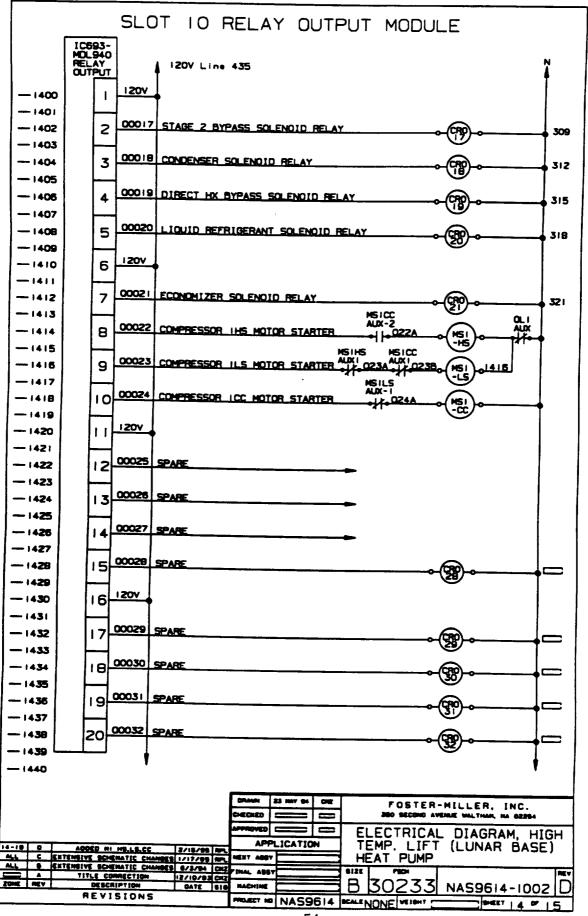


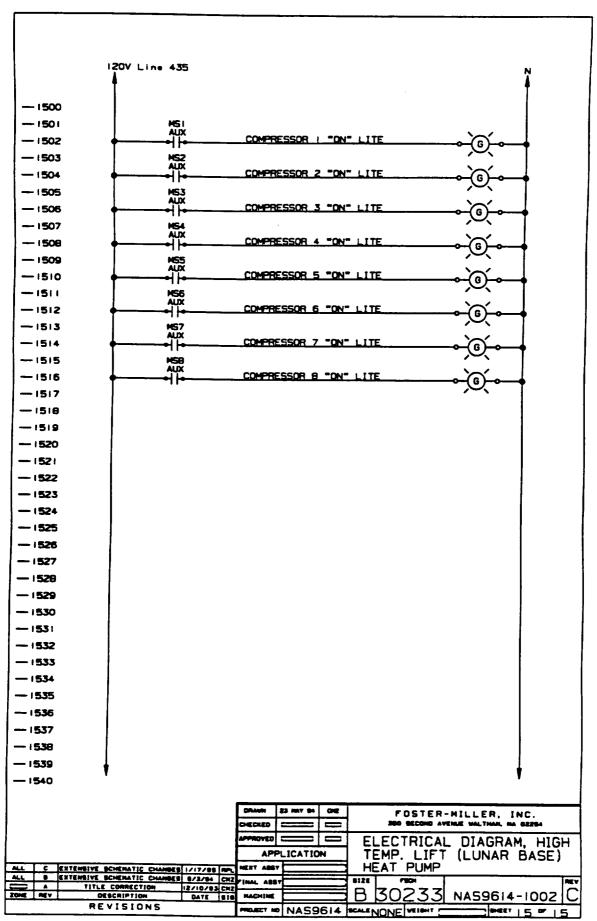


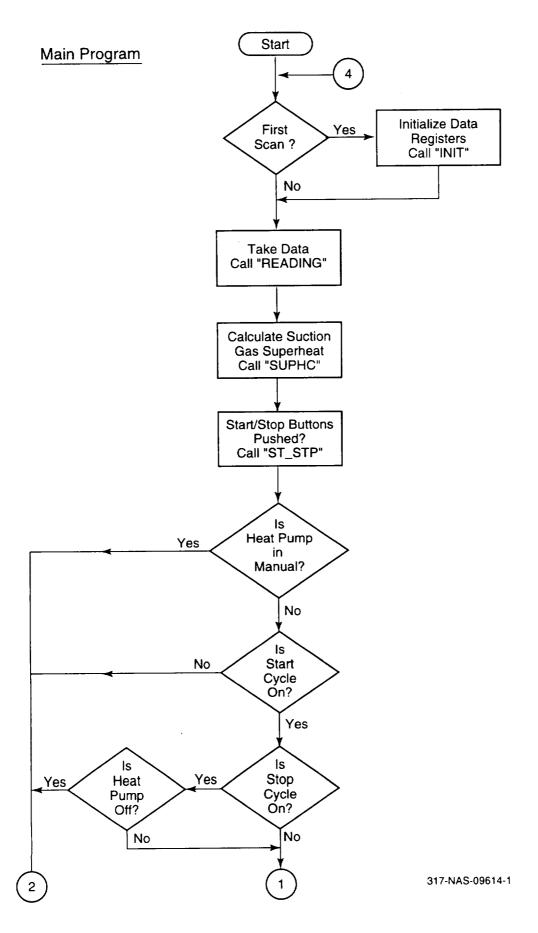


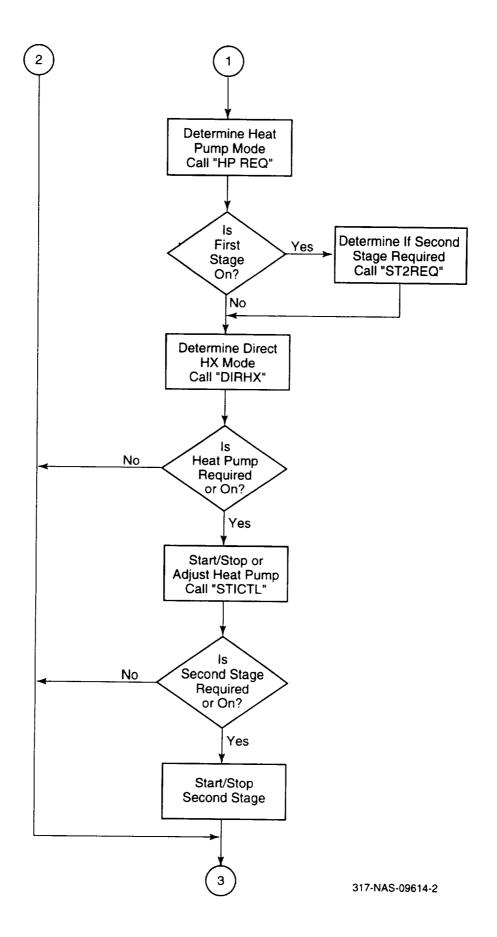


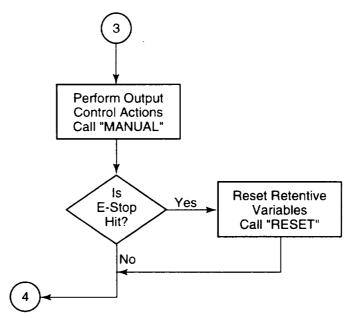




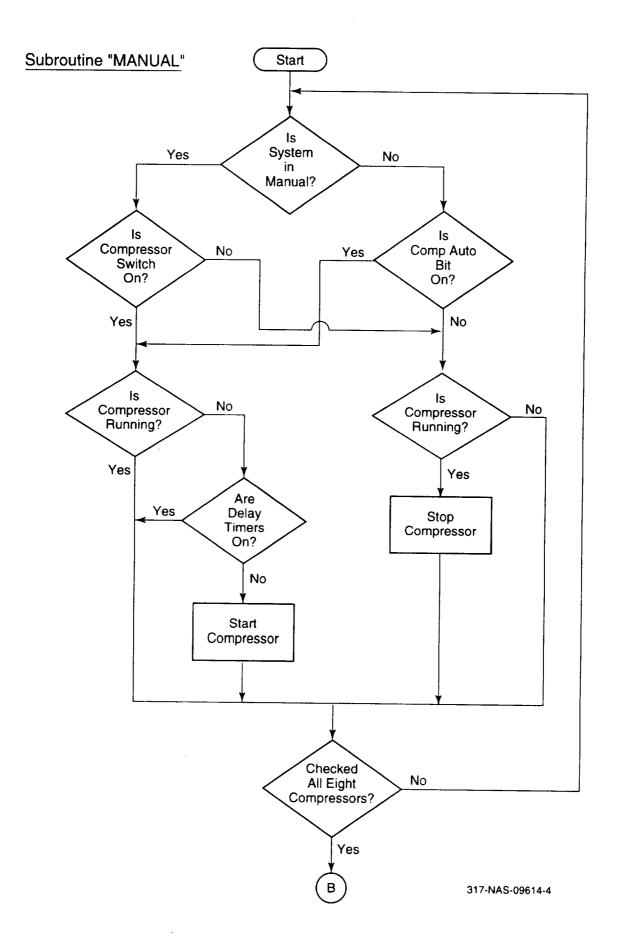


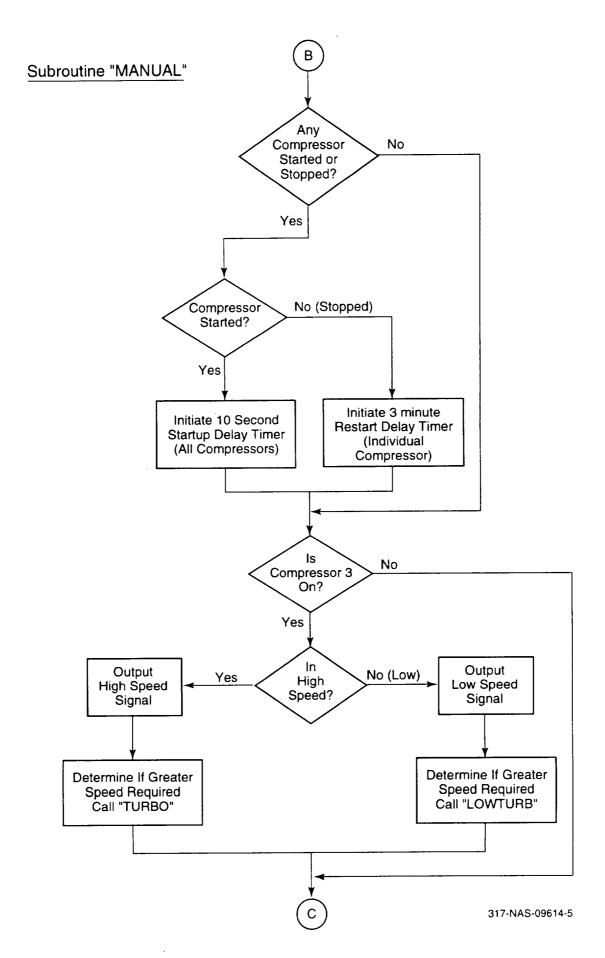


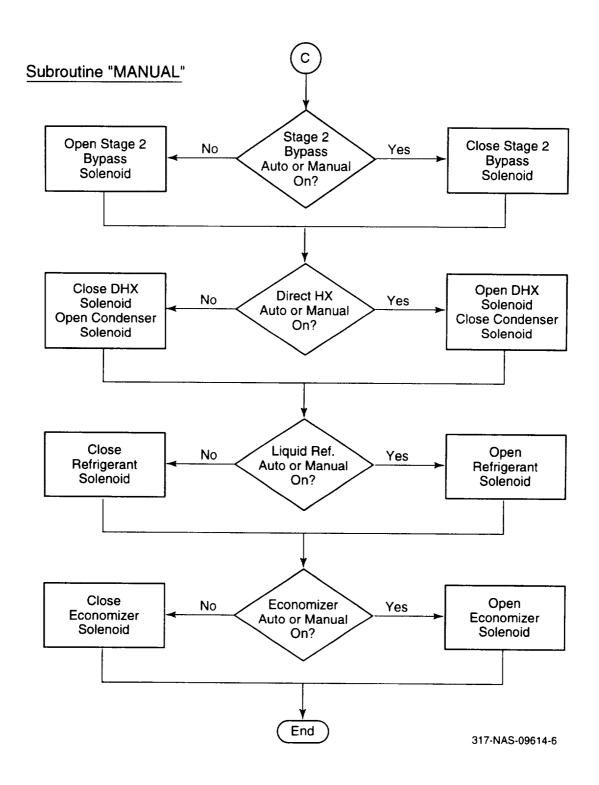


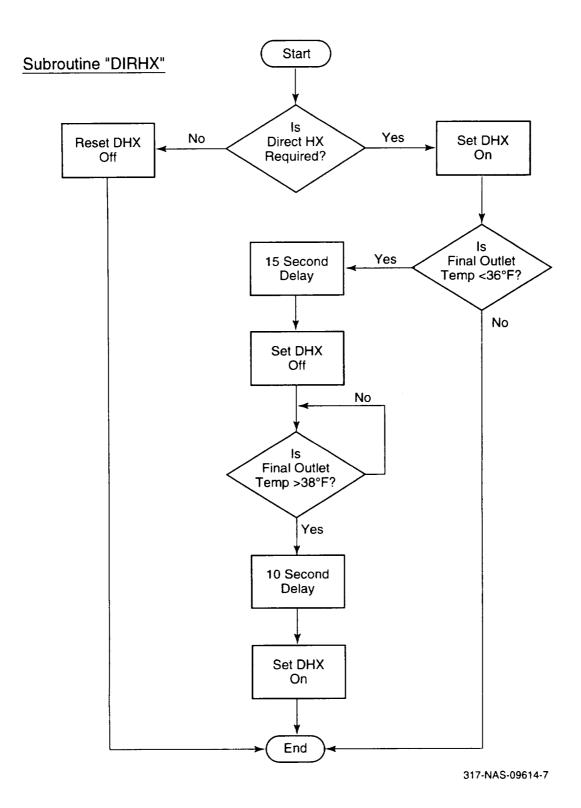


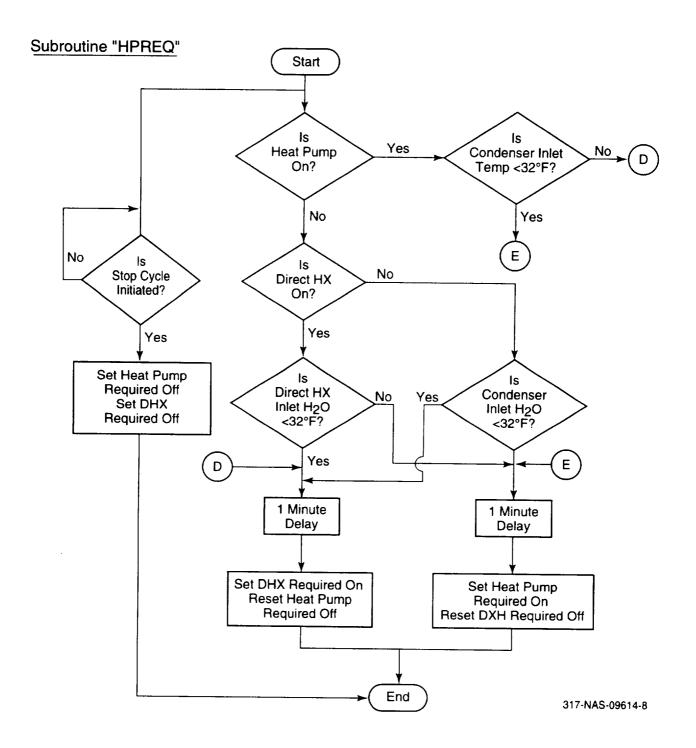
APPENDIX B

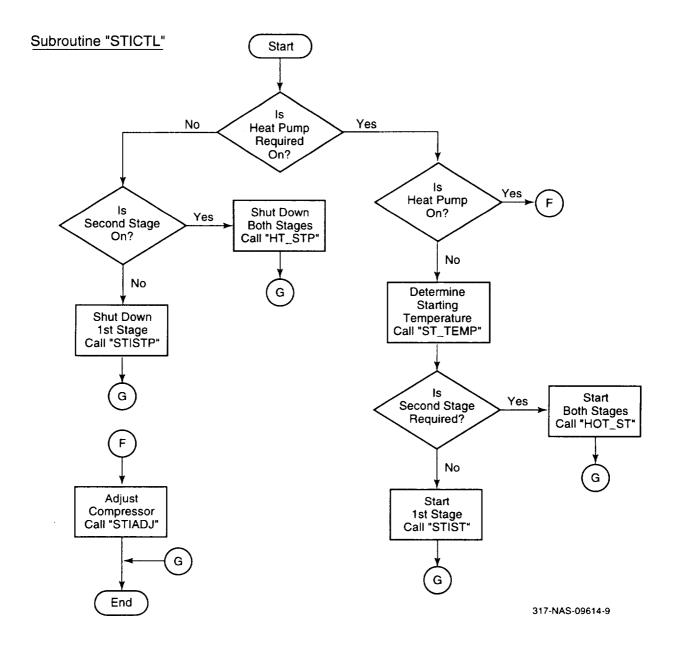

HIGH-LIFT HEAT PUMP CONTROL PROGRAM FLOW CHART

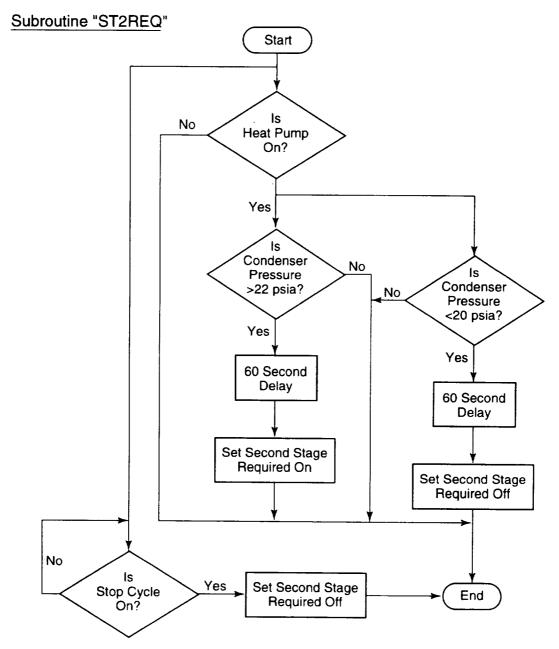


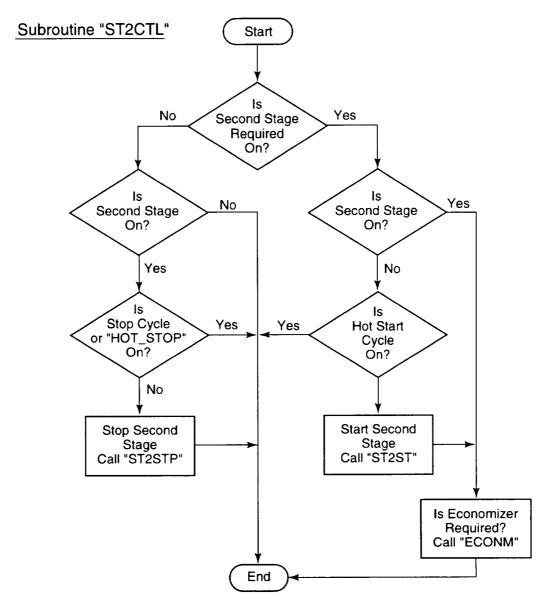


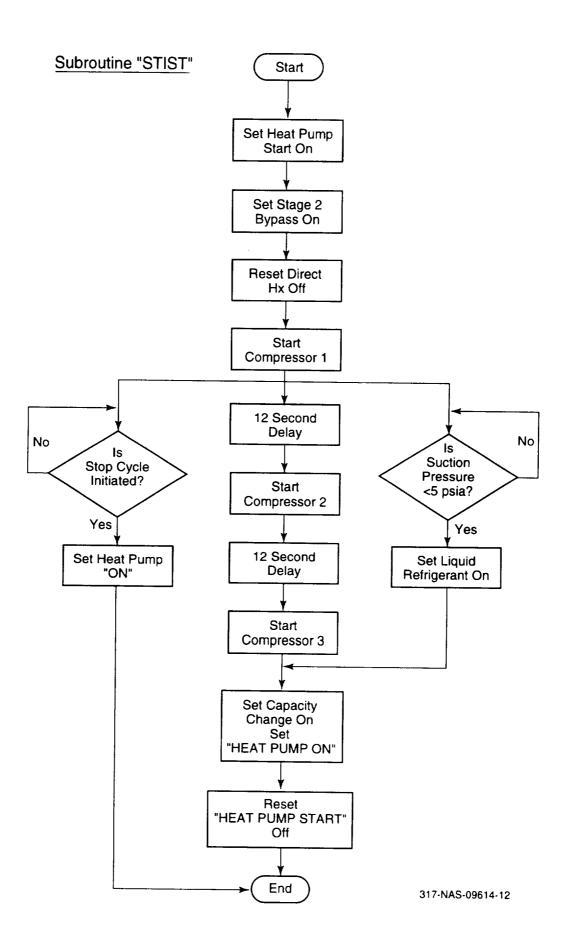


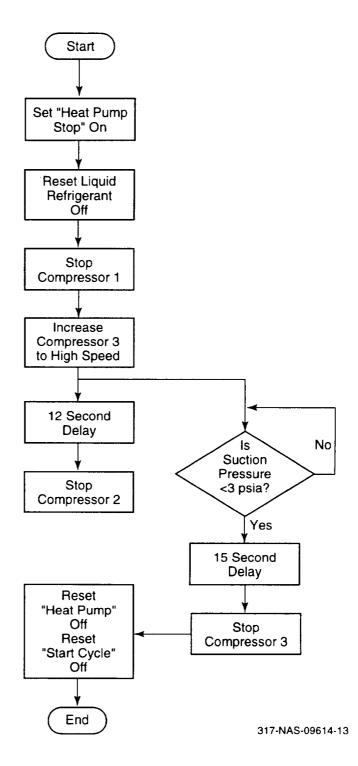

317-NAS-09614-3

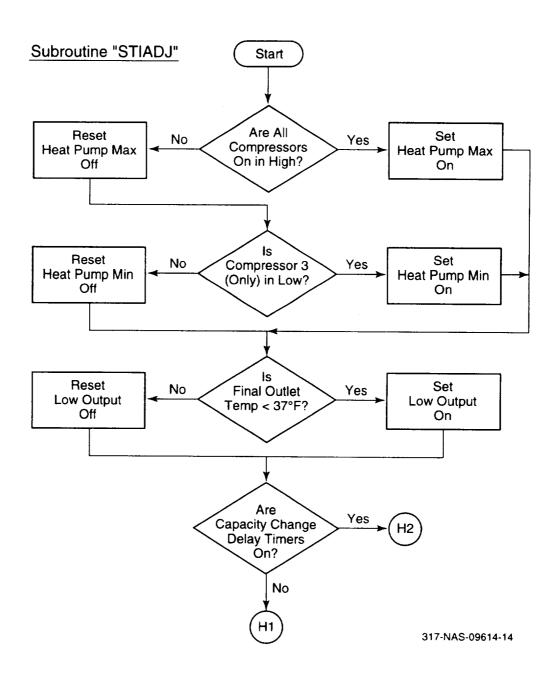


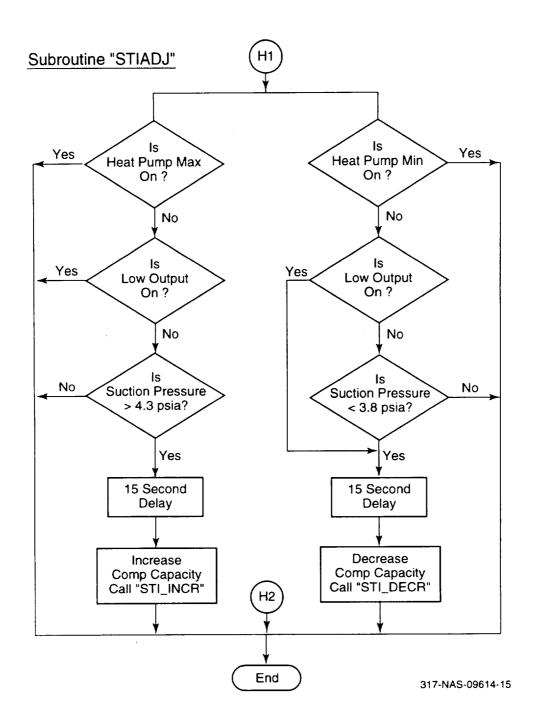


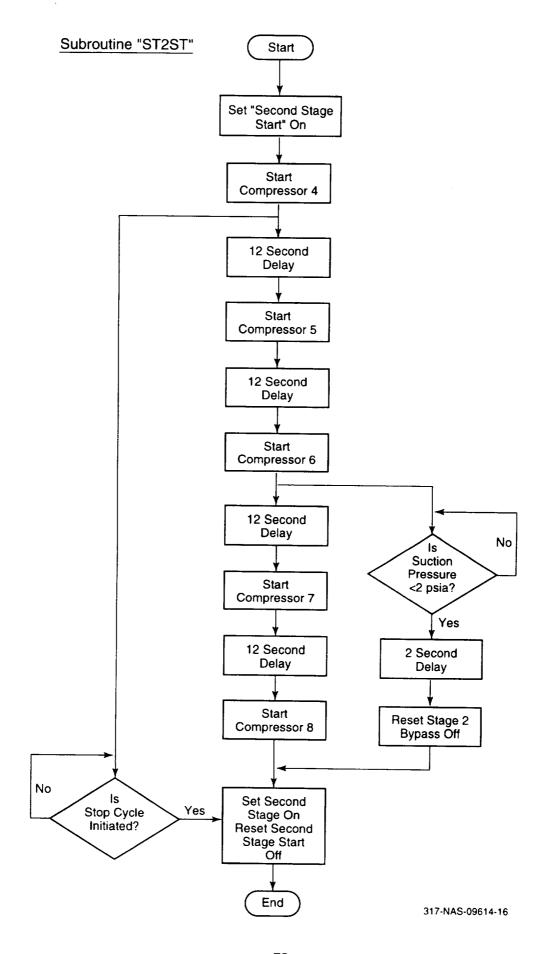


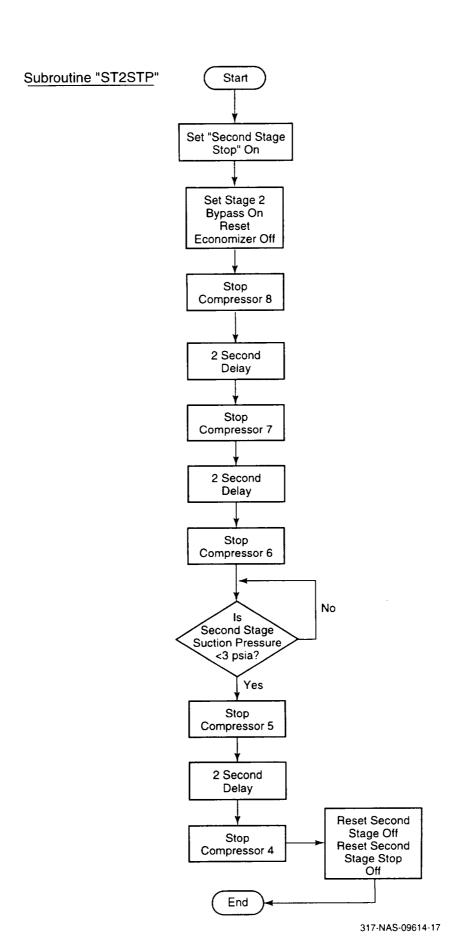


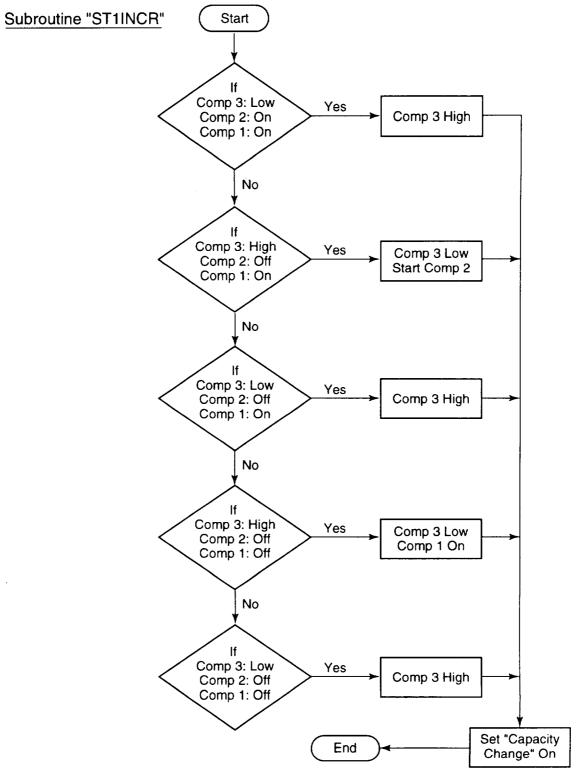

317-NAS-09614-10

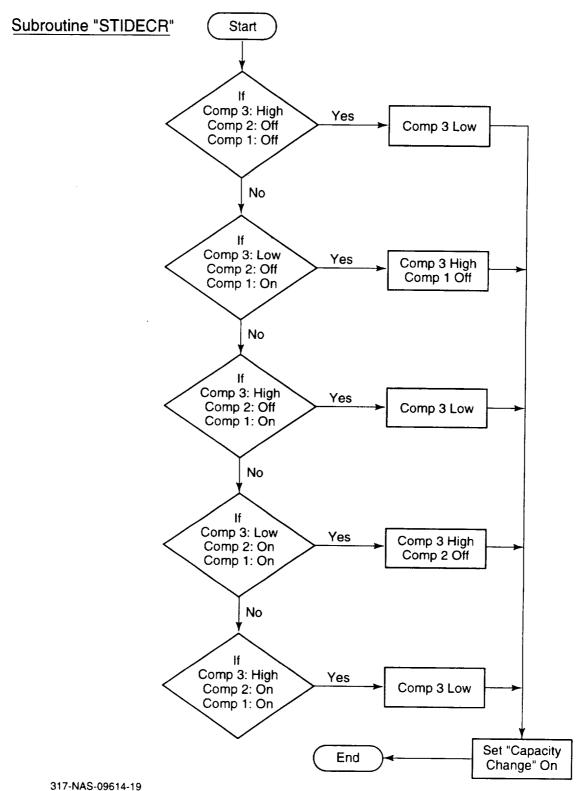



317-NAS-09614-11

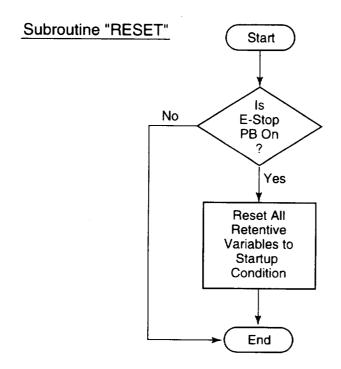


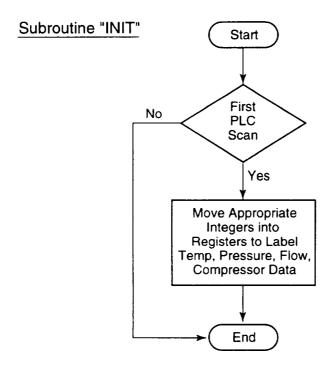

Subroutine "STISTP"



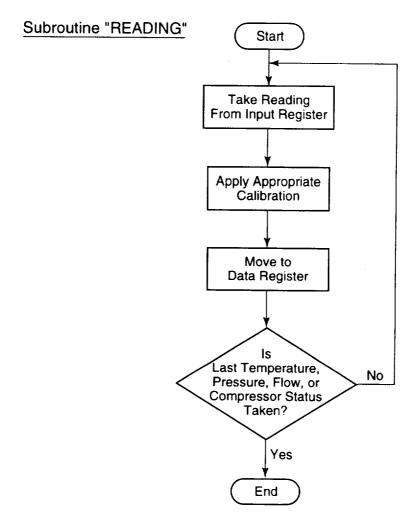


Subroutine "ST2ADJ"

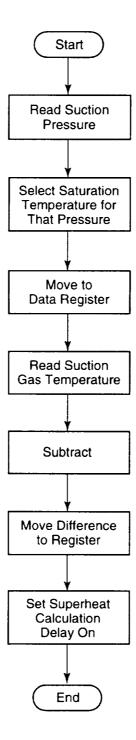

Not Used in Program

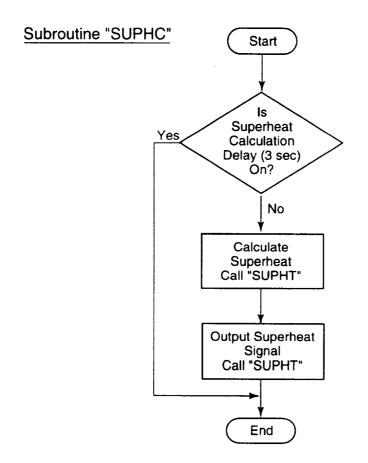


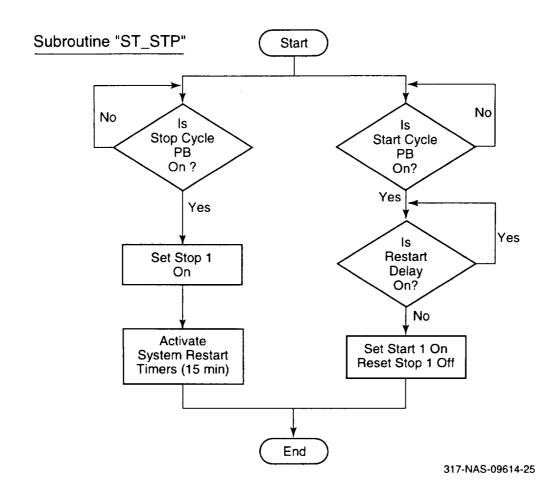
Subroutines "ST2INCR", "ST2DCER"

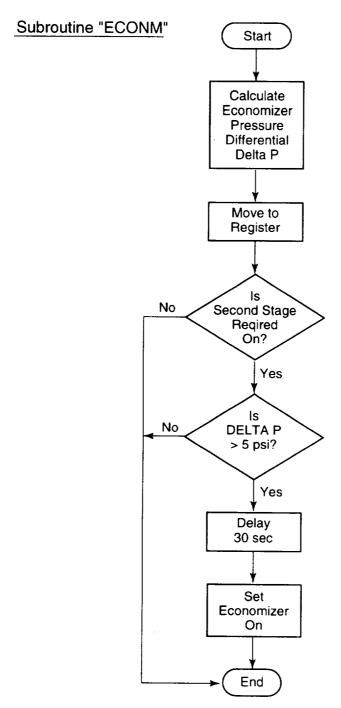

Not Used in Program

317-NAS-09614-20

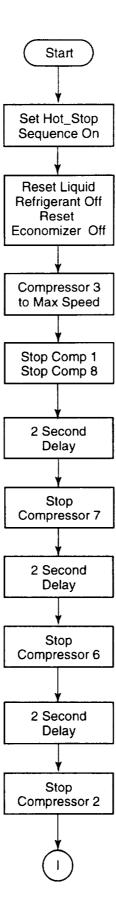


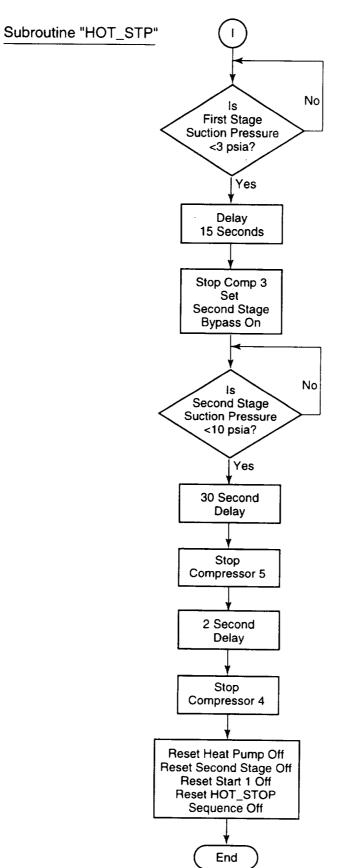

317-NAS-09614-21

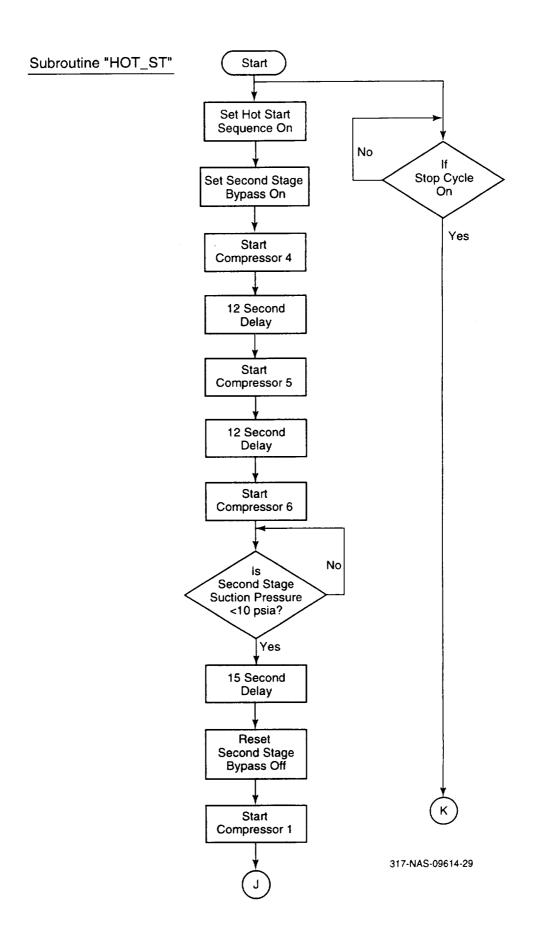


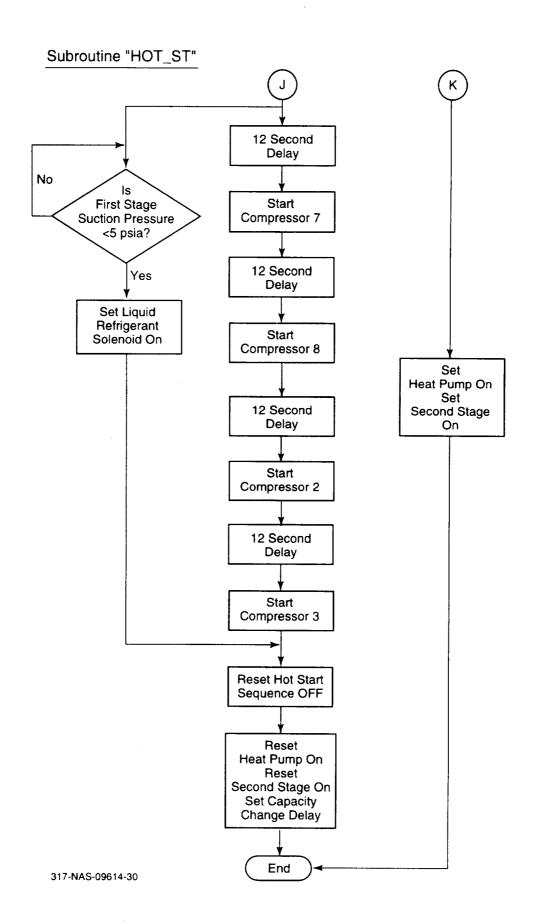

317-NAS-09614-22

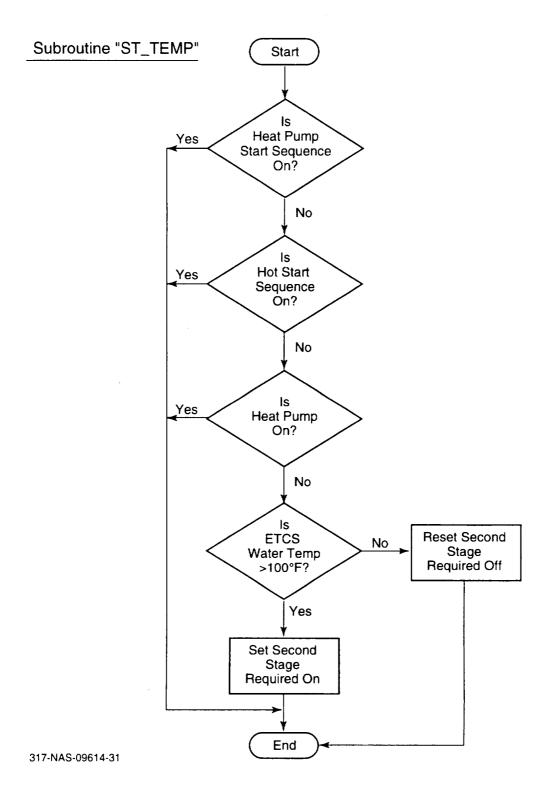
Subroutine "SUPHT"

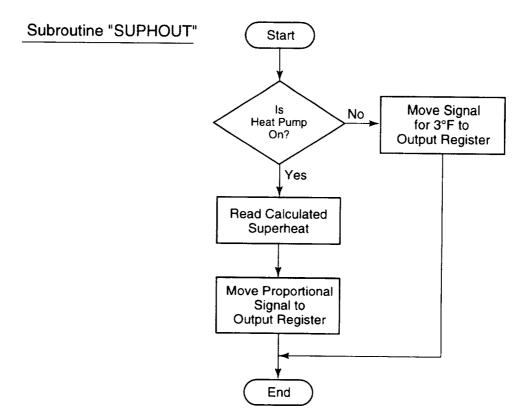


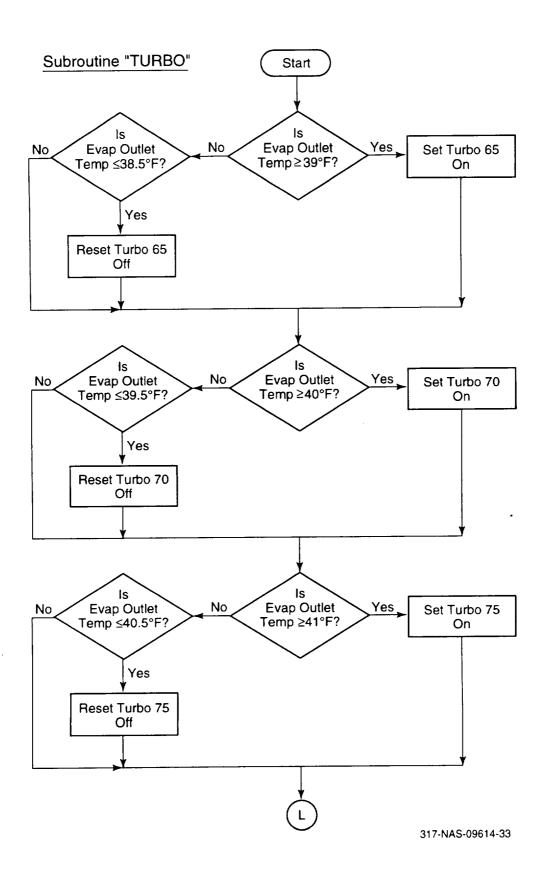


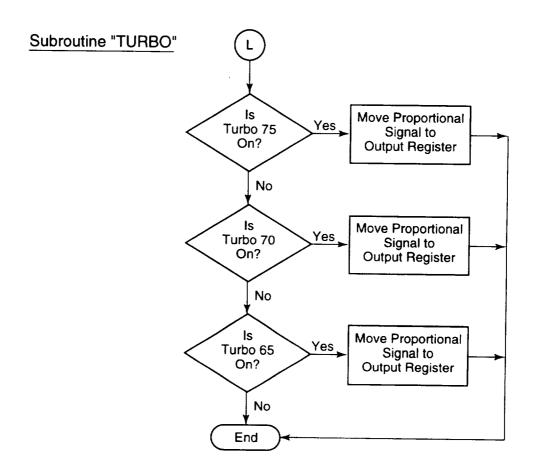


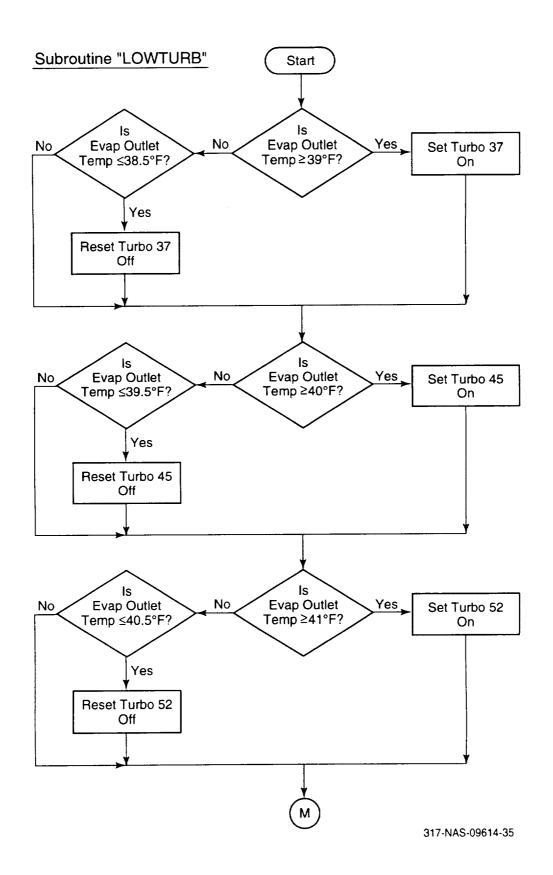


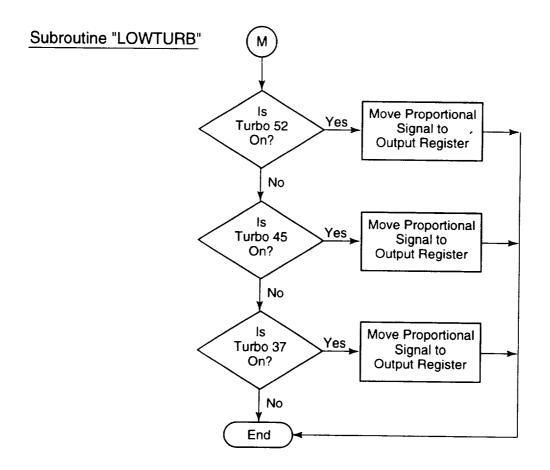

Subroutine "HOT_STP"











317-NAS-09614-34

317-NAS-09614-36

APPENDIX C

PERFORMANCE TEST DATA

HIGH-INTERMEDIATE LOAD TEST

	Compr 1 Low (1) 0 0	1st stage suct	A PX1 PSI	4.25	4.25 Refrigerant	Direct HX Out	Tx1 50.08	50.06 Chill Water
0 1 1st stage disch Px3 PSI 15.78 Refrigerant 0 1 n 2nd stage suct Px4 PSI 5.42 Refrigerant 0 0 Condenser in Px5 PSI 12.99 Refrigerant 0 0 Liq Ref In Px7 PSI 9.33 Refrigerant 0 0 Liq Ref In Fx7 PSI 9.33 Refrigerant 0 0 Evap water Flow Fx1 GPM 2.46 Chill Water 0 0 Evap water Flow Fx2 CFM 0.00 Cool Water 0 0 Image: In Fx3 GPM 0.00 Cool Water 0 0 Econom Liq In Tx17 47.45 Cool Water 0 0 Econom Liq In Tx18 44.64 Cool Water 0 0 Econom Liq In Tx18 44.64 Cool Water 1 0 Econom Liq In Tx18 Fx.64 Cool Water 1 0 Econom Liq In Tx18 Fx.64 Cool Water 1 0 Econom Liq In Tx18 Fx.64 Cool Water <t< th=""><td>High(1) 0 1</td><td>Receiver</td><th>Px2 PSI</th><th>11.09</th><td>Refrigerant</td><td>EV1 Suction</td><th></th><td>32 38 Refrinerant</td></t<>	High(1) 0 1	Receiver	Px2 PSI	11.09	Refrigerant	EV1 Suction		32 38 Refrinerant
0 1 n 2nd stage suct Px4 PSI 5.42 Refrigerant 0 0 Condenser in Px5 PSI 12.89 Refrigerant 0 0 Liq Ref In Px7 PSI 9.33 Refrigerant 0 0 Liq Ref In Px7 PSI 9.33 Refrigerant 0 0 Evap water Flow Fx1 GPM 2.46 Chill Water 0 1 Ex2 CFM 0.00 Chill Water 0 1 Ex3 GPM 0.00 Cool Water 0 1 Condenser in Tx17 47.45 Cool Water 0 0 Econom Liq In Tx18 44.64 Cool Water 0 Econom Liq In Tx18 57.57 Refrigerant 0 Econom Liq In <td< th=""><td></td><td>1st stage disc</td><th></th><th>15.78</th><td>Refrigerant</td><td>1st Stane Dischame</td><th></th><td>12 42 Pefrigerant</td></td<>		1st stage disc		15.78	Refrigerant	1st Stane Dischame		12 42 Pefrigerant
0 Condenser in Px5 PSI 12.89 Refrigerant 0 Condenser out Px6 PSI 11.77 Refrigerant 0 Liq Ref In Px7 PSI 9.33 Refrigerant 0 MW 4.31 Chill Water 0 Evap water Flow Fx1 GPM 2.46 Chill Water 0 Fx2 CFM 0.00 Cool Water 0 Fx3 GPM 0.00 Cool Water 0 FLOW 0.00 Cool Water 0 Econom Liq In Tx18 44.84 Cool Water 0 Econom Liq In Tx18 57.57 Refrigerant 0 </th <td>0</td> <td></td> <th></th> <th>5.42</th> <td>Refrigerant</td> <td>2nd Stane Suction</td> <th>-</th> <td>75.54 Definerant</td>	0			5.42	Refrigerant	2nd Stane Suction	-	75.54 Definerant
0 Condenser out Px6 PSI 11.77 Refrigerant 0 Liq Ref In Px7 PSI 9.33 Refrigerant 0 D Evap water Flow Fx1 GPM 2.46 Chill Water 0 Tx1 GPM 2.46 Chill Water 0 Fx2 CFM 0.00 Chill Water 0 Fx3 GPM 0.00 Cool Water 0 FLOW FLOW 0.00 0 Econom Liq In Tx18 44.84 Cool Water 0 Econom Liq In Tx18 44.84 Cool Water 1 LOAD (kW) 5.16 57.57 Refrigerant REJECT(kW) 12.09 51.6 COOL DIRECT HX(kw) -0.60 COOL COOL	sor 4(2) 0 0	Condenser in		12.99	Refrigerant	Condenser In		108 12 Defrigerant
0 Liq Ref In Px7 PSI 9.33 Refrigerant 0 0 Evap water Flow Fx1 GPM 2.46 Chill Water 0 1 Fx2 CFM 0.00 Chill Water 0 1 Cond water Flow Fx3 GPM 0.00 Cool Water 0 0 FLOW 0.00 Cool Water 0 Direct HX in Tx17 47.45 Cool Water 0 Econom Liq In Tx18 44.64 Cool Water 0 Econom Liq In Tx18 57.57 Refrigerant 12.09 5.16 S7.57 Refrigerant REJECT(kWy) -0.60 -0.60	0			11.77	Refrigerant	Condenser Out	1x8 50.05	50 00 Refrigerant
0 Evap water Flow KW 4.31 0 1 Evap water Flow Ex2 CFM 0.00 0 1 Cond water Flow Ex3 GPM 0.00 0 0 ELOW 0.00 0 FLOW 0.00 0 Direct HX in TX17 47.45 Cool Water 0 Econom Liq In TX18 44.64 Cool Water 0 Econom Liq In TX18 44.64 Cool Water LOAD (kW) 5.16 57.57 Refrigerant REJECT(kW) 12.09 12.09 DIRECT HX(kw) -0.60 -0.60	0	Liq Re	Px7 PSI	9.33	Refrigerant	EV2 OUT		31 83 Refriderant
0 Evap water Flow Fx1 GPM 2.46 Chill Water 0 1 Fx2 CFM 0.00 0 1 Cond water Flow Fx4 GPM 8.43 Cool Water 0 0 FLOW 0.00 0 FLOW 0.00 0 Direct HX in Tx17 47.45 Cool Water 0 Econom Liq In Tx18 44.84 Cool Water 0 Econom Liq In Tx18 57.57 Refrigerant LOAD (kW) 5.16 57.57 Refrigerant REJECT(kW) 12.09 7.50	0		XX	4.31		Economizer Lio Out		56 90 Refrigerant
0 1 Fx2 CFM 0.00 0 1 Cond water Flow Fx3 GPM 8.43 Cool Water 0 0 FLOW 0.00 Cool Water 0 Direct HX in Tx17 47.45 Cool Water 0 Econom Liq In Tx18 44.84 Cool Water 0 Econom Liq In Tx19 57.57 Refrigerant LOAD (kW) 5.16 S7.57 Refrigerant REJECT(kW) 12.09 REJECT HX(kw) -0.60	0			2.48	Chill Water	Economizer Van Out		75 56 Refrigerant
0 0 1 Cond water Flow Fx4 GPM Ex4 GP			i -	0.00		Comp 1 (1 stage) disc		127 44 Refriderant
0 1 Cond water Flow Ext GPM 8.43 Cool Water 0 0 ELOW 0.00 0 Direct HX in Tx18 44.64 Cool Water 0 Econom Liq In Tx19 57.57 Refrigerant LOAD (kW) 5.16 5.16 REJECT(kW) 12.09 12.09 DIRECT HX(kw) -0.60 -0.60	0	-	FX3 GPM	0.00		Comp 6(2 stage) disc	· .	75.40 Refriderant
Nomizer sol. 0 0 PLOW 0.00 VALVE1 Condenser in TX17 47.45 Cool Water LL VALVE2 0 Direct HX in TX18 44.64 Cool Water Inual switch 0 Econom Liq in TX19 57.57 Refrigerant 1/95 LOAD (kW) 5.16 Cool Water PM REJECT(kW) 12.09 Cool Water stage DIRECT HX(kw) -0.60 Cool Water		Cond water F		8.43	Cool Water	Condenser Out		57 40 Cool Water
VALVE1 Condenser in Tx17 47.45 Cool Water LL VALVE2 0 Direct HX in Tx18 44.84 Cool Water 1/95 Econom Liq In Tx19 57.57 Refrigerant 1/95 LOAD (kW) 5.16 Erigerant PM REJECT(kW) 12.09 REJECT HX(kw) stage DIRECT HX(kw) -0.60 Publication	0		FLOW	0.00		Evaporator In		Chill Water
LL VALVE2 0 Direct HX in Tx18 44.84 Cool Water Inual switch 0 Econom Liq In Tx19 57.57 Refrigerant 1/95 LOAD (kW) 5.16 Econom Liq In 5.16 Econom Liq In PM REJECT(kW) 12.09 Econom Liq In 12.09 Econom Liq In stage DIRECT HX(kw) -0.60 Econom Liq In Econom Liq In	VE1	Condenser in		47.45	Cool Water	Evaporator Out	27.74	Chill Water
Inual switch 0 Econom Liq In Tx19 57,57 Refrigerant 1/95 LOAD (kW) 5.16 5.16 PM REJECT(kW) 12.09 </th <td></td> <td></td> <th>Tx18</th> <th>44.84</th> <td>Cool Water</td> <td>Final Outlet Temp</td> <th>39.33</th> <td>Chill Water</td>			Tx18	44.84	Cool Water	Final Outlet Temp	39.33	Chill Water
1/95 LOAD (kW) 5.16 PM REJECT(kW) 12.09 stage DIRECT HX(kw) -0.60	ل	Econom Lig 1		57.57	Refrigerant	Direct HX In (chilled)		Chill Water
PM						1st STAGE SUCTION	l	CIIII Maici
REJECT(kW) 12.09 DIRECT HX(kw) -0.60		LOAD (KW)	5.16			Superheat	200	
DIRECT HX(kw)		REJECT(KW)	•					
		DIRECT HX(

	- 177 : · · · · · · · · · · · · · · · · · ·									
1		5		age suct	Px1 PSI	797	Refrinerant	Direct UV Out		
1	Compr 1 High(1)	0	Receiv	ver	Dy Del	11 11	Dofrigorous de la company de l	DIECUTA OUI		Chill Water
1	Compressor 2(1)	C	19 40	no diech	200		Tell gelant	_		
1	Composeene 2(4)	1	+	Age discil	ואר האר	7.5	Ketrigerant	$\overline{}$		
2) 0 0 Condenser in Px5 PSI 14.02 Refrigerant Condenser In Tx5 1 2) 0 0 Condenser out Px6 PSI 12.41 Refrigerant Condenser In Tx7 2) 0 0 Liq Ref In Px7 PSI 9.62 Refrigerant Condenser Out Tx7 2) 0 0 Evap water Flow Fx1 GPM 2.55 Chill Water Economizer Ug Out Tx8 3 0 1 Econom Liq In Tx17 54.77 Cool Water Evaporator In Tx19 47.52 Cool Water Einal Outlet Temp Tx16 6 Condenser in Tx17 54.77 Cool Water Evaporator Out Tx18 6 Cool Water Einal Outlet Temp Tx16 7.16 Superheat 7.17 S4.7 Refrigerant Direct HX In (chilled) Tx16 7.18 S.74 Refrigerant Direct HX In (chilled) Tx16 7.19 S.76 Superheat 7.10 Superheat 7.11 S.71 S.71 S.72 Cool Water Evaporator Out Tx18 7.12 S.73 Refrigerant Direct HX In (chilled) Tx16 7.14 S.74 Refrigerant Direct HX In (chilled) Tx16 7.15 S.74 Refrigerant Direct HX In (chilled) Tx16 7.16 Superheat	Compressor s(1)	5		age suct	PX4 PS	5.47	Refrioerant		•	
2) 0 0 Condenser out Px6 PSI 12.41 Refrigerant Condenser Out Tx8 2) 0 0 Liq Ref In Px7 PSI 9.62 Refrigerant Condenser Out Tx7 2) 0 0 Evap water Flow Fx1 GPM 2.55 Chill Water Economizer Liq Out Tx8 2) 0 0 Evap water Flow Fx1 GPM 2.55 Chill Water Economizer Vap Out Tx8 2) 0 0 Condenser In Fx3 GPM 0.00 Comp 6(2 stage) disc Tx10 3 0 0 Condenser in Tx17 S.47 Cool Water Condenser Out Tx13 47.52 Cool Water Final Outlet Temp Tx15 3 0 0 Econom Liq In Tx18 5.47 Cool Water Final Outlet Temp Tx15 47.52 Cool Water Final Outlet Temp Tx15 47.52 Cool Water Final Outlet Temp Tx16 47.52 Cool Water Final Outlet Temp Tx16 5.16 Superheat 47.54 Refrigerant Direct HX In (chilled) Tx16 5.16 Superheat 6.00 DIRECT HX(kw) -0.70	Compressor 4(2)	0	Conde	inser in	Px5 PSI	14 02	Refricerant	Condens in	•	Reingerant
2) 0 0 Liq Ref In Px7 PSi 9.62 Refrigerant Condenser Out Tx7 2) 0 0 Evap water Flow Fx1 GPM 2.55 Chill Water Economizer Liq Out Tx8 2) 0 1 Evap water Flow Fx3 GPM 0.00 Comp 1 (1 stage) disc Tx10 1 2) 0 1 Cond water Flow Fx4 GPM 8.45 Cool Water Condenser Out Tx12 2) 0 0 Econom Liq In Tx17 5.47 Cool Water Final Outlet Temp Tx15 2) 0 0 Econom Liq In Tx18 5.74 Refrigerant Direct HX In Chilled) Tx16 2) 0 Econom Liq In Tx19 5.74 Refrigerant Direct HX In (chilled) Tx16 2) 0 DIRECT HX(kw) -0.70 Superheat	Compressor 5(2)			nser out	Pye PSI	12.44	Defrigorent	Condenser III	_	Refrigerant
10 0 Evap water Flow Fx1 GPM 2.55 Chill Water Economizer Lig Out Tx8	Compressor 8(2)	0		f In	D-7 De1	16.4	Velligerall	Condenser Out		Refrigerant
Solution Solution	Compressor 7(2)	0	2		יאן עס	70.6	Kerngerant	EV2 OUT		Refrigerant
So	Compressor 7(2)	2 0			Υ×	4.43		Economizer Lig Out		Refricerent
ISS 0 1 Fx2 CFM 0.00 Comp 1 (1 stage) disc Tx10 144.35 SS 0 0 1 Cond water Flow Fx3 GPM 0.00 Comp 6(2 stage) disc Tx11 75.65 0 0 1 Cond water Flow Fx4 GPM 8.45 Cool Water Condenser Out Tx12 66.20 0 0 FLOW 0.00 Evaporator In Tx13 53.76 0 Direct HX in Tx17 54.47 Cool Water Final Outlet Temp Tx14 39.73 0 Econom Liq In Tx19 58.74 Refrigerant Direct HX in (chilled) Tx16 51.67 1 1.00 Superheat Superheat 1.00 1 DIRECT HX(kw) -0.70 Superheat 1.00	Compressor 6(2)	D	1	vater Flow	FX1 GPM	2.55	Chill Water			Doftie
SS 0 0 1 Fx3 GPM 0.00 Comp 6(2 stage) disc. Tx11 0 1 Cond water Flow FLOW 0.00 Evaporator In Tx12 0 0 Direct HX in Tx17 54.47 Cool Water Evaporator In Tx13 1 0 Econom Liq in Tx18 47.52 Cool Water Final Outlet Temp Tx16 1 0 Econom Liq in Tx19 58.74 Refrigerant Direct HX in (chilled) Tx16 1 0 Econom Liq in Tx19 58.74 Refrigerant Direct HX in (chilled) Tx16 1 0 Econom Liq in Tx19 58.74 Refrigerant Direct HX in (chilled) Tx16 1 0 Econom Liq in Tx19 58.74 Refrigerant Superheat 1 0 Econom Liq in Tx19 58.74 Refrigerant Superheat 1 0 Econom Liq in Tx19 58.74 Refrigerant Superheat	Znd Stage bypass	0			FX2 CFM	00.00		_		Leiligerani
0 1 Cond water Flow Fx4 GPM 8.45 Cool Water Condenser Out Fx12 Tx12 0 0 FLOW 0.00 Evaporator In Tx13 Tx13 0 Direct HX in Tx18 47.52 Cool Water Final Outlet Temp Tx15 Tx14 Tx14 1 0 Econom Liq In Tx19 58.74 Refrigerant Direct HX In (chilled) Tx16 Tx16 1 LOAD (kW) 5.16 Superheat Superheat DIRECT HX(kw) -0.70 Superheat Appendix Ap	Direct HX bypass		—		Fx3 GPM	000		Comp 6/2 deep disc		Ketrigerant
0 0 Condenser in Tx17 S4.47 Cool Water Evaporator In Tx13	Liquid solenoid	0	Cond	vater Flow	EVA COM	47 0	18/24			Refrigerant
VALVE1 Condenser in Tx17 Tx17 54.47 Cool Water Evaporator In Tx18 Tx14 Tx14 Tx14 Tx14 Tx14 Tx15 Tx16 Tx15 Cool Water Final Outlet Temp Tx15 Tx15 Tx16 Tx15 Cool Water Final Outlet Temp Tx15 Tx15 Tx16	Fronomizer eat	0				2	Cool Water	Condenser Out		Cool Water
VALVE1 Condenser in Tx17 Tx17 54.47 Cool Water Evaporator Out Tx14 Tx14 L VALVE2 0 Direct HX in Tx18 47.52 Cool Water Final Outlet Temp Tx15 Tx15 1/95 Econom Liq in Tx19 58.74 Refrigerant Direct HX in (chilled) Tx16 1x16 PM LOAD (kW) 5.16 Superheat PM REJECT(kW) 14.28 Superheat tage DIRECT HX(kw) -0.70 -0.70	The least of the l	3			FLOW	00.0		Evaporator In		AL:11 16.
L VALVE2 0 Direct HX in Tx18 47.52 Cool Water Final Outlet Temp Tx15 Inual switch 0 Econom Lig in Tx19 58.74 Refrigerant Final Outlet Temp Tx15 1/95 LOAD (kW) 5.16 1st STAGE SUCTION PM REJECT(kW) 14.28 Superheat tage DIRECT HX(kw) -0.70	DIR VALVE1		Conde		Tx17	27.73	Cool Motor			Crilli Water
Inual switch 0 Econom Liq In Tx19 58.74 Refrigerant Direct HX In (chilled) Tx16 51.87 1/95 LOAD (kW) 5.16 1st STAGE SUCTION 33.94 PM REJECT(kW) 14.28 14.28 1.00 tage DIRECT HX(kw) -0.70 10.70	CHILL VALVE2	0	Direct		Tx18	47 83	Cool Water	Evaporator Out		Chill Water
1/95 LOAD (kW) 5.16 Superheat Tx16 51.87 PM REJECT(kW) 14.28 14.28 1.00 tage DIRECT HX(kw) -0.70 1.00	manual switch	0	Fronce	2 2	0	70.17	Cool Water	rinal Outlet Temp		Chill Water
LOAD (kW) 5.16	10/11/95				1718	30.74	Kerngerant	Direct HX In (chilled)		
PM LOAD (kW) 5.16 Superheat tage DIRECT HX(kw) -0.70	003	-						1st STAGE SUCTION	33.94	
e DIRECT HX(kw) -0.70	200	1	LOAD ((KW)	5.16			Superheat	-	
DIRECT HX(kw)	3:54PM	7	REJEC	T(kW)	14.28			300	3.	
	1st stage	7	DIREC		-0.70					

Compr 1 Low (1)	0	0	1st stage suct	Px1 PSI 3.9	3.96 Refrigerant	Direct HX Out	-XI	51.18 Chill Water
Compr 1 High(1)	0	-	Receiver	Px2 PSI 13.2	13.24 Refrigerant	EV1 Suction	Tx2	30.12 Refrigerant
Compressor 2(1)	0	-	1st stage disch	Px3 PSI 16.85	5 Refrigerant	1st Stage Discharge	Tx3	127.51 Refrigerant
Compressor 3(1)	0	-	2nd stage suct	Px4 PSI 5.6	5.62 Refrigerant	2nd Stage Suction	1×	76.42 Refrigerant
Compressor 4(2)	0	0	Condenser in	Px5 PSi 14.7	4.70 Refrigerant	Condenser In	Tx5	122.24 Refrigerant
Compressor 5(2)	0	0	Condenser out	Px6 PSi 13.7	13.72 Refrigerant	Condenser Out	9X 1	63.24 Refrigerant
Compressor 6(2)	0	0	Liq Ref In	Px7 PSI 11.6	11.67 Refrigerant	EV2 OUT	T×7	30.19 Refrigerant
Compressor 7(2)	0	0		KW 4.29	6	Economizer Liq Out	1x8	65.20 Refrigerant
Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM 2.4	2.48 Chill Water	Economizer Vap Out	EXE	76.34 Refrigerant
2nd Stage bypass	0	-		FX2 CFM 0.00	0	Comp 1 (1 stage) disc	Tx10	125.60 Refrigerant
Direct HX bypass	0	0	-	Fx3 GPM 0.00	C	Comp 6(2 stage) disc		78.38 Refrigerant
Liquid solenoid	0	-	Cond water Flow	Fx4 GPM 8.53	3 Cool Water	Condenser Out	Tx12	69.74 Cool Water
Economizer sol.	0	0		FLOW 0.00	0	Evaporator In	Tx13	52.75 Chill Water
DIR VALVE1			Condenser in	Tx17 59.7	59.79 Cool Water	Evaporator Out	TX14	37.87 Chill Water
CHILL VALVE2	0		Direct HX in	Tx18 51.8	51.87 Cool Water	Final Outlet Temp	Tx15	40.03 Chill Water
manual switch	0		Econom Liq In	Tx19 68.1	66.12 Refrigerant	Direct HX In (chilled)	Tx16	50.94 Chill Water
10/11/95						1st STAGE SUCTION		31.18
400			LOAD (KW)	5.32		Superheat	· · · · ·	8.00
4:12PM			REJECT(kW)	12.24				
1st stage	\rfloor		DIRECT HX(kw)	-0.65				

<u> ဗ</u>	Compr 1 Low (1)	0	0	1st stage suct	Px1 PSI	3.86	Refrigerant	3.86 Refrigerant Direct HX Out	F-71	SO 34 IChill Water
<u>ပိ</u>	Compr 1 High(1)	0	-	Receiver	Px2 PSI	15.24	Refrigerant	Refrigerant EV1 Suction		28 92 Refriderant
<u> </u>	Compressor 2(1)	0	_	1st stage disch	Px3 PSI	18.61	Refrigerant	1st Stade Dischame		24 78 Defricerant
<u>ප</u>	Compressor 3(1)	0	1		Px4 PSI			2nd Stade Surdion		78 62 Defricerant
<u>ပိ</u>	Compressor 4(2)	0	0	Condenser in			Refrigerant			25 72 Refrigerant
<u> </u>	Compressor 5(2)	0	0	Condenser out	Pxe PSI	15.87	Refrigerant			79 11 Refrinerant
<u>8</u>	Compressor 6(2)	0	0	Liq Ref In	Px7 PSI	13.43	Refrigerant	EV2 OUT		28.50 Refrigerant
<u> </u>	Compressor 7(2)	0	0		KW	4.44		Economizer Lig Out		71.65 Refrigerant
<u> </u>	Compressor 8(2)	0	0	Evap water Flow	FX1 GPM	2.51	Chill Water		•	76.39 Refrinerant
2 <u>7</u>	2nd Stage bypass	0	-		FX2 CFM	0.00		Comp 1 (1 stage) disc	1	30.67 Refrigerant
<u>ة</u> 10	Direct HX bypass	0	0		Fx3 GPM	8.0		Comp 6(2 stage) disc		76 63 Refrigerant
<u>역</u> (0	Cidnid solenoid	0	-	Cond water Flow	Fx4 GPM	8.59	Cool Water			
Щ	Economizer sol.	0	0		FLOW	00 0		Evaporator In	•	K+ R7 Chill Motor
P.	DIR VALVE1			Condenser in	Tx17	73.28	Cool Water	73.28 Cool Water Evaporator Out		
핑	CHILL VALVE2	0		Direct HX in	Tx18	53.50	Cool Water	53.50 Cool Water Final Outlet Temp	<i>.</i> .	38 23 Chill Water
	manual switch	0		Econom Liq In	Tx19	73.64	73.64 Refrigerant	Direct HX In (chilled)		50 00 Chill Water
9	10/11/95							1st STAGE SUCTION		27 2K
002	2			LOAD (KW)	5.35			Superheat		3.5
4	4:15PM			REJECT(KW)	6.20					3
151	1st stage			DIRECT HX(kw)	-0.64					
			\dashv							

Compr 1 Low (1)	0	0	1st stage suct	Px1 PSI	3.86	3.96 Refrigerant	Direct HX Out	×	50.33	50.33 Chill Water
Compr 1 High(1)	0	-	Receiver	Px2 PSI	17.34	17.34 Refrigerant	EV1 Suction	Tx2	29.47	29.47 Refrigerant
Compressor 2(1)	0	-	1st stage disch	Px3 PSI	20.37	Refrigerant	1st Stage Discharge	Tx3	37.23	37.23 Refrigerant
Compressor 3(1)	0	-	2nd stage suct	Px4 PSI	5.67	Refrigerant	2nd Stage Suction	T×4	78.78	76.78 Refrigerant
Compressor 4(2)	0	0	Condenser in	Px5 PSI	18.71	18.71 Refrigerant	Condenser In		30.61	130.61 Refrigerant
Compressor 5(2)	0	0	Condenser out	Px6 PSI	17.53	17.53 Refrigerant	Condenser Out	2 00	87.07	87.07 Refrigerant
Compressor 6(2)	0	0	Liq Ref In	Px7 PSI	15.48	15.48 Refrigerant	EV2 OUT	Tx7	29.39	Refrigerant
Compressor 7(2)	0	0		ΚW	4.60		Economizer Liq Out	ж <u>г</u>	77.51	77.51 Refrigerant
Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM	2.53	2.53 Chill Water	Economizer Vap Out	8X	76.53	76.53 Refrigerant
2nd Stage bypass	0	-		FX2 CFM	0.00		Comp 1 (1 stage) disc	Tx10 1	38.43	38.43 Refrigerant
- Direct HX bypass	0	0	-	Fx3 GPM	0.00		Comp 6(2 stage) disc	TX1	76.99	76.99 Refrigerant
Liquid solenoid	0	-	Cond water Flow	Fx4 GPM	8.61	Cool Water	Condenser Out	T×12	88.73	88.73 Cool Water
Economizer sol.	0	0		FLOW	0.00		Evaporator In	Tx13	51.87	51.87 Chill Water
DIR VALVE1			Condenser in	Tx17	76.21	76.21 Cool Water	Evaporator Out	Tx14	37.71	37.71 Chill Water
CHILL VALVE2	0		Direct HX in	1×18	54.51	54.51 Cool Water	Final Outlet Temp	Tx15	39.08	39.08 Chill Water
manual switch	0		Econom Liq In	Tx19	79.89	79.89 Refrigerant	Direct HX In (chilled)	Tx16	50.09	50.09 Chill Water
10/11/95							1st STAGE SUCTION		34.07	
900			LOAD (KW)	5.16			Superheat		9.00	
4:21PM			REJECT(kW)	15.53						
1st stage			DIRECT HX(kw)	-0.65						
		_								

) - +	Receiver	X .	8	3.96 Refingerant	Direct HX Out	Tx1 51.18	51.18 Chill Water
- +	Receiver						
_		1X 78	22.47	22.47 Refrigerant	EV1 Suction		Defricerent
_	1st stage disch	Px3 PSI	17.00	7 00 Refrigerant	1st Stade Dischame		Define
1	2nd stane	DVA DSI	A 52	f. 52 Defricerent	The Craye Discharge	-	Remyerant
:	A		0.00	Venigerani	Znd Stage Suction	1x4 87.56	87.56 Refrigerant
5	Condenser in	Px5 PSI	24.32	24.32 Refrigerant	Condenser In	Tx5 112.47	Refrigerant
0	Condenser out	Px6 PSI	23.49	23.49 Refrigerant	Condenser Out		
0	Liq Ref In	Px7 PSI	21.25	Refrigerant	EV2 OUT		Refriderant
0		KW	6.29		Economizer Lia Out		Refriderant
0	Evap water Flow	Fx1 GPM	2.48	Chill Water	Economizer Van Out	•	Petricerent
C		FX2 CFM	22.75		Comp 1 (1 stane) disc	. T	
0		FX3 GPM	000		Comp 6(2 stage) disc	**	Defrigerant
_	r Flow	Fx4 GPM	8.63	Cool Water	Condensor Out		Collingerall
_		FLOW	800		Evanorator In	- 	
		Tx17	80	Cool Water	Evaporator Out		Chill Water
	Ë	Tx18	8	Cool Water	Final Outlet Temn		Chill Water
	ol pi	Tx19	90.68	Refrigerant	Direct HX In (chilled)		Chill Water
					14 STAGE SLICTION	l	Cilli Water
	LOAD (KW)	5.07			Superheat	20.07	
	REJECT(kW)	5.32				3	
	DIRECT HX(kw)	-0.63					
\exists							
		Evap water Flow Cond water Flow Condenser in Direct HX in Econom Liq In LOAD (kW) REJECT(kW) DIRECT HX(kw)	Evap water Flow Fx1 G Evap water Flow Fx1 G Cond water Flow Fx4 G Condenser in Tx17 Direct HX in Tx18 Econom Liq In Tx18 LOAD (kW) REJECT (kW) DIRECT HX(kw)	Evap water Flow Fx1 GPM Evap water Flow Fx2 GFM Cond water Flow Fx4 GPM Condenser in FLOW Condenser in Tx17 Direct HX in Tx18 Econom Liq In Tx19 LOAD (kW) 5.07 REJECT (kW) 5.32 DIRECT HX(kw) -0.63	Evap water Flow Fx1 GPM Evap water Flow Fx1 GPM Cond water Flow Fx4 GPM Condenser in Fx17 Direct HX in Tx18 Econom Liq In Tx18 LOAD (kW) 5.07 REJECT (kW) 5.32 DIRECT HX(kw) -0.63	Evap water Flow FXT GPM Evap water Flow FX2 GFM Cond water Flow FX4 GPM Condenser in TX17 Direct HX in TX18 Econom Liq In TX18 LOAD (kW) 5.07 REJECT (kW) 5.32 DIRECT HX(kw) -0.63	Lig Ker In Px7 PSI 21.25 Refrigerant KW 6.29

Vater	erant	erant	erant	erant	erant	erant	erant	erant	erant	erant	Vater	Vater	Vater	Vater	Vater				
52.33 Chill Water	33.38 Refrigerant	46.85 Refrigerant	91.12 Refrigerant	28.53 Refrigerant	07.68 Refrigerant	32.23 Refrigerant	91.28 Refrigerant	90.11 Refrigerant	58.05 Refrigerant	42.40 Refrigerant	12.18 Cool Water	Chill Water	Chill Water	Chill Water	Chill Water				
52.33	33.38	146.85	91.12	128.53	107.68	32.23	91.28	90.11	158.09	142.40	112.18	53.91	40.03	39.71	53.87	31.44	8.4		
				· •					0	4	12	<u> </u>	±	5	16		. ·		
Ĕ	×	Ě	TX4	TX5	Ě	X X	Ž.	8X E	Tx10	TX11	Tx12	Tx13	TX14	Tx15	Tx16				
Direct HX Out	EV1 Suction	1st Stage Discharge	2nd Stage Suction	Condenser in	Condenser Out	EV2 OUT	Economizer Liq Out	Economizer Vap Out	Comp 1 (1 stage) disc	Comp 6(2 stage) disc	Condenser Out	Evaporator In	Evaporator Out	Final Outlet Temp	Direct HX In (chilled)	1st STAGE SUCTION	Superheat		
4.10 Refrigerant	Refrigerant	Refrigerant	Refrigerant	Refrigerant	Refrigerant	Refrigerant		2.51 Chill Water			8.59 Cool Water		100.82 Cool Water	56.80 Cool Water	11.78 Refrigerant				
4.10	30.67	18.61	16.61	31.75	30.98	29.28	6.85	2.51	24.43	0.00	8.59	0.00	100.82	56.80	111.78				
																	5.01	14.06	-0.02
Px1 PSI	Px2 PSI	Px3 PSI	Px4 PSI	Px5 PSI	Px6 PSI	Px7 PSI	ΚW	Fx1 GPM	FX2 CFM	Fx3 GPM	Fx4 GPM	FLOW	Tx17	Tx18	T×19		5	14	o-
1st stage suct	Receiver	1st stage disch	2nd stage suct	Condenser in	Condenser out	Liq Ref In	3	Evap water Flow			Cond water Flow		Condenser in	Direct HX in	Econom Liq In		LOAD (KW)	REJECT(KW)	DIRECT HX(kw)
		_	1 1	0	0	0	0	0	0	0	1	1							
0	-				\vdash		0	0	0	0	0	0		0	0				
0	0 1	0	0	0	0			١.,	2nd Stage bypass		Liquid solenoid			_					\dashv

		1st stage suct	Pyl Psi	105	4 OK Dofrigorost				
1_1	•	Receiver	000	3	ביים מוומ	DIECT HA OUT	ž	51.75	51.75 Chill Water
1	-	1ct chang disch	1 XX T SI	50.41	Reingerant	EV1 Suction	2	32.25	Refrigerant
_	•	שלוא מושלום חושכוו	TX3 FSI	18.85	Refingerant	1st Stage Discharge	Tx3	150.71	Refrigerant
Compressor 4(2)	= - c	znd stage suct	Px4 PS	16.75	Refrigerant	2nd Stage Suction	×		Refrigerant
		Condenser in	PX5 PS	37.17	Refrigerant	Condenser In	<u>5</u>	138.90	Refrigerant
_ <u></u>	_	Condenser out	Px6 PSI	36.43	36.43 Refrigerant	Condenser Out	Ę	114 78	Pefrideront
Compressor 6(2) 0	0	Liq Ref In	Px7 PSI	33.85	33.65 Refrigerant	EV2 OUT	1	34.33	
Compressor 7(2) 0	0		KW	6.90		Fronomizer Lia Out	<u> </u>	52.15	religeram
Compressor 8(2) 0	0	Evap water Flow	Fx1 GPM	254	2.54 Chill Water	Fronomizer Ven Out	2 4	92.38	Ketngerant
2nd Stage bypass 0	0		FX2 CFM	25.17		Come 1 (4 street, die	x X	90.35	Refrigerant
Direct HX bypass 0	0 1		Fx3 GPM	8		Comp 6(2 4 and a msc	e X	165.85	Refrigerant
O Pioned solenoid 04	-	Cond water Flow	MG5 743			Comp 6(2 stage) disc	TX11	148.99	Refrigerant
	-			5	o.o. Cool Water	Condenser Out	Tx12	123.05	Cool Water
<u>.</u>	+	İ	TLOW O	0.00		Evaporator In	Tx13	53.28	Chill Water
+	+	_	TX17	118.05	118.05 Cool Water	Evaporator Out	Tx14	30.48	Chill Motor
\dagger	-	Direct HX in	Tx18	57.63	57.63 Cool Water	Final Outlet Temp	<u> </u>	30.00	Shill Word
manual switch		Econom Liq In	Tx19	121 65 6	121.65 Refricerant	Direct UV to Johillan		200	A NATE
10/11/95					1	At Stable of Gillied)	ex.	_	Chill Water
010		LOAD (kW)	20.2			IST STAGE SUCTION	8	30.56	
4:52PM		RE IECT/kW	50.0			Superneat		8	
2nd stage		DIDECT LY/Km	0.23	+					

Compr 1 Low (1)	0	0	1st stage suct	Px1 PSI	3.91	Refrigerant	3.91 Refrigerant Direct HX Out	TXT	52.38	52.38 Chill Water
Compr 1 High(1)	0	-	Receiver	Px2 PSI	38.58	Refrigerant	EV1 Suction		32 38 F	32.38 Refrigerant
Compressor 2(1)	0	-	1st stage disch	Px3 PSI	18.80	Refrigerant	1st Stage Discharge	. * * * * 	54.08	Refrigerant
Compressor 3(1)	0	-	2nd stage suct	Px4 PSI	16.80	Refrigerant	2nd Stage Suction		91.47	Refrioerant
Compressor 4(2)	0	0	Condenser in	Px5 PSI	40.05	40.05 Refrigerant	Condenser In		41.85	Refrigerant
Compressor 5(2)	0	0	Condenser out	Px6 PSI	39.22	Refrigerant	Condenser Out		23.65 F	23.65 Refrigerant
Compressor 6(2)	0	0	Liq Ref In	Px7 PSI	37.38	Refrigerant	EV2 OUT		30.54	30.54 Refrigerant
Compressor 7(2)	0	0		ΚW	6.95		Economizer Liq Out		93.09 F	Refrigerant
Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM	2.54	2.54 Chill Water	Economizer Vap Out		90.40	Refrigerant
2nd Stage bypass	0	0		FX2 CFM	25.05		Comp 1 (1 stage) disc	TX10 1	73.48 F	73.48 Refrigerant
Direct HX bypass	0	0	_	Fx3 GPM	0.00		Comp 6(2 stage) disc		53.39	53,39 Refrigerant
C Liquid solenoid	0	-	Cond water Flow	Fx4 GPM	8.59	8.59 Cool Water	Condenser Out		32.09 C	32.09 Cool Water
Economizer sof.	0	-		FLOW	0.00		Evaporator In		53 99	Chill Water
DIR VALVE1			Condenser in	Tx17	119.76	119.76 Cool Water	Evaporator Out		39.98	Chill Water
CHILL VALVE2	0		Direct HX in	Tx18	58.27	58.27 Cool Water	Final Outlet Temp		39.43	Chill Water
manual switch	0		Econom Liq In	Tx19	127.22	127.22 Refrigerant	Direct HX In (chilled)			Chill Water
10/11/95			To the state of th				1st STAGE SUCTION			
011			LOAD (KW)	5.13			Superheat		200	
4:59PM			REJECT(kW)	15.27						
2nd stage			DIRECT HX(kw)	2.02						
		\dashv								

Compr 1 Low (1)	0	0	1st stage suct	Px1 PSI	4.0	4.00 Refrigerant	Direct HX Out	Ty1 5	7117	52 41 Chill Water
Compr 1 High(1)	0	_	Receiver	Px2 PSI	47.23	47.23 Refrigerant	EV1 Suction		20.00	Defricerent
Compressor 2(1)	0	-	1st stage disch	Px3 PSI	19.88	19.88 Refrigerant	1st Stane Dischame	•	50.20 F0 21	Defrigerant
Compressor 3(1)	0	1 n	2nd	Px4 PS	18.07	18.07 Refrigerant	2nd Stane Suction	•	05.99 1	Defrigerant
Compressor 4(2)	0	0	Condenser in	Px5 PSI	49.28	49.28 Refrigerant	Condenser In	_	54.37	Refrigerant
Compressor 5(2)	0	0	Condenser out	Px6 PSI	48.50	48.50 Refrigerant	Condenser Out	•		Refrigerant
Compressor 6(2)	0	0	Liq Ref In	Px7 PSI	45.86	45.88 Refrigerant	EV2 OUT			Refrigerant
Compressor 7(2)	0	0		ΚW	7.25		er Liq Out		32	97.34 Refrigerant
Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM	2.55	2.55 Chill Water	-		94.31	Refrigerant
2nd Stage bypass	0	0		FX2 CFM	24.34			-	183.37 F	Refrigerant
Direct HX bypass	0	0		Fx3 GPM	0.00		Comp 6(2 stage) disc	TX1	₹ 10 ×	163.10 Refrigerant
Liquid solenoid	0	-	Cond water Flow	Fx4 GPM	8.55	8.55 Cool Water	Condenser Out	Tx12	3.82 C	143.82 Cool Water
Economizer sol.	0	-		FLOW	00.0				98	54.06 Chill Water
DIR VALVE1		-	Condenser in	Tx17	138.38	138.38 Cool Water	=		19	40 19 Chill Water
CHILL VALVE2	0		Direct HX in	T×18	59.29	59.29 Cool Water	QL		3 73 C	39 73 Chill Water
manual switch	0		Econom Liq In	Tx19	139.43	39,43 Refrigerant	e	Ī	37 C	62.37 Chill Water
10/11/95									30.88	
13.00			LOAD (KW)	5.11			Superheat		8	
5:11pm		-	REJECT(KW)	6.70					-	
2nd stage	+		DIRECT HX(kw)	3.06					+	
	_	_								

_	0	0	1st stage suct	Px1 PSI	4.10	4.10 Refrigerant	Direct HX Out	Tx1	51.75	51.75 Chill Water
Compr 1 High(1) C			Receiver	Px2 PSI	55.78	55.78 Refrigerant	EV1 Suction	ζ E	33.31	33.31 Refrigerant
Compressor 2(1)	0	_	1st stage disch	Px3 PSI	20.78	20.76 Refrigerant	1st Stage Discharge	Tx3	164.04	164.04 Refrigerant
Compressor 3(1) C	0	_	2nd stage suct	Px4 PSI	18.80	18.80 Refrigerant	2nd Stage Suction	T×4	98.50	98.50 Refrigerant
	0	0	Condenser in	Px5 PSI	57.29	57.29 Refrigerant	Condenser In	Tx5	163.40	163.40 Refrigerant
	0	0	Condenser out	Px6 PSI	56.48	56.48 Refrigerant	Condenser Out	9X 1	159.11	59.11 Refrigerant
Compressor 6(2)	0	0	Liq Ref In	Px7 PSI	54.21	54.21 Refrigerant	EV2 OUT	Tx7	32.58	32.58 Refrigerant
Compressor 7(2) C	0	_		KW	7.58		Economizer Liq Out	1x8	100.12	100.12 Refrigerant
	0	0	Evap water Flow	Fx1 GPM	2.54	2.54 Chill Water	Economizer Vap Out	8× <u>+</u>	96.46	96.46 Refrigerant
	0	0		Fx2 CFM	25.12		Comp 1 (1 stage) disc	Tx10	189.97	89.97 Refrigerant
Direct HX bypass	0	7		Fx3 GPM	0.00		Comp 6(2 stage) disc	Tx11	171.89	71.89 Refrigerant
Cliquid solenoid	0		Cond water Flow	Fx4 GPM	8.58	Cool Water	Condenser Out	Tx12	156.64	156.64 Cool Water
Economizer sol.				FLOW	0.00		Evaporator In	T×13	53.38	53.38 Chill Water
DIR VALVE1			Condenser in	Tx17	142.90	142.90 Cool Water	Evaporator Out	1×14	39.73	39.73 Chill Water
CHILL VALVE2 0	0		Direct HX in	Tx18	59.80	59.80 Cool Water	Final Outlet Temp	Tx15	39,68	39,68 Chill Water
manual switch	0		Econom Liq In	Tx19	150.02	Refrigerant	Direct HX In (chilled)	T×16	63.71	Chill Water
10/11/95							1st STAGE SUCTION	Tx20	31.89	
014			LOAD (kW)	5.00			Superheat		5 00	
5:20pm		_	REJECT(KW)	16.95					;	
2nd stage	4		DIRECT HX(kw)	3.78						
	_									

Compr 1 Low (1)	0	0	1st stage suct	Px1 PSI	4.15	4.15 Refrigerant	Direct HX Out	T×1	1.62	51.62 Chill Water
Compr 1 High(1)	0	-	Receiver	Px2 PSI	86.08	66.08 Refrigerant	EV1 Suction	Tx2	1.85	31.85 Refrigerant
Compressor 2(1)	0	-	1st stage disch	Px3 PSI	19.24	19.24 Refrigerant	1st Stage Discharge	Tx3 16	55.07	165.07 Refrigerant
Compressor 3(1)	0	_	2nd stage suct	Px4 PSI	17.19	17.19 Refrigerant	2nd Stage Suction	T×4 11	8.82	118.82 Refrigerant
Compressor 4(2)	0	0	Condenser in	Px5 PSI	67.01	67.01 Refrigerant	Condenser In	Tx5 17	3.05	173.05 Refrigerant
Compressor 5(2)	0	0	Condenser out	Px6 PSI	88.28	66.28 Refrigerant	Condenser Out	Tx6 16	19.51	169.51 Refrigerant
Compressor 6(2)	0	0	Liq Ref In	Px7 PSI	65.05	65.05 Refrigerant	EV2 OUT	Tx7	30.94	30.94 Refrigerant
Compressor 7(2)	0	0		KW	7.49		Economizer Liq Out	Tx8	88.98	96.85 Refrigerant
Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM	2.53	2.53 Chill Water	Economizer Vap Out	. 6×L	2.75	92.75 Refrigerant
2nd Stage bypass	0	0		FX2 CFM	27.25		Comp 1 (1 stage) diseTx10	_	1.56	191.56 Refrigerant
Direct HX bypass	0	0		Fx3 GPM	0.00		Comp 6(2 stage) disc Tx11		33.50	83.50 Refrigerant
Liquid solenoid	0	-	Cond water Flow	Fx4 GPM	8.58	8.58 Cool Water	Condenser Out	Tx12 16	37.63	167.63 Cool Water
Economizer sol.	0	-		FLOW	00.00		Evaporator In	Tx13	33.18	53.18 Chill Water
DIR VALVE1			Condenser in	Tx17	152.18	152.18 Cool Water	Evaporator Out	Tx14	38.95	Chill Water
CHILL VALVE2	0		Direct HX in	Tx18	60.15	60.15 Cool Water	Final Outlet Temp	Tx15	39.06	Chill Water
manual switch	0		Econom Liq In	Tx19	161.36	161.36 Refrigerant	Direct HX In (chilled)	Tx16	65.62	Chill Water
10/11/95						,	1st STAGE SUCTIONTX20		30.31	
016			LOAD (kW)	5.19			Superheat	_	3.00	
5:32pm			REJECT(kW)	19.10					•	
2nd stage			DIRECT HX(kw)	4.53						

Compr 1 Low (1)	0	0	1st stage suct	Px1 PSI	4 25	4 25 Refrigerant	Direct LIV Out		
Compr 1 High(1)	0	+	Receiver	Px2 PSI	74.97	74.97 Refrigerant	EVI Sudion		51./5 Chill Water
Compressor 2(1)	0	_	1st stage disch	Px3 PSI	19.30	Refriderant	1ct Ctoop Dischams	•	32.51 Kerngerant
Compressor 3(1)	0	-	2nd stage suct	Px4 PS	17.34	17.34 Refinerant	2nd Stage Cuction	_	105.50 Kerngerant
Compressor 4(2)	0	0	Condenser in	Px5 PSI	76.83	76.83 Refrigerant	Condenser In	1X4 1Z1.3	121.31 Remgerant
Compressor 5(2)	0	0	Condenser out	Px6 PSI	78.24	78.24 Refrigerant	Condenser Out	-	101.05 Remgerant
Compressor 6(2)	0	0	Liq Ref In	Px7 PSI	74.24	74.24 Refrigerant	EV2 OUT	-	7 5.30 Reingerant
Compressor 7(2)	0	0		KW	7.66		Economizer Lin Out		91.39 Acingerall
Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM	2.55	2.55 Chill Water	Fronomizer Van Out		None de la compansión d
2nd Stage bypass	0	0		FX2 CFM	27.63		Comp 1 (1 stage) disc T-40		100.71 Kerngerant
	0	1		Fx3 GPM	00.0		Comp 6/2 stade) disc		194.00 Reingerant
C Liquid solenoid	0	_	Cond water Flow	Fx4 GPM		Cool Water		•	77 47 Cel Meringerant
Economizer sol.	0	_		FLOW	000		Evanorator In	Tx12 177.4	77.47 Cool Water
DIR VALVE1			Condenser in	T×17	161 53	161 53 Cool Water	Evaporator Out		33.33 Chill Water
CHILL VALVE2	0		Direct HX in	Tx18	80.29	80.29 Cool Water	Final Outlet Temo		36.82 Chill Water
manual switch	0		Econom Liq In	Tx19	168.29	68.29 Refrigerant	1		T Chill Water
10/11/95							73	ı	Culli Water
017			LOAD (KW)	5.33			Superheat	.	0
5:38pm			REJECT(kW)	19.78			Bouloda	3.	5
2nd stage	_		DIRECT HX(kw)	4.73					
	_								

Compr 1 Low (1)	0	0	1st stage suct	Px1 PSI	4.10	4.10 Refrigerant	Direct HX Out	Tx1 52.0	52.01 Chill Water
Compr 1 High(1)	0	-	Receiver	Px2 PSI	84.54	84.54 Refrigerant	EV1 Suction	Tx2 32.3	32.30 Refrigerant
Compressor 2(1)	0	-	1st stage disch	Px3 PSI	21.20	Refrigerant	1st Stage Discharge	Tx3 167.9	167.95 Refrigerant
Compressor 3(1)	0	1 n	2nd stage suct	Px4 PSI	19.24	Refrigerant	2nd Stage Suction	Tx4 104.5	104.51 Refrigerant
Compressor 4(2)	0	0	Condenser in	Px5 PSI	85.86	Refrigerant	Condenser In	Tx5 189.9	189.97 Refrigerant
Compressor 5(2)	0	0	Condenser out	Px6 PSI	85.23	Refrigerant	Condenser Out	Tx6 187.3	187.39 Refrigerant
Compressor 6(2)	0	0	Liq Ref In	Px7 PSI	83.71	Refrigerant	EV2 OUT	Tx7 31.3	31.33 Refrigerant
Compressor 7(2)	0	0		κw	8.16		Economizer Liq Out	Tx8 103.1	103.10 Refrigerant
Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM	2.49	2.49 Chill Water	Economizer Vap Out	Tx9 97.5	97.53 Refrigerant
2nd Stage bypass	0	0		FX2 CFM	26.81		Comp 1 (1 stage) disc	Tx10 195.9	195.95 Refrigerant
Direct HX bypass	0	0		Fx3 GPM	0.0		Comp 6(2 stage) disc	Tx11 201.21	1 Refrigerant
Liquid solenoid	0	-	Cond water Flow	Fx4 GPM	8.65	Cool Water	Condenser Out	Tx12 185.34	4 Cool Water
Economizer sol.	0	-		FLOW	0.00		Evaporator In	Tx13 53.61	1 Chill Water
DIR VALVE1		\dashv	Condenser in	Tx17	168.79	188.79 Cool Water	Evaporator Out	T×14 39.76	6 Chill Water
CHILL VALVE2	0	-	Direct HX in	Tx18	60.51	60.51 Cool Water	Final Outlet Temp	Tx15 39.83	3 Chill Water
manual switch	0	-	Econom Liq In	Tx19	175.67	175.67 Refrigerant	Direct HX In (chilled)	Tx16 66.86	6 Chill Water
10/11/95							1st STAGE SUCTION	Tx20 30.23	3
018			LOAD (KW)	4.97			Superheat	3.00	9
5:43pm			REJECT(kW)	20.63					
2nd stage		+	DIRECT HX(kw)	4.75					

Compr 4 1 200 (4)	-	•								
	5	5	1st stage suct	PX1 PSI	4.20	4.20 Refrigerant	Direct UY Out			
Compr 1 High(1)	0	_	Receiver	Px2 PSI	80 28	i	EM Sudie	×	27.70	52.00 Chill Water
Compressor 2(1)	0	-	1st stage disch	Pr3 psi	24.05	Defrigerant	EVI SUCION		32.51	32.51 Refrigerant
Compressor 3(1)	c	7	2nd ctana cuch	0.77	3,0	ייי ביייים אינייים אינייים	ist Stage Discharge	Tx3 1	70.4	70.44 Refrigerant
Compressor 4(2)	c	- C	Condone in		D. 1	19.10 Kerngerant	2nd Stage Suction	1×4	24.68	24.68 Refrigerant
Compressor 7(2)	> 0	> 0	Collideriser in	ish ext	90.31	90.31 Refrigerant	Condenser In		96.75	96.75 Refrigerant
Complessor 5(z)	5	5	Condenser out	Px6 PSI	89.67	89.67 Refrigerant	Condenser Out		01 10	101 10 Defricement
Compressor 6(2)	0	0	Liq Ref In	Px7 PSI	88.60 F	88.60 Refrigerant	EV2 OLIT	•	2) Leingeran
Compressor 7(2)	0	0		<u>-</u>	8 25		1.0	•	51.40	31.40 Kerngerant
Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM	252	2 52 Chill Woter	Т		74.47	104.47 Retrigerant
2nd Stage bypass	0	0		FX2 CFM	27 18				05.20	105.20 Refrigerant
Direct HX bypass	0	0			2 6			_	98.15	98.15 Refrigerant
Liquid solenoid	C	-	Cond water Flour		2	$\neg \vdash$	ogip (208.60	Refrigerant
E company		- ,	מוכו ב וסא	ELD +XL	Š	5.34 Cool Water	Condenser Out	Tx12 1	189.01 C	Cool Water
ECONOMIZE SOL	5			FLOW	0.0		Evaporator in	T~13	Lo Ro	- F.III 18/-4-
DIR VALVE1			Condenser in	1×17	73 98	173 98 Cool Water			00.00	55.50 CIIIII Water
CHILL VALVE2	0		Direct HX in		20.81	_			39.63	39.63 Chill Water
manual switch	0		n Lia In	_	93.58	+-	Т		39.78	Chill Water
10/11/95						1	ARCITACIONINES		_	Chill Water
019			LOAD (KW)	20.5			NOCTION I		30.91	
5:50pm				18.49			onbellieat		3.00	
2nd stage			DIRECT HX(kw)	5.09	-					
							_	_	_	-

Compr 1 Low (1)	0	0	1st stage suct	Px1 PSI	4.20	Refrigerant	4.20 Refrigerant Direct HX Out	Tx1 52	52.01 Chill Water	ater
Compr 1 High(1)	0	-	Receiver	Px2 PSI	95.82	95.82 Refrigerant	EV1 Suction		32.25 Refrigerant	rant
Compressor 2(1)	0	-	1st stage disch	Px3 PSI	21.34	21.34 Refrigerant	1st Stage Discharge	-	71.32 Refrigerant	rant
Compressor 3(1)	0	-	2nd stage suct	Px4 PSI	19.44	19.44 Refrigerant	2nd Stage Suction	•	31.90 Refrigerant	rant
Compressor 4(2)	0	0	Condenser in	Px5 PSI	97.29	97.29 Refrigerant		•	202.18 Refrigerant	rant
Compressor 5(2)	0	0	Condenser out	Px6 PSI	96.65	96.65 Refrigerant	=		192.71 Refrigerant	rant
Compressor 6(2)	0	0	Liq Ref In	Px7 PSI	94.75	94.75 Refrigerant	EV2 OUT	Tx7 30	30.94 Refrigerant	rant
Compressor 7(2)	0	0		ΚW	8.35		Economizer Liq Out	Tx8 104	104.96 Refrigerant	rant
Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM	2.53	2.53 Chill Water	Economizer Vap Out	Tx9 104	104.32 Refrigerant	rant
2nd Stage bypass	0	0		FX2 CFM	27.15		Comp 1 (1 stage) disc	Tx10 198	198.76 Refrigerant	rant
- Direct HX bypass	0	0	_	Fx3 GPM	0.00		Comp 6(2 stage) disc	Tx11 213	213.68 Refrigerant	rant
Ciquid solenoid	0	-	Cond water Flow	Fx4 GPM	8.60	8.60 Cool Water	Condenser Out	Tx12 193	193.22 Cool Water	/ater
Economizer sol.	0	-		FLOW	0.00		Evaporator In	•	53.56 Chill Water	ater
DIR VALVE1			Condenser in	Tx17	185.34	185.34 Cool Water	==	Tx14 39	39.78 Chill Water	ater
CHILL VALVE2	0		Direct HX in	T×18	80.85	60.85 Cool Water	Final Outlet Temp		39.93 Chill Water	ater
manual switch	0		Econom Liq In	Tx19	183.92	183.92 Refrigerant	Direct HX In (chilled)	Tx16 67	67.79 Chill Water	ater
10/11/95							1st STAGE SUCTION	Tx20	30.86	
020			LOAD (KW)	5.03			Superheat		3.00	
5:55pm			REJECT(KW)	9.77						
2nd stage		-	DIRECT HX(kw)	5.19						
		_								

	-						52 11 Chill Water
		Receiver	Px2 PSI 1	106.96 Refrigerant		120	Doffice Trace
	1	1st stage disch		21.88 Refrigerant	1	32.70	Reingeram
	1 1	_		19 98 Refricerant		172.38	Remgerant
	0	Condenser in		108 82 Refrigerant	1	132.10	Kerngerant
Compressor 5(z)	0	Condenser out		107 99 Refrigerant	Condenser III	1 X3 206.82	Refrigerant
Compressor 6(2) 0	0	Liq Ref In		105.93 Refrigerant	FV2 OI IT	N .	205.21 Retrigerant
Compressor 7(2) 0	0		L	8.64	Fronomizer Lia Out		or.comerigerant
Compressor 8(2) 0	0	Evap water Flow	Fx1 GPM	2.51 Chill Water	T		100.00 Reingerant
2nd Stage bypass 0	0	The same of the sa		26.86	1	•	va.63 Kerngerant
Direct HX bypass 0	0			000	Como 6/2 stage) disc	00'88' 0'YY	199.00 Kerngerant
Liquid solenoid 0	-	Cond water Flow	Fx4 GPM	8.62 Cool Water	1	2000	207 84 Cell Meridenant
Economizer sol. 0	_		FLOW	000		502.01	Cool water
DIR VALVE1		Condenser in	1	195 79 Cool Water		53.71	Chill Water
CHILL VALVE2 0		Direct HX in		60.93 Cool Water	1	1×14 39.83	Chill Water
manual switch 0		Econom Lia In	4	88 58 Refrigerant	Direct IV Is (shilled)	38.00	Cnill Water
10/11/95	ļ		L		1st CTAGE CLICTION	08.01	Chill Water
021		LOAD (KW)	5.03		Superheat SUCION	11XZU 30.71	
5:58pm		REJECT(KW)	8.72		oabellicat	3.2	
2nd stage		DIRECT HX(kw)	5.18				

Compr 1 Low (1)	0	0	1st stage suct	Px1 PSI	3.42	Refrigerant	3.42 Refrigerant Direct HX Out	Tx1	40.10	40.10 Chill Water
Compr 1 High(1)	0	-	Receiver	Px2 PSI	103.88	Refrigerant	103.88 Refrigerant EV1 Suction	<u>8</u>	25.03	25.03 Refrigerant
Compressor 2(1)	0	0	1st stage disch	Px3 PSI	16.85	16.85 Refrigerant	1st Stage Discharge	Ţ	168.73	168.73 Refrigerant
Compressor 3(1)	0	-	n 2nd stage suct	Px4 PSI	15.82	15.82 Refrigerant	2nd Stage Suction	T×4	86.73	86.73 Refrigerant
Compressor 4(2)	0	0	Condenser in	Px5 PSI	105.74	105.74 Refrigerant	Condenser in		206.76	206.76 Refrigerant
Compressor 5(2)	0	0	Condenser out	Px6 PSI	105.05	105.05 Refrigerant	Condenser Out		195.84	195.84 Refrigerant
Compressor 6(2)	0	0	Liq Ref In	Px7 PSI	103.20	103.20 Refrigerant	EV2 OUT	Tx7	25.51	25.51 Refrigerant
Compressor 7(2)	0	0		KW	6.88		Economizer Liq Out	Tx8	96.75	96.75 Refrigerant
Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM	2.20	2.20 Chill Water	Economizer Vap Out	6X	87.67	87.67 Refrigerant
2nd Stage bypass	0	0		FX2 CFM	22.04		Comp 1 (1 stage) disc	1×10	188.44	188.44 Refrigerant
_ Direct HX bypass	0	0	_	Fx3 GPM	0.00		Comp 6(2 stage) disc	Tx1	220.14	220.14 Refrigerant
15 Liquid solenoid	0	-	Cond water Flow	Fx4 GPM	8.61	Cool Water	Condenser Out	Tx12	200.73	200.73 Cool Water
Economizer sol.	0	-		FLOW	0.00		Evaporator In	Tx13	41.52	41.52 Chill Water
DIR VALVE1			Condenser in	Tx17	195.91	195.91 Cool Water	Evaporator Out	TX14	31.66	31.66 Chill Water
CHILL VALVE2	0		Direct HX in	T×18	59.90	59.90 Cool Water	Final Outlet Temp	Tx15	37.78	37.78 Chill Water
manual switch	0		Econom Liq In	Tx19	193.05	193.05 Refrigerant	Direct HX In (chilled)	Tx16	40.39	Chill Water
10/11/95							1st STAGE SUCTION	Tx20	26.94	
022			LOAD (KW)	3.13			Superheat		9.00	
6:03pm			REJECT(kW)	5.99						
2nd stage			DIRECT HX(kw)	-0.36						
1 kW Load										

Compr 1 Low (1)		0	1st stage suct	Py1 PSI	907	4 00 ID of rice result				
Compr 1 High(1)		-	Receiver	18d CXd	07.53	Definerant	07 Ka Defination Charles Charles	× '	40.42	40.42 Chill Water
Compressor 2(1)		C	1ct ctana diech	042 063	2 2 2 2	Deference	EVI SUCADII	Ķ	1.0	29.44 Kerngerant
	1	,	מול אול	0 L CY L	10.03	5.53 Kemgerant	1st Stage Discharge	Tx3	169.95	169.95 Refrigerant
Compressor 3(1)	2	-	n 2nd stage suct	Px4 PSI	14.60	14.60 Refrigerant	2nd Stage Suction	T×4	82.58	82 58 Refringrant
Compressor 4(2)	2	0	Condenser in	Px5 PSI	98.75	98.75 Refrigerant	Condenser In	<u>ب</u> <u>۲</u>	100 25	00 25 Defrigerant
Compressor 5(2)	0	0	Condenser out	Px6 PSi	98.17	98.17 Refrigerant	Condenser Out	<u> </u>	100.00	09.43 Netrigerall
Compressor 8(2)	0	0	Liq Ref In	Px7 PSI	98.51	96.51 Refrigerant	EV2 OLIT	? ?	20,00	Defrigerant
Compressor 7(2)	0	0			9 9 9		Economizer Lin Out	× %	04.67	20.00 Relligerant
Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM	2.20	2.20 Chill Water	Fronomizer Van Out	<u> </u>	01.0	Defricement
2nd Stage bypass	0	0		FX2 CFM	22.67		Comp 1 (1 stage) disc	۲ ۲ ک	20.70	99.70 Relingerant
☐ Direct HX bypass	s o	0	_	Fx3 GPM	000		Comp 6(2 stane) disc	2 Y	2,6,7	100.00 Relingerant
Ciquid solenoid	0	-	Cond water Flow	FX4 GPM		Cool Water	Condenser Out	- \$- - \$-	100.13	408 24 Certification
Economizer sol.	0	-		FLOW	000		Evanorator la	17.16	1200	190.21 COOI Water
DIR VALVE1			Condenser in	T×17	190.35	190.35 Cool Water	Evaporator Out	2 Y Z	47.14	Crill water
CHILL VALVE2	0		Direct HX in	T×18	58.10	58.10 Cool Water	Final Quitlet Temp	* × ×	27.00	Chill Water
manual switch	0		Econom Liq In	Tx19	189.34	89.34 Refrioerant	Direct HX in (chilled)	- V - V	00.70	CIIII Water
10/11/95							1st STAGE SLICTION	252	3 5	TO SO CIIII Water
023			LOAD (KW)	2.52			Superheat		5 2	
6:08pm			REJECT(kW)	7.28					3	
2nd stage			DIRECT HX(kw)	-0.11						
1 kW Load										

<u>ပ</u>	Compr 1 Low (1)	0	0	1st stage suct	Px1 PSI	3.86	Refrigerant	3.86 Refrigerant Direct HX Out	HX1	40.83	40 83 Chill Water
ပ	Compr 1 High(1)	0	-	Receiver	Px2 PSI	87.42	87.42 Refrigerant	EV1 Suction	2	29 17	29 17 Refrinerant
Ç	Compressor 2(1)	0	0	1st stage disch	Px3 PSI	13.72	13.72 Refrigerant	***	1×3	166.14	166.14 Refrigerant
<u>ပ</u>	Compressor 3(1)	0	٦ ت	2nd stage suct	Px4 PSI	12.94	12.94 Refrigerant	2nd Stage Suction	X X	76.42	76.42 Refrigerant
<u>ပ</u>	Compressor 4(2)	0	0	Condenser in	Px5 PSI	86.59	86.59 Refrigerant	Condenser In	Tx5	195.04	95.04 Refrigerant
ပ	Compressor 5(2)	0	0	Condenser out	Px6 PSI	88.11	86.11 Refrigerant	Condenser Out	9X	189.78	189.78 Refrigerant
ပ	Compressor 6(2)	0	0	Liq Ref In	Px7 PSI	86.54	Refrigerant	EV2 OUT	1×7	28.25	28.25 Refrigerant
ပ	Compressor 7(2)	0	0		ΚW	5.70		Economizer Liq Out	8× <u>F</u>	83.03	83.03 Refrigerant
<u>ပ</u> ု	Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM	2.25	2.25 Chill Water	Economizer Vap Out	8X E	77.26	77.26 Refrigerant
<u>N</u>	2nd Stage bypass	0	0		FX2 CFM	21.85		Comp 1 (1 stage) disc	Tx10	178.49	Refrigerant
<u>0</u>	Direct HX bypass	0	0	-	Fx3 GPM	0.00		Comp 6(2 stage) disc	TXT	210.61	210.61 Refrigerant
<u> </u> 7	Figuid solenoid	0	-	Cond water Flow	Fx4 GPM	8.58	8.56 Cool Water	Condenser Out	Tx12	185.77	185.77 Cool Water
Ш	Economizer sol.	0	-		FLOW	00.0		Evaporator In	T×13	41.95	Chill Water
Ω	DIR VALVE1		-	Condenser in	Tx17	178.85	176.85 Cool Water	Evaporator Out	1×14	34.03	Chill Water
ပျ	CHILL VALVE2	0		Direct HX in	Tx18	57.14	57.14 Cool Water	Final Outlet Temp	Tx15	38.81	Chill Water
	manual switch	0		Econom Liq In	Tx19	183.83	83.63 Refrigerant	Direct HX In (chilled)	T×16	41.90	41.90 Chill Water
- i	10/11/95							1st STAGE SUCTION	1x20	31 64	
Ö	024			LOAD (KW)	2.57			Superheat		7 00	
ဖ	6:12pm			REJECT(KW)	11.00					}	
<u>~</u>	2nd stage			DIRECT HX(kw)	-0.01						
_	1 kW Load										

Compr 1 Low (1)	0	0	1st stage suct	Px1 PSI	3.81	Refrigerant	Direct HX Out	×	40.95	40.95 Chill Water
Compr 1 High(1)	0	-	Receiver	Px2 PS!	78.83	78.63 Refrigerant	EV1 Suction	2	29.59	29.59 Refrinerant
Compressor 2(1)	0	0	1st stage disch	Px3 PSI	11.92	11.92 Refrigerant	1st Stage Discharge	<u> </u>	160.33	Refrinerant
Compressor 3(1)	0	-	\dashv	Px4 PSI	11.09	11.09 Refrigerant	2nd Stage Suction	×	72.08	72.08 Refrigerant
Compressor 4(2)	0	0	Condenser in	Px5 PSI	77.80	77.80 Refrigerant	Condenser In	<u>X</u>	187.77	Refrigerant
Compressor 5(2)	0	0	Condenser out	Px6 PSI	77.38	77.36 Refrigerant	Condenser Out	92	180 99	Refrinerant
Compressor 6(2)	0	0	Liq Ref In	Px7 PSI	78.29	78.29 Refrigerant	EV2 OUT	<u> </u>	28.15	Refrigerant
Compressor 7(2)	0	0		KW	5.41		Economizer Lia Out	4 4	78.04	Refriderant
Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM	2.22	2.22 Chill Water	Economizer Vap Out	Q.	80 70	Refriderant
2nd Stage bypass	0	0		FX2 CFM	23.16		Comp 1 (1 stage) disc	2	171 85	71 & Petriogram
- Direct HX bypass	0	0	-	Fx3 GPM	0.00		Comp 6(2 stane) disc	<u> </u>	20.70	204 20 Potriogram
Eliquid solenoid	0	-	Cond water Flow	Fx4 GPM	8.63	8.63 Cool Water	Condenser Out	252	477 47	South Motor
Economizer sol.	0	-		FLOW	8		Evanorator to	4 C		Cool water
DIR VALVE1			Condenser in	T×17	172.40	172.40 Cool Water	Evaporator Out	2 2	32.00	41.72 Chill water
CHILL VALVE2	0		Direct HX in	Tx18	58.12	56.12 Cool Water	Final Outlet Temp	1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×	37.00	Chill Water
manual switch	0		Econom Liq In	Tx19	173.57	173.57 Refrigerant	Direct HX In (chilled)	Ž V	70.7	Chill Woter
10/11/95							14 STAGE SLICTION	25.7	200	All Male
025	-		LOAD (KW)	2.69			Superheat		7 5 7	
6:17pm			REJECT(kW)	6.31					3	
2nd stage			DIRECT HX(kw)	-0.32						
1 kW Load		-	1						1	

Compr 1 Low (1)	0	0	1st stage suct	Px1 PSI	3.61	Refrigerant	3.61 Refrigerant Direct HX Out	1×1	40.44 C	40.44 Chill Water
Compr 1 High(1)	0	-	Receiver	Px2 PSI	72.28	Refrigerant	72.28 Refrigerant EV1 Suction	Tx2	26.81 F	26.61 Refrigerant
Compressor 2(1)	0	0	1st stage disch	Px3 PSI	10.55	Refrigerant	10.55 Refrigerant 1st Stage Discharge	Tx3	53.20 F	153.20 Refrigerant
Compressor 3(1)	0	7	2nd stage suct	Px4 PSI	9.67	Refrigerant	9.67 Refrigerant 2nd Stage Suction		67.39 R	Refrigerant
Compressor 4(2)	0	0	Condenser in	Px5 PSI	73.41	Refrigerant	73.41 Refrigerant Condenser In		77.94 F	177.94 Refrigerant
Compressor 5(2)	0	0	Condenser out	Px6 PSI	72.92	Refrigerant	72.92 Refrigerant Condenser Out	Tx6 1	78.54 F	176.54 Refrigerant
Compressor 6(2)	0	0	Liq Ref In	Px7 PSI	71.28	71.26 Refrigerant	EV2 OUT	~	25.58 R	Refrigerant
Compressor 7(2)	0	0		KW	5.10	-	Economizer Liq Out	1×8	68.82 R	Refrigerant
Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM	2.22	2.22 Chill Water	Economizer Vap Out		64.18 F	64.18 Refrigerant
2nd Stage bypass	0	0		FX2 CFM	24.07		Comp 1 (1 stage) disc	Tx10 1	65.73 R	165.73 Refrigerant
Direct HX bypass	0	` 0		Fx3 GPM	0.00		Comp 6(2 stage) disc	Tx11 2	02.43 F	202.43 Refrigerant
C Liquid solenoid	0	-	Cond water Flow	Fx4 GPM	8.62	8.62 Cool Water	Condenser Out	Tx12 1	175.45 C	Cool Water
Economizer sol.	0	-		FLOW	00.0		Evaporator In	Tx13	41.72	Chill Water
DIR VALVE1			Condenser in	Tx17	165.98	Cool Water	165.98 Cool Water Evaporator Out	Tx14	33.23 C	Chill Water
CHILL VALVE2	0	_	Direct HX in	Tx18	55.48	Cool Water	55.46 Cool Water Final Outlet Temp	Tx15	38.86 C	Chill Water
manual switch	0		Econom Liq In	Tx19	163.06	163.06 Refrigerant	Direct HX In (chilled)	Tx18	41.10 C	Chill Water
10/11/95							1st STAGE SUCTION	Tx20	28.75	
026			LOAD (kW)	2.72			Superheat		7.00	
6:22pm			REJECT(KW)	11.77						
2nd stage			DIRECT HX(kw)	-0.20						
1 kW Load		_								

Compr 1 Low (1)	0	1st stane suct	Dv1 Do!	1961	2 Seign				
		DOS OFFICE		0.0	remiderant	4.33 reingeram Direct HX Out	1x1 38	38.22 Chill Water	II Water
COMPT 1 HIGH(1)	2	Receiver	PX2 PSI	60.17 F	Refrigerant	60.17 Refrigerant EV1 Suction	TX2 32	32 48 Refrinerant	ricerant
Compressor 2(1)	0	1st stage disch	Px3 PSI	10.01	Refrigerant	Refrigerant 1st Stage Dischame		41 22 Defrigerent	in order
Compressor 3(1)	0	n 2nd stage suct	Px4 PSI	200	Petricerant	9 38 Refriderent 2nd Stage Suction	-	3	Ingelalli
Compressor 4(2)	0	Condenser in	DVK DO	7 2 2 2	Potrigorant	City Claye Sucholl			Kerngerant
Company (C)				C7.10	vei igelalli	or.compension condenser in		79.89 Refi	Refrigerant
COLLIDICISM S(K)			Px6 PSI	60.85 F	Refrigerant	60.85 Refrigerant Condenser Out	TX6 164	164.24 Refr	Refrigerant
Compressor 6(2)	0	Liq Ref In	Px7 PSI	59.05 R	59.05 Refrigerant EV2 OUT	EV2 OUT	Tx7 31	31.73 Refrioerant	riderant
Compressor 7(2)	0		ΚW	4.36		Economizer Lia Out		69 55 Ref	Refrinerant
Compressor 8(2)	0	Evap water Flow	Fx1 GPM	2.23 C	hill Water	2.23 Chill Water Economizer Vap Out	٠.	64 13 Refrigerant	ricerent
2nd Stage bypass	0		Fx2 CFM	25.08		Comp 1 (1 stage) disc	-	172 20 Refrigerant	ing crant
Direct HX bypass	0		Fx3 GPM	0.00		Comp 6(2 stage) disc		204 14 Defrigerant	igerant
Liquid solenoid	0	Cond water Flow	Fx4 GPM	8.53 C	ool Water	8.53 Cool Water Condenser Out		183 80 Col Mater	Melani
Economizer sol.	0		_	8		Evenorator In		3	water
DIR VALVE1		Condenser in		K1 R2	Mater	484 83 Cool Motor Eventual Co.		39.40 Chill Water	Water
CHILL VALVE2	c	Oise In		2 6	OOI WATER	Evaporator Out		34.87 Chill	Chill Water
77.07.) (22.66	ool Water	55.20 Cool Water Final Outlet Temp	Tx15 37.	37.31 Chill Water	l Water
manual switch	0	Econom Liq In	Tx19	54.27 R	efingerant	154.27 Refrigerant Direct HX In (chilled)	Tx16 38	38.02 Chill	Chill Water
10/11/95						1st STAGE SUCTION		22.47	
027		LOAD (KW)	1.46			Superheat	,	2 4	
6:32pm		REJECT(KW)	14.72				,	3	
2nd stage		DIRECT HX(kw)	-0.44						
1 kW Load								-	

Compr 1 Low (1)	0	0	1st stage suct	Px1 PSI	4 05	4 05 Refrinerant	Direct HY Out	12.1	100	Sill VA Cata
Compr 1 High(1)	0	0	Receiver	Px2 PSI	46.08	46.06 Refrigerant	EV1 Suction		3 3	20.00 Cilli Water
Compressor 2(1)	0	0	1st stage disch	Px3 PSI	8 21	8 21 Refrigerant	1st Stane Dischame		4000	41 48 Defricerent
Compressor 3(1)	0		2nd stage	Px4 PSI	7.82	7.82 Refrigerant	2nd Stane Surtion	- .	00 00 00	Dofrigorant
Compressor 4(2)	0	0	Condenser in	Px5 PSI	46.15	46.15 Refrigerant	Condenser In	Tx5 167	86.0	67.86 Refrigerant
Compressor 5(2)	0	0	Condenser out	Px6 PSI	45.67	45.67 Refrigerant	Condenser Out	•	80 8	36 69 Refrinerant
Compressor 6(2)	0	0	Liq Ref In	Px7 PSI	44.93	4.93 Refrigerant		•	79 8	29 79 Refrinerant
Compressor 7(2)	0	0		KW	3.97		rer Liq Out		3.92 Re	53.92 Refrigerant
Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM	2.22	2.22 Chill Water	Economizer Vap Out		82 Re	93.82 Refrigerant
2nd Stage bypass	0	0		Fx2 CFM	27.54		Comp 1 (1 stage) disc	4	169.51 Re	Refrigerant
Direct HX bypass	0	0	-	Fx3 GPM	0.00		Comp 6(2 stage) disc	•	70 Re	98.70 Refrigerant
Liquid solenoid	0	4-	Cond water Flow	Fx4 GPM	8.53	Cool Water	Condenser Out	_	30	39 30 Cool Water
Economizer sol.	0	-		FLOW	0.0		Evaporator In		75	36 75 Chill Water
DIR VALVE1			Condenser in	Tx17	127.02	127.02 Cool Water	Evaporator Out		31.56	Chill Water
CHILL VALVE2	0		Direct HX in	Tx18	54.85	54.85 Cool Water	OL.		Š	34 41 Chill Water
manual switch	0		Econom Liq In	Tx19	141.09	141.09 Refrigerant	ē		28	35 28 Chill Water
10/11/95							Ļ		31 80	
028			LOAD (KW)	1.66			T	,	200	
6:44pm			REJECT(KW)	15.09					3	
2nd stage			DIRECT HX(kw)	-0.48						
1 kW Load		\dashv								

LOW LOAD TEST

S S S S S S S S S S S S S S S S S S S	Compr 1 High(1)	0	0	Receiver	Px2 PSI	14.51	14.51 Refrigerant	EV1 Suction	Txo	27 69	27 89 Refrigerant
Compre	Compressor 2(1)	0	0	1st stage disch	Px3 PSI	15.63	Refrigerant	1st Stade Discharde	•	32.30	Refrigerant
Compre	Compressor 3(1)	0	1		Px4 PSI	9.13	9.13 Refrigerant	2nd Stage Suction	.	72.91	Refrinerant
Compre	Compressor 4(2)	0	0	Condenser in	Px5 PSI	15.48	5.48 Refrigerant	Condenser In	Tx5	20.78	Refrigerant
Compre	Compressor 5(2)	0	0	Condenser out	Px6 PSI	14.99	14.99 Refrigerant	Condenser Out		74.13	Refrioerant
Compre	Compressor 6(2)	0	0	Liq Ref In	Px7 PSI	13,19	13.19 Refrigerant	EV2 OUT	Tx7	26.98	26.96 Refrigerant
Compre	Compressor 7(2)	0	0		KW	1.72		Economizer Lia Out	5. 7.5 8.5	72.67	Refrigerant
Compre	Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM	1.8	1.84 Chill Water	Economizer Vap Out		73.65	Refrigerant
2nd Sta	2nd Stage bypass	0	-		FX2 CFM	0.0		Comp 1 (1 stage) disc	6	60.60	160.60 Refrigerant
Direct H	Direct HX bypass	0	0	-	Fx3 GPM	0.00		Comp 6(2 stage) disc		74.31	74.31 Refrigerant
Pionelos pinbil	olenoid	0	-	Cond water Flow	Fx4 GPM	8.45	8.45 Cool Water	Condenser Out	~	77.13	77.13 Cool Water
	Economizer sol.	0	0		FLOW	0.00		Evaporator In		33.87	Chill Water
DIR VALVE1	LVE1		_	Condenser in	Tx17	70.84	70.84 Cool Water	Evaporator Out		30.03	Chill Water
CHIL	CHILL VALVE2	0	-	Direct HX in	Tx18	54.75	54.75 Cool Water	Final Outlet Temp	T×15	32.28	Chill Water
	manual switch	0	-	Econom Liq In	T×19	74.32	Refrigerant	Direct HX In (chilled)		32.67	Chill Water
10/12/95	2		-					1st STAGE SUCTION		27.17	
9				LOAD (KW)	1.02			Superheat		3 00	
9:45am				REJECT(kW)	7.86						
1st stage	a)			DIRECT HX(kw)	-0.32						
start											

Compr 1 Low (1)	0	0	1st stage suct	Px1 PSI	4.20	4.20 Refrigerant	Direct HX Out	Tx1 35.48	35.48 Chill Water
Compr 1 High(1)	0	0	Receiver	Px2 PSI	14.18	4.16 Refrigerant	EV1 Suction		Refrigerant
Compressor 2(1)	0	0	1st stage disch	Px3 PSI	15.29	5.29 Refrigerant	1st Stage Discharge		Refrigerant
Compressor 3(1)	0	-	2nd stage suct	Px4 PSI	48.8	8.94 Refrigerant	2nd Stage Suction		Refrigerant
Compressor 4(2)	0	0	i	Px5 PSI	15.19	15.19 Refrigerant	Condenser In	•	Refrigerant
Compressor 5(2)	0	0	Condenser out	Px6 PSI	14.85	14.85 Refrigerant	Condenser Out		Refrigerant
Compressor 6(2)	0	0	Liq Ref In	Px7 PSI	12.80	12,80 Refrigerant	EV2 OUT		
Compressor 7(2)	0	0		ΚW	1.20		Economizer Liq Out	Tx8 72.23	
Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM	1.84	1.84 Chill Water	Economizer Vap Out		Refrigerant
2nd Stage bypass	0	-		FX2 CFM	8.0		Comp 1 (1 stage) disc	-	
Direct HX bypass	0	0		Fx3 GPM	8.0		Comp 6(2 stage) disc	 	
Liquid solenoid	0	-	Cond water Flow	Fx4 GPM	8.45	8.45 Cool Water	Condenser Out		
Economizer sol.	0	0		FLOW	00.0		Evaporator In		Chill Water
DIR VALVE1			Condenser in	Tx17	71.15	71.15 Cool Water	Evaporator Out		Chill Water
CHILL VALVE2	0		Direct HX in	T×18	51.55	51.55 Cool Water	Final Outlet Temp		Chill Water
manual switch	0		Econom Liq In	T×19	73.35	73.35 Refrigerant	Direct HX In (chilled)	Tx16 35.29	Chill Water
10/12/95							1st STAGE SUCTION		
200			LOAD (kW)	0.92			Superheat		
10:10am			REJECT(kW)	2.98					
1st stage			DIRECT HX(kw)	-0.33					
start									
new low load contro	5								

Compr 1 Low (1)	0	0	1st stage suct	Px1 PSI 4.4	4.44 Refrigerant	Direct HX Out	Tx1 37.38	37.36 Chill Water
Compr 1 High(1)	0	0	Receiver		4.41 Refrigerant	EV1 Suction	Tx2 33.03 F	Refrigerant
Compressor 2(1)	0	0	1st stage disch	Px3 PSI 15,53	3 Refrigerant	1st Stage Discharge	Tx3 123.99 F	Refrigerant
Compressor 3(1)	0	-	2nd stage suct	Px4 PSI 8.7	8.79 Refrigerant	2nd Stage Suction	72.91	Refrigerant
Compressor 4(2)	0	0	Condenser in	Px5 PSI 15.3	5.34 Refrigerant	Condenser In	Tx5 106.31	Refrigerant
Compressor 5(2)	0	0	Condenser out	Px6 PSI 15.0	15.09 Refrigerant	Condenser Out	74.86	Refrigerant
Compressor 6(2)	0	0	Liq Ref In	Px7 PSI 12.8	12.84 Refrigerant	EV2 OUT	Tx7 33.32	Refrigerant
Compressor 7(2)	0	0		KW 1.22	2	Economizer Liq Out	Tx8 72.28	Refrigerant
Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM 1.8	1.85 Chill Water	Economizer Vap Out	Tx9 73.26	Refrigerant
2nd Stage bypass	0	1		FX2 CFM 0,00	9	Comp 1 (1 stage) disc	Tx10 158.09 F	Refrigerant
Direct HX bypass	0	0 1		Fx3 GPM 0.00	9	Comp 6(2 stage) disc	Tx11 75.10 F	Refrigerant
Liquid solenoid	0	-	Cond water Flow	Fx4 GPM 8.5	8.51 Cool Water	Condenser Out	Tx12 75.30	Cool Water
Economizer sol.	0	0		FLOW 0.00	Q	Evaporator In	Tx13 38.54	Chill Water
DIR VALVE1			Condenser in	Tx17 73.1	73.16 Cool Water	Evaporator Out	Tx14 34.24	Chill Water
CHILL VALVE2	0	_	Direct HX in	T×18 51.0	51.08 Cool Water	Final Outlet Temp	Tx15 38.63	Chill Water
manual switch	0		Econom Liq In	Tx19 73.6	73.64 Refrigerant	Direct HX In (chilled)	Tx16 37.22	Chill Water
10/12/95						1st STAGE SUCTION	Tx20 35.57	
003	-		LOAD (kW)	1.15		Superheat	2.80	
10:20am			REJECT(kW)	2.62				
1st stage			DIRECT HX(kw)	-0.35				
start								
new low load control	<u>ō</u>							

	5	0	1st stage suct	Px1 PSI	4.20	4,20 Refrigerant	Direct HX Out	Tx1 30 44	Chill Water
Compr 1 High(1)	0	0	Receiver	Px2 PSI	14.41	14.41 Refricerant	FV1 Suction		Defriceront
=	0	0	1st stage disch	Px3 PSI	14 AG	Refricerent	1st Stone Dischame		Velligerall.
· =	C	1	2nd ctane curd	D~1 Del	200	Defrigorant	13t Staye Discribinge	- -	
⊥_ `	, ,	1	Social States		0.0	Vellinelalli	zna stage suction		Refrigerant
3 .1	5	5	Condenser in	EX CX	14.31	Refrigerant	Condenser In		Refrigerant
~ ?	0	0	Condenser out	Px6 PSI	13,92	Refrigerant	Condenser Out		Refrinerant
<u>~</u>	0	0	Liq Ref In	Px7 PSI	13.09	Refrigerant	EV2 OUT	•	Refricerant
2	0	0		KW	1.71		Economizer Lia Out		Petrioerent
2	0		Evap water Flow	Fx1 GPM	1.08	Chill Water	Economizer Van Out		73 26 Defrigerant
288	0	_		FX2 CFM	0.00		Como 1 (1 stade) disc	_	167.25 Pefrioerant
23	0	7		Fx3 GPM	0.0		Comp 6(2 stage) disc		75 10 Refinerant
-	0	_	Cond water Flow		8.50	Cool Water	Condenser Out		72 18 Cool Motor
	0			FLOW	000		Evanorator In		Chill Motor
	 		Condenser in	T×17	68.34	Cool Water	Evanorator Out		TO OCHIEL MARKET
	0		Direct HX in	1×16	51.23	Cool Water	Final Outlet Temn		Chill Water
	0		Econom Liq In	1×19	73.54	Refrigerant	Direct HX In (chilled)		20 24 Chill Mater
							1st STAGE SLICTION		A A SEC
			LOAD (KW)	1.29			Superheat		
			REJECT(KW)	5.91				3	
			DIRECT HX(kw)	-0.24					
_									
intro									
	Compressor 2(1) Compressor 3(1) Compressor 4(2) Compressor 6(2) Compressor 7(2) Compressor 7(2) Compressor 7(2) Compressor 7(2) Compressor 8(2) Compressor 8(2) Compressor 8(2) Compressor 8(2) Compressor 9(2) 00000000000	00000000000		0 1st stage disch Px3 P 0 1 n 2nd stage suct Px4 P 0 0 Condenser in Px6 P 0 0 Liq Ref In Px7 P 0 0 Evap water Flow Fx1 G 0 0 Evap water Flow Fx2 C 0 0 Evap water Flow Fx4 G 0 0 Condenser in Fx2 C 0 0 Econom Liq In Tx18 0 Econom Liq In Tx18	0 0 1st stage disch Px3 PSI 0 1 n 2nd stage suct Px4 PSI 0 0 Condenser in Px5 PSI 0 0 Liq Ref In Px7 PSI 0 0 Liq Ref In Px7 PSI 0 0 Evap water Flow Fx1 GPM 0 0 Evap water Flow Fx2 CFM 0 0 Econom Liq In Tx19 0 Econom Liq In Tx19 0 Econom Liq In Tx19 0 Econom Liq In Tx19 0 Direct HX in Tx19 0 Econom Liq In Tx19 0 Direct HX in Tx19 0 Econom Liq In Tx19	0 0 1st stage disch Px3 PSI 0 1 n 2nd stage suct Px4 PSI 0 0 Condenser in Px6 PSI 0 0 Liq Ref In Px7 PSI 0 0 Liq Ref In Px7 PSI 0 0 Evap water Flow Fx1 GPM 0 0 Evap water Flow Fx2 CFM 0 0 Condenser in Fx2 CFM 0 0 Econom Liq In Tx17 0 Econom Liq In Tx18 0 Econom Liq In Tx18 0 Econom Liq In Tx18 0 Econom Liq In Tx18 0 Direct HX in Tx18	0 1st stage disch Px3 PSI 14.65 Refrigerant 0 1 n 2nd stage suct Px4 PSI 0.69 Refrigerant 0 0 Condenser in Px5 PSI 14.31 Refrigerant 0 0 Liq Ref In Px7 PSI 13.09 Refrigerant 0 0 Liq Ref In Px7 PSI 1.3.09 Refrigerant 0 0 Liq Ref In Fx7 PSI 1.3.09 Refrigerant 0 0 Evap water Flow Fx1 GPM 1.00 Chill Water 0 1 Cond water Flow Fx4 GPM 0.00 0 0 Econom Liq In Tx17 85.00 0 Econom Liq In Tx19 73.54 Refrigerant 0 Econom Liq In Econom L	0 0 1st stage disch Px3 PSI 14.65 Refrigerant Tx3 Stage Discharge Tx3 0 1 n 2nd stage suct Px4 PSI 0.69 Refrigerant 2nd Stage Suction Tx4 0 0 Condenser in Px5 PSI 14.31 Refrigerant Condenser in Tx5 0 0 Liq Ref In Px7 PSI 13.92 Refrigerant Condenser Out Tx6 0 0 Liq Ref In Px7 PSI 1.71 Refrigerant Economizer Liq Out Tx7 0 0 Liq Ref In Fx2 CFM 0.00 Complexer Count Comp 1 (1 stage) disc Tx1 0 0 Evap water Flow Fx3 GPM 0.00 Comp 6(2 stage) disc Tx1 0 1 Cond water Flow Fx4 GPM 8.50 Cool Water Comp 6(2 stage) disc Tx1 0 0 Econom Liq In Tx17 68.34 Cool Water Fraporator Out Tx14 0 Econom Liq In Tx19 73.54 Refrigerant Direct HX In (chilled) Tx16 0 Econom Liq In Tx19 Superheat Superheat Tx16 0 DIRECT HX(kw) -0.24 Superheat Tx16	

Compr 1 Low (1)	0	0	1st stage suct	Px1 PSI	4.49 Refrigerant	nt Direct HX Out	Tx1 39.07	39.07 Chill Water
Compr 1 High(1)	0	0	Receiver	Px2 PSI	4.36 Refrigerant	nt EV1 Suction	Tx2 32.96	32.96 Refrigerant
Compressor 2(1)	0	0	1st stage disch	Px3 PSI	5.43 Refrigerant	nt 1st Stage Discharge		32.49 Refrigerant
Compressor 3(1)	0	-	2nd stage suct	Px4 PSI	8.69 Refrigerant	nt 2nd Stage Suction	Tx4 73.10	73.10 Refrigerant
Compressor 4(2)	0	0	Condenser in	Px5 PSI	5.38 Refrigerant		Tx5 113.27	Refrigerant
Compressor 5(2)	0	0	Condenser out	Px6 PSI	15.09 Refrigerant	nt Condenser Out	Tx6 73.00	Refrigerant
Compressor 6(2)	0	0	Liq Ref In	Px7 PSi	12.99 Refrigerant	nt EV2 OUT	Tx7 32.78	32.78 Refrigerant
Compressor 7(2)	0	0		KW	1.17	Economizer Liq Out	Tx8 72.28	72.28 Refrigerant
Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM	1.08 Chill Water	er Economizer Vap Out	Tx9 73.65	73.65 Refrigerant
2nd Stage bypass	0	-		FX2 CFM	00.00	Comp 1 (1 stage) disc	Tx10 163.40	63.40 Refrigerant
Direct HX bypass	0	0		Fx3 GPM	0.00	Comp 6(2 stage) disc	Tx11 75.59	75.59 Refrigerant
Ciquid solenoid	0	-	Cond water Flow	Fx4 GPM	8.49 Cool Water	er Condenser Out	Tx12 74.58	Cool Water
Economizer sol.	0	0		FLOW	0.00	Evaporator In	Tx13 40.38	Chill Water
DIR VALVE1			Condenser in	Tx17	72.85 Cool Water	er Evaporator Out	Tx14 33.43	Chill Water
CHILL VALVE2	0		Direct HX in	Tx18	51.58 Cool Water	er Final Outlet Temp	Tx15 37.81	Chill Water
manual switch	0		Econom Liq In	T×19	73.59 Refrigerant	nt Direct HX In (chilled)	Tx16 38.78	Chill Water
10/12/95						1st STAGE SUCTION	Tx20 34.77	
005			LOAD (KW)	1.09		Superheat	8.	
10:31am			REJECT(kW)	2.09				
1st stage			DIRECT HX(kw)	-0.25				
start								
new low load control	<u>5</u>	\dashv						

Compr 1 Low (1)	0	0	1st stage suct	Px1 PSI	17.7	Refrigerant	Direct HX Out	Ι×ι	38.80	Chill Water
Compr 1 High(1)	0	0	Receiver	Px2 PSI	16.31	Refrigerant	EV1 Suction	22	32.61	Refrigerant
Compressor 2(1)	0	0	1st stage disch	Px3 PSI	17.92		1st Stage Discharge	×	136.30	Refrigerant
Compressor 3(1)	0	_	2nd stage suct	Px4 PSI	8.60	Refrigerant	2nd Stage Suction	ž	73.44	Refrigerant
Compressor 4(2)	0	0	Condenser in	Px5 PSI	17.73		Condenser In	<u>1</u> x	118.15	Refrigerant
Compressor 5(2)	0	0	Condenser out	Px6 PSI	17.00	Refrigerant	Condenser Out	9 2	86.39	Refrigerant
Compressor 6(2)	0	0	Liq Ref In	Px7 PSI	15.63		EV2 OUT	1×7	32.38	Refrigerant
Compressor 7(2)	0	0		₩	1.23		Economizer Liq Out	8X <u>F</u>	73.16	Refrigerant
Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM	1.05	Chill Water	Economizer Vap Out	0X	73.89	Refrigerant
2nd Stage bypass	0	-		FX2 CFM	0.00		Comp 1 (1 stage) disc	TX10	169.08	Refrigerant
Direct HX bypass	0	0	1	Fx3 GPM	9.0		Comp 6(2 stage) disc	TX1	78.14	Refrigerant
Iquid solenoid	0	-	Cond water Flow	Fx4 GPM	6.58	Cool Water	Condenser Out	Tx12	88.49	Cool Water
Economizer sol.	0	0		FLOW	0.00		Evaporator In	T×13	40.23	Chill Water
DIR VALVE1			Condenser in	T×17	86.86	Cool Water	Evaporator Out	T×14	33 33	Chill Water
CHILL VALVE2	0		Direct HX in	Tx18	52.21	Cool Water	Final Outlet Temo	T×15	37.48	Chill Water
manual switch	0		Econom Liq In	Tx19	75.10	Refricerant	Direct HX In (chilled)	Tyle	28.58	Chill Water
10/12/95							1st STAGE SUCTION	123	27.75	A A BIE
900			LOAD (KW)	1.05			Superheat		}	
10:46am			REJECT(KW)	1.89					3	
1st stage			DIRECT HX(kw)	-0.25						
start										
new low load control	_	_								

.

Compr 1 Low (1)	0	0	1st stage suct	Px1 PSI 4.15	4.15 Refrigerant	Direct HX Out	Ι×Ι	39.63	39.63 Chill Water
Compr 1 High(1)	0	0	Receiver	Px2 PSI 22.78	22.78 Refrigerant	EV1 Suction		29.84	Refrigerant
Compressor 2(1)	0	0	1st stage disch	Px3 PSI 8.64	6.64 Refrigerant	1st Stage Discharge	_	40.18	40,16 Refrigerant
Compressor 3(1)	0	٦ ا	1 2nd stage suct	Px4 PSI 6.15	6.15 Refrigerant	2nd Stage Suction		50.00	50.00 Refrigerant
Compressor 4(2)	0	0	Condenser in	Px5 PSI 24.37	24.37 Refrigerant	Condenser In		07.83	07.83 Refrigerant
Compressor 5(2)	0	0	Condenser out	Px6 PSI 23.83	23.83 Refrigerant	Condenser Out		84.8	08.46 Refrigerant
Compressor 6(2)	0	0	Liq Ref In	Px7 PSI 21.93	21.93 Refrigerant	EV2 OUT	-	29.79	29.79 Refrigerant
Compressor 7(2)	0	0		KW 2.95		Economizer Liq Out	1×8	51.23	Refrigerant
Compressor 8(2)	0	0	Evap water Flow Fx1 GPM		1.07 Chill Water	Economizer Vap Out		43.42	Refrigerant
2nd Stage bypass	0	0		FX2 CFM 9,19		Comp 1 (1 stage) disc	Tx10 1	162.31	Refrigerant
12 Direct HX bypass	0	0	-	FX3 GPM 0.00		Comp 6(2 stage) disc			Refrigerant
Liquid solenoid	0	-	Cond water Flow	Fx4 GPM	8,56 Cool Water	Condenser Out		105.40	Cool Water
Economizer sol.	0	-		FLOW 0.00		Evaporator In	Tx13	40.91	Chill Water
DIR VALVE1			Condenser in	Tx17 102.78	102.78 Cool Water	Evaporator Out		31.01	Chill Water
CHILL VALVE2	0		Direct HX in	Tx18 52.33	52.33 Cool Water	Final Outlet Temp		37.13	Chill Water
manual switch	0		Econom Liq In	Tx19 81.65	81.65 Refrigerant	Direct HX In (chilled)		39.00	39.00 Chill Water
10/12/95						1st STAGE SUCTION		30.81	
200			LOAD (KW)	1.53		Superheat		200	
10:56am			REJECT(KW)	3.24					
2nd stage			DIRECT HX(kw)	-0.30					
new low load control		\Box							

Compressor 2(1) 0 Receiver Px2 PSI 41.22 Refrigerant Compressor 2(1) 0 1st stage disch Px4 PSI 7.33 Refrigerant Compressor 4(2) 0 1 2nd stage suct Px4 PSI 7.33 Refrigerant Compressor 5(2) 0 0 Condenser in Px5 PSI 42.93 Refrigerant Compressor 5(2) 0 0 Liq Ref In Px7 PSI 42.93 Refrigerant Compressor 6(2) 0 0 Liq Ref In Px7 PSI 42.10 Refrigerant Compressor 8(2) 0 0 Liq Ref In Fx7 PSI 40.34 Refrigerant Compressor 8(2) 0 0 Evap water Flow Fx2 CFM 1.02 Chill Water Liquid solenoid 0 1 Cond water Flow Fx4 GPM 14.53 Cool Water Economizer sol. 0 1 Condenser in Tx19 117.11 Refrigerant Liquid solenoid 0 1 Condenser in	COMPL 1 LOW (1)	0	0	1st stage suct	Px1 PSI	4.10 Refrigerant	Direct HX Out	LXL	39 7R	39 78 Chill Water
Compressor 2(1) 0 1st stage disch Px3 P\$I 7.33 Refrigerant Compressor 3(1) 0 1 n 2nd stage suct Px4 P\$I 7.33 Refrigerant Compressor 5(2) 0 0 Condenser in Px5 P\$I 42.93 Refrigerant Compressor 5(2) 0 0 Liq Ref in Px7 P\$I 42.10 Refrigerant Compressor 6(2) 0 Liq Ref in Px7 P\$I 42.10 Refrigerant Compressor 7(2) 0 Liq Ref in Px7 P\$I 42.10 Refrigerant Compressor 8(2) 0 Liq Ref in Fx1 GPM 1.02 Chill Water 2nd Stage bypass 0 Evap water Flow Fx2 CFM 14.53 Chill Water Liquid solenoid 0 1 Cond water Flow Fx4 GPM 0.00 Cool Water Economizer sol. 0 1 Condenser in Tx17 14.53 Cool Water CHILL VALVE2 0 1 Condenser in Tx19 17.11 Refriger	Compr 1 High(1)	0	0	Receiver	PSI	2 Refrigerant		<u>}</u>	20.02	20 27 Defricerent
Compressor 3(1) 0 1 n 2nd stage suct Px4 PSI 7.33 Refrigerant Compressor 4(2) 0 0 Condenser out Px6 PSI 42.10 Refrigerant Compressor 5(2) 0 0 Liq Ref In Px7 PSI 40.34 Refrigerant Compressor 7(2) 0 0 Liq Ref In Px7 PSI 40.34 Refrigerant Compressor 8(2) 0 0 Liq Ref In Px7 PSI 40.34 Refrigerant Compressor 8(2) 0 0 Evap water Flow Fx1 GPM 1.02 Chill Water And Stage bypass 0 0 Evap water Flow Fx2 CFM 14.53 Chill Water Liquid solenoid 0 1 Cond water Flow Fx4 GPM 0.00 Cool Water Economizer sol. 0 1 Condenser in Tx17 136.37 Cool Water CHILL VALVE2 0 Econom Liq In Tx19 117.11 Refrigerant 10/12/95 LOAD (kW) 3.51 <td< td=""><td>Compressor 2(1)</td><td>0</td><td>0</td><td>1st stage disch</td><td></td><td>M Defrinerant</td><td>1et Ctoco Dicohomo</td><td>4 9</td><td>44.00</td><td>Colligain</td></td<>	Compressor 2(1)	0	0	1st stage disch		M Defrinerant	1et Ctoco Dicohomo	4 9	44.00	Colligain
Compressor 4(2) O 1 III 2am Condenser in Compressor 4(2) PX5 PSI 7.33 Refrigerant 7.33 Refrigerant 2.93 Refrigerant 42.10 Compressor 5(2) O 0 Liq Ref In PX7 PSI PX7 PSI 42.10 Refrigerant 42.10 Refrigerant 2.00 Compressor 6(2) O 0 Liq Ref In PX7 PSI RW 3.90 Refrigerant 42.10 Refrigerant 3.90 Compressor 8(2) O 0 Evap water Flow FX1 GPM FX2 CFM 14.53 FX2 CFM 14.53 Chill Water Flow FX4 GPM 14.53 Economizer sol. O 1 Condenser in TX17 14.53 FLOW 0.00 Direct HX in TX17 136.37 Cool Water 52.43 CHILL VALVE1 C Direct HX in TX18 52.43 Cool Water 52.43 Cool Water 52.43 Cool Water 52.43 Manual switch 0 Econom Liq In TX19 7.11 TX17 11 Refrigerant 7.17.11 Refrigerant 7.17.11 And Stage DIRECT HX(kw) -0.23 Cool Water 7.25 Cool Water 7.25	Company 2(4)	C	7	7 - 0		Maingaill	ist stage Discharge	3	158.17	Kerngerant
Appressor 4(2) 0 Condenser in Px5 PSI 42.93 Refrigerant Appressor 5(2) 0 Condenser out Px6 PSI 42.10 Refrigerant Appressor 5(2) 0 Liq Ref In Px7 PSI 40.34 Refrigerant Appressor 7(2) 0 Condenser out Px7 PSI 40.34 Refrigerant Appressor 7(2) 0 Condenser Flow Fx1 GPM 1.02 Chill Water Appressor 7(2) 0 Condenser Flow Fx2 GFM 0.00 Chill Water Appressor 7(2) 0 1 Cond water Flow Fx3 GPM 0.00 Ad HX bypass 0 1 Cond water Flow Fx4 GPM 8.67 Cool Water ALL VALVE2 0 1 Cond water Flow Fx4 GPM 0.00 VALVE1 0 1 Cond Water 177.1 Refrigerant Adam 0 1 Cool Water 177.1 Refrigerant Adam 0 1 177.1 Refrigerant 177.1 Refrigerant Adam 0 1 1 1 <	(1)s psessino	5		Znd stage		33 Refrigerant	2nd Stage Suction	XX-	50.54	50.54 Refrigerant
Compressor 5(2) 0 Condenser out Px6 PSI 42.10 Refrigerant Compressor 6(2) 0 Liq Ref In Px7 PSI 40.34 Refrigerant Compressor 7(2) 0 0 Liq Ref In Px7 PSI 40.34 Refrigerant Compressor 8(2) 0 0 Evap water Flow Fx1 GPM 1.02 Chill Water 2nd Stage bypass 0 0 1 Cond water Flow Fx1 GPM 14.53 Direct HX bypass 0 0 1 Cond water Flow Fx4 GPM 6.00 Liquid solenoid 0 1 Cond water Flow Fx4 GPM 8.67 Cool Water Economizer sol. 0 1 Cond water Flow Fx4 GPM 6.00 Cool Water CHILL VALVE2 0 0 1 Tx17 136.37 Cool Water 10/12/95 LOAD (kW) 1.34 117.11 Refrigerant 11.12am REJECT(kW) 0.03 Cool Water Cool Water 2nd stage DIRECT HX(kW) 0.23 Cool Water	Compressor 4(2)	0	0	Condenser in		3 Refrigerant	Condenser In	Tx5	140 87	40 87 Refrinerant
Compressor 6(2) 0 Liq Ref In Px7 PSI 40.34 Refrigerant Compressor 7(2) 0 0 Evap water Flow Fx1 GPM 3.90 Chill Water 2nd Stage bypass 0 0 1 Fx2 CFM 14.53 Chill Water 2nd Stage bypass 0 0 1 Cond water Flow Fx3 GPM 0.00 Chill Water Liguid solenoid 0 1 Cond water Flow Fx4 GPM 8.67 Cool Water Economizer sol. 0 1 Condenser in Tx17 136.37 Cool Water CHILL VALVE2 0 Direct HX in Tx18 52.43 Cool Water CHILL VALVE2 0 Econom Liq In Tx18 52.43 Cool Water 10/12/95 LOAD (kW) 1.34 117.11 Refrigerant 2nd stage DIRECT HX(kw) -0.23 Cool Water	Compressor 5(2)	0	0	Condenser out		10 Refrigerant	Condenser Out	<u> </u>	140 18	40 18 Definerant
Compressor 7(2) 0 Evap water Flow Fx1 GPM 3.90 Chill Water 2nd Stage bypass 0 0 Evap water Flow Fx2 CFM 1.02 Chill Water 2nd Stage bypass 0 0 1 Cond water Flow Fx3 GPM 0.00 0.00 Liquid solenoid 0 1 Cond water Flow Fx4 GPM 0.00 0.00 Liquid solenoid 0 1 Cond water Flow Fx4 GPM 0.00 0.00 DIR VALVE1 Condenser in Tx17 Tx17 136.37 Cool Water CHILL VALVE2 0 Direct HX in Tx19 117.11 Refrigerant 10/12/95 10/12/95 1.34 1.34 1.34 2nd stage DIRECT HX(kw) -0.23 -0.23	Compressor 6(2)	0	0	Liq Ref In		M Refrigerant	EV2 OLIT	<u>}</u>	20.00	20 70 Defrigerant
Compressor 8(2) 0 Evap water Flow Fx1 GPM 1.02 Chili Water 2nd Stage bypass 0 0 1 Cond water Flow Fx3 GPM 0.00 Liquid solenoid 0 1 Cond water Flow Fx4 GPM 8.67 Cool Water Economizer sol. 0 1 Condenser in Fx16 8.67 Cool Water DIR VALVE1 0 1 Condenser in Tx17 136.37 Cool Water CHILL VALVE2 0 0 Econom Liq In Tx18 52.43 Cool Water 10/12/95 10/12/95 13.4 117.11 Refrigerant 11:12am REJECT(kWy) 3.51 13.34 2nd stage DIRECT HX(kw) -0.23 -0.23	Compressor 7(2)	0	0		-	0.	Economizer Lin Out	<u> </u>	40 R7	40 &7 Pofrigerant
2nd Stage bypess 0 Fx2 CFM 14.53 Direct HX bypass 0 0 1 Cond water Flow Fx4 GPM 0.00 Liquid solenoid 0 1 Cond water Flow Fx4 GPM 8.67 Cool Water FLOW Economizer sol. 0 1 Condenser in Tx17 Tx17 136.37 Cool Water St. And St. A	Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM	12 Chill Water	Fronomizer Van Out	2 9 2 1	EO 25	En 36 Dofrigation
Direct HX bypass 0 1 Cond water Flow Ext GPM 0.00 Liquid solenoid 0 1 Cond water Flow Ext GPM 0.00 Economizer sol. 0 1 Cond water Flow Ext GPM 0.00 DIR VALVE1 0 1 Cool Water CHILL VALVE2 0 DIRECT HX in manual switch 0 Econom Liq in TX19 117.11 Refrigerant Cool Water CHI2/95 009 LOAD (kW) 1.34 17.11 Refrigerant CHI2/12 2nd stage DIRECT HX(kw) 3.51 -0.23	2nd Stage bypass	0	0		FX2 CFM	2	Comp 1 (1 stage) disc	2 2 2 2	457 44	50.55 Acingeram
Liguid solenoid 0 1 Cond water Flow Fx4 GPM 8.67 Cool Water Economizer sol. 0 1 FLOW 0.00 DIR VALVE1 Condenser in Tx17 136.37 Cool Water CHILL VALVE2 0 Direct HX in Tx18 52.43 Cool Water Manual switch 0 Econom Liq in Tx19 117.11 Refrigerant 10/12/95 LOAD (kW) 1.34 1.34 2nd stage DIRECT HX(kw) -0.23 -0.23		0	0		-4	9	Como 6/2 stane) disc	<u> </u>	151 08	51 08 Defricement
VALVE1 Condenser in Tx17 Tx17 136.37 Cool Water LL VALVE2 0 Direct HX in Tx18 52.43 Cool Water anual switch 0 Econom Liq In Tx19 117.11 Refrigerant 2/95 LOAD (kW) 1.34 2am REJECT(kW) 3.51 stage DIRECT HX(kw) -0.23	Liquid solenoid	0	-	Cond water Flow	Fx4 GPM	7 Cool Water	+-	- <u>-</u>	420.40	Selligeralli
VALVE1 Condenser in Tx17 Tx17 136.37 Cool Water LL VALVE2 0 Direct HX in Tx16 52.43 Cool Water 2/95 117.11 Refrigerant 2/95 LOAD (kW) 1.34 2am REJECT(kW) 3.51 stage DIRECT HX(kw) -0.23	Economizer sol.	0	-		FLOW	ç	$\overline{}$	1 61	138.10	44 AT OLUM WATER
LL VALVE2 0 Direct HX in TX18 52.43 Cool Water 2/95 LOAD (kW) 1.34 1.34 1.34 2am REJECT (kW) 3.51 3.51 stage DIRECT HX(kw) -0.23	DIR VALVE1			٤		7 500 18/0/05		۲ <u>۲</u>	41.07	T.U/ Chill Water
anual switch Direct TA III TX 19 52.43 Cool Water 2/95 LOAD (kW) 1.34 1.34 2am REJECT (kW) 3.51 3.51 stage DIRECT HX(kw) -0.23 -0.23	CHIII VAI VE2	C		2.		Cool Walti	Evaporator Out	1×14	31.89	Chill Water
2/95 LOAD (kW) 2am REJECT (kW) 3.51 -0.23		>		YI DOING		S COOI Water	Final Outlet Temp	TX15	37.83	Chill Water
2/95 LOAD (kW) 1.34 2am REJECT(kW) 3.51 stage DIRECT HX(kw) -0.23	manual switch	0		Econom Liq In		1 Refrigerant	Direct HX In (chilled)	Tx16	39.51	39.51 Chill Water
LOAD (kW) 1.34 Stage DIRECT HX(kw) -0.23	10/12/95		_				1st STAGE SUCTION	E 20	21 18	
REJECT(kW) 3.51 DIRECT HX(kw) -0.23	600			LOAD (KW)	1.34		Superheat		2 8	
DIRECT HX(kw)	11:12am			REJECT(kW)	3.51				3	
	2nd stage			DIRECT HX(kw)	-0.23					
new low load control	new low load control	_								

	Compr 1 Low (1)	C	0	1st stane sure	Dv1 DC1					
	Compr 1 High(1)	• •	0			Veli igel all (DIEGI HA OUI	×	39.80	39.80 Chill Water
	מוואו ו נותוו ו	2 (> 0	Leceivei		Ketrigerant	EV1 Suction	2	33.13	Refrigerant
	Compressor 2(1)	0	0	1st stage disch	Px3 PSI 8.21	Refrigerant	1st Stage Discharge	Tx3	125.48	Refrigerant
	Compressor 3(1)	0	-	2nd stage suct	Px4 PSI 6.64	Refrigerant	2nd Stage Suction	T×4	50.00	Refrinerant
	Compressor 4(2)	0	0	Condenser in	Px5 PSI 50.55	Refrigerant	Condenser In	Š	151.80	Refrigerant
	Compressor 5(2)	0	0	Condenser out	Px6 PSI 50.16	Refrigerant	Condenser Out	<u>7</u>	151 05	Refrigerant
	Compressor 6(2)	0	0	Liq Ref In	Px7 PSI 48.35	Refrigerant	EV2 OUT	X		Refricerant
	Compressor 7(2)	0	0		KW 4.17		Economizer Lig Out	XX 8		Refrinerant
	Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM 1.21	Chill Water	Economizer Vap Out	1X9	44 69	Refrioerant
<u></u>	2nd Stage bypass	0	0		FX2 CFM 12.75		Comp 1 (1 stage) disc	1×10	146.98	Refrigerant
13	Direct HX bypass	0	0		Fx3 GPM 0.00		Comp 6(2 stage) disc	ž		Refrigerant
<u></u> 1	Liquid solenoid	0	-	Cond water Flow	Fx4 GPM 8.72	Cool Water	Condenser Out	Tx12		Cool Water
	Economizer sol.	0	-		FLOW 0.00		Evaporator in	T×13	41 32	Chill Water
	DIR VALVE1			Condenser in	Tx17 147.91	Cool Water	Evaporator Out	T×14	34.89	Chill Water
<u></u>	CHILL VALVE2	0	-	Direct HX in	Tx18 52.31	Cool Water	Final Outlet Temp	×IS		Chill Water
	manual ewitch	0		Econom Liq In	Tx19 131.17	Refrigerant	Direct HX In (chilled)	T×16		Chill Water
	10/12/95						1st STAGE SUCTION	1×20		A A A COLO
	010			LOAD (kW)	1.15		Superheat		3 6	
- 1	11:17am			REJECT(KW)	3.22				3	
•	2nd stage			DIRECT HX(kw)	-0.28					
· ·			_							
	new low load control	_								
	•									
				•						

Compr 1 Low (1)	0	0	1st stage suct	Px1 PSI 4.10	Refrigerant	4.10 Refrigerant Direct HX Out	Tx1 39.83	39 83 Chill Water
Compr 1 High(1)	0	0	Receiver	Px2 PSI 79.07	79.07 Refrigerant EV1 Suction	EV1 Suction		Refrigerant
Compressor 2(1)	0	0	1st stage disch	••• ••• ••• ••• ••• ••• ••• ••• ••• ••	Refrigerant	1st Stage Discharge		Refrigerant
Compressor 3(1)	0	<u>-</u>	2nd stage suct	Px4 PSI 18.07	7 Refrigerant	Refrigerant 2nd Stage Suction		Refrigerant
Compressor 4(2)	0	0	Condenser in	Px5 PSI 80.68	Refrigerant	Refrigerant Condenser In	-	Refrigerant
Compressor 5(2)	0	0	Condenser out	Px6 PSI 79.80	Refrigerant	Refrigerant Condenser Out		Refrigerant
Compressor 8(2)	0	0	Liq Ref In	Px7 PSI 78.24	78.24 Refrigerant	EV2 OUT		Refrigerant
Compressor 7(2)	0	0		KW 5.98	·	Economizer Liq Out		Refrigerant
Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM 1.00	Chill Water	1.00 Chill Water Economizer Vap Out	•	Refrigerant
2nd Stage bypass	0	0		FX2 CFM 7.16		Comp 1 (1 stage) disc	_	Refrigerant
13 Direct HX bypass	0	0	-	Fx3 GPW 0.00	(Comp 6(2 stage) disc		Refrigerant
Liquid solenoid	0	-	Cond water Flow	Fx4 GPM 8.81	Cool Water	8.81 Cool Water Condenser Out	•	
Economizer sol.	0	-		FLOW 0.00		Evaporator In		Chill Water
DIR VALVE1			Condenser in	Tx17 178.50	Cool Water	178.50 Cool Water Evaporator Out		Chill Water
CHILL VALVE2	0		Direct HX in		Cool Water	52.41 Cool Water Final Outlet Temp	-	Chill Water
manual switch	0	-	Econom Liq In	TX19 171.61	71.61 Refrigerant	Direct HX In (chilled)		Chill Water
10/12/95								
011			LOAD (kW)	1.20			. 1	
11:25am			REJECT(KW)	4.89				
2nd stage			DIRECT HX(kw)	-0.28				
new low load control		\dashv						

Compr 1 Low (1)	0	0	1st stage suct	Px1 PSi	4.05 Refrinerant	Direct HX Out		30.07	Chill talete
Compr 1 High(1)	0	-	Receiver		87.62 Refrinerant	EV1 Suction	<u> </u>	24.00	24 26 Doffing
Compressor 2(1)	0	0	1st stage disch	Px3 PSI 25 04	25 05 Refriderant		: . : a :	01.00	Reingerant
Compressor 3(1)	0	1			7 Refricerant			77.0	Remigerant
Compressor 4(2)	0	0	Condenser in		Refricerent	89 77 Refricerant Condensor In		10.73	Kerngerant
Compressor 5(2)	0	0	Condenser out	PSI	89 18 Refricerant	Condensor Out			Kerngerant
Compressor 6(2)	0	0	Liq Ref In			EV2 OLIT	- :	2.7.6	Remgerant
Compressor 7(2)	0	0				Economizer 1 in Out		10.04	Reingerant
Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM	1.03 Chill Water	Fronomizer Van Out	•	2 6	Definerall
2nd Stage bypass	0	0				Comp 1 (1 stane) disc	ć	150.00	Reingerant
13 Direct HX bypass	0	0	-	Fx3 GPM 0.00		Comp 6(2 stage) disc		201 PR	Defricerant
Liquid solenoid	0	-	Cond water Flow	Fx4 GPM 8.82	Cool Water	Condenser Out	- 0	400 001	Control Mater
Economizer sol.	0	-		FLOW 0.00		Evaporator In		77.77	Cool Water
DIR VALVE1			Condenser in		185.65 Cool Water	1		1000	Chili water
CHILL VALVE2	0		Direct HX in		52.43 Cool Water		• 4	20.30	Chill Water
manual switch	0	-	Econom Liq In	Tx19 186.80	86.80 Refrigerant	Direct HX In (chilled)		20.00	20 69 Chill Mater
10/12/95		-				1st STAGE SUCTION		30.00	Onlin Water
012			LOAD (kW)	1.21		Superheat		5 6	
11:32am			REJECT(KW)	5.36				3	
2nd stage			DIRECT HX(kw)	-0.26					
	_								
new low load control		_							

Compr 1 Low (1)	0	0	1st stage suct	Px1 PSI	4.64	Refrigerant	4.64 Refrigerant Direct HX Out	Tx1 3	9.90 C	39.90 Chill Water
Compr 1 High(1)	0	0	Receiver	Px2 PSI	98.51	Refrigerant	98.51 Refrigerant EV1 Suction	Tx2 3	5.94 R	35.94 Refrigerant
Compressor 2(1)	0	0	1st stage disch	Px3 PSI	22.52	Refrigerant	Refrigerant 1st Stage Discharge	Tx3 13	8.40 R	138.40 Refrigerant
Compressor 3(1)	0	<u>-</u>	2nd stage suct	Px4 PSI	21.98	Refrigerant		Tx4 10	3.48 R	103.48 Refrigerant
Compressor 4(2)	0	0	Condenser in	Px5 PSI	00.22	Refrigerant			0.90 R	200.90 Refrigerant
Compressor 5(2)	0	0	Condenser out	Px6 PSI	99.54	Refrigerant	ıt	Tx6 19	8.77 R	198.77 Refrigerant
Compressor 6(2)	0	0	Liq Ref In	Px7 PSI	98.22	98.22 Refrigerant EV2 OUT	_	Tx7 3	5.48 R	35.46 Refrigerant
Compressor 7(2)	0	0		ΚW	6.73		Economizer Liq Out	Tx8 10	5.20 R	105.20 Refrigerant
Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM	1.26	1.26 Chill Water	Economizer Vap Out	Tx9 10	2.86 R	102.86 Refrigerant
2nd Stage bypass	0	0		FX2 CFM	11.06		Comp 1 (1 stage) disc Tx10		4.50 R	164.50 Refrigerant
Direct HX bypass	0	0	_	Fx3 GPM	0.00		Comp 6(2 stage) disc Tx11	•.	8.53 R	208.53 Refrigerant
Liquid solenoid	0	-	Cond water Flow Fx4 GPM	Fx4 GPM	8.68	Cool Water	Cool Water Condenser Out	Tx12 19	8.23 C	198.23 Cool Water
Economizer sol.	0	-		FLOW	0.00		Evaporator In	Tx13 4	1.29 C	41.29 Chill Water
DIR VALVE1			Condenser in	Tx17	94.02	Cool Water	194.02 Cool Water Evaporator Out	Tx14 3	8.35 C	36.35 Chill Water
CHILL VALVE2	0		Direct HX in	Tx18	52.55	Cool Water	52.55 Cool Water Final Outlet Temp	Tx15 3	8.58 C	38.58 Chill Water
manual switch	0		Econom Liq In	Tx19	95.64	Refrigerant	Direct HX In (chilled)		9.76 C	39.76 Chill Water
10/12/95							1st STAGE SUCTION TX20		36.48	
013			LOAD (KW)	06.0			Superheat		00.4	
11:35am			REJECT(kW)	5.27					<u> </u>	
2nd stage			DIRECT HX(kw)	-0.28						
		-								
new low load control	_	_			_					

Compr 1 Low (1)	0	0	1st stage suct	Px1 PSI	4.54 Refrigeran	4.54 Refrigerant Direct HX Out	Tx1 40 90	40 90 Chill Water
Compr 1 High(1)	0	-	Receiver	Px2 PSI 9	9.73 Refrigeran	99.73 Refrigerant EV1 Suction		Refrinerant
Compressor 2(1)	0	0	1st stage disch	Px3 PSI 2	22.22 Refrigeran	Refrigerant 1st Stage Discharge		Refrigerant
Compressor 3(1)	0	-	2nd stage suct	Px4 PSI 2	1.34 Refrigeran	21.34 Refrigerant 2nd Stage Suction		Refrigerant
Compressor 4(2)	0	0	Condenser in	Px5 PSI 10	0.95 Refrigeran	00.95 Refrigerant Condenser In		Refrigerant
Compressor 5(2)	0	0	Condenser out	Px6 PSI 10	0.17 Refrigeran	100.17 Refrigerant Condenser Out		
Compressor 6(2)	0	0	Liq Ref In	Px7 PSI 90	98.75 Refrigerant EV2 OUT	t EV2 OUT		
Compressor 7(2)	0	0		KW	7.38	Economizer Liq Out	_	
Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM	1.41 Chill Wate	1.41 Chill Water Economizer Vap Out		
2nd Stage bypass	0	0		FX2 CFM 2	20.31	Comp 1 (1 stage) disc		Refrigerant
21 Direct HX bypass	0	0		Fx3 GPM	0.00	Comp 6(2 stage) disc	Tx11 210.61	
Liquid solenoid	0	-	Cond water Flow	Fx4 GPM	3.77 Cool Wate	8.77 Cool Water Condenser Out		Cool Water
Economizer sol.	0	-		FLOW (0.00	Evaporator In		Chill Water
DIR VALVE1			Condenser in	Tx17 18	1.06 Cool Wate	184.06 Cool Water Evaporator Out		Chill Water
CHILL VALVE2	0		Direct HX in	Tx18 5	2.50 Cool Wate	52.50 Cool Water Final Outlet Temp		Chill Water
manual switch	0		Econom Liq In	Tx19 193	3.49 Refrigeran	193.49 Refrigerant Direct HX In (chilled)		
10/12/95						1st STAGE SUCTION		5
014			LOAD (KW)	1.19		Superheat		
11:40am			REJECT(KW)	16.84				
2nd stage			DIRECT HX(kw)	-0.30				
		_						
new low load control	_							

Compr 1 Low (1)	0	0	1st stage suct	Px1 PSi 3.9	Refrigerant	3.91 Refrigerant Direct HX Out	Į×,	41.05 Chill Water	ater
Compr 1 High(1)	0	-	Receiver	Px2 PSI 72.6	72.63 Refrigerant EV1 Suction	EV1 Suction	<u> </u>	30 95 Refinerant	rant
Compressor 2(1)	0	0	1st stage disch		16.61 Refrigerant	1st Stade Dischame	, 2	40 79 Refrigerant	2
Compressor 3(1)	0	1 n	2nd stage suct	Px4 PSI 15.4	15.43 Refrigerant	2nd Stage Suction	¥.	R5 07 Refrigerant	100
Compressor 4(2)	0	0	Condenser in		72.23 Refrigerant	Condenser In	TX.	79 89 Refrigerant	1
Compressor 5(2)	0	0	Condenser out		Refrigerant	71.75 Refrigerant Condenser Out	9	75.81 Refriderant	T C
Compressor 6(2)	0	0	Liq Ref In	Px7 PSI 71.60	71.60 Refrigerant	EV2 OUT	×2	29 15 Refinerant	Tant
Compressor 7(2)	0	0		KW 6.47		Economizer Lia Out	8×	95 73 Refriderant	to a
Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM 1.24	1.24 Chill Water	Economizer Vap Out	2	86.01 Refricerant	ţ
2nd Stage bypass	0	0		N		Comp 1 (1 stage) disc	T×10	46.85 Refrigerant	T E
2 Direct HX bypass	0	0		FX3 GPM 0.00		Comp 6(2 stage) disc	TX.	196.38 Refrigerant	Tant
Liquid solenoid	0	-	Cond water Flow	Fx4 GPM 8.70	8.70 Cool Water			171.80 Cool Water	ater
Economizer sol.	0	-		FLOW 0.00		Evaporator In		42 48 Chill Water	a ta
DIR VALVE1			Condenser in	Tx17 161.28	Cool Water	161.28 Cool Water Evaporator Out	1×1	24 21 Chill Water	pfor
CHILL VALVE2	0		Direct HX in		Cool Water	52.58 Cool Water Final Outlet Temp	Tx15	36.51 Chill Water	o ta
manual switch	0		Econom Liq In	Tx19 170.10	70.10 Refrigerant	Direct HX In (chilled)	Tx16	40 KB Chill Water	ptor
10/12/95		-				1st STAGE SUCTION	552	8 8	2
015			LOAD (KW)	1.46		Superheat		200	T
11:43am			REJECT(KW)	12.94				3	
2nd stage			DIRECT HX(kw)	-0.34					
new low load control		-							

		ļ	•			The second secon					
	Compr 1 Low (1)	0	0	1st stage suct	PX1 PSI	4.25	Refrigerant	4.25 Refrigerant Direct HX Out	17.4	40 40 Chill 14/0405	100
	Compr 1 High(1)	0	-	Receiver	Px2 PSI	80 88	60.58 Refrinerant	EV1 Suction		o cilli val	5
	Compressor 2(1)	0	_	1st stage disch	Px3 PSI	48.54	Refricerant	1st Stare Dischame	-	St. 35 Reliigerant	
	Compressor 3(1)	0	-	2nd stage	Px4 PSI	17.00	17 00 Refrigerant	2nd Stage Cuction	- -	24.33 Kemgerant	E .
	Compressor 4(2)	0	0	Condense	Px5 PSI	63.25	63.25 Refrigerant	Condenser In	1X4 83.0	W.o.1 Kerngerant	aut
	Compressor 5(2)	0	0	Condenser out	Pxe Psi	62.52	62.52 Refrigerant	Condenser Out		74.15 Kerngerant	בונים ל
	Compressor 6(2)	0	0	Lig Ref In	Px7 PSI	59.63	59.63 Refrigerant	EV2 OLIT	Tv7 24 5	24 04 Defrigerant	
	Compressor 7(2)	0	0		≩	7.05		Economizer Lin Out		31.04 reinigerant	
	Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM		1.04 Chill Water	Economizer Van Out	Tyo	90.10 Neingerant	
	2nd Stage bypass	0	0		FX2 CFM	N		Comp 1 (1 stage) disc	_	37 39 Defrigerant	
		0	0		Fx3 GPM	0.00		Comp 6(2 stage) disc		7 Refrigerant	
37	Liquid solenoid	0	-	Cond water Flow	Fx4 GPM		8.68 Cool Water	Condenser Out		Cool Mar	
	Economizer sof.	0	1		FLOW	0.00		Evaporator In		47 46 Obill Water	<u></u>
	DIR VALVE1			Condenser in	T×17	158 84	Cool Water	Evaporator Out		AZ. 10 CIIII VVater	<u>ē</u>
	CHILL VALVE2	0		Direct HX in	Tx18	53,33		Final Outlet Temp		Chill Water	ŢĒ.
	manual switch	0		Econom Lig In	Tx19	156.98	58.98 Refrinerant	Direct HX In (chilled)		S Criffi Water	<u>.</u>
	10/12/95							14 STAGE SHICTION		U CIIII Water	Ē
	016			LOAD (KW)	1.18	8		Superheat	30.80	0 (T
1	11:50am			REJECT(KW)	5.73	3		Capalicat	3,	5	
	2nd stage			DIRECT HX(kw)	-0.31						T
	going down										
	new low load control										
									_		_

Compr 1 Low (1)	0	0	-	1st stage suct	Px1 PSI	3.78	Refrigerant	Direct HX Out	×	39.78	Chill Water
Compr 1 High(1)	0	-	-	Receiver	Px2 PSI	41.27	Refrigerant	EV1 Suction	22	28.34	
Compressor 2(1)	0	0	-	1st stage disch	Px3 PSI	11.62	_	1ड़ा डा	EX.	131.07	
Compressor 3(1)	0	-		2nd stage suct	Px4 PSI	10.60		2nd Stage Suction	4×	67.00	
Compressor 4(2)	0	0		Condenser in	Px5 PSI	40.29		-	ŞX	180.11	
Compressor 5(2)	0	0	7	Condenser out	Px6 PSI	39.90		Condenser Out	9	129.80	Refrigerant
Compressor 6(2)	0	0	-	Liq Ref In	Px7 PSI	40.34	Refrigerant	EV2 OUT	T×7	27.65	Refrigerant
Compressor 7(2)	0	0	+		ΚW	4.79		Economizer Liq Out	8×	75.80	
Compressor 8(2)	0	0	-	Evap water Flow	FX1 GPM	1.08	Chill Water	Economizer Vap Out	8	67.79	
2nd Stage bypass	0	0	+		FX2 CFM	21.82		Comp 1 (1 stage) disc	1×10	119.19	Refrigerant
Direct HX bypass	0	0	-		Fx3 GPM	80		Comp 6(2 stage) disc	Tx11	177.94	Refrigerant
Liquid solenoid	0	-		Cond water Flow	Fx4 GPM	8.67	Cool Water	Condenser Out	Tx12	128.49	
Economizer sol.	0	-			FLOW	0.00		Evaporator In	Tx13	41,32	
DIR VALVE1				Condenser in	Tx17	119.76	Cool Water	Evaporator Out	XX.	30.38	Chill Water
CHILL VALVE2	0		_	Direct HX in	T×18	55.73	Cool Water	-	Tx15	37.18	Chill Water
manual switch	0		ш	Econom Liq In	T×19	133.47	Refrigerant	Direct HX In (chilled)	TX16	39,44	
10/12/95			-					1st STAGE SUCTION	62X	27.15	
017			_	LOAD (KW)	1.67			Superheat		3.00	
11:55am			ı	REJECT(KW)	10.92						
2nd stage			u	DIRECT HX(kw)	-0.29						
going down											
new low load control	_										

	Compr 1 Low (1)	c	0	1st stane such	100 100				
			•	TOTO OFFICE TO	5	Kerngerant	Temperant Direct HX Out	1X1 39.34	39.34 Chill Water
	Compr. 1 High(1)	0	0	Receiver	Px2 PSI 31.65	Refrigerant	31.65 Refrigerant EV1 Suction		21 12 Pofringrant
	Compressor 2(1)	0	0	1st stage disch	Px3 PSI	Refricerant	1st Stade Dischame	. • •	
	Compressor 3(1)	C	7	2nd stane	, io	The state of the s	Selection of the select	00.701	or.30 Kemgerant
	Composer 4(2)	•	: - C	San Sur	5 (r. so remgerant	znd Stage Suction		55.18 Refrigerant
	Complessor 4(2)	>	>	Condenser in	1	Refrigerant	32.72 Refrigerant Condenser In	Tx5 151.01	151.01 Refrigerant
	Compressor 5(2)	0	0	Condenser out	Px6 PSI 32.33	32.33 Refrigerant	Condenser Out		100 Od Refrigerant
<u>~</u>	Compressor 6(2)	0	0	Liq Ref In	Px7 PS1 30 23	30.23 Refrinerant		•	Defrigerant
<u> </u>	Compressor 7(2)	0	0		-		Economizer Lie Out		So. 38 Religerant
<u> </u>	Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM	Chill Water	Economizer Lin Out		o 1.44 Remgerant
	2nd Stage bypass	0	0		EV2 CEN		Economizer vap our		34.15 Kerngerant
l	Direct LIV hunge	•	, (-			Comp 1 (1 stage) disc	TX10 111.37	11.37 Refrigerant
39	Seption VI main 39	>	5		TX3 GP₩		Comp 6(2 stage) disc	Tx11 172.32	72.32 Refrigerant
= <u>1</u>	Liquid solenoid	0	-	Cond water Flow	Fx4 GPM 8.55	Cool Water	Condenser Out		105 40 Cool Mator
<u></u>	Economizer sol.	0	_	-	FLOW 0 00		Evaporator In		Other March
	DIR VALVE1			Condenser in	5. V	Cool Water	100 09 Cool Water Evenorator Out		To se Com Water
J	CHILL VALVE2	0	-	Direct HX in		Se 87 Cool Water	Final Outlet Town		SZ.U/ IChill Water
L	manual switch	0	-			Doftigues 1			37.48 Chill Water
_	10/42/05		-			Leingeram	Direct HX in (chilled)		38.95 Chill Water
-1 (C6/71/01	1	+				1st STAGE SUCTION	Tx20 31.69	
اِی	018		-	LOAD (kW)	1.40		Superheat		
-!	12:00noon			REJECT(KW)	6.55			3.0	
רא	2nd stage			DIRECT HX(kw)	-0.31				
<u></u>	going down								
	new low load control	10							
								_	_

-

Compr 1 Low (1)	0	0	1st stage suct	Px1 PSI	4.54	Refrigerant	Direct HX Out	1×1	39.58 K	Chill Water
Compr 1 High(1)	0	0	Receiver	Px2 PSI	25.45		EV1 Suction	X		Refrigerant
Compressor 2(1)	0	0	1st stage disch	Px3 PSI	8.8	Refrigerant	1st Stage Discharge	EX.		Refrigerant
Compressor 3(1)	0	_ _	2nd stage suct	Px4 PSI	5.42		2nd Stage Suction	X 4×		Refrigerant
Compressor 4(2)	0	0	Condenser in	Px5 PSI	25.93		Condenser in	2X		Refrigerant
Compressor 5(2)	0	0	Condenser out	Px6 PSI	25.69		Condenser Out	9X -		Refrigerant
Compressor 6(2)	0	0	Liq Ref In	Px7 PSI	24.42		EV2 OUT	Tx7	_	Refrigerant
Compressor 7(2)	0	0		KW	3.01		Economizer Liq Out	8× 		Refrigerant
Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM	1.08	Chill Water	Economizer Vap Out	6X		Refrigerant
2nd Stage bypass	0	0		FX2 CFM	22.21		Comp 1 (1 stage) disc	1×10		Refrigerant
Direct HX bypass	0	0		Fx3 GPM	0.00		Comp 6(2 stage) disc	1×1	4	Refrigerant
Liquid solenoid	0	-	Cond water Flow	Fx4 GPM	8.53	Cool Water	Condenser Out	Tx12		Cool Water
Economizer sol.	0	_		FLOW	0.0		Evaporator In	Tx13		Chill Water
DIR VALVE1		-	Condenser in	T×17	77.98	Cool Water	Evaporator Out	1×14		Chill Water
CHILL VALVE2	0	_	Direct HX in	Tx18	58.71	_	Final Outlet Temp	Tx15		Chill Water
manual switch	0		Econom Liq In	Tx19	120	_	Direct HX In (chilled)	1×16		Chill Water
10/12/95							1st STAGE SUCTION	02× <u>F</u>		
019			LOAD (KW)	0.93			Superheat		8	
12:04pm		-	REJECT(kW)	3.76						
2nd stage		<u> </u>	DIRECT HX(kw)	-0.25						
going down										
new low load control	_									

Compr 1 Low (1)	0	0	1st stage suct	Px1 PSI 4.49	Refrigerant	Direct HX Out	TXT	40.07 Chill Water	Water
Compr 1 High(1)	0	0		19.88	Refrigerant	EV1 Suction		32.38 Refrigerant	igerant
Compressor 2(1)	0	0	1st stage disch	Px3 PS1 8.84		1st Stage Discharge		94.59 Refrigerant	igerant
Compressor 3(1)	0	1 n		Px4 PSI 3.91		2nd Stage Suction		50.00 Refrigerant	igerant
Compressor 4(2)	0	0	Condenser in	PSI	Refrigerant	Condenser In	•	32.26 Refrigerant	igerant
Compressor 5(2)	0	0	Condenser out	Px6 PSI 20,17	Refrigerant	Condenser Out		64.51 Refrigerant	igerant
Compressor 8(2)	0	0	Liq Ref In	PSI	18.41 Refrigerant	EV2 OUT	₹	32.23 Refr	Refrigerant
Compressor 7(2)	0	0		11		Economizer Liq Out	Tx8	32.87 Refr	Refrigerant
Compressor 8(2)	0	0	Evap water Flow	Fxt GPM 1.09	1.09 Chill Water	Economizer Vap Out		26.23 Refr	Refrigerant
2nd Stage bypass	0	0		FX2 CFM 23.77		Comp 1 (1 stage) disc		95.50 Refr	Refrigerant
Direct HX bypass	0	0	1	FX3 GPM 0.00		Comp 6(2 stage) disc	1	165.85 Refr	Refrigerant
Liquid solenoid	0	-	Cond water Flow	Fx4 GPM 8.43	8.43 Cool Water	Condenser Out		61.01 Cool Water	Wate
Economizer sol.	0	-		FLOW 0.00		Evaporator In	TX13		Chill Water
DIR VALVE1			Condenser in	TX17	60.21 Cool Water	Evaporator Out		33.71 Chill	Chill Water
CHILL VALVE2	0		Direct HX in		80.17 Cool Water	Final Outlet Temp	TX15	38.28 Chill	Chill Water
manual switch	0		Econom Liq In	Tx19 90.00	90.00 Refrigerant	Direct HX In (chilled)	Tx16 3	39.71 Chill	Chill Water
10/12/95						1st STAGE SUCTION	Tx20 3	33.92	
020			LOAD (KW)	1.24		Superheat		8	į
12:08pm			REJECT(KW)	0.96					
2nd stage			DIRECT HX(kw)	-0.30					
going down									
new low load control	2								

	0	0	1st stage suct	4,15	Refrigerant	Direct HX Out	Tx1 39,32	39,32 Chill Water
Compr 1 High(1)	0	0	Receiver	13.28	Refrigerant	EV1 Suction		Refricerant
Compressor 2(1)	0	0	1st stage disch	Px3 PSI 14.41 Ref	Refrigerant	1st Stage Discharge		98.99 Refrigerant
Compressor 3(1)	0	1 n	-	9.67	Refrigerant	2nd Stage Suction	Tx4 81 77	Refricerant
Compressor 4(2)	0	0	Condenser in	14.21	Refrigerant	Condenser In		97.55 Refrigerant
Compressor 5(2)	0	0	Condenser out	13.07	Refrigerant	Condenser Out		50.00 Refrigerant
Compressor 6(2)	0	0	Liq Ref In	Px7 PSI 11.77 Ref	Refrigerant	EV2 OUT		Refrigerant
Compressor 7(2)	0	0		KW 1.72		Economizer Liq Out	Tx6 67.55	Refrigerant
Compressor 8(2)	0	0	Evap water Flow	Fx1 GPM 1.03 Chill Water	II Water	Economizer Vap Out		60.65 Refrigerant
2nd Stage bypass	0	-		FX2 CFM 0.00		Comp 1 (1 stage) disc		Refrigerant
Direct HX bypass	0	0		FX3 GPM 0.00		Comp 6(2 stage) disc	Tx1 + 125.11	25.11 Refrigerant
Liquid solenoid	0	-	Cond water Flow	Fx4 GPM 8.23 Cool Water	ol Water	Condenser Out		36.70 Cool Water
Economizer sol.	0	0		FLOW : 0.00		Evaporator In		20.84 Chill Water
DIR VALVE1			Condenser in	Tx17 32.73 Cool Water	Water	Evaporator Out		32.45 Chill Water
CHILL VALVE2	0		Direct HX in		Mater N	Final Outlet Temp		37.36 Chill Water
manual switch	0		Econom Liq In	TX19 58.61 Refrigerant	rigerant	Direct HX In (chilled)		38.73 Chill Water
10/12/95				┢		1st STAGE SUCTION		
022			LOAD (KW)	1.25		Superheat		
12:15pm			REJECT(kW)	4.71				
1st stage			DIRECT HX(kw)	-0.31				
going down								
new low load control	_	_						

		,	

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED March 1996 Approved Final Report 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Lunar Base Heat Pump EC2511-EC21 802/30108 6. AUTHOR(S) EC2511-EC21 803/40108 D. Walker, D. Fischbach, R. Tetreault 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT Foster-Miller, Inc. NUMBER 350 Second Avenue Waltham, MA 02154-1196 NAS-8819-FM-09614-987 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NASA Lyndon B. Johnson Space Center REPORT NUMBER **Engineering Procurement Branch** Houston, TX 77058 NAS9-18819 11. SUPPLEMENTARY NOTES TPO: Mr. Mark Hershey, EC2 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE N/A N/A 13. ABSTRACT (Maximum 200 words) The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for life support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378°K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381°K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 4°C ±1.7°C. This performance was verified through testing.

14. SUBJECT TERMS 15. NUMBER OF PAGES 148 16. PRICE CODE N/A 17. SECURITY CLASSIFICATION OF 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT REPORT OF THIS PAGE OF ABSTRACT Unclassified Unclassified Unclassified Unlimited NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18