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ABSTRACT 

 

Biomarkers of Exposure to Complex Environmental Mixtures.  

(May 2008) 

Ziad Sami Naufal, B.S.; M.P.H., American University of Beirut, Lebanon 

Co-Chairs of Advisory Committee:   Dr. Kirby C. Donnelly  
                          Dr. Thomas J. McDonald 

 

Maternal exposure to genotoxic chemicals may produce a variety of adverse birth 

outcomes. Depending on the dose and duration of exposure, adverse birth outcomes can 

range from premature or low-birth weight, to congenital abnormalities including neural 

tube defects (NTDs). The research described in this dissertation focused on several rural 

counties in Shanxi province, China. Shanxi has one of the highest rates of NTDs in the 

world. In 2005, the incidence of NTDs in the study counties ranged from 8 to 24 cases 

per 1,000 births. While some of these birth defects are likely to be related to nutrition, it 

is also suggested that environmental factors play a significant role. One such factor 

includes polycyclic aromatic hydrocarbon (PAH) exposure as a result of combustion of 

coal for indoor heating and cooking.  Human populations in Shanxi depend heavily on 

coal as their main source of energy. This study determined the concentrations of PAHs 

in house dust, venous blood and placenta of study participants. Dust was collected from 

homes in the study site. Carcinogenic PAH levels in dust collected from kitchen floors 

ranged from 12 to 2,000 µg/m2. The genotoxic potential of dust was confirmed by short-

term bioassays. Median concentrations of total PAHs in placenta from children born 

with NTDs were elevated compared to matched controls and appeared to be associated 

with the risk of having a child with a NTD. Tobacco smoking was not associated with 

elevated levels of PAH biomarkers in this study population. Levels of bulky DNA 

adducts in placenta have also been quantified using 32P-postlabeling.  Adduct levels do 

not appear to be significantly different between cases and controls and were not 

associated with deletions in enzymes GSTM1 or GSTT1. These data suggest that 

children born with NTDs may be at increased risk due to exposure to genotoxic PAHs. 
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Studies with a larger number of subjects are needed to further elucidate the relationship 

between PAH exposure and adverse birth outcomes.   
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CHAPTER I 

INTRODUCTION 

 

1.1 Overview 

Humans may be exposed to hazardous chemicals at every stage of their lives. 

Hazardous chemicals in food or drinking water are almost always found as complex 

mixtures. One of the most common classes of chemical mixtures in the environment is 

polycyclic aromatic hydrocarbons (PAHs). These compounds are ubiquitous and have 

been detected in all environmental media, as well as biological receptors and settled 

dust. Extensive data exist to quantify concentrations of PAHs and other complex 

mixtures in environmental media. Studies have been conducted on a more limited basis 

to measure biomarkers of exposure in populations exposed to chemical mixtures in 

occupational and residential settings. This dissertation describes research to quantify 

PAHs in both environmental and biological samples; and, to investigate the relationship 

between DNA adducts and genetic polymorphisms in a population known to have an 

elevated risk of congenital malformations.  

 

1.2. Complex Chemical Mixtures 

High molecular weight organic chemicals are an environmental concern because 

they are persistent, prone to bioaccumulation, and because many compounds are known 

carcinogens. Every year several billion pounds of toxic chemicals are released into the 

environment from diverse sources. In 2003, almost 4.44 billion pounds of hazardous 

chemicals were released to the environment from industrial facilities operating in the 

United States (USEPA 2005). Hazardous chemicals may also be released into the 

environment from anthropogenic sources and the combustion of fossil fuels. These 

chemicals most often enter the environment as complex mixtures that include organic 

and inorganic compounds. PAHs and polychlorinated aromatic compounds (PCAs) are  

 
_________ 
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among the most common classes of chemicals detected in environmental media  

(Mueller et al. 1991; Ramesh et al. 2004; Samanta et al. 2002). The composition of these 

mixtures varies greatly depending on the source and temperature at which the mixture 

was generated. Human exposure to chemical mixtures is common and could induce a 

variety of adverse health effects, including cancer, respiratory and cardiovascular 

disease.  

A complex mixture may be described as a substance that contains from ten to more 

than one thousand components (Feron et al. 1995).  In the case of most environmental 

mixtures, the composition is usually not qualitatively or quantitatively known (Groten et 

al. 2001). Often, less than 50% of the components of a complex mixture can be 

quantified. This is mostly due to matrix interferences and the close structural similarity 

of many of the components.  In addition, compound interactions, both chemical and 

toxicological, may alter the properties of the components of a mixture.   

The components of a complex mixture may induce synergistic, antagonistic, or 

inhibitory interactions. Mixture interactions may alter the toxicity of the components 

through changes in adsorption, metabolism, distribution and excretion. In most cases, 

chemicals cross cell membranes by passive diffusion. Depending on the water solubility 

of the components of a complex mixture, the rate of chemical transport into cells can be 

increased or inhibited. Also, depending on the composition of a chemical mixture, some 

compounds might enhance, inhibit or deplete metabolic enzymes which may alter 

chemical activation of certain components in the mixture. Moreover, components in a 

mixture can compete for binding sites on critical macromolecules within a cell which 

may alter the toxicity of this mixture.  

Sources of complex mixtures include cooked foods, combustion byproducts, and 

releases associated with hazardous waste facilities.  Hazardous chemicals released from 

industries may add to the burden of naturally occurring chemicals. Complex chemical 

mixtures containing PAHs have been detected at almost half of the 1,609 hazardous 

waste sites listed as Superfund sites in the United States (USEPA 2006). Brender et al. 

(2006) recently observed higher rates of adverse birth outcomes in populations living 
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within one mile of a Superfund site.  PAH mixtures are commonly found at wood 

preserving sites, coal gasification sites, refineries, petroleum production facilities and 

other sites where petroleum products have been produced, stored or disposed.  In 

addition, PAH mixtures are common combustion byproducts.  Thus, sources of human 

exposure to PAH mixtures include not only the release of hazardous chemicals, but also 

ingestion of cooked foods and inhalation of cigarette smoke or other combustion 

byproducts.  In fact, cigarette smoke is an example of a complex mixture that is well 

characterized in both animal and human studies. Cigarette smoke is a mixture of 

approximately 4,800 chemicals although some reports suggest that the actual number of 

chemical components is greater and can reach 100,000 chemicals (Green and Rodgman 

1996; Rodgman et al. 2000; Wright 1956). It is possible to classify the components of 

cigarette smoke into four major functional classes: irritants, enzyme inducers, 

carcinogens and promoters. Irritant chemicals include acrolein, ammonia and 

formaldehyde. These chemicals can damage membranes and increase cell permeability 

to other mixture components. Enzyme inducers include nicotine and low molecular 

weight PAHs. Such compounds can increase the activity of xenobiotic metabolizing 

enzymes in an exposed organism, and thus increase activation of indirect carcinogens. 

Carcinogens or pro-carcinogens found in the mixture help initiate the process of 

carcinogenesis. These include organic chemicals such as benzo[a]pyrene (BaP), vinyl 

chloride, benzene, and other PAHs in addition to inorganic metals such as nickel. PAHs 

and catechol may also act as promoters by activating oncogenes and damaging tumor 

suppressor genes leading to abnormal cell proliferation, and ultimately neoplastic 

transformations. Thus, it is possible that the interactions of the components of cigarette 

smoke serve to increase the uptake and metabolism of the carcinogenic components, as 

well as to enhance genetic damage produced by binding with DNA. Animal studies with 

binary mixtures have generally observed additive interactions (Hughes and Phillips 

1990; Tang et al. 2003; White 2002). Less information is available to characterize the 

interactions of complex mixtures. 
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The release of hydrocarbon mixtures to the environment may produce 

contamination of air, surface water, soil, sediment and/or groundwater. Such mixtures 

generally persist in the environment and could pose a threat to human and/or ecological 

health by accumulating in the food chain. PAHs in particular are insoluble in water and 

tend to concentrate in soil and sediment near industrial sources and hazardous waste 

sites. They also adsorb onto particulate matter in air and may settle in dust in indoor 

environments.  

Humans are generally exposed to complex environmental mixtures capable of 

producing a broad range of biological effects (Gennings 1995; Teuschler and Hertzberg 

1995).  Environmental exposures are often repetitive, low dose exposures involving 

multiple pathways including inhalation, ingestion and dermal absorption. The severity of 

adverse health effects produced following such exposures varies greatly and depends not 

only on the dose and duration of exposure but also on intrinsic individual factors such as 

lifestyle exposures and genetic sensitivities.  

 

1.3. Polycyclic Aromatic Hydrocarbons  

1.3.1 Sources  

PAHs are ubiquitous environmental contaminants. The incomplete combustion of 

virtually any type of organic material results in the production of these chemicals. PAHs 

share a similar chemical structure consisting of two or more fused benzene rings in 

linear, cluster or angular arrangements (Wilson and Jones 1993). The molecular structure 

of a representative 2-, 3- and 4-ring PAH is shown in Figure 1.1. PAHs are lipophilic 

non-polar chemicals that can adsorb to particles in the air or water and generally persist 

in the environment for extended periods of time (Brandt and Watson 2003).  

PAHs have various natural and anthropogenic sources. High concentrations of 

PAHs are present in crude oil, coal and oil shale.  These petroleum and petrochemical 

products are extensively used to produce fuels and synthetics (fibers and plastics) 

(Harvey 1997).  The widespread use of petroleum products has increased the level of  
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Naphthalene Anthracene Pyrene  
 

Figure 1.1. Structures and nomenclatures of representative 2-, 3- and 4-ring polycyclic aromatic 
hydrocarbons. 

 

PAHs in the environment.  Coke oven emissions and the combustion of fossil fuels and 

refuse generate approximately 50% of the total emissions of the model five-ringed PAH, 

BaP, in the United States. Vehicle emissions constitute another major source of PAHs, 

especially in urban areas where they generate approximately 35% of PAH emissions.  

Other sources include fumes from manufacturing industries and tobacco smoking. 

Natural sources of PAHs include forest fires and volcanic eruptions although 

anthropogenic sources are generally assumed to be more significant (Harvey 1997).   

The chemical composition and concentration of PAH mixtures vary according to 

the temperatures at which they were generated. High temperatures in the absence of 

oxygen usually lead to formation of simple mixtures of unsubstituted PAHs. 

Intermediate temperatures such as smoldering wood will result in more complex 

mixtures including alkyl substituted PAHs. At lower temperatures, reaction rates are 

slow and predominant products are methyl and other alkyl substituted polyarenes 

(Harvey 1997). 

Levels of PAHs in urban atmospheres depend on the density, sources of local 

emissions, temperature and local meteorological conditions among other factors. PAH 

levels for example, tend to be higher in cold winter months reflecting the increase in 

fossil fuel consumption. Atmospheric conditions, such as temperature inversions, may 

also increase PAH concentrations near ground level.  The transition of PAHs from the 

gas phase into the solid phase (fly ash) occurs when temperatures are below 150°C 
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(Harvey 1997). Airborne PAHs are largely present as aerosols due to their low vapor 

pressure and high melting points. They either exist as more or less pure particles or are 

absorbed onto particulate matter (PM) such as soot and dust (ATSDR 1995). Particles 

less than 5 �m in diameter are respirable. Urban airborne particulates tend to be in this 

category (Harvey 1997).  In remote areas, concentrations of airborne PAHs were 

estimated to be in the range of 1-50 ng/m3 and have been detected at 100 to 1000-fold 

higher levels in urban or industrial areas depending on the season. In rural areas, 

background air levels of representative PAHs were reported to range between 0.02 and 

1.2 ng/m3, whereas in urban areas these levels ranged between 0.15 and 19 ng/m3 

(ATSDR 1995). Atmospheric PAH concentrations were also found to proportionally 

increase with population density as described by Hafner et al. (2005). PAHs in air from 

sites in developing countries were typically higher than those of developed countries 

which is most likely due to lack of regulation and technological innovation (Hafner et al. 

2005).  

A summary of airborne concentrations of PAHs reported in the literature is 

provided in Table 1.1. Air concentrations of carcinogenic PAHs in the city of Prague, 

one of the most polluted areas in the Czech Republic, were reported at 20 �g/m3 in 

winter and 4 �g/m3 in spring (Sram et al. 2007). In three sites in south of France 

described as urban, sub-urban and rural, the average air concentrations of 15 PAHs were 

reported to be 22, 4.5 and 16 ng/m3 respectively (Albinet et al. 2007). PAHs in air 

samples collected in Beijing, China ranged in concentration between 29 and 362 ng/m3 

during the period from December 2004 to August 2005. Levels of PAHs were highest 

during winter and lowest during summer which is thought to be due to more frequent 

domestic coal-burning heaters use in winter and less photochemical degradation (Liu et 

al. 2007). In Vietnam and Japan, total PAH concentrations in air samples collected 

continuously for more than a year ranged between 4 and 9 ng/m3. PAH levels were 

found to be highest during the rainy season in Vietnam and winter in Japan (Hien et al. 

2007). Levels of airborne PAHs in a low-contaminated urban area in the Czech Republic 

were found to be associated with traffic volume. Air samples collected at high and low 
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traffic area in the study site had BaP concentrations of 0.6 ng/m3 and 0.4 ng/m3, 

respectively. Total PAH (tPAHs) concentrations from the high traffic area were 46 

ng/m3 whereas tPAHs were at 21 ng/m3 in the low traffic area. The presence of elevated 

concentrations of benzo[ghi]perylene and coronene in the airborne samples confirmed 

that traffic emissions were the major source of PAHs in the study area (Ciganek et al. 

2004).  In a particulate speciation study from South Bronx, New York City with a heavy  

traffic volume, levels of tPAHs ranged between 110 and 375 ng/m3. Traffic on major 

highways around South Bronx was suggested to be the major source of air pollution in 

that area (Maciejczyk et al. 2004). Ambient atmospheric PAH concentrations in six 

Southern California communities including rural upwind and metropolitan downwind 

sites from Los Angeles ranged between 60 and 610 ng/m3 over a one year sampling 

period. Significant seasonal differences in rural and urban communites were observed 

especially for particle-phased PAHs which increased with decreasing ambient 

temperatures. PAH levels at the rural site were significantly lower than communities 

located downwind from Los Angeles. PAHs were present mostly in the vapor phase and 

dominated by naphthalene, which was typically thousands of times higher in 

concentration than other measured PAHs. Exhaust emissions from motor vehicles played 

an important role in the observed particle-phase PAH levels (Eiguren-Fernandez et al. 

2004). Concentrations of thirty different PAHs were measured in three heavily populated 

and highly industrialized regions of the United States; Los Angeles County, California 

and the cities of Houston, Texas and Elizabeth, New Jersey. Different PAH levels were 

found among the three different areas which reflected different dominant emission 

sources. The total PAH concentrations were 4.2 to 64 ng/m3 in Los Angeles, 10 to 160 

ng/m3 in Houston, and 12 to 110 ng/m3 in Elizabeth. Los Angeles County is dominated 

by mobile sources of PAHs such as motor vehicles, whereas Houston having a highly 

developed petrochemical industry had petrogenic and pyrogenic emission sources.
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         Table 1.1. Summary of BaP, carcinogenic (USEPA B2) and total PAH concentrations in outdoor air (ng/m3) at different sites. 
 

Site Location BaP Carcinogenic PAHs Total PAH Time Frame Reference 

4300 19700 n/a* January 2004 
Prague, Czech Republic 

800 3600 n/a March 2004 
(Sram et al. 2007) 

South of France 0.02-0.1 0.1-1 5-20 July 2004 (Albinet et al. 2007) 

2 20 

 

30  

 

August 2005 

Beijing, China 

25 175 

 

360  

 

December 2004 

(Liu et al. 2007) 

Vietnam 0.6-0.7 n/a 

 

7-10  

 

January 2005-

March 2006 
(Hien et al. 2007) 

Osaka, Japan 0.3 n/a 

 

4  

 

April 2005-May 

2006 
(Hien et al. 2007) 

Brno, Czech Republic 0.4-0.6 2-3 

 

20-50  

 

October 2001 (Ciganek et al. 2004) 
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Table 1.1. (continued)  

Site Location BaP Carcinogenic PAHs Total PAH Time Frame Reference 

South Bronx,  

New York 
n/a n/a 110-375 April 2001-February 2003 

(Maciejczyk 

et al. 2004) 

South California (Los 

Angeles area), USA 
0.01-0.1 0.06-1 60-610 

May 2001- 

July 2002 

(Eiguren-

Fernandez et 

al. 2004) 

Los Angeles County, 

California, USA 
0.1 n/a 4.2-64 

June 1999- 

May 2000 

(Naumova et 

al. 2002) 

Houston, Texas, USA 0.04 n/a 10-160 
June 1999- 

May 2000 

(Naumova et 

al. 2002) 

Elizabeth,  

New Jersey, USA 
0.2 n/a 12-110 

June 1999- 

May 2000 

(Naumova et 

al. 2002) 

*=not available 
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Emission sources in Elizabeth include a combination of the previously mentioned 

sources in addition to home heating with natural gas and oil which has been found to 

contribute to the atmospheric PAH concentrations during the cold months (Naumova et 

al. 2002).  

PAHs may also be prevalent in indoor air at typically higher concentrations than 

outdoor air. Tobacco smoking is a major source of PAHs in residential environments. 

Cooking, heating and candle and incense burning are also among indoor PAH sources. 

Table 1.2 provides a summary of indoor air concentrations of PAHs reported in the 

literature. Zhu and Wang (2003) observed a mean total PAH concentration of 7,600 

ng/m3 in air samples collected from domestic kitchens in China consisting mainly of 2- 

and 3- ring PAHs, and 17,000 ng/m3 in commercial kitchens predominantly comprised 

of 3- and 4- ring PAHs. Among the different cooking practices, boiling produced the 

least amount of PAHs. In kitchens of non-smoker homes located in Chicago, levels of 

tPAHs ranged between 13 and 2,454 ng/m3. The correlation of indoor and outdoor 

concentrations of PAHs was found to be weak for low molecular weight PAHs but rather 

strong for high molecular weight PAHs. Thus, heavier PAHs are likely generated from 

outdoor sources (Li et al. 2005). In homes located in an urban area of Taipei, Taiwan, 

the mean concentration of tPAH in air samples was 267 ng/m3. PAHs were more 

abundant in indoor rather than outdoor air, where they were present at average levels of 

209 ng/m3. Levels of PAHs were not significantly lower in summer than in winter. The 

most abundant PAH in the air of the sampled homes was naphthalene which is thought 

to be due to the common use of mothballs in wardrobes. Homes that burned incense had 

higher concentrations of BaP, fluoranthene, pyrene and benzo[ghi]perylene at 2.4, 6.2, 

9.5, 7.6 ng/m3, respectively. Air sampled in living areas of homes located in Shimizu, 

Japan was found to contain PAHs at levels ranging from 3,000 to 7,600 ng/m3 (Ohura et 

al. 2004). In this study also, naphthalene was the most abundant PAH found in indoor air 

samples and was linked to the use of insect repellents. The median concentrations of 

indoor BaP in houses with smokers was higher than that in houses occupied by non-

smokers, in winter and summer. Median levels of indoor BaP in smoker houses were 
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Table 1.2. Summary of BaP, carcinogenic (USEPA B2) and total PAH concentrations in indoor air (ng/m3) at different sites. 
 

Site Location BaP 
Carcinogenic 

PAHs 
Total PAH Time Frame Reference 

Domestic kitchens, 

Hangzhou, China 
6-20 

 

n/a* 

 

3,600-9,800 December 2000 
(Zhu and 

Wang 2003) 

Commercial kitchens, 

Hangzhou, China 
150-400 

 

n/a 

 

10,000-

21,000 
December 2000 

(Zhu and 

Wang 2003) 

Domestic kitchens,  

Chicago, Illinois, USA 
n/a n/a 

 

13-2454 

 

June 2000-August 

2001 
(Li et al. 2005) 

Households,  

Shimizu, Japan 
0.3-0.4 2.2-2.5 

 

3,000-7,600  

 

Summer 2000 and 

Winter 2001 

(Ohura et al. 

2004) 

Households,  

Kuwait 
0.2 2 

 

7 

 

February-April 

2004 

(Gevao et al. 

2007) 

Households,  

Taipei, Taiwan 
2 24 

 

267  

 

August-September 

2005 and 

December 1995-

January 1996 

(Li and Ro 

2000) 
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Table 1.2. (continued) 
 

Site Location BaP 
Carcinogenic 

PAHs 
Total PAH Time Frame Reference 

Households, Los Angeles 

County, California, USA 
0.02-0.6 n/a 16-220 

June 1999- 

May 2000 

(Naumova et 

al. 2002) 

Households, Houston, 

Texas, USA 
0.003-1.1 n/a 21-310 

June 1999- 

May 2000 

(Naumova et 

al. 2002) 

Households, Elizabeth, 

New Jersey, USA 
0.006-0.2 n/a 22-350 

June 1999- 

May 2000 

(Naumova et 

al. 2002) 

Households, 

Massachusetts, USA 
n/a n/a 8-31 July-August 1997 

(Dubowsky et 

al. 1999) 

 *n/a=not available 
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0.5 ng/m3 in winter and 0.25 ng/m3 in summer whereas in non-smoker houses these 

values were 0.3 ng/m3 in winter and 0.2 ng/m3 in summer. Indoor air samples from non-

smoking residences in three areas of the United States; Los Angeles County, Houston 

and Elizabeth, were analyzed for PAHs.PAH concentrations in these residences ranged 

from 8 to 350 ng/m3.  Data from these households suggest that indoor air concentrations 

of 5- to 7- ring PAHs, typically found in the particulate phase, are dominated by outdoor 

sources which were discussed in the previous section (Naumova et al. 2002). Indoor 

concentrations of PAHs from three nonsmoking households located in an urban, semi-

urban and suburban area of Massachusetts were measured.  Traffic was found to the 

major outdoor source of PAH levels indoors in all three locations. After adjusting for 

indoor sources, mean PAH concentrations were 31 ng/m3 at the urban location almost 

two-fold that at the semi-urban location (19 ng/m3) and more than three times than the 

suburban location (8 ng/m3). During weekends, when traffic volume is low, indoor PAH 

levels were lower at all three locations; 10 ng/m3 at the urban and semi-urban locations 

and 5 ng/m3 at the suburban location.  As for indoor sources, cooking seemed to be the 

major PAH source (Dubowsky et al. 1999).  In residential settings in Kuwait, indoor air 

concentrations of PAHs ranged between 1.3 to 16 ng/m3 and consisted predominantly of 

3- and 4- ring PAHs. These levels are typically lower than the levels reported in the 

previously reviewed studies, which was suggested to be due to sampling gas-phase 

pollutants only. Indoor to outdoor ratios for individual PAHs indicated that no 

significant indoor sources exist for these compounds in the sampled homes (Gevao et al. 

2007).  

 In sediment and soil, PAHs concentrations are often elevated in areas where coal, 

wood, gasoline, or other products have been burned. Levels of total PAHs in soils and 

sediments from different sites are summarized in Table 1.3. PAH concentrations in 

sediments from different sites in the United States ranged between 0.1 and 17,283 parts 

per million (ppm) (Gu et al. 2003; Kannan et al. 2005; Neff et al. 2005; Su et al. 1998). 

Two sediment samples, one heavily contaminated with creosote and the other 

contaminated with PAHs from urban runoff and deposition of pyrogenic PAHs from 
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combustion sources were collected from Wycoff/Eagle Harbor Superfund site in the 

state of Washington. Total PAH concentration in the creosote-contaminated sediment 

sample was 17,283 ppm as compared to 25 ppm in the other sample (Neff et al. 2005). 

Sediment cores were collected on the Black River located in north-central Ohio, in 1998 

following closure of a coking facility in 1983 and remediation efforts during 1989 and 

1990. Total PAH concentrations in the sediment cores ranged between 0.1 and 250 ppm 

(Gu et al. 2003). Sediment cores from 11 inland lakes in Michigan, had tPAH 

concentrations ranging from less than 0.25 to 17 ppm. The highest concentration of 

PAHs was detected in an urbanized watershed. The most abundant PAHs included 4-  

and 5- ring PAHs which constituted around 75% of the PAH content in sediment 

samples. Sources of PAHs contaminating the lakes include coke ovens, automobile 

traffic and wood burning (Kannan et al. 2005). Total PAH levels in sediment cores 

sampled in Green Bay, Wisconsin ranged between 0.84 and 8 ppm. Sources of PAHs in 

the study site included coke burning, highway dust and wood burning. The most 

abundant PAHs were heavy PAHs that included BaP, benzo[b]fluoranthene, 

benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene and benzo[g,h,i]perylene (Su et 

al. 1998). Sediment and soil samples were collected at Potter Cover near Jubany Station 

(Antarctica) a pristine area with PAHs generated mainly from diesel motor combustion 

and open-field garbage burning. Levels of PAHs  in sediments ranged between 0.03 and 

2 ppm but were lower in the soil samples where they ranged between 0.01 and 1 ppm 

(Curtosi et al. 2007). Significant levels of PAHs exist in soil in virtually all regions of 

the earth. PAH contamination tends to be higher in urban industrialized areas where 

levels of PAHs are usually 10 to 100 times more than those in undeveloped areas 

(Harvey 1997). Depending on sampling methods and locations of the sites the 

concentrations of PAHs can vary significantly. On a local scale, hazardous waste sites 

such as former manufactured-gas factory sites and wood-preserving facilities can be a 

concentrated source. PAH concentration from soil samples collected at a landfill in New 

York City ranged from 0.4 to 10 ppm (Black et al. 1989). Wang et al. (2007) collected  
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Table 1.3. Summary of total PAH concentrations in parts per million (ppm) in soil and sediments at 
different sites. 
 

Source/Site Location Total PAH   Medium Reference 

Wycoff/Eagle Harbor, 

Washington, USA 

 

25-17,283  Sediment (Neff et al. 2005) 

Black River, Ohio, USA 

 
0.1-250  Sediment (Gu et al. 2003) 

Various Inland Lakes, 

Michigan, USA 

 

<0.25-17  Sediment (Kannan et al. 2005) 

Green Bay, Wisconsin, USA 

 
0.8-8.0  Sediment (Su et al. 1998) 

Potter Cove (Antarctica) 0.03-2 Sediment (Curtosi et al. 2007) 

Potter Cove (Antarctica) 0.01-1 Soil (Curtosi et al. 2007) 

Fountain Avenue Landfill, 

New York City, USA 
0.4-10  Soil (Black W.V. 1989) 

Former cokery site 2,600 Soil (Eom et al. 2007) 

Dalian, China 0.2-9 Soil (Wang et al. 2007) 

Glasgow, United Kingdom 12 Soil (Morillo et al. 2007) 

Torino, Italy 0.85 Soil (Morillo et al. 2007) 

Ljubljana, Slovenia 1 Soil (Morillo et al. 2007) 
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surface soil samples from four sampling sites in Dalian, a city located in Northeast 

China.The four sites included one close to traffic, another in a park or residential area, a 

suburban and a rural site and PAH concentrations were reported to range between 0.2 

and 9 ppm. Total PAHs showed an urban-suburban-rural gradient with the traffic site 

having around 18 times higher concentrations of tPAHs when compared to the rural site. 

Profiles of PAHs were also different among the different sites, with high molecular 

weight PAHs being more abundant in urban areas whereas low molecular weight PAHs 

were predominant in the suburban and rural areas. In a different study, urban soil 

samples were collected from three European cities; Glasgow located in the United 

Kingdom, Torino in Italy and Ljubljana in Slovenia. The highest levels of PAH 

contamination existed in the samples collected from Glasgow (12 ppm) which were ten-

fold higher than the levels detected in soil samples from the other two cities. 

Phenanthrene, fluoranthene and pyrene were predominant in all samples and constituted 

40% of total PAH content in soil samples. PAHs in the study’s three cities were mainly 

of pyrogenic origins such as motor vehicle exhausts (Morillo et al. 2007).  

Atmospheric dispersion of particle-bound PAHs often results in the deposition of 

these chemicals into surface waters. Approximately two-thirds of PAHs detected in 

surface water are particle-bound. Runoff of polluted ground sources or direct pollution 

of rivers and lakes by municipal and industrial effluents are also among the diverse 

sources of water contamination. Lower concentrations of PAHs may also be leached 

through soils into groundwater. The range of PAH concentrations detected in surface and 

ground water in various studies is summarized in Table 1.4. PAHs in water sampled near 

a bitumen field in Nigeria were found to range from 11 to 342 �g/L (Olajire et al. 2007). 

Water samples from a river located in northeast China had levels of PAHs that ranged 

from 1 to 14 �g/L. A wide range of PAHs at different concentrations were detected in 

these water samples indicating that there are potentially many different sources of PAHs 

in the river, possibly including industrial wastewater, sewage, spill oil, runoff and 

atmospheric fallout (Guo et al. 2007). Surface water samples from a major river in 

Hungary revealed that 2- and 3-ring PAHs comprised around 78% of total PAHs which  
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Table 1.4. Summary of total PAH concentrations in surface and ground water (�g/L) at different sites. 

Source/Site Location Total PAH  Medium Reference 

Bitumen Field, Nigeria 11-342  Surface Water (Olajire et al. 2007) 

Daliao River, China 1-14  Surface Water (Guo et al. 2007) 

Taihu Lake, China 0.2 Surface Water (Ke et al. 2007) 

Danube River, Hungary 0.01-3 Surface Water (Nagy et al. 2007) 

Former wood treatment 

site, Norway 
5,200 Ground Water  (Hartnik et al. 2007) 

Anoka Sand Plain, 

Minnesota, USA 
<0.01 Ground Water (Trojan et al. 2003) 

Wood treatment sites, 

USA 
10,051 Ground Water Rosenfeld and Plumb 1991 

Coal and oil gasification 

plant, Washington, USA 
230-14,240 Ground Water Turney and Goerlitz 1990 

 

ranged in concentrations between 0.01 and 3 �g/L. In the study area, PAHs were mainly 

generated from the incomplete combustion of fossil hydrocarbons (Nagy et al. 2007). In 

a different study water samples have been collected from Taihu lake, a shallow 

freshwater lake in China. PAHs detected in these samples were predominantly composed 

of phenanthrene, fluoranthene and pyrene. Concentration of total PAHs was around 0.2 

�g/L (Ke et al. 2007). Few recent data are available on the concentration of PAHs in 

ground water.  In a study on ground water quality at Anoka Sand Plain Aquifer located 

in east central Minnesota, USA, a source of drinking water, benzo[g,h,i]perylene and 

indeno[1,2,3-cd]pyrene were the most elevated PAHs, however their levels were in the 

ng/L range (Trojan et al. 2003). Ground water was sampled in a former wood treatment 

site located in Hommelvik, Norway. High molecular weight PAHs more specifically 

carcinogenic PAHs were mostly below detection limit. The most abundant PAH was 

naphthalene at 4,027 �g/L. Total PAH concentration was around 5,200 �g/L (Hartnik et 

al. 2007). Ground water collected near a coal and oil gasification plant and wood 

treatment facilities was found to have elevated levels of PAHs. Ground water sampled 
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near a coal and oil gasification in Seattle, Washington, USA that ceased operation in 

1956 was found to contain total PAH levels ranging from 230 to 14,240 �g/L. PAH 

levels were highest where ground water was in contact with a non-aqueous phase liquid 

(NAPL) in the soil (Tumey and Goerlitz 1990). PAHs in ground water from five wood 

treatment sites in the United States had an average concentration of 10,051 �g/L. Low 

molecular weight PAHs, which are typically more water soluble, were the most 

abundant in ground water samples. Less soluble 3- and 4- ring PAHs were present at 

level lower than 200 �g/L (Rosenfeld and Plumb 1991).  

Exposure to carcinogenic PAHs from human ingestion of drinking water is minor 

compared to other potential routes of exposure. According to water quality data from the 

World Health Organization (WHO), levels of PAHs in drinking water were found to 

vary between 1 and 11 µg/L (Skupinska et al. 2004). PAH levels in selected water 

supplies in four U.S. cities were measured previously and found to be ranging between 

0.01 and 0.6 �g/L (Basu and Saxena 1978).  

PAH contamination of surface water may result in distribution of these 

compounds into the food chain.  Because PAHs, especially heavier congeners, are water 

insoluble or lipophilic, they are likely to enter and bioaccumulate in the food chain.  

PAHs can be taken up by planktons, mollusks, fish and eventually consumed by humans 

(Harvey 1997). PAHs bioaccumulated in plant and animal tissues may reach higher 

levels than those found in air or water (ATSDR 1995).   

Direct contamination of food with PAHs has also been reported.  Intake of PAH-

rich foods was linked with cancer of the stomach and esophagus (Ward et al. 1997) as 

well as cancer of the colon and rectum in humans (Sinha et al. 1999). PAHs in food 

items can have plant or animal origins. Vegetables with large leaves accumulate PAHs 

on their surface and to a lesser extent in their internal tissue. Grazing cattle and poultry 

can accumulate PAHs in their tissues. PAH contamination was detected in leafy plants 

such as lettuce, spinach, tea, tobacco and in smoked meats and fish. PAHs present in 

plants are most likely due to atmospheric contamination. In fresh meats and seafood, 

PAHs exist due contamination of air, water or animal feed. Cooking methods such as 
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frying, charcoal broiling tend to increase the level of PAHs as well as other potentially 

carcinogenic chemicals such as heterocyclic amines in foods (HCAs). Depending on the 

method of food preparation, levels are highly variable but can reach parts per billion 

(ppb) levels (ATSDR 1995). PAHs are formed from organic compounds by the 

recombination of smaller organic compounds originally fragmented at high cooking 

temperatures. PAHs are generally produced in lesser amounts at temperatures below 

400oC but increase linearly in the range between 400 and 1000oC (Jagerstad and Skog 

2005). Barbecued meat for example, can have a PAH level as high as 10 to 20 ppb 

(Phillips 1999). Epidemiological studies revealed a positive association between 

consumption of red meat cooked by deep frying and risk of breast cancer (Dai et al. 

2002).  

Food may be considered a main source of exposure in human populations. 

Contamination of food by PAHs can be environmental or through cooking or processing. 

Average daily intake of PAHs in humans has been estimated to be 0.2 �g from air, 0.03 

�g from water (ATSDR 1995) and 2 to 3 �g from food. The average daily intake of 

PAHs from food compares to 2 to 5 �g PAHs per pack of cigarettes in a regular smoker 

(Jagerstad and Skog 2005). Exposure from dietary sources can account for more than 

70% of PAH exposure in non-smokers and also contributes significantly to non-

occupational exposure to PAHs. Cereals, oils and vegetables are some of the main 

sources of PAHs in the diet (Phillips 1999). In plants, PAH contamination occurs by soil 

to root uptake or through the atmosphere. Uptake through the atmosphere occurs by 

deposition of airborne particles containing PAHs on the plant leaves which is especially 

important in plants with broad leaves such as lettuce (Ramesh et al. 2004). PAHs levels 

found in leafy vegetables were reported in several studies (Jakszyn et al. 2004; Kulhanek 

et al. 2005). Kulhanek et al. (2005) described bioconcentration factors in leafy 

vegetables from the Czech Republic.  The factor for BaP was 5 x 10-6 without attached 

soil and 0.01 with soil. In foods from animal origin, accumulation of PAHs occurs in 

grazing cattle and poultry feeding on contaminated pastures and vegetation (Crepineau et 

al. 2003). PAH occurrence in fish and other seafood is due to contamination of fresh and 
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coastal waters (Ramesh et al. 2004). Food content was analyzed for potential 

carcinogens including PAHs. Levels of BaP and total PAHs in several food items are 

summarized in Table 1.5. For products from plant origin, the following values were 

reported:  vegetables 0.1 ppb BaP and 4.2 ppb total PAHs (Tateno 1990); fruits 0.01 ppb 

BaP and 0.7 ppb total PAHs (Falco et al. 2003); wheat grain 0.3 ppb BaP and 4 ppb total 

PAHs (Jones et al. 1989); wheat flour 0.1 ppb BaP and 1.5 ppb total PAHs (Dennis et al. 

1991); white bread 0.017 ppb BaP and 3.12 ppb total PAHs (Lodovici et al. 1995) and 

coffee 0.9 ppb BaP and 25 ppb total PAHs (Klein 1993). Among oils, groundnut oil had 

higher levels of total PAHs at 750 ppb compared to soybean oil at 220 ppb (Kolarovic 

and Traitler 1982) and olive oil at 25 ppm (Moret and Conte 2000). In addition, the 

levels of BaP in groundnut oil (110 ppb) were higher than those in soybean oil (30 ppb) 

and olive oil (0.1 ppb). In products from animal origin, levels of BaP in fresh fish were 

at 1.5 ppb and 90 ppb for total PAHs (Baumard et al. 1998b) whereas raw beef meat had 

BaP levels below detection and total PAHs at 10 ppb (Lodovici et al. 1995).  

Cooking methods affect the content of PAHs in a food item.  Meats that have 

been fried or charcoal broiled are especially high in PAH content (Harvey 1997).  In 

cooked foods, the following values were reported (Table 1.5): smoked fish 50 ppb BaP 

and 800 ppb total PAHs (Akpan et al. 1994); barbecued beef meat 1.5 ppb BaP and 45 

ppb total PAHs (Lodovici et al. 1995) and grilled frankfurters 55 ppb BaP and 800 ppb 

total PAHs (Larsson et al. 1983). The data summarized in Table 1.5 reveal that total 

PAHs tended to be higher in oils and cooked foods as opposed to vegetables and fruits. 

The same trend was found in high molecular weight PAHs such as BaP which was 

detected in grilled frankfurters at 55 ppb (Larsson et al. 1983) as compared to 0.1 ppb in 

vegetables (Tateno 1990).  

In addition to PAHs, more than 20 derivatives of HCAs were identified in 

cooked foods, especially meat and fish (Jagerstad and Skog 2005; Jakszyn et al. 2004; 

Turesky 2007). HCAs consist of two or three rings with an exocylic amino group on one 

of the rings (Jagerstad and Skog 2005). 
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Table 1.5. Summary of BaP and total PAH concentrations in parts per billion (ppb) in different food 
items.  
 

Source BaP   Total PAH Reference 

Vegetables 0.1 4.2 (Tateno 1990) 

Fruits 0.01 0.7 
(Falco et al. 

2003) 

Wheat grain 0.3 4 
Jones et al. 

1989 

Wheat flour 0.1 1.5 
(Dennis et al. 

1991) 

Bread (white)  0.017 3.12 
(Lodovici et al. 

1995) 

Coffee 0.9 25 (Klein 1993) 

Olive oil 0.1 25 
(Moret and 

Conte 2000) 

Soybean oil 30 220 
(Kolarovic and 

Traitler 1982) 

Groundnut oil 110 750 
(Kolarovic and 

Traitler 1982) 

Fresh Fish 1.5 90 
(Baumard et al. 

1998b) 

Smoked Fish 50 800 
(Akpan et al. 

1994) 

Raw Beef Meat nd* 10 
(Mottier et al. 

2000) 

Barbecued Beef Meat 1.5 45 
(Lodovici et al. 

1995) 

Grilled Frankfurters 55 800 
(Larsson et al. 

1983) 

*nd= not detected
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They are formed from precursors such as creatine or creatinine, amino acids and sugars. 

HCAs can be divided into two main classes, the aminoimidazol-quinolines (e.g. IQ) and 

the aminoimidazol-pyridines (e.g. PhIP) (Jakszyn et al. 2004). The molecular structures 

of IQ and PhIP are shown in Figure 1.2. HCAs were found to be mutagenic  and 

carcinogenic in in vitro and in vivo models (Sugimura et al. 2004) however the evidence 

from epidemiological studies is not sufficient yet to establish a causal link with human 

cancer cases (Jagerstad and Skog 2005). High quantities of HCAs were associated with 

prolonged cooking time and high temperature cooking surfaces (Knize et al. 2003). 

Human exposure to HCAs were estimated to vary between nanograms to micrograms 
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Figure 1.2. Structures and nomenclatures of representative heterocyclic aromatic amines. 
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per day depending on dietary lifestyle and cooking processes (Jagerstad and Skog 2005). 

PAHs are a major component of tobacco smoke. About 150 different 

unsubstituted and methylated PAHs have been detected in tobacco smoke condensate. It 

has been estimated that approximately 10 to 50 �g of BaP are inhaled into the lungs from 

one cigarette (Luch 2005; Phillips 1996). According to Harvey (Harvey 1997) more than 

150 PAHs occur in gas phase and more than 2,000 were identified in the particulate 

phase (Harvey 1997). Tobacco smoke is one of the most important sources of PAHs in 

indoor air.  

Background exposures to PAHs are relatively low (air, water and diet) compared 

to occupational sources. PAH exposure can be significant during industrial processes 

such as coal tar production, aluminum smelting and also in industries where petroleum 

and petroleum products are used. Exposure to PAHs in an aluminum production plant 

was reported at levels ranging between 1488 and 15149 ng/m3 depending on the job 

function (Vu Duc and Lafontaine 1996), and as high as 200,000 ng/m3 in coke ovens 

(Lewtas et al. 1997). Monitoring of airborne PAHs in the work environment of an iron 

foundry and two steel plants revealed that the concentrations of PAHs ranged between 

321 to 1331 ng/m3 as compared to 7 ng/m3 in urban areas of the general environment 

(Apostoli et al. 2003). Among other occupations, personal PAH monitoring revealed that 

traffic policemen are exposed to PAH levels ranging from 9 to 140 ng/m3 in Budapest, 

Hungary (Szaniszló and Ungváry 2001)and around 1700 ng/m3 in Beijing, China (Liu et 

al. 2007). The total PAH exposure levels for toll booth attendants were reported to range 

between 6300 and 15000 ng/m3 in Taipei, Taiwan (Tsai et al. 2004).  

 

1.3.2 Source Apportionment 

Based on the ratio of various components, PAH mixtures can be classified as 

originating from petroleum or petrogenic sources, or from pyrolysis or pyrogenic 

sources. Specific marker compounds may help in the identification of the major sources 

of PAHs at a given location. In the case of petrogenic sources, low molecular weight 

compounds (2 and 3 rings) tend to be predominant whereas PAHs emitted by incomplete 
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combustion of organic materials have a higher proportion of heavier compounds (4 rings 

or larger). As an illustration, low molecular weight compounds contributed to 98% of 

total PAHs emitted by coke ovens, 76% and 73% of the emissions from diesel and 

petroleum engines respectively, and 80% of the PAHs emitted from wood combustion 

(Khalili et al. 1995). Indeno[1,2,3-cd]pyrene (6 rings) and benzo[ghi]perylene (5 rings) 

were detected in PAH profiles associated with mobile sources. Benzo[ghi]perylene is 

known to be a marker of gasoline exhaust emissions (Eiguren-Fernandez et al. 2004). 

The relative abundance of PAHs present in mixtures can therefore be used to elucidate 

sources and provide a source fingerprint (Harrison et al. 1996). Molecular indices based 

on ratios of selected PAH concentrations may differentiate between pyrolytic and 

petrogenic sources (Edgar et al. 2006). For example, a phenanthrene : anthracene ratio 

greater than 10 suggests a petrogenic source of PAHs. On the other hand, a fluoranthene: 

pyrene ratio greater than 1.0 indicates that PAH contamination is most likely due to 

combustion or pyrolytic processes. Ratios of other PAH compounds such as the ratio of 

benz[a]anthracene and chrysene,  indeno[1,2,3-cd]pyrene i and benzo[ghi]perylene, and 

benzo[b]fluoranthene and benzo[k]fluoranthene are also commonly used (Morillo et al. 

2007). 

  

1.4 Hazardous Effects of Polycyclic Aromatic Hydrocarbons 

1.4.1 Ecological Effects  

PAH contamination of aquatic environments poses a threat to ecosystems and 

indirectly to human health. Humans can be exposed to through consumption of fishery 

products such as mussels, shrimps or other crustaceans and fish. Generally however, this 

human exposure route is considered to be of lesser significance when compared to PAH 

exposures from air and other food items such as vegetables.  

The effects of PAHs on wildlife can be significant especially through food chain 

poisoning. However, direct effects of PAHs on aquatic life may also occur. PAHs may 

persist in sediments and biota due to an inability to efficiently eliminate them. Body 

burden of PAHs in marine organisms is primarily determined by uptake and elimination 
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of these contaminants. Uptake is externally controlled by the chemical partitioning 

characteristics of contaminants between different media such as sediment, water and 

food. Therefore, occurrence of PAHs in organisms can be an indicator of exposure to 

contaminated water, sediment and food. Internally, uptake depends on the behavior of 

the organism and its physiology (Meador et al. 1995).  

PAH contamination of coastal harbors, inland rivers and lakes at varying levels 

has been documented in studies from as early as the 1960s. Laboratory and field studies 

on feral organisms have attempted to evaluate the ecotoxicological potential of this 

contamination. Tumors and other diseases have been reported in fish and were most 

likely linked to PAHs. Field studies of PAH toxicity present the challenge of identifying 

biological responses caused specifically by PAHs due to the presence of common co-

contaminants such as organochlorines and metals. Fish take up PAHs and rapidly 

metabolize (Lemaire et al. 1990) and excrete them into the bile which is considered a 

major route of elimination (Varanasi 1989). Thus PAHs tend not to bioconcentrate and 

might cause adverse effects with little or no chemical trace. Metabolism converts up to 

99% of PAH to metabolites within 24 hours of uptake, significantly reducing tissue 

concentrations of PAH parent compounds (Varanasi 1989). Thus, it is usually very 

challenging to determine PAH concentrations in fish tissues to assess exposure. 

Determining the levels of PAH metabolites in bile is usually more significant since it 

reflects uptake, metabolism and excretion (Meador et al. 1995). The major adverse 

effects reported in feral fish and linked to PAHs can be categorized into biochemical, 

histopathologic, immunological, genetic, reproductive, developmental and behavioral 

effects.  

Biochemical effects consist mainly of alteration of Phase I, by induction of 

mixed function oxidases (MFO) for the most part, and to a lesser extent Phase II 

enzymes (Stegeman and Hahn 1993). Those effects may also include changes in 

hormones, energy reserves and serum enzymes. Induction of MFO enzymes was 

reported in fish around petroleum development sites in a marine environment (Stagg et 

al. 1995). According to Stegeman and Hahn (1993), MFO induction was associated with 
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mutagenic and carcinogenic processes and was also linked with effects on reproduction 

as well as organ and cellular disturbances (Au et al. 1999). Histopathological effects 

include an effect synonymous with serious chemical injury which is cancer. Several 

studies suggested that there was a link between polluted water with elevated levels of 

PAHs and histopathological effects including tumor formation in fish (Baumann and 

Harshbarger 1995; Myers et al. 1998; Pritchard et al. 1996; Steyermark 1999). Skin and 

skeletal disorders, liver abnormalities in addition to neoplasms were also among the 

effects linked to PAH contamination. 

Alteration of immune responses in fish can lead to susceptibility to bacterial, 

viral and parasitic infections and decrease the resistance to carcinogenesis. Pollution in 

estuaries in the Pacific Northwest of the USA was suggested to be one of the factors 

contributing to the decline of wild Pacific salmon. Karrow et al. (1999) observed a 

significant alteration in blood leukocytes in rainbow trout exposed to creosote. 

Immunotoxicity can result in a variety of adverse outcomes but the most concerning 

effect is the decreased resistance to infectious diseases. Immunosuppression in juvenile 

Chinook salmon from Puget Sound sites in Washington, U.S. was documented with total 

PAH concentrations in stomach contents ranging from 4000 to 15,000 ng/g wet weight 

(Johnson et al. 2007). 

Classical cytogenetic techniques revealed a level of genetic toxicity in larvae of 

different fish species exposed to PAHs (Carls et al. 1999; Hose and Brown 1998). 

Higher levels of DNA fragmentation were detected in the blood cells of bullheads from 

contaminated sites in the US and Canada as compared to reference sites (Pandrangi et al. 

1995). Among the PAH effects on reproductive function in fish, impairment of sperm 

quality and effects on egg hatchability was observed in a specie of fish chronically 

exposed to PAH contaminated sediment in Canada. PAHs therefore can also present a 

reproductive risk in fish.  

Developmental effects were observed from relatively low PAH concentrations in 

larval and juvenile fish. Moles and Norcross (1998) reported reduced growth in juvenile 

flounder with chronic exposure to low levels of PAHs (around 1.6 ppm) in sediment. 
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Among the behavioral changes that were potential linked with PAH exposure are the 

alteration of feeding (Gregg et al. 1997; Hinkle-Conn et al. 1998) and swimming 

behaviors (Carls et al. 1999).  

In lab feeding studies during which fish are exposed to higher PAH concentration 

than detected in the field, physiological changes were detected at PAH concentrations 

around 25,000 ng/g wet weight in juvenile chinook salmon whereas immunosuppression, 

CYP1A induction and DNA damage were observed in rainbow trout exposed to PAHs in 

diet at concentrations around 40,000 ng/g wet weight (Johnson et al. 2007).  

Terrestrial vertebrates are mostly exposed to PAHs via their diet. Topical 

exposure can also be an important route of exposure for incubating birds that become 

oiled and oil is subsequently transferred to the eggshell from their feathers which can 

result in an in ovo exposure to the embryos. Oiled birds can also ingest oil when 

preening. Concentrations of PAHs in birds and their eggs are relatively low however due 

to rapid metabolism and excretion of PAHs (Näf et al. 1992). Many invertebrate-feeding 

birds and mammals feed on earthworms which were found experimentally to 

bioaccumulate specific PAHs when exposed to contaminated soils (Ma et al. 1995). 

BaP-diol epoxide adducts in blood albumin and hemoglobin in woodchucks (Marmota 

monax) from an area near an aluminum electrolysis plant (Blondin and Viau 1992). 

Induction of liver monooxygenases activity has been demonstrated in wood mice 

sampled from either a pitch-coke plant or an industrial/oil shipping area (Leupold et al. 

1992).  Toxic effects of PAH in wild birds and mammals occur mainly through the 

formation of adducts and the associated risk of carcinogenicity which can be a concern 

in long-lived species. Immunsuppression, embryotoxicity and general toxic effects of 

PAHs were reported terrestrial vertebrates such as amphibians and birds.  

Effects of acute or chronic exposure to PAHs in wild mammals and reptiles and 

even birds is not well defined. Therefore, efforts to link PAHs with effects on 

populations or communities of marine mammals are few. Markedly, PAHs were 

implicated as possible causal agents for the health problems of beluga whales found dead 

over a period of 8 years along the shores of St. Lawrence estuary in Canada (Beland 
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1993) especially due to their high incidence of neoplasms and presence of BaP-DNA 

adducts in their tissues (Martineau et al. 1994).  

PAHs can also have phytotoxic effects. Many plant species are sensitive to PAHs 

to some extent and are susceptible to impaired growth due to PAH exposures.  Plants 

constitute the point of entry of hazardous compounds into the food chain, and can be 

used as sentinel species for PAH contamination in the environment. Plants absorb PAHs 

from soil, water or air and especially in aquatic species assimilation of contaminants is 

fast even from non-dissolved phases such as sediments. Plants with broad leaves such as 

lettuce tend to accumulate more airborne particles containing PAHs due to the large 

surface areas of their leaves (Ramesh et al. 2004). PAHs are usually phytotoxic only at 

high concentrations if not photoinduced. Sunlight can dramatically increase toxicity of 

PAHs in plants by phytosensitization and photomodification reactions (Krylov et al. 

1997). Photosensitization reactions usually lead to formation of highly damaging 

reactive oxygen species (ROS) whereas photomodification of PAHs occurs via oxidation 

and activation of the parents compounds (Mallakin et al. 1999).  

 

1.4.2 Polycyclic Aromatic Hydrocarbons and Human Cancer Risk 

  Humans are continuously exposed to complex mixtures from a variety of 

sources.  These include air particulate, cooked foods, cigarette smoke, and emissions 

from industrial or contaminated waste sites. The toxicity of complex environmental 

mixtures including smoke and soot was recognized as early as the Middle Ages by 

Paracelsus (Gallo 2001). A primary concern associated with human exposures to 

complex mixtures of PAHs comes from the fact that many of these compounds have 

mutagenic and carcinogenic properties (Lijinsky 1991). In addition, a typical PAH 

mixture includes hundreds of compounds which may act as enzyme inducers, 

carcinogens, or promoters. Thus, the interactions of the components of a specific PAH 

mixture are difficult to predict. Historically, human exposures to a variety of PAH 

complex mixtures have been associated with increased cancer rates (Dipple 1984; 

Harvey 1991; IARC 1984, 1985; Warshawsky 1992).  
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As early as 1775, Sir Percival Pott (Pott 2002) linked scrotal cancer with 

exposure to soot among British chimney sweeps. This provided the first proof of an 

environmental origin of a form of cancer. This finding was confirmed more than a 

century later. Early laboratory animal studies in 1915 reported on the production of 

malignant epithelial tumors by repetitive application of coal tar to the ear skin of rabbits 

(Yamagiwa 1915). Shortly thereafter, dermal application of complex mixtures to mice 

was introduced as a method for investigating the carcinogenic potential of coal tars. 

After successfully producing cancer in rodents under experimental conditions, scientific 

interest shifted to the identification of the individual chemical(s) responsible for tumor 

formation as documented by the work of Kennaway (1925). Beginning in 1930 with the 

help of the British Gas, Light and Coke Company, Hieger (1930) isolated approximately 

7 g of a yellow powder from 2 tons of coal tar pitch by repetitive steps of fractional 

distillation, extraction and crystallization. The pelt showed strong carcinogenic activity 

in rodents. Further fractionation of the carcinogenic powder produced pure crystalline 

products with melting point of 176oC and 186oC which were recognized to be isomeric 

with pentacyclic perylene. Radioactively labeled PAHs which became available in the 

late 1940s bound to both proteins and DNA fractions in epidermal cells after 

administration of the compound into the back of mice. DNA was then proposed to be the 

essential “cellular receptor for carcinogenesis”.  

The carcinogenic potencies of a series of PAHs and the extent to which these are 

bound to DNA in vivo were roughly correlated. It was further noted that this process was 

dependant on a series of additional cellular events and the presence of activating 

enzymes residing in the endoplasmic reticulum. However, it was not until the early 

1970s when Borgen and coworkers (1973) reported that a metabolite of BaP, the 7,8 

dihydrodiol, binds to a ten-fold greater extent to DNA in vitro than its parent compound. 

For this to occur, activating microsomal preparations were required. Sims et al. (1974) 

proposed that a secondary metabolite, the 7,8 dihydrodiol 9,10 epoxide (diol epoxide), 

derivative of BaP is the chemical agent covalently interacting with DNA. Hence, B[a]P 

diol epoxide was considered to be the ultimate carcinogen.  
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In the 1940s it was observed that low doses of PAHs applied to the back of mice 

did not induce tumors unless croton oil was also applied. Croton oil which had no 

carcinogenic potencies was considered to act as a promoting agent. Therefore, the 

initiation stage of cancer is thought to occur when normal cells are irreversibly converted 

into latent tumor cells that remain dormant until stimulated by promoting agents. Onset 

of promotional stage would then lead to outgrowth of initiated cells resulting in the 

proliferation of clones of altered cells which enhances tumor formation. In animal tumor 

models, this stage is a prolonged period and may be reversible when treatment is 

terminated. Promoters generally act through receptor-mediated ‘epigenetic’ mechanisms. 

Initiating compounds such as PAHs are genotoxic. They covalently bind to DNA and 

cause lesions. When these lesions are not repaired, the formation of PAH-DNA adducts may 

result in the generation of apurinic sites and nucleobase-mispairing at these sites which may 

lead to the induction of mutations (Figure 1.3). The formation of mutations in cancer 

related genes such as protooncogenes or tumor suppressor genes is therefore generally 

assumed to be a crucial event in tumor formation. PAHs with initiating and promoting 

activity are therefore considered as “complete carcinogens”. Repeated treatments of 

animals with high doses of potent PAHs such as BaP and dibenz[a,h]anthracene (DBA) 

over extended periods of time will produce a significant increase in tumors in the 

absence of promoters.  

 The biological activity of PAHs is substantially influenced by the chemical 

structure of these compounds. Two groups of PAHs have been characterized according 

to their structural differences, peri-condensed PAHs and cata-condensed PAHs. The 

peri-condensed PAHs include compounds which form a cycle as their lines connect the 

ring centers. Furthermore this category can be subdivided into two groups, alternants, 

formed exclusively of six-membered rings, and non-alternants, that include some five-

membered rings. Cata-condensed PAHs do not form cycles, and can be classified as 

branched, which are usually more thermodynamically stable and less chemically 

reactive, or non-branched (Ramesh et al. 2004). Figure 1.4. displays the different types 

of PAH structures.  
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Figure 1.3. Process for inducing A�T transversions from depurinating adenine adducts. Adapted 
from Skupinska et al. (2004). 
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      Pyrene Fluoranthene

Peri-Condensed

Cata-Condensed

Chrysene Triphenylene

cycle alternant cycle non-alternant

linear non-branched alternant linear branched alternant  
 

Figure 1.4. Types of PAH structures. Adapted from Ramesh et al. (2004). 

 

PAHs may have varying structural regions; the K region, the L region, the Bay 

region, the distal bay region, and the peri position (Figure 1.5). The bay region is the 

most biologically active of the regions in the model carcinogen BaP.  It consists of an 

open inner corner of a phenanthrene moiety.  Following metabolism by mammalian 

enzymes, PAHs can either be excreted from the body, or activated and bound to 

nucleotides in DNA. Elimination of PAHs usually requires conjugation by Phase II 

enzymes. The reaction of the benzo[a]pyrene-7,8-diol-9,10-epoxide with the N-2 of 

guanine results in the formation of a DNA adduct.   
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CH3

CH3 K-region

hindered bay region

K-region

bay region fjord
region

    
 
            Benzo[a]pyrene           7,12-Dimethylbenz[a]anthracene        Dibenzo[a,l]pyrene 

 
Figure 1.5. Structural features of PAHs that contribute to carcinogenicity. BaP, a known 
carcinogen, contains a bay region. The diol epoxide metabolite of BaP, which binds to DNA, 
contains an epoxide group next to the bay region. Methyl groups in DMBA hinder this structural 
feature further, as does the extra benzene ring in DB[a,l]P. The compounds are arranged in order 
of their increasing carcinogenic potency, with DB[a,l]P being the most potent. Adapted from 
Baird et al. (2005). 
 

In most cases, the major source of human exposure to PAHs is through inhalation 

of vapors or dust. Exposure to PAHs from ingestion of soil, food, and drinking water 

may also occur. Indoor air is also considered to be an important source of human 

exposure to PAHs, especially in homes where sources such as environmental tobacco 

smoke, unvented kerosene space heaters, coal or gas cooking and heating appliances 

exist. 

 Epidemiologic data indicate that exposure to PAHs has been associated with 

human cancers of the skin, lungs, and bladder (Boffetta et al. 1997). Several individual 

PAHs, including BaP, chrysene, indeno[1,2,3-c,d]pyrene, and benzo[b]fluoranthene 

have produced carcinogenic, mutagenic, and genotoxic effects in animal studies (Basler 

et al. 1977; Deutsch-Wenzel et al. 1983; LaVoie et al. 1982; Thyssen et al. 1981). Seven 

PAHs, including the model carcinogenic PAH, BaP, are classified by the United States 

Environmental Protection Agency (USEPA) as probable (class B2) human carcinogens 

(USEPA 2006). PAHs have been observed to induce cancer, hematotoxicity, 

cardiotoxicity, renal toxicity, neurotoxicity, immunotoxicity, reproductive toxicity, and 

developmental toxicity in animals and humans (Ramesh et al. 2004). Tobacco smoke, a 

major source of PAHs has been linked to about 90% of all lung cancer cases and other 
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smoking-related cancer types and is believed to account for approximately 1.2 million 

worldwide deaths annually (Luch 2005).  

Animal studies have demonstrated that individual PAHs and PAH mixtures may 

act as potent carcinogens in rodent skin models. These observations are in agreement 

with results from human studies indicating an increased incidence of skin cancer 

associated with the use of various coal tar preparations (Grimmer et al. 1982; Lewis et 

al.1982; Lewis 1983; Mahlum et al. 1984; Mukhtar et al. 1982; Mumtaz et al. 1996; 

Robinson et al. 1984; Wallcave et al. 1971).  One of the first synthetic PAH congeners 

shown to be carcinogenic in laboratory animal studies was dibenz[a,h]anthracene (Cook 

1933). BaP was later identified as an important carcinogenic PAH congener present in 

many carcinogenic PAH mixtures (Cook 1933).  Several PAH congeners have been 

classified as human carcinogens (either 2A-probable or 2B-possible) by the International 

Agency for Research on Cancer (IARC) which systematically reviews the 

carcinogenicity of chemicals such as PAHs (IARC 2004). These compounds include 

benz[a]anthracene, benzo[b]fluoranthene, benzo[j]fluoranthene, benzo[k]fluoranthene, 

BaP, dibenz[a,h]acridine, dibenz[a,j]acridine, dibenz[a,h]anthracene, dibenzo[a,e]-

pyrene, dibenzo[a,h]pyrene, dibenzo[a,i]pyrene, dibenzo[a,l]pyrene, indeno[1,2,3-c,d]-

pyrene, and 5-methylchrysene. All of the carcinogenic PAHs contain 4 or more fused 

benzo rings. On the other hand, the compounds categorized by the USEPA as probable 

human carcinogens (B2) include the four ring PAHs; benz[a]anthracene and chrysene, 

the five ring PAHs; benzo[b]fluoranthene, benzo[k]fluoranthene, BaP, dibenz[a,h]an-

thracene, and the six ring PAH; indeno[1,2,3-c,d]pyrene (USEPA 2006). 

An excess incidence of lung cancer was reported in occupational studies of 

subjects exposed to PAH mixtures in emissions from coke ovens and aluminum smelters 

(Boffetta et al. 1997; Hoshuyama et al. 2006; IARC 1984a, 1984b, 1985; Mastrangelo et 

al. 1996; Nadon et al. 1995). European chimney sweeps, who were exposed to lower 

levels of soots and tars have exhibited lower incidence of scrotal cancer. This occurrence 

has bolstered a causal relationship between PAH exposure and this form of cancer 

(Butlin 1892).  Later studies established the link between increased incidence of cancer 
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and exposure to other PAH-containing complex mixtures. The mixtures described in 

those studies included various coal tars, automobile exhaust, creosote, asphalt fumes, 

cigarette smoke as well as other PAH-containing materials (Cruickshank and Gourevitch 

1952; Fisher 1953; Grimmer et al. 1991; Grimmer et al. 1983; IARC 1984a, 1984b, 

1985, 1986, 1989; Mumtaz et al. 1996; Pisani et al. 2006; Pittelkow et al. 1981; Roy et 

al. 1988; Waterhouse 1971; Wynder 1967).    

 Occupational studies are of particular importance in studying human effects of 

PAH mixtures. They are usually considered to be the most complete studies in terms of 

exposure, dose-response and adverse health effects. The International Agency for 

Research on Cancer (IARC) classified several PAH mixtures common in occupational 

settings and industrial processes as carcinogenic, probably carcinogenic (2A) or possibly 

carcinogenic (2B) to humans based on epidemiological and experimental evidence 

(Boffetta et al. 1997; IARC 1984a, 1984b, 1985, 1989; Mastrangelo et al. 1996). A list 

of PAH mixtures and exposure circumstances evaluated by IARC is provided in Table 

1.6.   

Aiming at reviewing studies that report dose-response analysis of PAH levels in 

relation to cancer risk, Mastrangelo et al. (1996) evaluated a large number of 

occupational studies published between 1966 and 1996. Ten studies (Armstrong et al. 

1994; Bonassi et al. 1989; Clavel et al. 1994; Costantino et al. 1995; Jockel et al. 1992; 

McLaughlin et al. 1992; Nadon et al. 1995; Spinelli et al. 1991; Tola et al. 1979; 

Tremblay et al. 1995) that evaluated occupations in aluminum, coke oven, petroleum and 

foundry industries among others, were found to explicitly mention PAH exposure in 

qualitative or quantitative forms and relate it to lung or bladder cancer. McLaughlin et 

al. (1992) measured exposure to BaP, silica, arsenic and radon in 316 lung cancer cases 

and 1,352 controls from a cohort of Chinese workers in tin mines. Odds ratio of lung 

cancer in workers exposed to cumulative levels of BaP ranging from 108 to 250 �g/m3 

was 2.7 however the trend was not significant. From a cohort of aluminum refinery plant 
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Table 1.6. List of PAH mixtures and exposure circumstances evaluated for carcinogenicity by the 
International Agency for Research on Cancer (IARC). 
 

PAH Mixture or 

Process 

Epidemiological 

Evidence 

Experimental 

Evidence 

IARC 

Group 
Reference 

Bitumens (extracts) - Sufficient 2B 
(IARC 

1985) 

Carbon black Inadequate Sufficient 2B 
(IARC 

1984a) 

Coal-tars Sufficient Sufficient 1 
(IARC 

1985) 

Diesel engine exhaust Limited  Sufficient 2A 
(IARC 

1989) 

Gasoline engine 

exhaust 
Inadequate Sufficient 2B 

(IARC 

1989) 

Mineral oils, untreated 

and mildly-treated 
Sufficient Sufficient 1 

(IARC 

1984a) 

Soots Sufficient Inadequate 1 
(IARC 

1984a) 

Shale oils Sufficient Sufficient 1 
(IARC 

1984a) 

Aluminum Production Sufficient - 1 
(IARC 

1984b) 

Coal gasification Sufficient - 1 
(IARC 

1984b) 

Coke production Sufficient - 1 
(IARC 

1984b) 

Iron and steel foundry Sufficient - 1 
(IARC 

1984b) 
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workers, Armstrong et al. (1994) selected 338 lung cancer cases and 1,138 controls to 

estimate their occupational exposure to BaP. A smoking adjusted lung cancer rate ratio 

of 2.2 was the highest observed and corresponded to a BaP cumulative exposure level 

ranging from 100 to 199 �g/m3 with a significant dose-response trend. In 138 bladder 

cancer cases and 414 controls selected from the same cohort of aluminum workers, 

Tremblay et al. (1995) reported that after adjusting for smoking, the risk of bladder 

cancer is 6.7 times higher workers exposed to a cumulative level of BaP ranging 

between 200 and 299.9 �g/m3 than in nonexposed workers. However, no study in the 

review by Mastrangelo et al. (1996) measured internal dose in workers as a biomarker of 

exposure to PAHs. Workers from different occupational environments were exposed to 

different chemical mixtures at different intensities and for different durations. 

Nevertheless, the studies reviewed by Mastrangelo et al. (1996) present an advantage 

over previous epidemiological studies that base exposure on qualitative job title 

categories. The reviewed studies, published about two centuries after Pott’s report 

linking scrotal cancer to chimney sweeping, also revealed an excess in lung and bladder 

cancer incidence with occupational exposure to PAHs.   

Boffetta et al. (1997) published a more comprehensive review of cancer risk 

associated with occupational exposures to PAHs. The industries and occupations 

evaluated were the following: aluminum production, coal gasification, coke production, 

iron and steel foundries, and workers exposed to diesel engine exhaust, coal tars and 

related products, carbon blacks, among other mixtures of PAHs. Lung cancer risk was 

consistently elevated in most of the reviewed studies, which confirms that lung is the 

major target organ of the carcinogenic effects of PAHs. In a study on coal gasification 

workers in Germany, the relative risk of lung cancer was estimated to be 2.9 (Berger and 

Manz 1992). An increased risk of skin cancer was detected exclusively in settings where 

dermal exposure occurred. Bladder cancer was less consistent among studies however 

seemingly connected with PAH exposures from coal tar and pitch in industrial processes 

such as aluminum production, coal gasification and tar distillation. Laryngeal and renal 

cancers do not seem to be significantly reported. Exposure misclassification and 
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controlling for confounders such as tobacco smoking, however remains an issue in these 

studies.  

More recently, a review by Bosetti et al. (2007) presented detailed results from 

cohort studies linking quantitative occupational PAH exposure to respiratory and urinary 

tract neoplasms published after the review by Boffetta et al (1997) until the end of year 

2005. Epidemiological evidence from the reviewed studies confirms an elevation in 

lung/respiratory cancer risk among several PAH-related industrial processes, except for 

aluminum and carbon electrode manufacturers. The pooled relative risk (RR) and 95% 

confidence interval (CI) by industry was 2.58 (95% CI 2.28-2.92) for coal gasification, 

1.58 (95% CI 1.47-1.69) for coke production, 1.40 (95% CI 1.31-1.49) for iron and steel 

foundries, 1.51 (95% CI 1.28-1.78) for roofers and 1.30 (95% CI 1.06-1.59) for carbon 

black production. Cancer of the bladder and the urinary system was less evident among 

the reviewed occupations, with the exception of aluminum production (pooled RR=1.29, 

95% CI 1.12-1.49) coal gasification (pooled RR=2.39, 95% CI 1.36-4.21) and iron and 

steel foundries (pooled RR=1.29, 95% CI 1.06-1.57) which were associated with a 

modest increase in risk.  

In a literature review of recently published studies linking occupational 

exposures to PAHs and any form of cancer that were not included in the review Bosetti 

et al. (2007), six major studies were identified. Among those, the study by Audureau et 

al. (2007) only provided a descriptive analysis of occupational exposures in 106 French 

subjects who worked in foundries, petrochemical industries and rubber production and 

were diagnosed with bladder cancer in 2003. PAHs were the main chemicals that 47% of 

these workers were exposed to during their careers. The remaining five studies provided 

exposure and risk estimates and are summarized in Table 1.7.  

Krishnadasan et al. (2007) selected 362 prostate cancer cases and 1,805 matched 

controls from a cohort of aerospace and radiation workers in the United States. PAHs 

were the most common chemicals that workers were exposed to (39%). Crude risk 

estimates suggested a relation between high levels of PAH exposures estimated by a job 

exposure matrix and prostate cancer risk. This relation however was not significant after  
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Table 1.7. Summary of results from occupational studies linking exposure to PAHs and cancer risk. 
 

BaP/PAH 

Exposure* 

Number of 

Study Subjects 

 

Occupation Type of Study 
Type of 

Cancer 
Risk Estimate† (95% CI) Reference 

Unexposed 1.0 

Low/Moderate 1.0 (0.69,1.6) 

High 

392 cases 

1,805 controls 

Aerospace and 

Radiation 

Nested case-

control 
Prostate 

1.3 (0.73,2.5) 

(Krishnadasan 

et al. 2007) 

108.3 �g BaP/m3-year Bladder 3.0 

119.6 �g BaP/m3-year 
6,423 

Aluminum 

Smelting 

Retrospective 

cohort Lung 1.8 

(Friesen et al. 

2007) 

N/A 121,846 
Iron-Steel 

Foundry 

Retrospective 

cohort 
Lung 6.54 (1.13-37.8) 

(Hoshuyama et 

al. 2006) 

0-0.4 �g BaP/m3-year 1.0 

0.4-1.0 �g BaP/m3-year 1.13 (0.44-2.90) 

1.0-1.8 �g BaP/m3-year 1.67 (0.62-4.48) 

1.8+ �g BaP/m3-year 

7,298 Asphalt Paving Cohort Bladder 

1.09 (0.30-3.99) 

(Burstyn et al. 

2007) 

N/A 
637 cases 

244 controls 

Petroleum 

Industry 
Case-control Prostate 0.74-1.48 

(Rybicki et al. 

2006) 

*Cumulative exposure used when available. 
†Risk estimate corresponding to lagged exposure used when available.
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adjusting for exposure to other chemicals, physical activity and socioeconomic status. 

For the high exposure group, the relative risk was 1.3 and the 95% CI included the null 

value.  

In a study on coal tar-derived substances and risk of bladder or lung cancer, 

Friesen et al. (2007) selected a cohort of 6423 men who worked for 3 or more years at an 

aluminum smelter in Canada for a period extending from 1954 until 1997. The number 

of cancer cases diagnosed during the study period was 90 bladder and 147 lung cancer 

cases.   Exposure in this study was evaluated using two different measures of PAH 

exposure, benzene-soluble materials (BSM) and BaP. Those two exposure indices were 

found to be highly correlated (r=0.94). The median BaP cumulative exposures were 20 

and 18 �g/m3-year for no lag and 20-year lag, respectively, and the maximum 

cumulative exposure was 300 �g/m3-year. The BaP cumulative exposures and incidence 

of bladder cancer indicated a strong dose-response relationship with highest relative risk 

(3.0) corresponding to the highest cumulative exposure. The relative risk of lung cancer 

was lower (1.8) for the highest cumulative exposure to BaP but the dose-relationship 

was the same.  

Mortality effects of exposure were assessed in a cohort of iron-steel workers in 

Anshan, China (Hoshuyama et al. 2006). The cohort included in the study consisted of 

121,846 male subjects. Standardized mortality ratios (SMRs) and standardized rate ratios 

(SRRs) were calculated to evaluate mortality risks among male workers potentially 

exposed to 15 hazardous substances during 14 years of follow-up. Exposure assessment 

was performed by using a workshop, job title and exposure matrix. Combined exposure 

to PAHs and two or more dusts increased the risks of lung cancer (SRR=654, 95% CI 

113-3,780). Risks of all neoplasms evaluated in the study were also significantly 

increased with combined PAH exposure (SRR=541, 95% CI 209-1,395). 

The association between PAHs and bladder cancer was investigated in 7,298 men 

employed between 1913 and 1999 in companies applying asphalt in four European 

countries (Burstyn et al. 2007). To be included in the cohort, each subject had to be 

employed for at least two seasons of work. Forty eight bladder cancer cases were 
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detected among which 39 were exposed at least 15 years before diagnosis. Exposure to 

BaP was used as a marker for 4-6 rings PAHs and was predicted by using information 

about changes in asphalt paving technology in each company over time, production 

characteristics, and job histories.  Cumulative exposure did not seem to be associated 

with risk of bladder cancer. Nevertheless, high average exposure levels displayed around 

40% increase in bladder cancer risk but no significant dose-response trend. After 

allowing for 15-year lag, bladder cancer risk increased by two-fold between the highest 

and lowest PAH exposure categories (RR=1.9, 95% CI 0.66-5.47). Other non-

occupational risk factors such as smoking habits, diet and physical activity were lacking 

in this study.  

Occupational exposure to PAHs from wood, petroleum, coal and other sources 

through inhalation and dermal absorption was evualuated in relation to prostate cancer 

risk in a worker population in the United States (Rybicki et al. 2006). The subjects 

recruited for this study included 637 prostate cancer cases and 244 controls. Exposures 

were predicted by an expert review of job histories. The highest risk estimate adjusted 

for age, race, prostate-specific antigen (PSA), pack years of smoking and dietary PAH 

intake, was associated with coal as a source of PAH exposures. The prostate cancer risk 

estimate associated with PAH exposure from coal was 1.29 (95% CI 0.73-2.3) through 

inhalation and 1.48 (95% CI 0.68-3.2) through dermal exposure, but associations were 

not significant. The primary objective of this study was however to determine if 

variation in the GSTP1 gene modifies the risk of prostate cancer following occupational 

exposures to PAHs.  The GSTP1 Val105 allele was observed more frequently in cases in 

the highest quartile of occupational inhalation PAH exposures. In prostate cancer cases, 

carriage of the GSTP1 Val105 allele was significantly increased in subjects in the highest 

quartile of PAH exposure, especially in cases with an earlier onset of disease (under age 

60) when the risk was 4.52 (95% CI 1.96-10.41). 

These studies confirm the increased incidence of different types of cancer, 

especially lung and bladder, following exposures to PAHs in occupational settings. A 

major flaw however in these studies is exposure assessment. No attempt was made in 
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any of these studies to measure internal dose of chemicals which would help avoid 

exposure misclassification and would account for different exposure routes. However, it 

can be argued that exposure misclassification occurred non-differentially leading to 

underestimation of risks.  In addition, non-occupation risks were seldom adjusted for and 

could have confounded results. Nonetheless, occupational studies of PAHs and cancer 

risk present many advantages of which are large sample sizes, and relatively long 

follow-up periods needed in evaluation of diseases with long latency such as cancer. In 

addition, assessment of dose-response trends enabled by these studies is of particular 

importance in determining “safe” doses of PAH exposure over long periods of time.  

A number of factors can influence the carcinogenic potency of individual PAHs 

and PAH mixtures in animal studies. Comparisons among the different studies that 

evaluated carcinogenicity of PAHs can lead to misleading results.  Factors such as 

species, age, sex and strain of animal, route of administration, vehicle or solvent for the 

PAH(s) and presence or absence of exogenous and endogenous tumor promoters or 

inhibitors may significantly modify organ/tissue-specific genotoxic responses to PAHs. 

Differences in PAH sensitivity may result from differences in ease of penetration to 

target tissues, basal and/or inducible levels of drug-metabolizing enzyme activities in 

both target and non-target tissue, and levels of various DNA repair enzyme systems. The 

difference in aryl hydrocarbon receptor (AhR) affinity among inbred mouse strains leads 

to difference in CYP enzymes inducibility which was shown to be associated with 

differences in risk of cancer caused by PAHs (Nebert et al. 2004). Differences in 

expression, regulation and catalytic activities of metabolic enzymes between rats, mice 

and humans has also been previously documented (Guengerich 1997). Unidentified 

components in a mixture may contribute to its carcinogenic potential (Weyand et al. 

1995). The carcinogenicity of BaP and other noncarcinogenic PAHs as well as their 

mixtures was investigated in male C3H/HeJ mouse skin (Warshawsky et al. 1993). A 

mixture of a noncarcinogenic dose of BaP in combination with 5 noncarcinogenic PAHs 

resulted in enhanced carcinogenic potency. Similar synergistic responses were observed 

with coal tar that contained low levels (0.0006%) of BaP.  In a different study using 
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substituted methylbenz[a]anthracenes, no skin tumors were observed when compounds 

were applied in toluene, whereas the congeners induced tumor formation after 

application in n-dodecane, as the solvent vehicle.  Tissue-specific activation of PAH 

mixtures was reported by Culp and Beland (1994). Adduct levels detected in lung tissue 

of coal tar fed B6C3F1 mice was significantly higher than that of the liver and 

forestomach (Culp and Beland 1994). Furthermore, ingestion of manufactured gas plant 

residue by female A/J mice induced lung tumors exclusively, whereas feeding or single 

intraperitoneal (i.p.) injection of BaP to the same mouse strain induced lung and 

forestomach tumors (Weyand and Wu 1995). Route of administration of the chemical 

may therefore have implications on the tumor formation process. 

 The juvenile mouse model for PAH-induced carcinogenicity presents another 

important example of in vivo assay variability. The carcinogenicity of BaP in mice has 

been thoroughly investigated in many studies (Vesselinovitch 1990; Vesselinovitch et al. 

1975a, 1975b). In one of the studies (Vesselinovitch et al. 1975a), administration of a 

single dose of BaP (75 µg/g) to male B6C3F1 mice induced a significant increase in 

liver tumors on days 1 (infant) or 15 (juvenile), whereas 42-day-old males exhibited only 

minimal tumor development when treated with BaP. On the other hand, liver tumor 

incidence was low in 1-, 15- and 42-day-old female mice treated with a single dose of 

BaP. Results from these studies suggest that age and sex were important for 

development of liver tumors in the B6C3F1 mouse model, whereas neither of these two 

variables affected the frequency of tumor formation in lungs. Perinatal age is considered 

a sensitive period regarding liver tumor induction largely due to high DNA and cell 

replication. On the other hand, the sex hormonal environment of the animals may 

modulate preneoplastic and neoplastic cell growth. More recently, 3-methylcholanthrene 

(3-MC), a substituted PAH, was demonstrated to activate estrogen receptor-� (ER-�) by 

direct interactions with this receptor independent of the AhR complex (Abdelrahim et al. 

2006).  
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1.4.3 Non-genotoxic Effects of Polycyclic Aromatic Hydrocarbons 

 With the extensive wealth of evidence that exist on the carcinogenicity of PAHs 

to experimental animals and humans, the significance of other physiological effects 

induced by PAHs becomes overshadowed.  Numerous hazardous chemicals or complex 

mixtures of chemicals found in the environment may disrupt endocrine functions in 

exposed individuals. These disruptions may potentially lead to deleterious reproductive 

effects and increased risk for breast cancer as well as cancers of the reproductive system.  

A number of PAHs have been identified as having chemical structures similar to steroid 

hormones (Santodonato 1997), which suggests that PAHs are potentially capable of 

inducing estrogenic and anti-estrogenic responses in humans. Estrogenic responses are 

largely mediated by the activation of the estrogen receptor (ER) which is a transcription 

factor that subsequently interacts with responsive genes in hormone-sensitive tissues. 

Therefore, the ER-mediated mechanism of PAH toxicity is due to their ability to 

displace natural estrogens and bind to ER. However, PAHs can also exert anti-estrogenic 

activity. These types of responses are induced by PAHs binding to AhR and 

upregulating CYP-dependant monooxygenases leading to faster metabolism of steroid 

compounds (Santodonato 1997).   

 Recent studies provided further experimental proof that  PAHs, more specifically 

B[a]P and 3-MC in addition to being AhR agonists can also bind and activate ER� 

independently of AhR (Abdelrahim et al. 2006; Liu et al. 2006). Organic extracts 

primarily consisting of polycyclic aromatic compounds, isolated from road dust and 

diesel exhaust particulates were found to contain contaminants that induced significant 

ER ligand activity (Misaki et al. 2008). Nevertheless, further research is in need to better 

understand these less studied mechanisms of PAH toxicity and their effects on living 

organisms.  

 

1.4.4 Congenital Malformations 

Birth defects have major worldwide public health implications. They are the 

leading cause of infant mortality. Birth defects can be categorized as structural, 
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functional, metabolic, behavioral or hereditary (Jones 1997). Exposure to genotoxic 

compounds, such as PAHs, is thought to be a contributing factor to the risk of birth 

defects. One of the most common types of birth defects are neural tube defects (NTDs). 

NTDs occur when the embryonic neural tube which ultimately forms the brain and 

spinal cord fails to properly close during the first few weeks of fetal development. 

Affected individuals suffer from both increased morbidity and mortality compared to 

their normal contemporaries. Undeniably, some forms of NTDs are uniformly lethal. 

Despite the fact that there are several known causes of NTDs, a specific etiologic 

agent(s) has not been identified in the majority of cases. Maternal proximity to 

hazardous waste sites and exposure to pesticides have both been suggested as risk 

factors, but are not considered to be established ones for NTDs in offspring. The rarity of 

NTDs occurrence (<1/1000 births in the United States), variability among exposure 

assessment methods between studies as well as overly simplistic etiological models has 

hindered efforts for establishing the degree of association between chemical exposures 

and NTD risk.  

The process of neural tube formation is referred to as neurulation. This process is 

initiated at approximately 10 days, and is completed by approximately 27 days post-

conception (Sadler 2005). Neurulation is a complex process involving the formation of 

the neural plate, as well as neural fold elevation, bending, adhesion and fusion. Due to 

the complexity of the events required for neural tube formation, it is likely that NTDs 

may result from disruptions in more than one developmental pathway. In mice, there is 

evidence suggesting that NTDs can arise due to genetic mutations affecting convergent 

extension, elevation/apposition of the neural folds, or fusion (Copp et al. 2003). 

Different types of NTDs exist depending on the region where the neural tube 

failed to close. Defects of neurulation that are restricted to the caudal region of the 

neural tube are referred to as spina bifida. Spina bifida is characterized by the incomplete 

development of the posterior neural tube with a protrusion of neural tissue through an 

opening in the vertebral arches. Approximately 13% of individuals with spina bifida die 

before their first birthday and 25% die prior to 18 years of age (Wong and Paulozzi 
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2001). Moreover, some studies suggest that affected individuals are subject to excess 

mortality throughout their adult years (Bowman et al. 2001; Hunt 1999; McDonnell and 

McCann 2000; Singhal and Mathew 1999). Individuals with spina bifida who survive are 

at risk for lower extremity weakness and paralysis, sensory loss, bowel and bladder 

dysfunction, orthopedic abnormalities, associated malformations of the nervous system 

(e.g. hydrocephalus), and specific learning disabilities (Northrup and Volcik 2000). 

Defects of neurulation that are restricted to the cranial region are referred to as 

anencephaly, and those involving both the caudal and cranial regions are referred to as 

craniorachischisis. Anencephaly is characterized by failure of closure of the anterior 

neural tube which leads to absence of brain. Both anencephaly and craniorachischisis are 

fatal to the offspring.  

Prevalence of NTDs exhibit regional and temporal variations. The estimated 

NTD prevalence, based on United States birth certificate data for 1995, was 40/100,000 

(spina bifida: 28/100,000; anencephaly: 12/100,000) (Mathews et al. 2002). Variables 

such as race, ethnicity and gender influence the prevalence of NTDs. In the United 

States, the prevalence of NTDs is highest among the offspring of Hispanic women, 

intermediate in the offspring of non-Hispanic white women and lowest in the offspring 

of Asian and African-American women (Feuchtbaum et al. 1999). In addition, female 

offsprings are affected more frequently than males (Shaw et al. 2003).  

NTDs are known to be the most common form of all human birth defects, yet the 

etiologic basis and embryology are poorly understood. The development of these kinds 

of birth defects is governed by both genetic and environmental components. This may 

explain why varying rates of NTDs exist in different geographical locations, and among 

different races and ethnicities. The efficacy of folic acid supplementation for prevention 

of NTDs appears to be influenced by the genetic capability of the mother to transport 

and metabolize folic acid (Gelineau-van Waes and Finnell 2001).  

Surveillance data indicate overall NTD rates have been falling in the most 

developed countries in the past three decades. Prenatal diagnosis programs became 

increasingly important determinants of NTD prevalence. However they are not 
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considered to be the only factor responsible for the decline of NTD prevalence at birth. 

More research studies should be undertaken to prevent all folic acid preventable NTDs 

(Olney and Mulinare 2002). Approximately 400,000 infants with spina bifida are born 

worldwide every year. Even after adjusting for prenatal diagnosis and elective 

termination, the general trend of the rates of spina bifida and anencephaly has been on 

the decline. Around the 23rd day of gestation, fusion of the neural tube starts and 

proceeds both cranially and caudally. This process is influenced by genetic and 

environmental factors. An example of a single gene mutation leading to birth defects is 

the Meckel-Gruber syndrome. On the other hand, trisomy 13 and trisomy 18 are 

examples of chromosomal abnormalities causing congenital anomalies. The genetic 

component of birth defects however consists most likely of a polygenic interaction and 

not a single gene. Other known risk factors of NTDs include maternal use of anti-

epileptic drugs, maternal diabetes, hyperthermia and obesity. Periconceptional folate 

administration reduces the incidence of NTDs but the precise mechanism is still 

uncertain (Pulikkunnel and Thomas 2005). 

Congenital malformations are the leading cause of infant mortality in the United 

States. The estimated lifetime cost for children born each year in the state of California 

with spina bifida exceeds $58,375,000. The public health impact of birth defects cannot 

be overstated. An estimated 5 to 10% of all birth defects are due to in utero exposure to 

known teratogenic agents or maternal factors. As an example, maternal cigarette 

smoking during early pregnancy was linked to a two-fold increase in risk for both 

isolated cleft lip with or without cleft palate and isolated cleft palate (Shaw et al. 1996). 

Several thousand of new compounds synthesized each year reach our environment, from 

which 10% persist in appreciable amounts as potential environmental toxicants. Many of 

these compounds have teratogenic potential. Among 2,500 teratogenic agents listed by 

Shepard (1995), around half were found to induce congenital defects in laboratory 

animals but only 40 were considered to produce teratogenic effects in humans. 

Teratogenic agents include infectious organisms, physical factors, maternal metabolic 

imbalances, drugs, and environmental chemicals. Schardein (1993) observed that out of 
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3,300 chemicals that have been evaluated for their teratogenic potential, approximately 

37% exhibited some evidence of teratogenicity. The studies by Shepard (1995) and 

Shardein (1993) confirm the existence of a wide gap between animal and human 

teratogenicity data and that more research efforts are needed to explore the human 

teratogenic potential of environmental chemicals. However, it is still universally 

accepted that at a certain dose level, any chemical can be teratogenic. Disruption of 

normal embryonic development can be produced by both teratogenesis and mutagenesis. 

The former induces noninherited malformations by altering fundamental embryological 

processes whereas mutagenesis causes heritable changes in genetic material. The most 

critical morphogenic processes usually take place in the first two months post 

conception. At this time, embryos are especially vulnerable to any teratogenic insults.  

Maternal nutrition clearly has an impact on the development of the fetus. 

Supplemental folic acid may reduce incidence of NTDs by 70% but the molecular 

mechanism is unknown (Finnell et al. 2002). The daily recommended dose for women of 

childbearing age is 0.4 mg of folic acid. However, the recommended dose for a woman 

who had previously conceived a child with a NTD is ten fold higher. Intake of folic acid 

is recommended at one month prior to pregnancy and through three months of gestation. 

High levels of the amino acid homocysteine, usually indicating a defect in folate 

metabolism, are considered to be a risk factor for NTDs. Folate is involved in synthesis 

of nucleic acids and proteins. Reports from China suggest that folate deficiency is 

prevalent especially in the Northern provinces such as Shanxi (Hao et al. 2003; Hasenau 

and Covington 2002; Zhang and Smith 2007).  

The list of variables that have been implicated as risk factors for NTDs in 

humans is long and varied. Nonetheless, most of the reported associations are weak and 

have been inconsistently replicated in subsequent studies. Established NTD risk factors 

include inadequate maternal intake of folate/folic acid (Wald 1993), maternal pre-

gestational diabetes (McLeod and Ray 2002) and maternal use of anticonvulsants 

valproic acid and/or carbamazepine (Hernandez-Diaz et al. 2001; Lammer et al. 1987; 

Matalon et al. 2002). There is also a relatively strong evidence that maternal obesity 
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(Hendricks et al. 2001; Shaw et al. 2002; Shaw et al. 1996; Waller et al. 1994; Watkins 

et al. 2003; Watkins et al. 1996; Werler et al. 1996) and maternal hyperthermia 

(Chambers et al. 1998; Lynberg et al. 1994; Milunsky et al. 1992; Shaw et al. 1998) are 

associated with an increased risk of NTDs in offspring. When considering environmental 

exposures, living in close proximity to hazardous waste sites has been identified as a 

potential NTD risk factor in studies conducted by Dolk et al. (1998) and Orr et al. 

(2002). However based on such studies, it is not feasible to identify the compound or 

mixture responsible for the increased risk of NTDs since no attempt was made to 

measure exposure in affected individuals. In addition, these studies were based on a 

surveillance system that included multiple hazardous waste sites, which vary with 

respect to their contaminants and the contaminated environmental media. When 

conducted on individual waste sites, studies might offer a more focused assessment of 

specific exposures. Nevertheless, even at single sites, multiple contaminants and 

environmental media are still likely to be present. Due to the relative infrequency of 

NTDs, epidemiologic studies are often limited by access to a small number of cases. The 

research described in this dissertation was focused on evaluating the utility of various 

biomarkers for assessing NTD risk factors.  

Disease risk is a complex concept and may be influenced by intricate interactions 

between genes and environmental factors. In recent years, the opportunity to investigate 

such interactions has been explored in the context of large-scale epidemiological studies. 

Initial investigations indicated that the risk of NTDs may be influenced by gene-nutrient 

interactions (Shaw et al. 2002; Volcik et al. 2003), but such observations remain 

inconclusive.  

Around the early 1990s, an outbreak of anencephaly was reported in the south 

Texas county of Cameron on the United States-Mexico border (Hendricks 1999). Further 

investigations indicated that along the entire Texas-Mexico border region, the rates of 

NTDs were up to 27 per 10,000 live births which is higher than the nationwide average 

estimated to be around 6 per 10,000 live births (Hendricks et al. 1999). The affected area 

in south Texas has a predominantly Hispanic population which is known to have higher 
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rates of NTDs in comparison to any other races (Canfield et al. 1996). However, the 

detected NTD rates were alarmingly high and warranted attention from state and 

national experts. For instance, The Centers for Disease Control and Prevention (CDC) 

together with Texas Department of Health Services initiated a program of NTD 

surveillance and risk reduction in 14 counties in south Texas (2000). The primary 

objective of this program was to provide folic acid to women of child-bearing age, 

particularly to ones who have had an NTD-affected pregnancy to prevent recurrence of 

these defects. Prevention of birth defects by using folate as a supplement or in diet did 

not produce the anticipated results in this population (Suarez et al. 2000). Numerous risk 

factors for NTDs have been evaluated in the study population. Among those are 

exposure to amine-containing drugs and dietary nitrites and nitrates (Brender et al. 

2004), polychlorinated biphenyls (PCBs) (Suarez et al. 2005), heavy metals (Brender et 

al. 2006) and fumonisins (Missmer et al. 2006) in addition to folate pathway gene 

polymorphisms (Barber et al. 2000). More recently, researchers investigated the 

hypothesis that Helicobacter pylori seropositivity could potentially lead to 

compromising bioavailability of nutrients such as folate, vitamin B12 and iron to the 

fetus which increase the NTD risk (Felkner et al. 2007). To date, it appears that the 

highest risk factor may be maternal exposure to fumonisins, a class of mycotoxins 

commonly contaminating corn. Cornmeal samples collected from the affected area of 

Texas during the time of the NTD outbreak had unusually high levels of fumonisins. A 

particular characteristic of the diet of the Hispanic population residing in south Texas is 

the heavy consumption of corn in the form of tortillas. It was estimated that Mexican-

American women living on the Texas-Mexico border consumed around 90 grams of 

corn per day as compared to 17 grams of corn-based food per day consumed by 

Canadian adults (Hendricks 1999).  Just before the identification of the NTD cluster in 

south Texas, there were outbreaks of animal diseases such as equine 

leukoencephalomalacia which was strongly linked to fumonisin contaminated corn feed 

(Hendricks 1999). Moreover, a number of in vitro and animal studies have indicated that 

exposure to fumonisins may lead to NTDs (Flynn et al. 1997; Gelineau-van Waes et al. 
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2005). A study measuring biomakers of exposure to fumonisins in blood of mothers of 

NTD cases and controls from the affected area found that the risk of NTD increased 

proportionally with fumonisin exposure up to a threshold level independent of other 

known risk factors (Missmer et al. 2006).  

The relationship between indoor use of coal and the resulting exposure to PAHs 

has not been thoroughly investigated as a risk factor for birth defects. Most studies 

however, indicate that air pollution and subsequent exposure to elevated levels of PAHs 

is associated with adverse birth outcomes in humans. A potential link between coal 

combustion byproducts, and the risk of congenital malformation was investigated by a 

study conducted in Nova Scotia, Canada. In this study, the risk of congenital 

malformations (overall and specific categories) was increased in the offspring of 

residents of a coking operation, compared to the rest of Nova Scotia (Dodds and Seviour 

2001). Airborne PAHs have been implicated in human reproductive effects, notably, 

DNA adducts and hypoxanthine-guanine phosphoribosyltransferase mutations in 

newborns as well as preterm birth and intrauterine growth restriction (Dejmek et al. 

2000; Perera et al. 2002; Sram et al. 1999). Cigarette smoking during pregnancy has 

been associated with several adverse birth outcomes including spontaneous abortions, 

delayed conception, and low birth weight (Preston 1991). Findings from a more recent 

study suggest that high levels of PAHs as measured by DNA adducts in cord blood, from 

the World Trade Center fires in New York City in 2001, may have contributed to 

reduced fetal growth in exposed women (Perera et al. 2005). In a review of the literature 

on ambient pollution and pregnancy outcomes by Sram and coworkers (2005), low birth 

weight, premature birth and intrauterine growth retardation seemed to be the 

reproductive effects most often associated with air pollutants. The study observed that 

intrauterine growth retardation was specifically linked with PAHs. Detection of DNA 

adducts in human placenta and cord blood confirms that PAHs may be transferred to the 

fetus and could predispose it for developing disease later in life (Hansen et al. 1993). 

Limited evidence is available from animal studies. However a study by Wang and Yu 

(Wang and Yu 2004) demonstrated a relationship between exposures to PAH mixtures in 
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cigarette smoke and neural tube defects in hamsters. On the molecular level, activity of 

placental metabolic enzymes, such as CYP1A1, has been documented to be induced by 

PAHs as a result of maternal exposures to these compounds, which was reported to be 

linked with human placental calcifications and Threatened Preterm Delivery (TPD) 

(Huel et al. 1993). As discussed previously, 3-MC was reported to be capable of directly 

activating ER-� (Abdelrahim et al. 2006), which could potentially lead to various 

adverse reproductive effects.  

 

1.5 Human Health Risk Assessment  

Humans are continuously exposed to complex chemical mixtures present in their 

environment.  Exposure to higher concentrations of chemicals can potentially occur 

around hazardous waste sites.  As mentioned previously, a number of reports have 

identified increased rates of adverse health effects ranging from skin rashes to congenital 

malformations, among residents in proximity to toxic waste sites (Brender et al. 2003; 

Brender et al. 2006; Comba et al. 2006; Kuehn et al. 2007). These epidemiological 

studies give insight into effects complex chemicals mixtures including PAHs have on 

humans.  However, without toxicity testing, there is no absolute data on how chemicals 

react in biological organisms, and the severity of effects they may cause.   

The USEPA Risk Assessment Guidance for Superfund (RAGS) (USEPA 1989) has 

established a 4-step approach that can be used to estimate the human health risk 

associated with exposure to contaminated media at Superfund sites (Figure 1.6).  The 

initial step in this approach consists of identifying the hazard specific to the site.  Hazard 

Identification involves developing a qualitative assessment of risk at the site. Existing 

background data on contaminants and contaminated media is gathered. Concentrations 

of each contaminant are then compared to Risk Based Concentrations (USEPA 2007) to 

determine which chemicals represent the greatest health threat.  Hazard identification 

typically results in developing a list of Contaminants of Potential Concern, or the 10-15 

chemicals which are anticipated to represent the greatest threat to human health (USEPA 

2007).  
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                                      Risk Assessment Paradigm 

 
 
Figure 1.6.  The four major steps included in the quantitative evaluation of human health risk for 
chemically contaminated sites (modified from Asante-Duah (2002)).  

 

The second step in human health risk assessment is the toxicity or dose-response 

assessment.  The Integrated Risk Information System (IRIS) developed by USEPA 

(USEPA 2006) is most commonly used to identify a Reference Dose (RfD) for non-

cancer effects, and/or a Cancer Slope Factor (CSF) for cancer effects.  A great deal of 

uncertainty still exists in many of these toxicity values, although for a large number of 

chemicals, toxicity values have been established.  Sources of uncertainty include species 

extrapolation, and extrapolation from high doses used in toxicity studies to the relatively 

low doses that generally occur in environmental exposures.  As there is no widely 

accepted protocol for interpreting the potential interactions of chemical mixtures yet, 

most risk assessments are usually conservative and assume additive effects.  Component 

interactions in a mixture may affect risk by affecting the pharmacokinetics of other 

chemicals.  Thus, low molecular weight PAHs that are capable of inducing Phase I 

metabolizing enzymes in the liver may enhance the toxicity of high molecular weight 

PAHs. Competition for catalytic sites of metabolizing enzymes also occurs as 

documented by Falahatpisheh et al. (2004) who observed an inhibition of toxicity of BaP 

by chrysene, another class B2 carcinogenic PAH.  
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The third step in risk assessment is the exposure assessment which alternatively 

can be conducted before toxicity assessment.  All completed exposure routes at a site for 

both on-site workers and off-site residents must be determined.  This includes exposure 

to contaminants released onsite that may be present in soil, air, groundwater, surface 

water, sediment, or food products. For each completed exposure pathway, the 

concentration of every contaminant of concern in a specific medium is estimated.  This 

estimation may use a mean value, an upper 90th percentile value or more conservatively 

a maximum value depending on the quantity and quality of existing data.  These values 

are used to estimate a Cumulative Daily Intake (CDI) for each exposure pathway and 

each contaminant of concern.  The most common exposure routes in humans include 

ingestion, inhalation, or dermal contact with a contaminant of concern. Humans can also 

be indirectly exposed through ingestion of contaminated plants or animals. In this step, 

sources of uncertainty include assumptions regarding intake variables for contaminated 

media, estimate of chemical concentrations in the media, and rates of absorption from 

various exposure pathways (USEPA 2007).  

 The last step of risk assessment generally results with the generation of a 

quantitative site-specific characterization of both cancer and non-cancer risk.  The non-

cancer risk is a sum of the Hazard Quotient, or the value obtained by dividing the 

Cumulative Daily Intake by the Reference Dose. Contaminant concentrations are 

considered acceptable as long as the estimated daily intake is below the No Observable 

Adverse Effect Level (NOAEL) (or the Reference Dose).  Hazard Quotients for each 

chemical and each exposure pathway are usually summed to obtain a Hazard Index that 

characterizes the non-cancer risk associated with the site-specific contaminants of 

concern.  The cancer risk is expressed by the Lifetime Cancer Risk (LCR) that is 

computed as the product of the Cancer Slope Factor and the Cumulative Daily Intake.  

Cancer risk in residential settings is considered acceptable as long as the sum of Lifetime 

Cancer Risk for all chemicals and all exposure pathways does not exceed one in one 

million.  These risk estimations help in efforts of ranking sites and assessing acceptable 

levels for clean-up.   
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 However, as previously discussed, significant sources of uncertainty exist in each 

step of the risk assessment process, the major one being the potential additive, 

synergistic, antagonistic or potentiating interactions of complex chemical mixtures 

(USEPA 1986). Animal studies emphasize the uncertainty associated with basing human 

risk assessments for environmental complex mixtures on the concentration of a single, 

albeit prototypic, carcinogenic chemical, due to the potential presence of unidentified 

components that may have toxicological significance in most environmental mixtures 

(Rodriguez et al. 1997). PAH interactions in a mixture may affect the inducibility of 

Phase I, Phase II and DNA repair enzymes which leads to differences in DNA adduct 

frequencies and persistence. Alterations in these enzymes are also potentially influenced 

by circadian rhythms (Lavery et al. 1999; Noshiro et al. 1990; Ohno et al. 2000). 

Mixture interactions may also alter the rates of absorption of certain chemical 

components, making cells more or less permeable to high molecular weight PAHs which 

are potentially more toxic.   

 Pentachlorophenol (PCP) is a chlorinated hydrocarbon present in certain 

environmental PAH mixtures such as wood preserving waste (Donnelly et al. 1987). 

PCP was found to be a potent inhibitor of glutathione S-transferase (GST) (Moorthy and 

Randerath 1996; Mulder and Scholtens 1977). Moorthy and Randerath (1996) 

demonstrated that administration of 9-hydroxyBaP in a binary mixture with PCP resulted 

in an almost two-fold increase in DNA adduct intensity.  Using microbial cells in vitro, 

an enhanced mutagenic response that was highly dose dependent was observed with 

mixtures of BaP and PCP (Markiewicz et al. 1996).  These data suggest that in vivo 

exposure to BaP:PCP mixtures could produce increased levels of benzo[a]pyrene 7,8 

diol-9,10 epoxide (BPDE)-N2G adducts. Recent studies with infant and adult B6C3F1 

mice, exposed by i.p. injection to BaP alone or BaP plus PCP, found that PCP 

potentiated BPDE-N2G adduct formation in the liver and lung of adult but not infant 

mice (Bordelon et al. 2001).  In wild-type C57BL/6 mice, exposure to the BaP/PCP 

mixture produced significantly fewer BPDE-N2G adducts in both tissues than BaP alone 

(Ress et al. 2002). In the C57BL/6 p53-null mice, however, the level of BPDE-N2G 
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adducts produced by the BaP/PCP mixture and the BaP were not appreciably different in 

the liver (Ress et al. 2002). These experiments reveal that PCP may enhance or reduce 

BPDE-N2G adduct formation, depending on the age, strain and genetic characteristics of 

the animal model used.  

The research conducted as part of this dissertation has investigated the ability of 

complex PAH mixtures present in residential environments to form DNA adducts in 

mice as well as human populations.  

 

1.6 Toxicity Test Methods 

 Chemical analysis provides essential information regarding the major components 

of a complex mixture. However, chemical analysis is unable to measure the genotoxicity 

of a mixture or potential mixture interactions. In some cases, chemical analysis may not 

be capable of detecting all the components of a mixture, mainly because of their 

similarity in chemical structure. In vitro and in vivo bioassays therefore are more 

adequate for evaluating the toxicity of chemicals and mixtures. In vitro bioassays 

whether acellular or consisting of microbial or mammalian cells in culture are useful for 

screening complex mixtures and investigating mixture interactions. Nevertheless, such 

assays lack the ability to replicate complex pharmacokinetic processes such as 

absorption, distribution, metabolism, and excretion. Absorption and distribution may 

partition mixture components such that the composition of compounds that reach the 

target organ is very different from the composition of the mixture. Metabolism and 

excretion are also likely to alter the composition and concentration of mixture 

components in tissues. In general, it is recommended to use a battery of assays when 

evaluating the potency of a substance with the idea of selecting tests that detect a broad 

range of endpoints. This testing method provides a broader understanding of the toxic 

effects of a substance especially when dealing with complex environmental mixtures. In 

vitro, in vivo, and ultimately epidemiological studies are together substantial tools in 

recognizing environmental mixtures that potentially could produce deleterious health 

effects in exposed populations. Combining data from multiple measurements and assays 
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at different levels of cellular organization provides a more comprehensive dataset, as 

well as information to better understand the biological plausibility of disease.   

 

1.6.1 In Vitro Bioassays 

 In vitro bioassays are usually the most rapid and inexpensive screening tests to 

evaluate the toxic potential of complex environmental mixtures. They usually are able to 

screen a large number of chemicals or chemical mixtures. This characteristic makes 

them adequate for prioritizing chemical mixtures for further testing in more complex 

systems. Short-term in vitro bioassays were mainly used to identify potential 

carcinogens (Adams et al. 1996; McCann et al. 1975) or the genotoxic potency of 

complex environmental mixtures (Donnelly et al. 1998). Numerous in vitro bioassays 

have been described in the literature. Among these, Salmonella/microsome and E. coli 

prophage induction are the microbial assays that appear to have the greatest selectivity 

and sensitivity for complex mixtures of PAHs and PCAs (DeMarini et al. 1990; Tennant 

et al. 1987). In addition, mammalian cell culture assays have been developed and had a 

predominant role in bioassay protocols to identify carcinogens since the early 1980s 

(Brusick 1988). The in vitro bioassays discussed in the following text have been selected 

for testing complex mixtures of PAHs and were used in the research experiments 

described in this dissertation.  

 

1.6.1.1 Salmonella/Microsome Assay 

The Salmonella/microsome assay is the most widely studied in vitro 

mutagenicity bioassay. The assay was developed by Dr. Bruce N. Ames and hence is 

commonly known as the Ames assay. The Salmonella/microsome assay was first 

validated in a study including 300 chemicals. The study reported that 90% of the known 

carcinogens produced a positive mutagenic response (McCann et al. 1975). In addition, 

the study found a correlation of 83% between carcinogenicity and mutagenicity. The 

chemical classes of compounds tested in the study included the following: aromatic 

amines, alkyl halides, polycyclic aromatics, esters, epoxides and carbamates, nitro 



 

 

58 

aromatics and heterocycles, aliphatics, nitrosamines, fungal toxins and antibiotics, 

cigarette smoke condensate, azo dyes and diazo compounds. However, other studies that 

examined the qualitative relationship between mutagenic and carcinogenic potency by 

testing a large number of chemicals using the Salmonella/microsome assay, found low 

correlations ranging between 0.24 and 0.44 (Fetterman et al. 1997).The protocol of this 

assay has been revised multiple times but has been described in its current use in Maron 

and Ames (Maron and Ames 1983).  

Various chemicals or mixtures of chemicals have been successfully screened for 

mutagenic potential using this assay. Among the substances and mixtures tested using 

this assay are complex environmental mixtures such as wood preserving wastes (Barbee 

et al. 1996; Brooks et al. 1998; Cizmas et al. 2004; Donnelly et al. 1987; Donnelly et al. 

1995; Hughes et al. 1998); house dust (Roberts 1987), manufactured gas plant residues 

(Cizmas et al. 2004; Randerath et al. 1999) sewage sludges (Donnelly et al. 1990; Perez 

et al. 2003), cigarette smoke (Roemer et al. 2004), surface waters (Ohe et al. 2004), 

diesel exhaust (Seagrave et al. 2005), soils (Watanabe et al. 2005) cooked foods (Knize 

et al. 2003; Shishu and Kaur 2003; Sugimura et al. 2004) as well as binary mixtures of 

chemicals such as BaP and pentachlorophenol (Donnelly et al. 1990; Markiewicz et al. 

1996). 

A review by the U.S. National Toxicology Program (NTP) comparing the 

sensitivity and specificity of short-term bioassays such as the Salmonella/microsome 

assay found that 83% of the compounds that induce a positive response in Ames test 

were also rodent carcinogens, which was the highest positive predictivity among the 

tested bioassays (Tennant et al. 1987a). The study selected 73 chemicals, well 

characterized for carcinogenicity in both sexes of two rodent species, to be assessed in 

four short-term in vitro tests. The short-term bioassays evaluated were the Ames 

Salmonella/microsome mutagenesis assay (SAL), the assays for chromosome aberration 

(ABS) and sister chromatid exchange (SCE) induction in Chinese hamster ovary cells, 

and the mouse lymphoma L5178Y (MOLY) cell mutagenesis assay. SAL and ABS were 

reasonably specific but relatively not sensitive to rodent carcinogens whereas the reverse 
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was true for SCE and MOLY. The Salmonella/microsome assay exhibited the highest 

specificity (86%) but was the least sensitive (45%) among the tested bioassays. Another 

report by the same group found that the Salmonella/microsome assay is most sensitive to 

trans-sex/trans-species carcinogens (Tennant et al. 1987b). The main advantages of the 

Salmonella/microsome assay over other short-term tests include its low cost, broad 

availability, extensive literature and simplicity (Tennant et al. 1987b). The assay has 

been found to be sensitive to PAHs, nitroaromatic hydrocarbons, mycotoxins, and a 

various other carcinogens. A high percentage (95%) of PAHs that induced a positive 

response in Salmonella was also found to be rodent carcinogens (Purchase et al. 1976). It 

has historically been insensitive to chlorinated hydrocarbons, hormones, heavy metals, 

and several additional classes of chemicals (Ames 1984).  

The Salmonella/microsome assay is based on bacterial reverse mutation and uses 

histidine dependent strains of Salmonella typhimurium. Researchers discovered that 

Salmonella strains that depended on histidine as nutrition source, had mutations caused 

by either base-pair substitutions or deletions of one or more bases known as frameshift 

mutations. Such bacterial strains were found to have the ability to revert back to wild-

type (histidine independence) if exposed to mutagens and could be used to recognize and 

detect chemicals with mutagenic potential (Mortelmans and Zeiger 2000). The inclusion 

of a mammalian metabolic activation system enabled this assay to be very useful in 

detecting indirect-acting compounds such as PAHs (Ames et al. 1973). Bacterial strains 

used in this assay do not have the capability of metabolizing and activating xenobiotic 

substrates of cytochrome P450. The mammalian metabolic activation system typically 

used in this in vitro assay is the S9 microsomal fraction of rodent liver in the presence of 

an NADP generating system and other cofactors (Maron and Ames 1983).  In most 

cases, rodents used to make S9 are pre-treated with a metabolizing enzyme inducer such 

as Aroclor 1254, 3-MC, Phenobarbital (PB) or 2,3,7,8-tetrachlorodibenzo-p-dioxin 

(TCDD) to increase the level of mixed function oxidases in the microsomal fraction of 

the rodent liver homogenate used in this assay. The type of induction was found to have 

a significant effect on the results seen in the Salmonella/microsome assay. The 
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mutagenic potential of BaP whether administered as a single compound, or in a 

reconstituted mixture, appeared to increase with TCDD-induced enzymes. On the other 

hand, the range of CYP isozymes induced by Aroclor was best for complex mixtures 

from environmental extracts (Markiewicz et al. 1996).  

Many tester strains of Salmonella have been developed, however the standard 

strains recommended for mutagenesis testing include TA97, TA98, TA100 and TA102. 

These strains have been engineered to enhance their sensitivity to different classes of 

genotoxic compounds. The Salmonella typhimurium strain used for the research 

described in this dissertation was strain TA98 which has been shown to be sensitive to 

frameshift mutagens. This strain has several specific characteristics to enhance its 

sensitivity (Ames et al. 1973). TA98 contains a primary deletion in the histidine operon 

referred to as the hisD3052 mutation. This mutation causes the bacterial strain to be 

unable to grow in media lacking supplemented histidine. This is due to the fact that hisG 

gene codes for the histidinol dehydrogenase enzyme needed in the process of histidine 

biosynthesis. This mutation is considered a -1 frameshift mutation which affects the 

reading frame of a nearby repetitive –C-G-C-G-C-G-C-G- sequence (Isono and Yourno 

1974). Chemicals capable of causing frameshift mutations can restore the correct reading 

frame. Thus, chemicals that have the ability to react with DNA and induce a frameshift 

mutation will allow bacteria of this strain to revert back to histidine independence.   

 Another mutation incorported in the TA98 Salmonella tester strain is referred to 

as deep rough or rfa mutation. This mutation causes a loss of the lipopolysaccharide 

membrane which increases its permeability and hence sensitivity to high molecular 

weight compounds. This is a critical manipulation for the sensitivity of this bioassay 

since it facilitates the passage of bulky compounds such as carcinogenic PAHs into 

bacterial cells. The uvrB mutation also exists in the TA98 tester strain. This mutation 

was found to increase the sensitivity of bacterial cells by compromising the DNA 

excision repair system of these cells. Such cells will significantly lose their ability to 

repair DNA damage caused by mutagenic chemicals. Deletion of the gene causing this 

mutation however also eliminated coding for biotin synthesis enzymes. Therefore, 
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strains with such deletion are no longer biotin independent and will require low levels of 

biotin in the agar for growth.  

 The sensitivity of the microbial strains was greatly increased by the addition of 

the plasmid pKM101. This plasmid increased error prone repair and hence enhanced 

chemical and UV-induced mutagenesis. Inclusion of this plasmid in bacterial cells has 

also inferred ampicillin-resistance which is a characteristic measured during strain 

checks to ensure the presence of this plasmid. This mutation is probably the least stable 

of all mutations in this tester strain. Although the plasmid pKM101 greatly enhances the 

sensitivity of the tester strain, it also slightly reduces the selectivity of the strain towards 

frameshift mutagens.   

 In addition to these characteristics, the bacteria strain also has a normal 

background level of spontaneous revertants. These are bacteria cells that revert back to 

histidine independence without requiring exposure to any mutagenic agents and form 

visible colonies. In most laboratories, strain TA98 produces a characteristic number of 

spontaneous revertant colonies ranging from 15 to 50 colonies. With addition of a dose 

of 25 �g of 2-nitrofluorene (2-NF), a direct acting mutagen, the number of TA98 

revertant colonies is expected to be more than 1,000 colonies, whereas, a dose of 10 �g 

of BaP with metabolic activation is expected to result in the formation of around 300 

revertant colonies. Thus, both of these chemicals are routinely used as positive controls 

in this assay.  

As discussed previously, the Salmonella/microsome assay was found to be a 

sensitive system for detecting carcinogenic PAHs, but not carcinogenic PCAs. Also, this 

assay is relatively insensitive to chemicals that may cause cytotoxic effects at low doses 

(Maron and Ames 1983). These limitations need to be considered during testing of a 

substance or mixture. The research described in this dissertation relied on multiple in 

vitro bioassays in conjunction with in vivo testing to measure the genotoxic potential of 

complex mixtures collected from residential environments.  
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1.6.1.2 Acellular Assay 

 Positive results reported in the in vitro genotoxicity tests may be due to secondary 

mechanisms such as cytoxicity, cell cycle perturbation and not necessarily related to 

direct interaction of the chemical with the DNA molecule (Adams et al. 1996).The major 

advantage of the acellular system is the ability to examine direct reaction of chemical 

agents with DNA. Generally coupled with 32P-postlabeling to measure DNA adducts, 

acellular assays can be used to determine whether a single compound, metabolite or 

chemical mixture directly damages DNA. The cell-free assay is simple and relatively 

easy to conduct. The cell-free assay is designed to detect DNA adducts or DNA damage 

induced by chemically-reactive compounds. The assay usually requires only DNA and 

the test agent, and may be conducted with or without the addition of a metabolic 

activation system such as the rat liver microsomal fraction (Segerback 1990; Shah and 

Bhattacharya 1986). Since this assay does not use cells, it provides an opportunity to use 

the maximum soluble concentration of the test compound, increasing the sensitivity of 

the assay due to the fact that DNA damage cannot be repaired (Adams et al. 1996). Thus, 

acellular tests can provide an early assessment of the mutagenic/carcinogenic potential 

of compounds as well as important insight for the mechanisms of positive responses in 

cell-based genotoxicity studies (Adams et al. 1996).  

 Numerous studies have used acellular systems to study and distinguish between the 

direct or indirect genotoxic effects of different chemicals. The formation of reaction 

products in hemoglobin and DNA after treatment with ethylene oxide and N-(2-

hydroxyethyl)-N-nitrosourea in an acellular test was reported (Segerback 1990). 32P-

postlabeling was coupled with an acellular assay using rat live S9 metabolizing system 

to test factors suspected to affect recoveries of PAH-DNA adducts (Segerback and 

Vodicka 1993).   

 Various types of compounds and mixtures have been tested in similar systems. 

These include petroleum oils and oil coal tar mixtures (Reddy et al. 1997), particulate 

and semivolatile fractions of vehicle exhausts (Pohjola et al. 2003), cigarette smoke 

condensate (Randerath et al. 1992), wood preserving waste (Randerath et al. 1994), PAH 
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mixtures recovered from contaminated lake sediments (Randerath et al. 1999) and 

organic mixtures from urban air particles (Binkova et al. 2007). Acellular assays have 

also been used in mechanistic and metabolism studies (Moorthy 2002; Moorthy et al. 

1996; Sanyal and Li 2007). Acellular systems have also been very useful in studies to 

test the capacity of certain agents to decrease or inhibit the effect of known carcinogens 

(Le Bon et al. 1992; Salgo et al. 1999; Shah and Bhattacharya 1986; Smith et al. 1998). 

 

1.6.2 In Vivo Bioassays 

 As discussed previously, in vitro bioassays while useful in measuring the ability of 

chemicals to react with DNA and cause genotoxic damage, cannot replicate complex 

pharmacokinetic processes. Biological processes such as absorption, distribution, 

bioactivation, detoxication, and DNA repair can modify the potential of environmental 

mixtures to induce toxic effects in animals or humans. Thus, in addition to in vitro 

testing, it is important to evaluate the toxicity of environmental mixtures using in vivo 

systems as well as epidemiological studies. Animal studies allow genotoxicity 

measurements to be obtained under controlled conditions, but do account for 

pharmacokinetic interactions. Epidemiologic studies provide information regarding the 

adverse impact of occupational or environmental exposures, but often lack quantitative 

information regarding exposures.  

 

1.6.2.1 DNA 32P-postlabeling Assay 

The 32P-Postlabeling assay is widely used in epidemiological and toxicological 

studies designed to measure DNA adducts. The name of this assay is derived from the 

fact that radioactive orthophosphate (32P) is incorporated into DNA. DNA addition 

products or adducts are formed when electrophilic compounds covalently bind to DNA 

which contains nucleophilic centers. Such chemicals are usually exogenous to the body. 

Endogenous compounds form adducts also known as I-compounds and can be 

functionally important however most likely do not reflect DNA damage (Zhou et al. 

2005).  Those age-dependent endogenous DNA modifications were discovered in tissues 
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of control animals by 32P-postlabeling (Randerath et al. 1986). I-compounds are believed 

to represent markers of oxidative stress or DNA repair. Exogenous DNA adducts are 

commonly used as biomarkers of exposure or early effect reflecting the biologically 

effective dose of a genotoxicant exposure. The formation of exogenous DNA adducts is 

generally considered the initiation step in the process of carcinogenesis (Farber and 

Sarma 1987).  

The detection limit of the 32P-postlabeling assay is 1 adduct in 109 normal 

nucleotides, which is equivalent to one DNA base modification per cell (Brandt and 

Watson 2003). Other methods of identifying and quantifying DNA adducts include 

fluorescence immunoassays and gas chromatography/mass spectrometry (GC/MS). 

However, the 32P-postlabeling assay is considered as the most sensitive method which 

makes it the assay of choice for detecting low levels of DNA adducts such as in human 

exposure assessment studies (Hemminki et al. 2000). In a study to determine the levels 

of DNA adducts in lung cancer patients by 32P-Postlabeling and the enzyme-linked 

immunosorbent assay (ELISA), DNA adduct levels measured by 32P-postlabeling were 

relatively higher in all study subjects (Cheng et al. 2001). In addition to the high 

sensitivity of this assay, another advantage of 32P-postlabeling as an assay is the fact that 

it requires low amounts of DNA ranging between 1 to 10 �g of DNA (Hwang and 

Bowen 2007). Also, the 32P-postlabeling assay does not require prior knowledge of 

adduct structures and hence is adequate for measuring DNA lesions formed with 

unidentified mutagens/carcinogens and mixtures in experimental animals and humans 

(Randerath and Randerath 1994). The quantitative results generated by this assay 

however, should always be interpreted with caution since the efficiency of adduct 

labeling is often undetermined or uncontrolled (Poirier and Weston 1996). Although the 

procedure is quantifiable, often times, uncertainty regarding the efficiency of adduct 

labeling renders this a qualitative indication of exposure (Phillips 1997). Another major 

drawback of this assay is the inability to identify chemical structures of adducts. 

Nevertheless, additional steps such as co- and re-chromatography can be performed to 

aid with structural identification (Lu et al. 1986). 
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 Functionally, DNA adducts can lead to mutations. Scenarios of how a mutation 

can occur after base adduction include nucleotide misincorporation, slippage by DNA 

polymerase, and misrepair. Mutations can be repaired, or they may lead to cell death. 

Mutations that occur in critical genes such as oncogenes and tumor suppressor genes, 

may lead to a variety of unwanted effects, among which is tumor formation (Figure 1.7).  

Tumor formation is a multi-stage process that may involve multiple chemical exposures 

over many years.  In order to evaluate the carcinogenic potential of an environmental 

chemical mixture, it is important to understand the mechanism through which the 

mixture induces carcinogenesis.  Around two decades ago, Farber and Sarma (1987) 

developed a model for tumor formation in the liver.  The steps described in their model 

were largely identified through the use of the resistant hepatocyte model created by Solt 

and Farber in 1976 (Solt and Farber 1976).  According to this model three major steps 

occur between exposure to a chemical carcinogen and development of a malignant 

tumor.  The process begins when the chemical is absorbed and distributed into systemic 

circulation.  Once in circulation, the chemical may be activated through metabolizing 

enzymes into its ultimate chemically-reactive form.  Initiation is considered to be the 

first major step to occur during the tumor formation process.  This step consists of the 

carcinogen binding with DNA to form a mutation.  This mutation might potentially lead 

to the formation of abnormal, initiated cells.  The growth of the initiated cells is 

promoted through subsequent mutations, to critical genes such as tumor suppressor 

genes or oncogenes that alter normal cellular functions.  Promoted cells have a variety of 

altered biochemical characteristics and possibly form small foci.  Continued exposures 

may result in the progression of these foci into neoplastic cells. The nodules formed by 

neoplastic cells may be observable, but may also grow unnoticed with minimal effect on 

the affected organism.  In the case of a malignant tumor, the neoplastic cells have the 

capability to outgrow the normal structure of the tissue in which they grow, and may 

break off from a primary tumor and migrate to another location in the host forming a 

secondary tumor (Solt and Farber 1976). 
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Figure 1.7. Diagram of the tumor pathway model for chemical-induced liver cancer.  Adapted from Farber 
and Sarma (1987) and Phillips (2006). 
 
 

The active metabolite of BaP, BPDE shown to bind to the N-2 of guanine, was 

found to cause a GC � TA mutation (Jelinsky et al. 1995). Tumorigenesis and levels of 

DNA adducts were correlated (Poirier and Beland 1994; Poirier et al. 1995) and tumor 

formation was reduced when chemopreventative agents were used to reduce DNA 

adduct formation (Breinholt et al. 1995; Dashwood et al. 1998; Egner et al. 2003). 

Therefore, measuring DNA adducts is substantial in identifying potential carcinogens 

present in the environment, studying mechanisms of carcinogenesis and DNA repair, in 

addition to biomonitoring and human health risk assessment.  

According to K. Randerath and E. Randerath (1994) the 32P-postlabeling assay 

has been applied in more than 100 laboratories to measure adducts formed in DNA 
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preparations treated with hundreds of test chemicals. Chemicals evaluated in the 32P-

postlabeling assay include arylamines, nitroaromatics, nitrosamines, azo compounds, 

dye-stuffs, PAHs, heterocyclic polycyclic aromatics, epoxides, quinones, methylating 

and other alkylating agents, mycotoxins, alkenylbenzenes, and antibiotics, in addition to 

chemicals generating oxygen free radicals. Moreover, DNA lesions induced by complex 

mixtures such as tobacco smoke, iron foundry and coke oven carcinogens in 

occupational settings, as well as unidentified sources has also been assessed by 32P-

postlabeling. 

The  32P-postlabeling technique has been used in several studies to detect DNA 

adducts formed by BaP (Booth et al. 1999; Boysen and Hecht 2003; Godschalk et al. 

1998; Gupta et al. 1982; Lu et al. 1986; Reddy et al. 1984; Reddy and Randerath 1986). 

Adduct analysis by 32P-postlabeling has been performed on DNA isolated from various 

tissues including white blood cells or peripheral blood lymphocytes which are readily 

accessible in humans. Other tissues that have been used to detect BaP adducts include 

skin, placenta, kidney, liver, lung, breast, and pancreas (Hemminki et al. 2000). The 32P-

postlabeling test has been used in biomonitoring human populations exposed to 

environmental or occupational levels of genotoxic chemicals (McClean et al. 2007; Tang 

et al. 2006), as well as cell-based or cell-free in vitro studies (Binkova et al. 2007; 

Sevastyanova et al. 2007) evaluating the genotoxic potential of complex mixtures. 

Animal studies conducted to investigate adduct formation after treatment with 

environmental complex mixtures has also commonly used 32P-postlabeling as part of 

their methods (Cizmas et al. 2004; Randerath et al. 1999). The research presented in this 

dissertation has used 32P-postlabeling to detect DNA adducts in a cell-free system, as 

well as in animal studies and biological tissues collected from human study subjects.  

 

1.7 Metabolism 

Exposure to PAHs may occur through dermal absorption, inhalation of 

particulate or ingestion. PAH absorption through the skin is relatively slow, whereas 

absorption through the respiratory or gastrointestinal tracts are more rapid. Once 
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absorbed into systemic circulation, PAHs usually undergo Phase I (oxidation) and Phase 

II (conjugation) metabolism to increase solubility and the rate of elimination. The 

process of mammalian metabolism of xenobiotics such as PAHs typically is divided into 

two distinct phases, Phase I and Phase II (Brandt and Watson 2003). The major reaction 

in Phase I is usually hydroxylation catalyzed by a class of enzymes referred to as 

monooxygenases or cytochrome P450 (CYP). These enzymes called mixed function 

oxidases (MFOs) are ubiquitously present in multicellular organisms and expressed or 

induced in mammalian tissues, mainly in the endoplasmic reticulum (microsomal 

fractions). Other reaction types that occur in Phase I include reduction and hydrolysis. 

Phase II metabolic transformations consist mainly of converting the hydroxylated and 

other metabolites produced in Phase I to various polar metabolites by conjugation to, for 

example, glucuronic acid, sulfate, glutathione or certain amino acids. The overall 

purpose of those two phases is to increase water solubility of the metabolized 

compounds by the addition of a polar entity, thus facilitating their excretion from the 

body. Without this process, water insoluble compounds such as PAHs could remain in 

tissues for extended periods.  The rate and extent of PAH metabolism generally depends 

on structure of the specific compound.  Due to their similar chemical structure consisting 

of multiple fused benzene rings, PAHs as a group, undergo similar biotransformations. 

The multiple pathways for Phase I and Phase II metabolic pathways of PAHs are 

diagrammed in Figure 1.8.   

The first step in Phase I metabolism of PAHs is typically oxidation (epoxidation) 

and is catalyzed by CYPs. CYPs are hemoprotein that associate with another membrane-

bound enzyme that NADPH-dependant flavoprotein cytochrome P450 reductase. 

Monooxygenation of xenobiotics in mammalian species including humans are mainly 

catalyzed by CYP enzyme families 1 to 3 such as CYP1A1 and CYP1B1 (both in 

extrahepatic tissues) and to a lower extent CYP1A2 and CYP3A4 (mostly in the liver). 

CYP1B1 is present in almost all organs except liver and lungs. CYP1A1 expression is 

usually low in mammalian tissues. CYP3A4 is most abundant in tissues followed by 

CYP1A2.   
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PAHs can induce their own biotransformation. They can significantly increase 

expression of CYP1A1 (BaP, 7,12-dimethlybenz[a]anthracene, 3-methylcholanthrene) 

and CYP1B1 in liver, lung and most extrahepatic tissues by binding to cytosolic AhR. 

The AhR-ligand forms a complex with the aryl hydrocarbon nuclear translocator 

(ARNT).  In the nucleus, ligand-activated AhR-ARNT heterodimer becomes competent 

to bind to aryl hydrocarbon response element (AhRE) or xenobiotic response element 

(XRE). CYP1 protein is induced following this mechanisms, as well as GST and UDP-

glucuronosyltransferase (UGT) enzymes considered to be Phase II enzymes.  

PAHs are generally chemically inert molecules. In certain cases however, Phase I 

metabolism converts unreactive compounds to intermediate chemically and biologically 

highly reactive species. Studies of the in vivo biological effects of PAHs have 

established that the most potent carcinogenic members contain 4 to 6 benzo rings and 

often possess certain structural features such as sterically crowded bay or fjord regions.  

A multistep enzymatic activation pathway with a sequence of non-K-region epoxidation, 

hydrolysis of the primary epoxide to a dihydrodiol, and further epoxidation at the 

adjacent double bond produces vicinal diol-epoxides as the carcinogenic metabolites of 

PAHs. Formation of diol-epoxide at bay- or fjord- region is considered as one of the 

major if not the predominant pathway of metabolic activation of most mutagenic and 

carcinogenic PAHs. The activation pathway leading to bay or fjord region diol-epoxides 

requires two additional enzymatic steps after initial monooxygenation (epoxidase) at a  

non-K-region double-bond for example, position 7,8 in BaP. Firstly, arene oxides 

initially produced undergo enzymatic hydrolysis to trans-dihydrodiols. Microsomal 

epoxide hydrolase (mEH) is involved in metabolism of arene oxides originating from 

PAHs. CYP enzymes are again responsible for subsequent epoxidation of trans-

dihydrodiols to vicinal bay- diol-epoxides mainly CYP1A1 and 1B1. Additional 
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Figure 1.8.  Metabolic pathways of PAH metabolism (Harvey 1991).  MFO is mixed function 
oxidase, EH is epoxide hyrolase, GST is glutathione-S-transferase, R = glucuronate or sulfate. 

 
 

metabolic activation pathways of PAHs-diols into ultimate carcinogens occur via the 

radical cation pathway catalyzed by peroxidases as well as the ortho-quinone pathway 

catalyzed by aldo-keto reductase (AKR) (Shimada 2006; Xue and Warshawsky 2005). 

Thus, BaP as a model PAH can be converted by Phase I enzymes (CYP, mEH, AKR or 

peroxidases) to a large number of metabolites: arene oxide, phenols, trans-dihydrodiols, 

quinones and diol-epoxide (Figure 1.9).  
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Figure 1.9.  Scheme depicting the several different pathways for metabolic activation of benzo[a]pyrene.  
These pathways are assumed to apply generally to all PAHs, due to the structural similarities of these 
compounds.  Scheme was adapted from Shimada (2006). P450 is cytochrome P450, EH is Epoxide 
hydrolase, GST is Glutathione transferase, UGT is UDP-glucuronosyltransferase, SULT is 
sulfotransferase, NQO1is NADPH-quinone oxidoreductase 1 and AKR is aldo-keto reductase.  
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that may bind covalently to cellular macromolecules, including DNA, to form addition 

products referred to as adducts. These metabolites mostly react with the purine bases to 
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trans or less frequently cis opening at the exocyclic positions N-2 of guanine and N-6 of 

adenine. This might perturb the normal Watson-Crick double helix compromising 

transcription and replication. This process may lead to errors such as nucleotide 

misincorporation during the next round of DNA replication and potentially induce 

irreversible changes in the sequence of key genetic targets. This can also lead to 

suppression of transcriptional activity and disruption of gene expression (Johnson et al. 

1997) which may reduce cell survival. Mutations that activate protooncogenes and de-

activate tumor suppressor genes may occur and cause disruption of regulatory processes 

which might lead to the initiation the tumor formation process (Phillips and Grover 

1994). Elevated levels of DNA adducts and P53 mutations have been associated with 

PAH exposures in human studies (Alexandrov et al. 2002; Gaspari et al. 2003; Hainaut 

and Pfeifer 2001). Thus, PAHs can become tumorigenic after metabolic activation, 

inducing DNA damage through DNA adduct formation and causing mutations in 

growth-controlling genes such as tumor suppressor or oncogenes. Cellular defense 

mechanisms exist especially through apoptosis and the global genome nucleotide 

excision repair pathway which provide an essential line of defense against the mutagenic 

and carcinogenic activity of PAH diol-epoxide metabolites.  

Benzo[a]pyrene, the most extensively studied PAH congener was used as a 

model compound for the metabolism of this class of chemicals. The major pathway for 

the oxidative Phase I metabolism of BaP occurs through cytochrome P-450 enzymes. 

CYP1A1 was demonstrated to have an essential role not only for PAH-mediated 

toxicity, but also for detoxification of orally administered BaP (Uno et al. 2004; Uno et 

al. 2001).  Mice models with knocked out CYP1A1 gene were found to be protected 

against liver toxicity and death (Uno et al. 2001).  Conclusions drawn from this study 

indicated that the reported resistance of mice was due to a decrease in production of the 

normally large amounts of toxic metabolites.  Nevertheless, three years later, a study by 

the same group detected higher levels of DNA adducts in the Cyp1a1(-/-) knockout mice 

as compared to the levels induced in Cyp1a1(+/+) wild-type mice. According to these 

results, CYP1A1 was shown to be necessary for the detoxification of orally administered 
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BaP. More recently, mice data showed that a balance between tissue-specific expression 

of CYP1A1 and CYP1B1 influences the susceptibility to toxic and possibly carcinogenic 

effects of orally dosed BaP (Uno et al. 2006).  

Phase I oxidation reactions generally produce arene oxides. Arene oxides may then 

be transformed into compounds such as phenols by spontaneous reaction or trans-

dihydrodiols by a hydration reaction catalyzed by microsomal epoxide hydrolase. Arene 

oxides may also covalently bind to glutathione by spontaneous reaction catalyzed by 

GST. At this stage, 6-hydroxybenzo[a]pyrene has been formed, and is then oxidized to 

1,6-, 3,6-, or 6,12-quinones via spontaneous or metabolic reaction.  Two further phenols 

may be oxidized; 3-hydroxybenzo[a]pyrene to 3,6-quinone and 9-

hydroxybenzo[a]pyrene to the K-region 4,5-oxide.  The 4,5-oxide can then be hydrated 

to 4,5-dihydrodiol (4,5,9-triol).  Glucuronides and sulfate esters may then be conjugated 

from the phenols, quinones, and dihydrodiols, while glutathione conjugates can also be 

formed from the quinones.  In addition to conjugation, dihydrodiols may undergo further 

metabolism through additional oxidation reactions. Such reactions may also modify the 

structure of the dihydrodiols via cytochrome P-450 enzymatic pathways.  This reaction 

generally results in the formation of the 7,8-dihydrodiol-9,10-epoxide.  Conjugation of 

diol epoxides can occur spontaneously or by a GST catalyzed reaction.  Alternatively, 

the diol epoxides may form tetrols via spontaneous hydrolization.  The 7,8-dihydrodiol-

9,10-epoxide is generally considered as the ultimate carcinogenic metabolite of BaP 

(ATSDR 1995).   

As mentioned previously, USEPA classifies seven PAHs as probable human 

carcinogens.  BaP is listed as a class B2 or probable human carcinogen.  In its pure form, 

this compound appears as pale yellow needles or plates in the solid form (Harvey 1997; 

USEPA 2006).  Numerous animal studies using several different routes of administration 

and numerous genotoxic assays established the carcinogenic potential of BaP (Culp et al. 

1998; Gaylor et al. 2000; Ramesh and Knuckles 2006; Rodriguez et al. 1997; USEPA 

2006).  Species of animals demonstrating positive carcinogenic responses include rats, 

mice, hamsters, and guinea pigs.  Routes of exposure indicated to be carcinogenic in 
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animals include dietary, gavage, inhalation, intratracheal instillation, dermal application, 

intraperitoneal injection, subcutaneous injection, intravenous, transplacental, 

implantation in the stomach wall, lung, renal parenchyma and brain, injection into the 

renal pelvis, and vaginal painting.  Sites of tumors formation seen after oral 

administration of BaP include forestomach, squamous cell papillomas and carcinomas.   

Often considered a model carcinogen, BaP has multiple structural areas for 

metabolic activation, including a bay-region.  The pathway for binding to DNA is shown 

in Figure 1.10. 
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Figure 1.10.  Mechanism by which the anti configuration of benzo[a]pyrene diol epoxide binds to DNA 
covalently (Harvey 1991). 
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 The structure of BPDE, the most reactive metabolite of BaP, bound to the N-2 of 

the deoxyguanosine molecule is shown in Figure 1.11.  BaP was administered at 0, 1, 10, 

20, 30, 40, 45, 50, 100 and 250 ppm in the diet of male and female CFW-Swiss mice in a 

past study by Neal and Rigdon (1967). Forestomach tumors were detected in the 20 ppm 

or higher dose ranges.  The incidence of tumors was also found to increase with dose. In 

a study by Brune and coworkers (1981) Sprague-Dawley rats were fed BaP at 0.15 

mg/kg. Dosing of the laboratory rats occurred every nineth day or 5 times a week until 

death, yielding an average yearly dose of 6 or 39 mg/kg respectively. Tumors were 

observed in the forestomach, esophagus and larynx. The incidence of tumor followed a 

linear trend based on dose.   
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Figure 1.11.  Benzo[a]pyrene diol epoxide, anti configuration, adduct attached at the N-2 position of 
deoxyguanosine (Harvey 1991). 
 
 

The formation of bulky DNA adducts is generally considered the first phase 

(initiation) in the steps that occur during transformation of a normal cell into a malignant 

cancer cell (Figure 1.7). These steps are generally referred to as initiation, promotion and 

progression (Ramesh et al. 2004).  The current study integrates results from in vitro and 

in vivo studies with data obtained from the analysis of biological samples collected from 

human populations. Cell culture and animal studies were used to investigate the 
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genotoxicity of complex PAH mixtures collected from residential environments. These 

data were then compared with PAH composition and concentrations, as well as DNA 

adduct levels in placenta, serum and lymphocytes of human subjects. The results of this 

research will be used to investigate genetic factors affecting sensitivity towards 

genotoxic PAH mixtures.  

 

1.7.1 Genetic Polymorphisms 

The potential for xenobiotic chemicals to react with DNA and induce genotoxic 

damage is largely defined by the activity of Phase I and Phase II metabolizing as well as 

DNA repair enzymes. Variations in genotype, or single nucleotide polymorphisms 

(SNPs), have been shown to exert a significant influence on the sensitivity of individuals 

towards carcinogenic PAHs. Included in this dissertation are experiments to investigate 

the impact of SNPs on the ability of PAHs to form DNA adducts in animals as well as 

humans.  

Levels of PAH-DNA adducts have been found to vary considerably among 

individuals with similar exposure to PAHs. This implies that inherited differences exist 

in formation of these adducts. Viau et al. (1995) reported that 57% of a given amount of 

pyrene, usually abundant in PAH mixtures, is excreted via urine and 18% via feces 

within 24 hr in rats. The rate of elimination of PAH mixtures, as determined by the 

urinary concentration of 1-hydroxypyrene (1-OHP), is affected by genetic 

polymorphisms of Phase I (CYP1A1) and Phase II metabolic enzymes (GST) (Luch 

2005). Increased risk of lung cancer has been associated with polymorphisms in drug 

metabolizing enzymes namely CYP1A1 and GST according to several studies listed by 

Hecht and coworkers (2006).  Hecht et al. (2006) investigated 11 polymorphisms in a 

group of 346 smokers.  High ratios of phenanthrene to phenanthrene metabolites were 

significantly correlated with the presence of the CYP1A1I462V polymorphism.  Female 

subjects and subjects with the GSTM1 null genotype exhibited a stronger correlation 

effect. It was also noted that the highest 10% of the parent PAH compound to metabolite 

ratios could not be predicted by any single polymorphism or by certain combinations.  
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 Occupational studies observed that the formation of DNA adducts in 

lymphocytes from asphalt paving workers was found to increase during each day of the 

workweek. Mean adduct levels were lowest on Mondays (0.3 adducts per 109 

nucleotides) and highest on Fridays (5 adducts per 109 nucleotides). Furthermore, a 3-

fold increase in DNA adduct formation was observed in white blood cells of workers in 

the task associated with the highest PAH exposures. The lowest adduct level was found 

among roller operators (0.7 adducts per 109 nucleotides) whereas the highest was among 

screedmen (2.3 adducts per 109 nucleotides) (McClean et al. 2007). Coke oven workers 

were also observed to have elevated BaP-DNA adduct levels in lymphocytes.  In the 

study of coke oven workers, the GSTM1 null genotype was found to be associated with 

significantly higher levels of adducts among workers (60 adducts per 109 nucleotides) as 

compared to the GSTM1 active genotype (33 per 109 nucleotides) at the same exposure 

level (Pavanello et al. 2004).  ‘At risk’ genotypes identified by Rojas et al. (1998) 

correlated with increased DNA adduct levels (174 per 109 nucleotides).  

Genetic polymorphisms of metabolic enzymes therefore have been shown to 

affect an individual’s capacity to either activate or detoxify PAHs and their metabolites. 

Newly developed technologies allowing determinations of single nucleotide 

polymorphisms have opened possibilities for studies focusing on individual 

susceptibility to PAH-induced carcinogenesis. The CYP subfamily of enzymes is 

generally assumed to provide the majority of catalytic activity towards the initial 

oxidation of most xenobiotic chemicals, including the PAHs. In most cases, the Phase I 

enzymes increase the polarity and reactivity of xenobiotics, whereas the Phase II 

enzymes react with the polar end of the molecule resulting in detoxification. The main 

CYPs in humans that participate in PAH metabolism are 1A1, 1A2, 1B1, 2C9, 3A4 and 

3A5. Exposure to PAHs has been shown to induce expression of 1A1, 1A2, and 1B1 

(Iwanari et al. 2002). The induction mechanism is through ARNT binding to XRE such 

as located upstream of CYP1A1 gene. Three genetic polymorphisms were detected 

within the CYP1A1 gene. CYP1A1 MspI (CYP1A1*2A) and Ile/Val (CYP1A1*2B or 

*2C) more prevalent in Asians than Caucasians (Pavanello 2006). The mEH enzyme 
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plays a dual role in detoxification and activation of carcinogens. GSTM1 and GSTP1 are 

major Phase II enzymes that catalyze the conjugation reaction of BPDE. GSTT1 has 

both detoxification and activation properties and hence is difficult to predict the 

biological consequences of a null genotype (Pavanello 2006). Individuals with the 

GSTM1 null genotype have a slight increase in lung cancer risk and similarly modest 

increase in the risk of bladder cancer. Studies on the GSTM1 gene deletion are widely 

conducted to investigate the effects GSTM1 enzyme deficiency which has been linked to 

lung cancers among cigarette smokers (Brockmoller et al. 1996; Butkiewicz et al. 2000; 

McWilliams et al. 1995; Strange et al. 1991).  

The assessment of a single polymorphic genotype is not likely to provide a 

reliable estimate of individual susceptibility to PAH-induced cancers. Gene-gene 

interaction exists, for example GSTM1 may regulate the induction of other metabolizing 

enzymes such as CYP1A1 and CYP1A2 (Butkiewicz et al. 2000; Vaury et al. 1995). 

GSTM1 deficiency not only leads to an increase in hepatic CYP1A2 activity in active 

smokers, but also to significant increased levels of bulky PAH-DNA adduct in lung 

tissues of smokers and ex-smokers as compared to individuals carrying wild-type 

GSTM1 (Rojas et al. 1998; Stucker et al. 2002).  A deficiency in GSTM1 might also 

lead to saturation of the GSTP1 enzyme pathway, and lower its detoxification capability. 

A commonly accepted concept is that individuals with a combination of a genetically 

determined increased capacity to activate pro-carcinogenic cigarette smoke constituents 

such as PAHs, and the concurrent impaired capacity to detoxify genotoxic metabolites, 

would be at particular risk of developing PAH-induced cancers. However, data are not 

yet available from molecular epidemiology studies to confirm this assumption. 

In addition to polymorphisms in xenobiotic metabolizing enzymes, 

biomonitoring of genotoxic risk is also investigating newly discovered polymorphisms 

in DNA repair genes. The ability of normal individuals was found to differ significantly 

in their ability to repair DNA damage by exogenous substances such as tobacco smoke 

or endogenous agents such as oxidation products. DNA repair is specific for a class of 

damage. Double-strand breaks are repaired by homologous recombination-dependant 
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repair or in an end-joining reaction. Most small base modifications are repaired by the 

Base Excision Repair pathway. Bulky adducts and helix-distorting adducts are removed 

primarily by a major, versatile cellular pathway the Nucleotide Excision Repair pathway.  

 The genes that are mostly commonly studied include ERCC1 (excision repair cross-

complementing 1), ERCC2 or XPD (excision repair cross-complementing 2), XRCC1 

and XRCC3 (X-ray repair cross-complementing groups 1 and 3) as well as hOGG1 

(human 8-OH-guanine glycosidase). ERCC2 or XPD participates in the Nucleotide 

Excision Repair pathway (Friedberg 2003) whereas ERCC1 is involved in the incision 

step of Nucleotide Excision Repair. XRCC1 plays a role in the Base Excision Repair 

pathway and XRCC3 contributes in DNA double-strand break recombination repair. The 

human OGG1 gene is part of the Base Excision Repair gene family and encodes for a 

DNA glycosylase/AP-lyase specifically involved in the excision of 8-OH-dG:dC but not 

8-OH-dG:dA (Boiteux and Radicella 2000).  

 DNA repair polymorphisms may affect the levels of DNA adducts in an exposed 

population since they repair genetic damage. Levels of DNA adducts in populations 

exposed to genotoxic compounds was related to DNA repair genotype differences.  A 

significant increase in DNA damage in populations was observed with the presence of 

only one of the mutated alleles of DNA repair genes (XRCC1 399 Gln and/or XPD 751 

Gln). Never-smoking XRCC1 399 Gln homozygote individuals exhibited a significantly 

higher levels of DNA adducts in their white blood cells on average with a level of 16 per 

109 nucleotides compared with 6 per 109 nucleotides in Gln/Arg heterozygotes and 7 per 

109 nucleotides in Arg/Arg homozygotes (Matullo et al. 2001). Presence of a least one 

variant allele in XPD exon 23 was associated with a significant three-fold times increase 

in risk for lung cancer among never-smokers younger individuals (<70 years) after 

adjusting for age, gender and environmental tobacco smoke (Hou et al. 2002). 

Additionally, polymorphisms of XPD repair gene in exon 23 were found to be 

significant predictors for total DNA adduct levels whereas polymorphisms of XPD 

repair gene in exon 6 were related to formation of B[a]P-"like" DNA adducts (Binkova 

et al. 2007). A recent study demonstrated a negative influence of exposure to PAHs from 
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traffic emissions on DNA repair efficiency, and also suggested that smoking might be a 

factor influencing that process. Monitoring was performed in a group consisting of 

policemen and bus drivers occupationally exposed to PAHs and a group of matched 

controls. DNA damage and repair in lymphocytes.of study subjects were evaluated using 

a modified version of the single cell gel electrophoresis (SCGE) assay, known as Comet 

assay. A significant decrease in repair efficiency due to exposure to PAHs was observed 

in the exposed individuals. A negative influence of tobacco smoking on the efficiency of 

DNA repair was observed (Cebulska-Wasilewska et al. 2007). 

 

1.8 Biomarkers of Polycyclic Aromatic Hydrocarbons 

Traditionally, toxic potencies of chemicals were assessed based on overt 

symptoms manifested among exposed individuals. More recent studies have focused on 

identifying appropriate markers in biological organisms that can be used to quantify 

exposure or as an early indicator of effect. These markers are generally observed in an 

exposed population prior to overt signs or symptoms of disease. Such indicators are 

referred to as biomarkers (Skupinska et al. 2004). Concisely defined, biomarkers are 

biological particles that undergo detectable change when the individual is exposed to 

hazardous substances (Kleiner et al. 2003; Niyogi et al. 2001). Ultimately, biomarkers 

should help quantify exposures and detect disease in the early stages (Bentsen-Farmen et 

al. 1999). More importantly, improved methods for quantifying sources of exposure are 

useful for managing risk by reducing exposure. An essential component of primary 

prevention of diseases induced by environmental contaminants is to rank various sources 

of exposure and identify methods that would effectively reduce these exposures.  

Biomarkers are usually divided into three broad categories including biomarkers 

of exposure, effect and susceptibility. An overview of the endpoints that are typically 

used to measure exposure, susceptibility and effects is provided by the “biomarker 

paradigm” represented in Figure 1.12. The paradigm originally proposed by the National 

Research Council (1987) indicates that a series of biological and molecular events 

occurs between the initial exposure to a xenobiotic compound and the onset of disease. 
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Furthermore, the paradigm shows that each step might be ruled by additional factors that 

could modify the individual susceptibility to exogenous toxicants.  

 
Figure 1.12. Sequence of events from exposure to overt adverse health effect. This scheme was modified 
from NRC, 1987. 
 

The research conducted for this dissertation has focused on investigations to 

correlate external dose or exposure with internal dose and biologically effective dose. 

External dose was estimated by measurements of PAHs in household dust; and, a 

questionnaire was used to investigate other major sources of maternal exposure such as 

smoking status.  

Biomarkers of internal dose were obtained through measurement of DNA 

adducts in venous blood from parents or placenta from children. In addition, genotyping 

of selected genes was performed to measure genetic sensitivities. When combined, these 

biomarkers data provided important insight into the sources of exposure and mechanisms 

of diseases with environmental etiologic factors.  

Biomarkers of exposure usually consist of the unchanged compound or its 

metabolite measured in biological material such as blood, tissue, urine, feces, exfoliated 

Biomarkers of Exposure and Effect  

Exposure Internal   
Dose 

Biologically  
Effective Dose           Altered 

Structure/Function 
Early Biologic  

Effect Birth Defects 
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Plasma/  
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DNA  
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Level

 p53,p21 
Chromosome  
Aberrations,  

SCEs Dust 



 

 

82 

cells, sweat, nails (Brandt and Watson 2003). BaP, dibenz[a,c]anthracene and chrysene 

were detected in placenta, maternal blood, umbilical cord blood and breast milk in non-

smoking women in India. Levels of BaP were highest in breast milk at 0.3 ppm 

compared to 0.04 ppm in venous blood (Madhavan and Naidu 1995). The method of 

choice for biomonitoring recent PAH exposures in human populations, especially when 

different routes of exposure are combined, is the determination of PAH metabolites in 

urine. Concentrations of the PAH unchanged parent compound in urine are generally 

low, and instead one or more metabolites of the predominant hydrocarbon are usually 

present in high enough concentrations to be determined (Grimmer 1994; Jongeneelen et 

al. 1988). In mammals, 1-OHP represents the main metabolite of pyrene, a four ringed 

PAH abundant in complex mixtures of PAHs (Keimig et al. 1983). PAH profiles may 

vary significantly from an exposure source to another, however pyrene is a dominant 

compound in mostly all PAH mixtures. The half-life for 1-OHP in urine is relatively 

long, lasting up to 48 hours. Several studies have demonstrated that 1-hydroxypyrene is 

a good indicator of PAH exposure (Alexandrie et al. 2000; Pan et al. 1998; Siwinska et 

al. 2004). A review by Dor et al. (1999) concluded that 1-OHP was the most relevant 

biomarker for assessing exposure to PAHs. However, Sram and Binkova (2000) 

concluded based on their review of results from molecular epidemiology studies 

published between 1997 and 1999 that 1-OHP is a more effective biomarker in 

measuring occupational rather than environmental PAH exposures due to its reduced 

sensitivity to ambient PAH exposure levels in air. In addition, 1-OHP might not 

accurately reflect the internal body burden of carcinogenic PAHs mainly because these 

are mostly high molecular weight congeners predominantly excreted in feces (Grimmer 

1994). 

Humans exposed to PAHs in the environment or in their occupation have 

exhibited elevated excretion levels of 1-OHP in their urine. Urinary excretion of 1-OHP 

was correlated to lung cancer risk in occupational exposures to PAHs. A level of 2.3 

�mol/mol creatinine was associated with a relative lung cancer risk of 1.3 in coke oven 
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workers (Jongeneelen 1992). Selected data on urinary 1-hydroxypyrene levels are 

summarized in Table 1.8 and reported values are given as �mol/mol creatinine. 

 

  

Table 1.8. Summary of urinary 1-hydroxypyrene (1-OHP) concentrations in �mol/mol creatinine in 
selected human populations. 
 

Type of Exposure Number of Individuals 1-OHP Reference 

General Population  

(China) 
70 0.5-1.6 (Zhao et al. 1990) 

General Population  

Non-smoker  
19 0.08 

(Granella and Clonfero 

1993) 

General Population  

Smoker 
22 0.2 

(Granella and Clonfero 

1993) 

Children (living near a 

steel mill) 
350 0.05 (Lee et al. 2007) 

Cooking (Females) 108 0.5 (Chen et al. 2007) 

Highway toll station 

(pre-shift) 
1 

Highway toll station 

(post-shift) 

32 

3 

(Tsai et al. 2004) 

Traffic Police 89 0.14 (Merlo et al. 1998) 

Coal-electrodes  

production (pre-shift) 
4 

Coal-electrodes 

production (post-shift) 

17 

10 

(Bentsen-Farmen et al. 

1999) 

Coal tar distillation 4 4-12 
(Jongeneelen et al. 

1986) 

Aluminum Production 5 1.2-8.8 (Vu Duc 1996) 

Coking plant 447 4.2-5.2 (Chen et al. 2007) 
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Urinary 1-hydroxypyrene was measured in 70 residents from three cities in North 

China; Beijing, Shenyang and Taiyuan (Zhao et al. 1990). These cities are believed to 

have severe air pollution due to the heavy dependence of China on coal as a source of 

energy. The level of 1-OHP in urine was different for residents of the three cities and 

ranged between 0.5 and 1.6 �mol/mol creatinine. Residents of Shenyang exhibited the 

highest 1-OHP levels and those of Beijing the lowest levels. PAHs were also measured 

in city air, and the results show that pyrene was a major component and ranged between 

11 to 18% of total PAHs in air. No difference in the levels of 1-OHP was detected 

between smokers and non-smokers. Smoking of an average of 10 cigarettes per day was 

found to have a greater influence on urinary 1-OHP levels in automotive repair workers 

than occupational exposures (Granella and Clonfero 1993). Urine of smokers had 0.2 

�mol 1-OHP/mol creatinine which was more than two-fold of the levels found in non-

smokers. Children, age 7-15 years, living near a large steel mill in Korea excreted 1.3 

times higher levels of 1-OHP in their urine when compared to another group residing 

much farther from the factory. However, potential confounders such as the ambient air 

PAH concentrations and the dietary and indoor sources of PAHs were not directly 

measured (Lee et al. 2007). Mean urinary 1-OHP concentrations in 108 Chinese females 

exposed to cooking oil fumes were found to be 0.5 �mol/mol creatinine (Chen et al. 

2007). Levels of 1-OHP in the urine of the study subjects were associated with cooking 

frequency in the kitchen. Subjects were mostly non-smokers and did not have heating 

systems except electric air conditioners. The concentration of PAHs in kitchen air as 

well as dietary sources of PAHs were not investigated in this study. Pre-shift and post-

shift urinary 1-OHP levels were quantified in 32 female highway toll booth attendants 

(Tsai et al. 2004). Mean post-shift 1-OHP levels in urine of study subjects was three-fold 

(3 �mol/mol creatinine) that in pre-shift samples. Total PAH exposure level in air from 

the breathing zone of booth attendants was at an average of 11,400 ng/m3; pyrene in 

particular was at an average of 105 ng/m3. Among the factors that might affect urinary 

levels of 1-OHP such as smoking habit, only the total PAH exposure level was 

significant. A study on traffic police officers in Italy did not find significant difference in 
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the level of their urinary 1-OHP as compared to a control group working indoors (Merlo 

et al. 1998). Mean concentrations of 1-OHP excreted in the urine of traffic police 

officers was 0.14 �mol/mol creatinine as compared to a level of 0.09 �mol/mol 

creatinine in control subjects. BaP air level was used as a surrogate of exposure to 

pyrene. The geometric mean of BaP air concentrations detected in traffic police officers 

was 3.67 ng/m3, which was 70 times higher than that detected in control subjects (0.05 

ng/m3). Mean 1-OHP concentrations were significantly higher in the urine of smokers 

compared to non-smokers in both groups. In addition, the number of cigarettes smoked 

per day was found to well predict the level of 1-OHP excreted in urine. Urinary 1-OHP 

excretions were two-fold higher or more in subjects who smoked 15 cigarettes or less 

(0.176 �mol/mol creatinine) and subjects who smoked more than 15 cigarettes (0.226 

�mol/mol creatinine) compared to non-smokers (0.089 �mol/mol creatinine). Exposure 

to environmental tobacco smoke (ETS) was also associated with high 1-OHP levels in 

urine, unlike consumption of broiled/grilled meat and fresh fruit and vegetables. Despite 

the fact that seasonal variation of airborne PAH concentrations was not detected, levels 

of urinary 1-OHP in traffic police officers varied among season and were highest 

between the months of January and March (0.238 �mol/mol creatinine).  

 In a study conducted at a coal-electrode production plant, pre and post-shift 

levels of urinary 1-OHP were measured in a group of workers occupationally exposed to 

high levels of PAHs (Bentsen-Farmen et al. 1999). The mean urinary 1-OHP was 4 

�mol/mol creatinine in pre-shift samples and 10 in post-shift samples. Workers were 

equipped with personal samplers to measure the concentration of PAHs in the workplace 

air. Mean air PAH level in the particulate phase were 38,000 ng/m3 but pyrene was more 

abundant in the gaseous phase where it formed 72% of total PAHs. No significant 

correlation was found between 1-OHP and workplace pyrene exposure in this study. 

This finding suggested that skin exposure to PAHs might be a major exposure route in 

this plant which confirmed that estimation of total PAH exposure is best accomplished 

by biological markers such as quantitation of PAHs in body fluids. Urine samples from 

workers at a coal tar distillation plant were analyzed for 1-hydroxypyrene (Jongeneelen 
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et al. 1986). The time weight average (TWA) exposure over 8 hours for these workers 

ranged between less than 2000 to 280,000 ng/m3 for total PAHs and less than 2000 to 

96,000 ng/m3 for pyrene. Levels of 1-OHP in the urine of workers ranged between 4 and 

12 �mol/mol creatinine depending on the job function. The concentration of 1-OHP in 

the urine of workers exceeded the upper 95th percentile of a control group. In this study, 

smokers did not have a significant increase in their 1-OHP urinary levels. In workers at 

an aluminum production plant, levels of urinary 1-OHP appeared to range between 1.2 

and 8.8 �mol/mol creatinine depending on the performed task (Vu Duc 1996). Personal 

air sampling revealed that pyrene was predominant among the detected PAHs and 

ranged between 789 and 9477 ng/m3. Levels of 1-OHP in urine of workers and the 

concentrations of pyrene in their breathing zone correlated fairly well. However, 

correlation between 1-OHP and BaP was poor in this study which indicates that 1-OHP 

might not be a sensitive biomarker to carcinogenic PAH exposures. Chinese coke oven 

workers at two different coking plants had 1-OHP levels in their urine ranging from 4.2 

to 5.2 �mol/mol creatinine (Chen et al. 2007). The highest 1-OHP levels were detected 

among topside workers with concentrations ranging from 5.5 to 15.5 �mol/mol 

creatinine. Workers who used respirators had lower 1-OHP levels in their urine that 

ranged from 2 to 4 �mol/mol creatinine. Only in one plant, workers who smoked more 

than 10 cigarettes per day had significantly higher urinary levels of 1-OHP than non-

smokers. Levels of 1-OHP were 6 �mol/mol creatinine in urine of heavy smokers as 

compared to 4 �mol/mol creatinine in urine from non-smokers. Occupational exposure 

in this study was mostly predominant which might minimize the effect of cigarette 

smoking on urinary 1-OHP levels.  

Large inter-individual variations in urinary 1-OHP excretion exist. Studies have 

shown that the level of 1-OHP and other PAH biomarkers in urine can be affected by 

selected genetic polymorphisms of drug metabolizing enzymes. Genetic variants of CYP 

and GST enzymes that contribute to PAH metabolism were found to alter the rate of 1-

OHP excretion in urine. Higher concentration of 1-OHP was found in the urine of traffic 

police officers carrying the heterozygous variant of the CYP1A1 MspI genotype and 
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consuming less than 15 cigarettes per day, as compared to individuals homozygous for 

the wild-type allele. On the other hand, non-smoking policemen or individuals smoking 

more than 15 cigarettes per day revealed no significant genetic influence over levels of 

1-OHP in their urine (Merlo et al. 1998). A two-fold higher levels of 1-OHP were 

detected in smokers with heterozygous CYP1A1 MspI genotypes compared to smokers 

with the wild-type genotype, in a non-occupationally exposed group of Japanese, 

Hawaiian and Caucasian subjects (Nerurkar et al. 2000). Among coke oven workers in 

Italy, GSTM1 null genotype was associated with increased levels of 1-OHP excretion 

(Brescia et al. 1999). Similar results were reported by Alexandrie et al. (2000) in a study 

on aluminum smelter workers. Other studies however have found reduced levels of 1-

OHP excretion associated with the inactive GSTM1 genotype (Schoket et al. 2001) or no 

significant effect (Merlo et al. 1998) in occupationally exposed individuals. Therefore, it 

appears that the influence of polymorphisms especially in Phase II metabolic enzymes 

such as GST is not clear yet.  

 A biomarker of effect is a biological measurement that indicates that the organism 

is responding to an exposure at some level. DNA adducts are one example of a 

biomarker of effect that can be used to measure early indicators of genotoxic effects that 

precede the onset of health effects such as adverse pregnancy outcomes or cancer. Since 

bulky DNA adducts reflect persistent genetic damage at a target site, they may not 

exhibit the same degree of variability as biomarkers that only reflect recent exposures.  

DNA adducts may also account for multiple routes of exposure and differences in 

toxicokinetics and repair amongst exposed subjects (Godschalk et al. 2003). Phillips 

(Phillips 2005) recognizes that monitoring the formation of DNA adducts in 

lymphocytes as a surrogate tissue provide a valuable tool for investigating environmental 

exposure in healthy individuals. Other biomarkers of effects include protein adducts, 

levels of functionally critical protein such as p53 and p21, chromosome aberrations and 

sister chromatid exchange (Angerer et al. 1997; Shaham 1996).  

The formation of DNA adducts is generally considered to be the earliest critical 

event that can be detected in the complex multi-stage process of chemically induced 
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carcinogenesis caused by compounds such as PAHs (Boyd and Barrett 1990; Eriksson et 

al. 2004; Kondraganti et al. 2003). Monitoring human exposure to carcinogens by means 

of DNA adduct formation provides an integrated measurement of carcinogen intake, 

metabolic activation and delivery to the target macromolecule. Cell culture, animal, and 

human studies have demonstrated that PAH-DNA adducts play an important role in the 

transformation of normal cells into malignant cells (Godschalk et al. 2003). In a cell 

culture study by Dennisenko and Pao (1996), it was found that BPDE-DNA adduct 

formation in the p53 tumor suppressor gene in vitro corresponded with mutational 

hotspots on the same gene in human lung cancer tissue. Data from animal studies also 

suggests that levels of DNA adducts in target organs are related to overall cancer risk. 

Poirier and Beland (1994) reported an overall linear relationship between levels of DNA 

adducts and the dose of a carcinogen administered to rodents. DNA adducts were also 

generally correlated with tumorigenesis. In human studies, a direct link was reported 

between bulky DNA adducts in white blood cells (WBCs) and lung cancer risk in a 

prospective study within the Physician’s Health Study (Tang et al. 2001). In this study, 

‘healthy’ smokers at the time of sampling and who had elevated levels of DNA adducts 

in their WBCs were three times more likely to develop lung cancer than smokers with 

low adduct levels. In a review article, Godschalk et al. (2003) lists several human studies 

that report correlations between DNA adducts and cancer risk in exposed populations. 

Among those are a study by Ryberg et al. (1994) that found higher levels of DNA 

adducts in female smokers (13.55 per 108 nucleotides) when compared to male smokers 

(9.75 per 108 nucleotides). These results correspond well with epidemiological reports 

on a greater risk of tobacco-induced lung cancer among women. Studies with lung 

cancer patients found that PAH-DNA adduct levels in their lung tissue and WBCs were 

higher when compared to healthy controls (Perera et al. 1989; Tang et al. 1995). Overall, 

in vitro, in vivo and human studies indicate that as biomarkers of exposure, DNA adduct 

levels provide important information for predicting human cancer risk.  

DNA adduct levels are usually reported as number of adducts per normal 

nucleotides. Levels of 1 adduct/105 nucleotides correspond to around 10,000 DNA base 
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modifications per cell, since each cell contains 109 DNA bases. At such levels, there is 

reasonable statistical probability that a mutation might be formed (Brandt and Watson 

2003). At low levels such as the detection limit of 32P-poslabeling (1 adduct/109 normal 

nucleotides) the chance of a mutation occurring is low and thus it is less probable that 

such level of adduct formation can be significant in terms of cancer risk. DNA adduct 

levels ranging from 1 adduct/109 normal nucleotides to 1 adduct/1010 normal nucleotides 

are common for ambient exposure to PAHs (Phillips 1997). Thus, although qualitative 

detection of low levels of adducts is usually viewed as a positive indicator of exposure, 

the relevance of low adduct levels to human cancer is less clear. However, predisposing 

polymorphic genes exist such as those involved in PAH metabolism and DNA repair. 

Certain genotypes may increase the degree of DNA adduct formation and thus cancer 

risk, even when low level exposure occurred (Brandt and Watson 2003).  In addition, 

even low levels of DNA adducts in a sensitive receptor (such as the developing fetus) is 

likely to represent appreciable risk. Previous studies detected B[a]PDE-DNA adducts in 

human placenta in vivo (Manchester et al. 1988; Manchester et al. 1990; Whyatt et al. 

1998) and cord blood (Arnould et al. 1997; Tang et al. 2006). The levels of PAH-DNA 

adducts detected in placental tissue were 85 adducts per 109 nucleotides (Whyatt et al. 

1998) and 3 adducts per 109 nucleotides in umbilical cord blood (Tang et al. 2006).  

Among biomarkers of structural or functional alterations in humans are 

cytogenetic endpoints such as chromosome aberrations (CAs), micronuclei (MN) and 

sister chromatid exchanges (SCEs). These cytogenetic modifications are mainly due to 

errors of DNA replication, which can be caused by mutagens (Wilson and Thompson 

2007). The frequency of chromosomal aberrations in peripheral blood lymphocytes was 

found to be a predictor of cancer risk in several human cohorts (Norppa et al. 2006). 

Previous studies have also confirmed the relationship between PAH exposure and p53 

expression or chromosome damage (Nakatsuru et al. 2004; Siwinska et al. 2004; 

Wilding et al. 2005).  With regards to the biomarkers of effect, data from previous 

studies have established the utility of measurements of protein levels and chromosome 

damage as an indicator of genotoxic effects (Lodovici et al. 2004; Pavanello and 
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Clonfero 2004; Salazar et al. 2004; Whyatt et al. 2000; Wilding et al. 2005).   A study 

population in an environmentally polluted part of Poland exhibited increased levels of 

various biomarkers such as DNA adducts, CA, SCE and ras oncogene expression (Perera 

et al. 1992).  

Chromosomal aberrations were shown to be an intermediate step in tumor 

formation pathway and to be indicators of exposure as well as susceptibility (Bonassi et 

al. 2000; Hagmar et al. 1994). Coke oven workers exhibited an increased level of 

chromosomal aberrations and SCE as compared to control subjects. The exposure among 

coke oven workers ranged from 0.6 to 550 �g/m3 and 0.002 to 50 �g/m3, for 

carcinogenic PAHs and BaP, respectively. The respective values in controls were 0.1 to 

1.5 �g/m3 and from 0.002 to 0.01 �g/m3. The frequency of CA and SCE was found to be 

related to exposure to carcinogenic PAHs (Kalina et al. 1998). Occupational exposure to 

PAHs in airport personnel resulted in higher mean value of SCE frequency and CA as 

compared to controls. The exposed group showed a higher mean value of SCE frequency 

compared to controls (4.6 versus 3.8) and an increase (1.3-fold) of total structural CA in 

exposed as compared to control subjects (Cavallo et al. 2006). However no difference in 

the level of urinary 1-OHP or MN was detected between the exposed and control groups 

in the same study. In Turkey, exposure to urban air pollution significantly increased the 

levels of CAs in traffic policeman and taxi drivers (Burgaz et al. 2002).  

The tumor suppressor gene p53 has been reported to play a critical role in cell 

responses to genotoxic chemicals such as cell cycle arrest, DNA repair and apoptosis 

(Park et al. 2006). The p53 gene, very frequently altered in human cancer cells, is found 

to be mutated in around 50% of all human tumors (Cariello et al. 1994). Cells exposed to 

genotoxic agents exhibit increased levels of the p53 protein which in turn lead to an up-

regulation of the Cyclin-dependant kinase (Cdk) inhibitor, p21WAF1/CIP1 protein (Park et 

al. 2006). The expression of both p53 and p21WAF1/CIP1 proteins were found to be induced 

by PAHs in vitro (Binkova et al. 2000; Mahadevan et al. 2001). Thus, presence of both 

proteins in blood serum has the potential to be used as a molecular marker of exposure to 

specific carcinogens in environmental monitoring and risk assessment studies. Previous 
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studies have used p53 in blood serum as a marker of cancer (Brandt-Rauf and Pincus 

1998; Charuruks et al. 2001) and PAHs (Krajewska et al. 1998; Pan et al. 1998) among 

other genotoxic agents. A more recent study by Rossner et al. (2003) however have 

found no correlation between p53 and p21WAF1/CIP1 plasma levels, as well as a negative 

correlation between p53 levels and PAHs exposure. In addition, smoking was found to 

have no effect on the levels of either protein. The contradictory results presented in the 

study by Rossner et al. (2003) suggest that the use of p53 and p21WAF1/CIP1 plasma levels 

as biomakers of carcinogenic PAH effect might require further examination.  

Finally, biomarkers of susceptibility are related to the genotype of an individual. 

The genetic make-up does not usually establish a disease condition but most likely 

identifies a certain sensitivity that makes a person at higher risk for disease. SNPs in 

genes coding for drug metabolizing or DNA repair enzymes could result in a faster or 

slower metabolism and DNA repair efficiency in human tissues. Therefore, SNPs can 

modify the levels of biomarkers detected in tissues by altering retention and/or 

elimination of hazardous chemicals from the body. 

 

1.9 Environmental Health in China 

As a consequence of the major economic developments in the last decade, air 

pollution has become one of the most serious environmental concerns in The People’s 

Republic of China. Burning of solid fuels such as coal for power generation and 

industrial production as well as residential heating and cooking is considered to be a 

major source of atmospheric pollution in Chinese cities (Zhang et al. 2007). Indoor air 

pollution affects a large share of the population in China, especially in rural areas, small 

cities, and in less developed peri-urban areas of large cities (Zhao et al. 2006). Coal, 

wood and other biomass fuels remain the primary heating and cooking fuels for the great 

majority of the Chinese population (Alford et al. 2002).   

The northern province of Shanxi is referred to as the “Coal Warehouse of 

China”. This region has extensive coal fields, some regulated by the government and 

some owned and operated by families. Shanxi provides at least one quarter of China’s 
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coal. The coal mined from this region is commonly used for power generation. Coal is 

used in food preparation and for heating purposes in homes or stores. The thermal 

decomposition of the solid coal fuel produces PAHs, which are gaseous at high 

temperatures, but condense onto the surface of soot particles during cooling. 

Consequently, residents can be exposed to PAHs and other byproducts either by 

inhalation of the airborne soot particles or ingestion of soot particles that deposit on 

food. In Shanxi, many women spend up to four hours per day cooking in an unventilated 

kitchen. 

Given the importance of coal combustion as an energy supply, the main 

pollutants affecting air quality in China include particulate matter (PM) and sulfur 

dioxide (SO2). Emission of 16 PAH congeners (Figure 1.13) on the USEPA priority 

pollutants list from major sources in China have increased substantially from around 

18,000 tons in 1980 to more than 25,000 tons in 2003 (Xu et al. 2006). The USEPA 

priority pollutant PAHs include acenaphthene, acenaphthylene, anthracene, 

benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, 

benzo[ghi]perylene, chrysene, dibenz[a,h]anthracene, fluoranthene, fluorene, 

indeno[1,2,3-cd]pyrene, naphthalene, phenanthrene, and pyrene (OFR 1982). Major 

sources of PAH emissions in China according to Zhang et al. (2007) are biomass (59%), 

domestic coal combustion (23%) and coke production (15%). However when 

considering major cities only (with population larger than 1 million) the source profile is 

different with coke production (49%), domestic coal combustion (34%), vehicular fuel 

(8%), aluminum production (6%) being the major sources. The concentration and 

composition of PAHs from each of these sources is likely to be appreciably different. 

The province of Shanxi where many large coal mines are located, has several major 

sources of PAH emissions (Zhang et al. 2007). Domestic use of coal can present serious 

health problems because the coals usually are mined locally and burned in poorly vented 

or unvented stoves. 
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Naphthalene Acenaphthene Acenaphthylene Phenanthrene

Fluorene Anthracene Benz[a]anthracene

Chrysene Pyrene Fluoranthene

Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene

Indeno[1,2,3-cd]pyrene Benzo[ghi]perylene Dibenz[a,h]anthracene  
 

 

Figure 1.13. Structures and nomenclatures of the 16 PAH congeners on the USEPA priority pollutant list. 
The seven USEPA class B2 carcinogens are underlined. Figure adapted from Yan et al. (2004).    
 

In addition, many of the smaller mines produce a lower grade coal which burns at 

a lower temperature and may produce higher PAH emissions than a higher grade coal. 

China remains the world’s largest coal producer and consumer. A substantial portion is 



 

 

94 

used for domestic energy needs. More than 75% of China’s primary energy needs are 

supplied by domestic coal (Finkelman et al. 1999). Domestic coal combustion for 

heating and cooking as mentioned before is still very frequent in Chinese homes, 

especially those in poor rural areas due to lack of electric power. Indoor use of coal for 

heating and cooking is a major source of PAH exposure for rural women in China. Qian  

and coworkers (2001) found that across several districts in four Chinese cities, 

approximately 51% to 71% of households use coal for heating and cooking. Solid fuels 

are typically burned in open stoves and numerous studies indicated that the resulting 

levels of indoor air pollution are very serious compared with outdoors. Since most 

people, especially women, spend a large percentage of time indoors, indoor air pollution 

has a disproportionate impact on human health (Zhao et al. 2006).  

Indoor air pollution has been shown to pose a major health risk leading to serious 

respiratory diseases such in children as well as adults. In a study of several Chinese 

cities, Qin et al (1991) found that the concentrations of PM10 in kitchens that rely on coal 

ranged from 291 to 665 �g/m3. Exposure to PAHs, from the inhalation of particulates or 

ingestion of soot particles has been implicated as a potential explanation for the high 

rates of esophageal and lung cancer found in some regions of China. The rates of 

esophageal cancer in parts of Henan province in China are among the highest in the 

world. Ingestion of PAH-coated soot produced during unvented coal combustion was 

reported to be a possible cause or contributing factor for the increase in esophageal 

cancer risk in Henan (Wornat et al. 2001). However, other studies have suggested a link 

between the consumption of fermented cabbage and esophageal cancer in Chinese 

populations (Cheng et al. 1992; Li and Yu 2003). PAHs produced during residential 

smoky coal combustion have also been cited as the primary cause of high levels of lung 

cancer in China (Mumford et al. 1987). Chinese women using smoky coal domestically 

for heating and cooking were found to be highly exposed to chemicals implicated as 

causative factors for lung cancer (Lan et al. 2000; Mumford et al. 1987). In several 

European countries, the risk of developing lung cancer in whole-life users of solid 

cooking fuel was twice more than that of non users (Lissowska et al. 2005). The 
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combustion of smoky coal produces emissions that are composed mainly of organic 

matter, of which 40% are PAHs. It is estimated that the daily dose of BaP inhaled by a 

non-smoker exposed to household smoky coal is 30 times more than that of a smoker 

that is not exposed to PAHs in coal (Mumford et al. 1995). Urinary excretion of 

depurinated BaP-DNA adducts was shown to be 600 fold higher in non-smoking 

Chinese women exposed to smoky coal as compared with a control group of smokers 

(Casale et al. 2001). 

A meta-analysis of Chinese epidemiological studies that evaluated the risk of 

lung cancer from indoor air pollution, was conducted by Zhao and coworkers (2006). 

Domestic coal use and indoor exposure to coal dust were among the criteria used as 

indicators of indoor air pollution. The pooled odds ratios were 2.66 (95% CI: 1.39-5.07) 

for domestic coal use whereas the pooled odds ratios for exposure to coal dust was 2.42 

(95%CI: 1.62-3.63). These results indicate that there is an association between indoor air 

pollution due to coal use and lung cancer risk.  

Other health impacts found to be more frequent in solid fuel users include 

respiratory illnesses in children and chronic obstructive pulmonary disease in adults 

(Zhang and Smith 2007). Also associated with indoor air pollution are conditions such as 

asthma, adverse pregnancy outcomes, loss of eye sight and cardiovascular diseases, 

adding to population morbidity and mortality (Smith and Maeusezahl-Feuz 2005). 

Estimates from the World Health Organization (WHO) indicate that indoor air pollution 

is responsible for more than 1.6 million premature deaths each year in the developing 

world (WHO 2002). In China alone, those estimates indicate that about 420,000 die each 

year from the effects of indoor air pollution (Zhang and Smith 2007). 

 

1.9.1 Birth Defects in China 

The birth prevalence of NTDs in China is approximately 12/10,000 which is 

among the highest in the world. The prevalence of NTDs in China is higher in rural 

(25/10,000) than in urban (8/10,000) areas, higher in the north (20/10,000) than in the 

south (6/10,000), and higher in females (16/10,000) than in males (10/10,000) (Dai et al. 
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2002). In addition, relative to the United States, the distribution of NTD types in China 

tends to be shifted toward the most severe forms (e.g. spina bifida with anencephaly, 

craniorachischisis) (Moore et al. 1997). In rural areas of Shanxi, the prevalence of NTDs 

was reported to be as high as 140/10,000 in 2002 (Zhang et al. 2006). Birth prevalence 

of NTDs in rural areas of the Northern provinces of China is considered to be among the 

highest in the world. This rate is ten times greater than that in the Western world (Moore 

et al. 1997). NTDs account for one third of stillbirths and one fourth to one third of 

neonatal deaths in China (Li et al. 2003). 

The mean incidence of NTDs in North China is five fold higher than that of 

South China (Pei et al. 2003). This large difference is mainly considered in the context 

of different climate and diet between these two regions. South China regarded as 

generally wealthier area, has an average yearly temperature 22% greater than North 

China (60oF vs. 49oF) and 43% more rainfall. Plant and animal foodstuffs in South 

China are scarcer than in North China. Diets in South China contain a large variety of 

foods including meat, fish, shellfish, green vegetables, and rice. Diets in South China 

generally also include much less corn, Chinese sorghum, and potato in contrast to North 

China. Dietary sources of folate and vitamin A are therefore more abundant and varied 

in South China. In addition, the consumption of increased quantities of corn in Northern 

China increases the potential for exposure to mycotoxins, another risk factor for NTDs. 

As mentioned previously etiologic factors for NTDs are varied and only some of which 

may be modified by folate supplementation (Melnick and Marazita 1998). Consumption 

of folic acid before and during the first 28 days of pregnancy lowered rates of NTDs in a 

region in the North of China with elevated NTDs incidence and one with low incidence 

in Southern China. Differences in background rates were hypothesized to be at least in 

part due to dietary intake of folate (Berry et al. 1999). 

 

1.10 Objectives and Specific Aims 

Exposure to toxic chemicals at any stage of human life may result in a variety of 

adverse health outcomes. Maternal exposures in particular may lead to preterm or low 
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birth weight children as well as offspring born with birth defects. In virtually all cases, 

human diseases are the result of complex interactions between genetic and 

environmental factors, broadly defined to include nutritional factors and lifestyle, in 

addition to exposure to chemicals or other toxins. A diagnostic matrix that could be used 

to track contaminants from the environment to receptors, and to estimate the dose of 

exposure necessary to cause a disease, would represent a valuable tool for reducing the 

burden of environmentally induced disease. Improved knowledge of the major sources 

of exposure would enhance opportunities to reduce exposure; while, improvements in 

the development of biomarkers of effect and sensitivity would help identify high-risk 

individuals. The primary goal of this research was to evaluate tools for monitoring 

genotoxic PAHs in the environment, as well as in biological receptors. The study 

focused on environmental and biological samples from Shanxi, China because this area 

is known to have elevated levels of PAH contamination. Subjects recruited to participate 

in the research included children born with NTDs and their parents because it was 

assumed that this group represents receptors that would be sensitive to genotoxic effects 

associated with PAH exposure. One advantage of monitoring biomarkers in children 

born with birth defects is that the exposure precedes the effect by less than one year. The 

various experiments conducted for this research were designed to employ cell culture, 

animal and human studies to test the hypothesis that the genotoxicity of complex PAH 

mixtures was correlated with the concentration of BaP.   

The overall focus of this study was to evaluate a series of biomarkers for use in 

monitoring populations exposed to combustion by-products.  The data used in this 

dissertation describe a study conducted in a human population with high PAH exposures 

in rural regions of China.   This study was largely a preliminary study for a subsequent 

case-control study in a much larger population.  However, it is emphasized that the 

current study was intended as an exposure assessment. Biomarkers of exposure were 

compared in cases and controls without attempting to develop epidemiological analyses, 

primarily because of sample size limitations. As noted by Smith (2008), high exposures 

usually occur where studies are difficult to conduct. While such studies may not provide 
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data for detailed epidemiologic evaluations, they are still quite valuable because they can 

provide unique evidence of risk associated with increased levels of chemical exposures. 

The specific aims of this research include: 

 

1. Compare the in vitro and in vivo genotoxicity of polycyclic aromatic 

hydrocarbon mixtures extracted from residential dust. 

 

2. Measure biomarkers of exposure, effect and susceptibility to polycyclic 

aromatic hydrocarbons in children born with a neural tube defect and 

matched controls.  

 

3. Measure biomarkers of exposure, effect and susceptibility to polycyclic 

aromatic hydrocarbons in venous blood of parents of children born with a 

neural tube defect and matched controls.  

 

In order to accomplish the goals of this research, a series of experiments have 

been completed. First, residential dust was collected from houses in the Shanxi province 

in China. The dust was extracted and tested in a battery of in vitro and in vivo assays. 

These data were used to investigate the dose-response relationship for B[a]P in PAH 

mixtures under controlled laboratory conditions. Subsequently, study subjects were 

recruited from county hospitals in Shanxi, China and informed consent was obtained. 

Biological tissues were collected from recruited NTD cases and matched controls and 

when available from their parents. Tissues were extracted and analyzed at Texas A&M 

University. These analyses were performed to measure biomarkers of exposure, effect 

and susceptibility to PAHs and investigate any difference in level of biomarkers that 

may be produced by genetic polymorphisms. 
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           CHAPTER II 

GENOTOXICITY OF COMPLEX CHEMICAL MIXTURES IN RESIDENTIAL 

FLOOR DUST* 

 

2.1 Introduction 

Until recent decades, air pollution was largely considered an outdoor 

phenomenon. Most research studies have focused on sources of pollutants and exposures 

that occur in the outdoor environment. Fewer studies describe contaminant 

concentrations in the home environment. According to various reports from the United 

States and Europe, most people spend more than 90% of their time indoors (Butte and 

Heinzow 2002; Graham and McCurdy 2004). This estimate could be higher for sensitive 

groups such as infants, elderly and chronically ill. Thus, the duration of human exposure 

to air pollutants is likely appreciably longer indoors (Naufal et al. 2007). 

According to the WHO (2002), the largest source of indoor air pollution is 

cooking and heating with solid fuels such as wood and coal.  Poorly vented cooking and 

heating is common in nearly half of the world, and is especially prevalent in rural China. 

Components of solid fuel smoke consist of thousands of chemicals many of which can 

have harmful effects on human health (Peabody et al. 2005). Byproducts of solid fuel 

combustion which include toxic gases such as carbon monoxide, formaldehyde and 

sulfur dioxide are also the chief sources of respirable particles that can carry other 

pollutants frequently detected indoors (Cooke 1991). Indoor concentrations of many of 

these hazardous substances might reach levels that are multiple times higher than those 

outdoors (USEPA 1987). Indoor contaminants are subject to different environmental 

factors as compared to outdoor contaminants and thus may persist longer (Paustenbach 

et al. 1997). Particles of soot formed after the combustion of organic fuels may be of 

_________ 

*Reprinted with permission from “Genotoxicity of organic extracts of house dust from 
Shanxi, China”  by Ziad Naufal, Guo-Dong Zhou, Thomas McDonald, Li Zhu, Li 
Zhiwen and K.C. Donnelly, 2007. Journal of Toxicology and Environmental Health Part 
A, 70, 2080-2088, Copyright 2007 by Taylor & Francis Informa UK Ltd – Journals.  
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respirable size and were found to contain carcinogenic polycyclic aromatic hydrocarbons 

(PAHs) (USEPA 1987).  

 PAHs are usually found as complex mixtures of hundreds to thousands of 

compounds with different number of aromatic rings, arrangements, and substituents.  

Seven PAHs have been classified by the U.S. Environmental Protection Agency (EPA) 

as probable or class B2 human carcinogens (USEPA 2006). Due in part to their 

relatively low vapor pressures and low water solubility (Skupinska et al. 2004), PAHs 

will not remain suspended in indoor air and are likely to accumulate in the dust fraction. 

Levels of PAHs in house dust were found to exceed their levels in surrounding soil 

(Roberts and Dickey 1995). Dust can therefore act as a reservoir for household 

pollutants (Butte and Heinzow 2002) and potentially increase indoor exposure levels. 

Adverse human health effects documented after exposure to house dust include 

respiratory and reproductive effects as well as cancer (Maroni 1995). Routes of exposure 

to house dust consist of mainly inhalation, non-dietary ingestion, and to a lesser extent 

dermal absorption. Inhalation is particularly significant after certain activities that might 

re-suspend dust such as sweeping or cleaning (Thatcher and Layton 1995). Non-dietary 

ingestion of PAHs in dust is not a significant concern for adults; however, due to both 

behavior and pharmacokinetic differences it can be of major importance in children. In 

fact, house dust is believed to be a major source of childhood exposure to PAHs and 

other toxic substances (Roberts and Dickey 1995). Due to behavioral characteristics such 

as mouthing and food-handling, non-dietary ingestion of contaminants is potentially the 

main route of exposure in children. Dermal and inhalation exposures may also be 

important in children and are related to behaviors such as crawling on the floor and 

contact with dirt and grass (Black et al. 2005). In a review article on the mutagenic 

hazards of settled house dust, Maertens et al. (2004) listed numerous published studies 

that document the detection of PAHs in house dust. However, only a single study 

(Roberts 1987) has examined the mutagenic potential of house dust.  

In rural areas of China, coal constitutes the main energy source. Rodents 

captured from a coal mining area showed evidence of significantly higher extent of DNA 



 

 

101 

damage compared to animals from a control area. DNA damage was assessed by DNA 

migration, damage index and percentage of damage.  Activities such as stripping and 

crushing coal produce PAHs into the environment and DNA adducts formation was 

thought to present an important contribution to the high level of DNA damage found the 

the blood cells of exposed rodents (Leon et al. 2007). Household use of coal was found 

to cause more health problems in adults and children than any other fuel (Peabody et al. 

2005). Previous studies (Chuang et al. 1992; Mumford et al. 1995) from an area affected 

with a high incidence of lung cancer suggested an association with indoor use of coal for 

heating and cooking under unvented conditions. The lung cancer rate was believed to be 

associated with high concentrations of PAHs present in coal smoke. Exposure to coal 

smoke was also associated with increased K-ras mutation frequency in nonsmoking 

female lung cancer patients which is believed to be induced by PAHs (Keohavong et al. 

2003). Levels of PAHs recorded in indoor air from eight Chinese homes generally 

exceeded those in outdoor air (Liu et al. 2001). Due to different activities and ventilation 

conditions, PAH levels were highest in the bedroom, followed by the kitchen, living 

room and balcony. Different cooking methods and temperatures were found to affect the 

composition and concentrations of PAHs in air of domestic and commercial kitchens in 

China (Zhu and Wang 2003).  

In the current study, dust was collected from the floor of homes in a typical rural 

community that burn coal fuel indoors. These homes were located in a region of China 

affected by a high frequency of neural tube defects (NTDs) among other health 

problems. After solvent extraction, the chemical composition of each dust sample was 

quantified and its genotoxicity assessed in a battery of in vitro and in vivo bioassays. The 

main objective of this study was to evaluate the genotoxic potential of house dust 

extracts; and to determine if there was a correlation between genotoxicity and the 

concentration of benzo[a]pyrene (B[a]P) or carcinogenic PAHs.  
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2.2 Materials and Methods 

2.2.1 Site 

Dust samples were collected from houses in Taigu County in the province of 

Shanxi in North China. Shanxi is the leading province in coal production in China and 

provides as much as the third of China’s coal. The coal mined from this region is 

commonly used indoors for cooking and heating. The major products of thermal 

decomposition of coal include PAH as well as related nitrogen and sulfur containing 

polycylic aromatic compounds (Chen et al. 2005; Mumford et al. 1995; Wornat et al. 

2001). Residents may be exposed to PAHs and other byproducts either by inhalation of 

the airborne soot particles or ingestion of soot particles that deposit on food. Dust 

samples were collected from the surface of floors in houses. A sample of uncombusted 

coal dust was also collected from a stockpile near houses. 

 

2.2.2 Collection of Dust Samples 

A total of four floor dust samples (E1, E2, E3, E4) were collected from four 

different houses in Taigu County in April 2005. The houses were comparable in terms of 

the presence of dirt in the sampling areas. All of the floors from which dust was 

collected were made of brick.  The materials used to collect residential dust samples 

included a pre-ashed and pre-weighed glass fiber filter cloth (type A/E, 20.3 cm x 25.4 

cm, Gellman Sciences, Ann Arbor, MI), a measuring tape, an aluminum foil pouch, a 

plastic bag and nanograde isopropyl alcohol. Dust samples were collected from an area 

in the kitchen. Approximately eight samples from each house were collected and 

composited. Dust samples were collected from adjacent areas delineated on the floor 

surface of each house. The precise dimensions of the sampling areas were recorded. A 

glass fiber filter cloth was saturated with isopropyl alcohol. The collection of the dust 

sample was accomplished by wiping the cloth across the delineated floor area from the 

near end to the far end and back until the entire area to be sampled was wiped. The cloth 

was checked periodically for dust accumulation. If the cloth appears to be saturated with 

dust, sampling was stopped and the area that had been sampled was measured and 
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recorded. Upon completion of the floor swipe sample collection, each glass fiber filter 

cloth was wrapped in an aluminum foil pouch and transferred to a ziploc bag. All the 

dust samples were shipped on ice packs to the analytical laboratory in the United States. 

 

2.2.3 Sample Extraction and Chemical Analysis 

Dust samples were extracted with a methylene chloride:acetone (95:5 v/v) 

mixture in a Dionex (Dionex Corp., Sunnyvale, CA) Model 200 Accelerated Solvent 

Extractor (ASE).  After the extraction was complete, the sample extracts were combined, 

dried under a stream of nitrogen and weighed.  An aliquot of the combined residue was 

then transferred to pre-weighed sterile glass culture tubes with teflon-lined caps, dried 

under a stream of nitrogen, reweighed and stored at 4°C.  

Dust extracts were analyzed for PAHs and their alkylated homologues using 

USEPA method 8270C (USEPA 1997). This method was developed for PAH 

quantitation and has been described previously (Cizmas et al. 2003). Analysis was 

performed using an Agilent 5975 gas chromatograph with a mass selective detector in 

selected ion monitoring mode.  A 60 m x 0.25 mm ID x 0.25 mm film thickness column 

(Agilent Technologies, Palo Alto, CA) was used.  The injection port was maintained at 

300°C and the transfer line at 280°C.  The temperature program was as follows:  60°C 

for 6 min, increased at 12°C/min to 180°C and then increased at 6°C/min to 310°C and 

held for 11 min for a total run time of 47 min. 

 

2.2.4 Microbial Mutagenicity Assay 

The Salmonella/microsome assay was used to evaluate the mutagenic potential of 

the complex mixture extracted from dust.  The Salmonella tester strain TA98 was kindly 

supplied by Dr. Bruce Ames (University of California, Berkeley, CA). The procedures 

used were the same as those described by Ames et al. (1975) with modifications as 

suggested by Maron and Ames (1983). Salmonella cultures were prepared by incubating 

50 µl of a frozen permanent Salmonella stock in 10 ml sterile oxoid broth (Oxoid #2, 
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Unipath Ltd., Basingstoke, Hampshire, England) in a rotary shaker incubator for 10 hr. 

at 37oC. 

Extracts were tested in the presence of metabolic activation (S9) in the standard 

plate incorporation assay (Maron and Ames 1983).  The S9 supernatant of homogenized 

Aroclor 1254 induced Sprague-Dawley rat liver was obtained from Molecular 

Toxicology, Inc. (Boone, NC). Positive indirect-acting (B[a]P: 10 µg/plate) and negative 

solvent  (dimethyl sulfoxide (DMSO)) controls were included in each test to ensure 

consistency in TA98 sensitivity and S9 mix activity. The S9 mix contained 30% rat liver 

S9 fraction per ml and 70% cofactor supplement per ml (11.4 mM MgCl2, 47 mM KCl, 

7.1 mM glucose-6-phosphate, 5.7 mM NADP, and 140 mM potassium phosphate buffer, 

pH 7.4). The amount of S9 mixture applied per plate was 500 µl.  

Dust extracts were resuspended in DMSO and tested on duplicate plates in two 

independent experiments at five dose levels (1.0, 0.5, 0.25, 0.1, 0.05 mg/plate).  To a 2.5 

mL volume of top agar was added approximately 1-2 x 108 cells, 50 µL of sample 

extract, and 0.5 mL of S9 mix. The top agar was then vortexed and poured onto a 

minimal glucose agar plate.  Plates were incubated at 37°C for 72 hr.  Revertant colonies 

were counted on an Artek Model 880 automated colony counter (Dynatech Laboratories, 

Chantilly, VA).  A response was considered positive if the average number of revertants 

at a minimum of two dose levels was greater than twice the average response for the 

corresponding negative solvent control (Chu et al. 1981). 

 

2.2.5 Treatment of DNA In Vitro  

A modification of the procedure of Randerath et al. (1992) was used to measure 

the in vitro formation of DNA adducts. Placental DNA was isolated from two cases 

(children born with a neural tube defect) and two matched controls (with no visible 

abnormality). DNA samples were treated with residential dust and coal extracts 

suspended in DMSO. All families that provided biological samples for this study were 

informed of the nature of the study and signed consent forms approved by the Texas 

A&M University Institutional Review Board (IRB no. 2003-0430).  



 

 

105 

In this experiment, 150 µg of DNA was added to a solution with 3-

methylcholanthrene induced Fischer-344 rat liver microsomes, NADPH (100 mM) and 

DNA binding buffer (150 mM Tris-HCl, 150 mM KCl and 5 mM MgCl2, pH 7.6). Dust 

or coal extract in DMSO was added last. The dose of dust and coal extracts was 

determined based on the contents of B[a]P. The reaction concentration of B[a]P was 

adjusted to 1 µM for each extract. In addition to the solvent control (DMSO), an aliquot 

of E1 was added to a solution including all reaction reagents except microsomes to serve 

as another negative control. The solution was incubated at 37oC for 2 h. The reaction 

was stopped enzymatically to start the process of DNA extraction as described 

previously (Moorthy 2002).  

 

2.2.6 In Vivo Genotoxicity  

Female ICR mice (21-24 g) were purchased from Harlan (Houston, TX). Mice 

were fed Laboratory Rodent Diet 5001 and provided with tap water ad libitum. 

Institutional guidelines on animal care and use were followed in all experiments.  Mice 

were divided into eleven groups with four mice each. A patch of hair (approximately 

4cm2) was shaved on the back of each mouse three days prior to treatment.  Animals 

were treated topically with 150 µL extract on the shaved area using a glass capillary 

micropipette.  Methylene chloride (150 µL) and BaP (100 nmol) were applied as the 

negative and positive controls, respectively.  Treatment groups of dust extracts included: 

E1 at 3 mg/mouse, 1.2 mg/mouse and 0.48 mg/mouse; E2 at 3 mg/mouse, 1.2 mg/mouse 

and 0.48 mg/mouse; E3 at 3 mg/mouse and E4 at 3 mg/mouse. The coal extract was also 

tested at a dose of 3 mg/mouse.  Twenty-four hours after treatment, animals were 

sacrificed by suffocation using CO2.  Skin and lungs were harvested and stored at -80ºC 

until DNA isolation.  DNA isolation was conducted as previously reported (Gupta 

1984). DNA concentration and purity was measured spectrophotometrically by 

absorbances at 260 and 280 nm. A260/A280 ratio for all samples was between 1.6 and 1.8.  
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2.2.7 32P-Postlabeling  

The nuclease P1-enhanced bisphosphate version of the 32P-postlabeling assay 

was performed as described by Reddy and Randerath (1986). Briefly, DNA (6 to10 µg) 

was enzymatically degraded to normal (Np) and modified (Xp) deoxyribonucleoside 3’-

monophosphates. After 3’-dephosphorylation of normal nucleotides with nuclease P1 the 

enriched nuclease P1-resistant modified 3’-nucleotides were converted to 5’-32P-labeled  

deoxyribonucleoside 3’, 5’-bisphosphate derivatives by incubation with carrier-free [�-
32P] ATP and T4 polynucleotide kinase. Adducted radioactive nucleotides were 

separated by multidirectional anion-exchange thin-layer chromatography (TLC) using 

polyethyleneimine (PEI)-cellulose sheets.  Labeled products were purified and partially 

resolved by one-dimensional development with 2.3M NaH2PO4 pH 5.75 overnight (D1). 

Bulky labeled adducts retained in the lower (2.8 x 1.0 cm) part of the D1 chromatogram 

were contact-transferred to fresh thin-layer sheets and resolved by two-dimensional 

TLC. The first dimension employed 3.82M lithium formate + 6.75M urea, pH 3.35.  The 

second dimension was developed with 0.72M NaH2PO4 + 0.4M TRIS + 7.65M urea, pH 

8.2.  Radioactivity of each TLC map was determined by using an Instant Imager (v.2.04; 

Packard Instrument, Downers Grove, IL). DNA adduct levels were quantified as mean 

relative adduct labeling (RAL) values + SD using the following equation:   

RAL = sample count rate/ (DNA-P x specific activity ATP),  

where the sample count rate is measured in cpm, DNA-P represents the pmol of DNA 

monomer units assayed per replicate, and the specific activity of the ATP is in units of 

cpm/pmol. Equality of means was tested at the 95% confidence level using the unpaired 

Student’s t-test completed with the Stata v. 8.0 software (StataCorp 2003). The criterion 

for significance was set at (P<0.05). 

 

2.3 Results 

2.3.1 Chemical Analysis 

The concentrations by area and mass of the US EPA priority PAHs and total 

PAHs detected in all five extracts are presented in Table 2.1. Total carcinogenic PAHs
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Table 2.1: Concentration of US EPA priority PAHs detected in organic extracts of four house dust samples (E1-E4) and coal. 
 

Concentration by Area Concentration by Mass 

Chemical 
E1 

(�g/m2) 
E2 

(�g/m2) 
E3 

(�g/m2) 
E4 

(�g/m2) 
E1 

(�g/g) 
E2 

(�g/g) 
E3 

(�g/g) 
E4 

(�g/g) 
Coal 

(�g/g) 

Naphthalene 0.8 0.7 0.1 0.2 n/af 1.2 0.02 0.03 0.02 
Acenaphthylene 18 5 1 4 n/a 8 0.2 0.5 0.01 
Acenaphthene 0.7 0.3 0.1 0.1 n/a 0.5 0.01 0.02 0.02 
Fluorene 4 1 0.3 0.3 n/a 1.8 0.1 0.03 0.2 
Phenanthrene 600 134 51 88 n/a 240 10 10.3 2.1 
Anthracene 57 13 5 12 n/a 20 0.9 1.4 0.1 
Fluoranthene 772 298 87 190 n/a 530 16 22.2 0.3 
Pyrene 667 200 75 160 n/a 355 14 18.5 0.4 
Benz[a]anthracene 460 110 48 110 n/a 195 9 13 0.3 
Chrysene 632 234 125 230 n/a 410 24 27 0.6 
Benzo[b]fluoranthene 486 183 108 193 n/a 325 20 23 0.7 
Benzo[k]fluoranthene 112 33 16 17 n/a 60 3 1.9 0.1 
Benzo[a]pyrene 181 49 27 46 n/a 85 5 5.4 0.2 
Indeno[1,2,3-c,d]pyrene 144 44 23 30 n/a 80 4 3.5 0.1 
Dibenz[a,h]anthracene 43 14 7 10 n/a 25 1.3 1.2 0.1 
Benzo[g,h,i]perylene 112 39 20 26 n/a 70 4 3 0.3 
Total PAHsa 10100 3240 1350 2750 n/a 5760 255 320 32 
cPAHsb 2060 667 353 636 n/a 1180 67 75 2 
cPAHs(%)c 20 21 26 23 20 21 26 23 6 
B[a]P(%)d 1.8 1.5 2 1.7 1.8 1.5 2 1.7 0.6 
Fluoranthene/Pyrenee 1.2 1.5 1.2 1.2 1.2 1.5 1.2 1.2 0.8 

aTotal PAHs = Total polycyclic aromatic hydrocarbons quantified. 
bcPAHs = Total probable or class B2 human carcinogenic PAHs quantified based on USEPA, 2006. 
ccPAHs(%) = Percent of total PAHs constituted by carcinogenic PAHs. 
dB[a]P(%) = Percent of total PAHs constituted by benzo[a]pyrene. 
eFluoranthene/Pyrene = Ratio of fluoranthene to pyrene.  
fn/a= not available.
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(cPAHs) are also reported for each sample extract. For dust sample E1 the mass of PAHs 

per dust weight could not be determined due to the abrading, and partial loss of filter 

mass, of the pre-weighed filters by the floor surface. Total PAHs (by area) in the four 

dust extracts ranged from 1350 �g/m2 for sample E3 to 10100 �g/m2 for sample E1 

(Table 1).  By mass, PAH concentrations were lowest in the extract of the coal sample 

and highest (5760 �g/g) in sample E2.  Carcinogenic PAH concentrations by area ranged 

from 353 �g/m2 for sample E3 to 2060 �g/m2 for sample E1.  Carcinogenic PAHs 

composed approximately 20% of the mass of total PAHs for all four dust samples, and 

less than 10% the mass of the coal extract.  B[a]P concentrations in the extracts were 

between 1.5 and 2.0% for dust and 0.6% for the coal.  Because of the extraction process, 

concentrations of low molecular weight hydrocarbons are not likely to be accurate.   

Extracts collected for the current study consistently exhibited low concentrations of 

these compounds.  The predominant PAH in dust extracts E1 and E2 was fluoranthene, 

while chrysene was the predominant carcinogen in all four dusts and the predominant 

PAH in extracts E3 and E4.  The PAH detected at the highest concentration in the coal 

extract was phenanthrene, and benzo[b]fluoranthene was the predominant carcinogen.   

 Overall, these data indicate that the PAH composition of the samples was variable with 

E3 having the highest carcinogenic PAH fraction whereas E1 had the highest 

concentration of PAHs by area but a relatively low carcinogenic PAH fraction. Levels of 

PAHs in the uncombusted coal extract were much lower than those detected in dust 

extracts.  

 

2.3.2 Bacterial Mutagenicity 

The microbial mutagenicity of the five PAH mixtures extracted from the dust and 

coal samples is presented in Table 2.2. Due to the limited mass of material available, and 

because PAHs are generally indirect-acting mutagens, the sample extracts were tested 

only in the presence of metabolic activation. All of the samples induced a doubling of 

revertants as compared to the solvent control background. Samples E3 and E4 induced 

approximately 200 more revertants than the solvent control at the highest dose tested. 
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Table 2.2: Bacterial Mutagenicity, as measured with S. typhimurium TA98 plus S9, of organic 
extracts of four house dust samples (E1-E4) and coal from Shanxi, China.  
 

Total TA98 his+ 
revertants  

Sample 
Dose 

(mg/plate) Mean(±SD) Response* 

E1 0 38±9   
  0.05 39±6   

  0.1 53±6 ± 
  0.25 50±5   
  0.5 59±16   
  1 83±9   

E2 0 38±9   
  0.05 39±6   

  0.1 55±2  ±  
  0.25 44±14   
  0.5 74±19   
  1 83±24   

E3 0 38±9   
  0.05 51±20   

  0.1 56±10  ++  
  0.25 74±13   
  0.5 118±6   
  1 238±11   

E4 0 38±9   
  0.05 36±1   

  0.1 54±1  ++  
  0.25 71±20   
  0.5 110±12   
  1 231±23   

Coal 0 38±9   
  0.05 54±9   

  0.1 58±9  +  
  0.25 75±7   
  0.5 73±10   
  1 101±8   

* ± = Two-fold increase in revertants at one dose. 
+ = Doubling of revertants at two doses. 
++= Doubling of revertants at two doses and four-fold increase at one dose. 
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The coal extract exhibited a positive response, whereas E1 and E2 showed a weak 

positive response since they only induced a doubling of revertants at a single dose.  

 

2.3.3 DNA Adducts Induced in Vitro 

Representative profiles of DNA adducts from human placenta DNA treated with 

dust and coal extracts in vitro are shown in Figure 2.1. Dust extracts from four houses 

elicited qualitatively identical patterns overall. However, the coal extract displayed a 

unique pattern (Figure 2.1).  The quantitative analysis of DNA adducts was reported as 

total DNA adducts which consisted of the addition of the levels of individual DNA 

adduct spots. Levels of total DNA adducts among the different extracts were compared 

between the placenta DNA from NTD cases and controls. However, no statistically 

significant differences were observed between the latter two groups. Therefore, the 

values of DNA adducts from NTD cases and controls were combined when data from 

different extracts were compared (Figure 2.2). Mean Relative Adduct Labeling (RAL) 

per 109 nucleotides for total adducts were 123.4, 249.2, 512.1 and 206.5 for E1 to E4, 

respectively. Coal extract produced very low levels of DNA adducts (17.7 per 109 

nucleotides). All five extracts displayed a statistically significant increase in adduct 

levels over the solvent control. Coal extract induced significantly lower levels of DNA 

adducts compared to all dust extracts. In contrast, E1 generated significantly higher 

levels of DNA adducts than any other dust extract. E1 did not cause any DNA adduct 

formation without the addition of microsomes.  

 

2.3.4 DNA Adducts Induced in Vivo 

Topical treatment of female ICR mice with extracts of house dust and coal, 

followed by 32P-postlabeling and two-dimensional mapping in the previously described 

solvents resulted in representative skin DNA-adduct profiles as shown in Figure 2.3. 

Similar patterns of DNA adducts were observed in all four dust extracts. Coal, however, 

exhibited a slightly different pattern of DNA adducts. The pattern of B[a]P-DNA 

adducts was similar to the one previously reported in Talaska et al. (1996). Mean levels 
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Figure 2.1. Autoradiograms of 32P-postlabeled placenta DNA adducts of induced in vitro by organic 
extracts of house dust, coal and B[a]P. Autoradiography for 16 hr. at -80oC using Kodak XAR-5 film 
(Dust and B[a]P maps were exposed for 6 hr. only).  
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Figure 2.2. Levels of total DNA adducts induced in placenta DNA from neural tube defect cases and 
controls treated by house dust and coal extracts expressed as Relative Adduct Labeling (RAL) per 109 
nucleotides (mean± SD) values.  
*Significant from control (P<0.05). 
†Significant from coal (P<0.05). 

Dust Coal B[a]P 

*† 

*† 

*† 

*† 

* 



 

 

112 

 
Figure 2.3. Autoradiograms of 32P-postlabeled skin DNA adducts of female ICR mice treated dermally 
with organic extracts of house dust, coal and B[a]P. Autoradiography for 24 hr. at -80oC using Kodak 
XAR-5 film.  
 

 

of total DNA adducts in skin were quantified and compared across the five different 

extracts, as well as B[a]P.  Data is presented in Table 2.3. Overall, dust and coal extracts 

displayed very low genotoxicity in mice. No dose-responses were observed in E1 and E2 

extracts. In contrast to in vitro data, the coal extract induced relatively higher levels of 

mice skin DNA adducts compared to dust extracts (Table 2.3). Figure 2.4 demonstrates a 

comparison of the levels of total DNA adducts of mice skin treated with 3 mg of dust 

and coal extracts. Except for E2, all dust extracts at the 3 mg dose as well as coal 

induced a statistically significant increase in total adduct levels over the solvent 

(methylene chloride) control. E1 (1.2 mg) induced significantly more adducts than the 

solvent control, but not at the lowest dose (0.48 mg). Dose-response patterns were not 

observed for E1 or E2. Interestingly, coal extract yielded significantly higher levels of 

adducts at the 3 mg dose than any dust extracts at the same dose. DNA adduct levels 

were not significantly different between dust extracts. Total lung adduct values were 

lower when compared to skin, the organ of treatment application (data not shown). 
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Table 2.3. Mean Relative Adduct Labeling (RAL) values (± SD) of total DNAadducts  
induced in skin DNA of ICR female mice dermally exposed to house dust and coal extracts.     

 

a Extract induced significantly more adducts than the control (P<0.05).  
b Extract produced significantly the highest adduct levels among all extracts (P<0.05). 

 

 

 

Sample Dose (/mouse) Mean±SD 

Control (Methylene Chloride) 150 µL 1.07±0.34 

3 mg 1.88±0.51a 

1.2 mg 2.37±0.48a E1 

0.48 mg 1.50±0.36a 

3 mg 1.44±0.39 

1.2 mg 1.41±0.38 E2 

0.48 mg 1.52±0.27 

E3  3 mg 2.54±0.92a 

E4  3 mg 2.20±0.48a 

Coal  3 mg 9.81±0.65b 

B[a]P  100 nmol 220±82 
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Figure 2.4. Comparison of levels of total skin DNA adducts expressed as Relative Adduct Labeling 
(RAL) per 109 nucleotides (mean± SD) values of female ICR mice treated dermally with organic extracts 
(3 mg) of dust and coal. Coal produced significantly more adducts than any dust extract (P<0.05). 
*Significant from control (P<0.05). 
†Significant from coal (P<0.05). 
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2.4 Discussion 

This study used chemical analysis and short-term bioassays to compare the PAH 

composition and genotoxic potency of complex PAH mixtures from four residential dust 

samples and coal. Overall, the PAH components and their concentrations in the house 

dust samples were in accordance with the results of the studies reviewed by Maertens et 

al. (2004). The reported concentrations of PAH were 10 to 100 fold higher than those 

detected by our lab during similar studies conducted in Sumgayit, Azerbaijan and Rio 

Bravo, Texas (unpublished data). Both of these communities do not burn coal indoors. 

Acenaphthene and acenaphthylene were found in lower concentrations whereas pyrene 

and fluoranthene were found to be among the most abundant PAHs in the house dust 

samples collected in Shanxi, China. In addition, the ratio of fluoranthene to pyrene in all 

four dust samples was greater than 1 (Table 2.1) suggesting that PAHs in dust were 

generated by pyrolytic processes (Baumard et al. 1998a). Based on chemical analysis, 

sample E1 had the highest concentration by area of total PAHs and B[a]P, followed by 

E2, E3 and E4. However, the biological response did not correlate well with 

genotoxicity predicted from chemical analysis. Data from chemical analyses did not 

accurately predict the toxicity of PAH mixtures as noted in previous studies (Cizmas et 

al. 2004; Randerath et al. 1999). Due to the complexity of such mixtures, genotoxic 

responses appear to be affected by chemical interactions.  

In the mutagenicity assay, E1 and E2 induced a weak positive response whereas 

E3 and E4 which had lower levels of total PAHs and B[a]P induced a strong positive 

response. The lack of correlation between B[a]P levels and mutagenic response has been 

previously reported (Donnelly et al. 1993). These results suggest a potential chemical 

interaction existing among the hundreds of chemicals in the complex mixtures that 

altered genotoxicity. Using DNA isolated from placental tissue, sample E3 exhibited the 

greatest in vitro binding affinity when compared to the rest of the dust extracts. In the 

animal study adduct levels were lower, although the overall trend was similar. E3 and E4 

induced significantly higher levels of DNA adducts than E1 or E2 in vivo. Overall, dose-

response relationships were not linear for either sample E1 or E2. Coal, which gave a 
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positive response in the mutagenicity assay, induced the lowest levels of DNA adducts 

among all samples in vitro. However, coal induced the highest levels of total DNA 

adducts formation in mice skin when compared to the dust samples. 

 In mice, the extracts with the higher concentrations of chemicals may have 

saturated metabolic activation enzymes. This effect has been previously noted in the 

literature by Ramesh and Knuckles (2006) who found non-linear dose-DNA adduct 

relationship in tissues of rats exposed to high doses of B[a]P in their diet. It is also 

possible that high concentrations of PAHs could have induced phase II enzymes in the 

adult mice skin tissues that partially detoxified genotoxic chemicals. Furthermore, 

cytotoxicity at the site of contact and increased DNA repair and/or cell turnover could 

have attenuated DNA adduct formation in vivo (Randerath et al. 1999). Such effects are 

not likely to be encountered in in vitro systems where enzymatic systems are typically 

pre-induced and generally not limiting. Results from a previous study (Courter et al. 

2006) suggested that urban dust particulate matter inhibited CYP metabolic capacity, 

thus altering PAH-DNA adduct formation and tumor initiation. Additionally, Godschalk 

et al. (2000) found that the levels of DNA adducts in skin peaked at 2 days after acute 

exposure by dermal application of B[a]P on male rats. Mice in our study were only 

exposed for 24 hr.  

 It is important to note however that overall, the biological potency observed in 

the genotoxicity testing was well predicted by the chemical analysis of carcinogenics in 

the extracts. E3 had the highest percentage of carcinogenic PAHs (Table 2.1) and 

induced the maximum genotoxic response in vitro with placenta DNA or bacteria, as 

well as in whole animals. The percentage of the PAH fraction composed of carcinogenic 

PAHs appears to be a good qualitative indicator of genotoxicity. 

Data from this study confirmed the presence of genotoxic compounds at 

relatively high levels in the residential environment in Shanxi, China. Results from this 

study could not however determine the major source of those compounds, whether it was 

from coal burning or tobacco smoking or a combination of both.  In addition, the study 

results indicate that DNA adducts are correlated with carcinogenic PAH concentrations 
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in dust. The results suggest that compounds with carcinogenic potency are present in 

floor dust of homes at high enough concentration to potentially cause adverse human 

health effects. Future research would benefit from information regarding concentration 

of dust borne PAHs in human serum and frequencies of DNA adducts in lymphocytes.
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CHAPTER III 

BIOLOGICAL INDICATORS OF PAHS IN VENOUS BLOOD FROM A 

HUMAN POPULATION 

 

3.1 Introduction 

Humans are continuously exposed to hazardous chemicals. These chemicals 

usually exist as complex mixtures. Complex mixtures often contain hundreds of different 

chemical components.  These include components that are proven to be toxic to human 

or ecological receptors and others with a less characterized toxicity. An example of such 

complex mixtures are PAHs, a class of chemicals produced from the incomplete 

combustion of organic substances such as coal, gas, wood, or tobacco. PAHs are 

widespread environmental contaminants existing in air, water, soil and sediment.  

Certain PAHs have been classified as carcinogenic compounds by the USEPA (2006) 

and the IARC (2004). Epidemiological studies on populations exposed to PAH mixtures 

have demonstrated a link between these exposures and cancer of the lung, respiratory 

system and stomach (Bertrand et al. 1987; Krewski and Thomas 1992; Puisieux et al. 

1991; Vyskocil et al. 2004). Smoking and exposure to environmental tobacco smoke 

(ETS) has been associated with cancer in the lung, bronchus, larynx, bladder, cervix and 

oral mucosa (Lee et al. 2006; Phillips 1997; Yach and Wipfli 2006). 

In an effort to prevent long-term effects caused by such chemical exposures, 

biological indicators of PAH exposure and effect such as DNA adducts have been 

developed. These biological indicators serve as a diagnostic matrix to estimate exposure 

and identify potential early indicators of adverse health effects. PAH exposure levels are 

classically measured by air sampling. Internal dose is detected by the determination of a 

parent chemical or metabolite in body fluids (blood or urine). Biological effects as a 

measure of the internally effective dose are considered more relevant for the assessment 

of the ultimate health risks such as cancer. These effects are monitored by biochemical 

markers including covalent binding products to DNA or proteins in addition to DNA 

stand breaks or cytogenetic markers such as micronuclei (MN), chromosome aberrations 



 

 

119 

(CA) and sister chromatid exchange (SCE) (van Delft et al. 2001). DNA adducts are 

considered as a marker for potential risk of genotoxic effects such as cancer or birth 

defects. DNA adducts may also be used to reflect individual variations in exposure, 

absorption, metabolic activation and DNA repair. The estimated half life of DNA 

adducts ranges between three to four months (Mooney et al. 1995).  

More recently, markers of genetic predisposition have also been characterized to 

help identify individuals with a sensitive or resistant genotype. More recently, genetic 

predisposition was found to affect individual susceptibility to disease and biomarkers of 

exposure and effect. Identification of individuals with sensitive or resistant genotypes is 

essential in human health risk assessment. Genetic polymorphisms include variations in 

genes for Phase I and Phase II drug metabolizing enzymes such as CYP450 and GST as 

well as genes for repair of DNA adducts. As a major Phase II enzyme, GSTM1 deletion 

is prevalent in humans.  In the US, GSTM1 null occurs in around 51% Caucasians, 46% 

among Hispanics, 59% among Asians, and 29% among African-Americans (Engel et al. 

2002). GSTT1 is also polymorphic in humans. Frequency of GSTT1 null genotypes in 

US studies range from 15% to 27% for Caucasians, 22% to 29% for African-Americans, 

and 10 to 12% for Hispanics (Cotton et al. 2000).  

Absence of GSTM1 enzyme activity reportedly increases susceptibility to cancer. 

GSTT1 on the other hand detoxifies reactive alkylating compounds and 10 to 20% of 

individuals have genetic deficiency for GSTT1 (Nelson et al. 1995). Populations 

exposed to environmental pollution showed increased levels of several markers of 

genotoxicity including PAH-DNA adducts, ras oncogene overexpression, chromosome 

aberrations, and sister chromatid exchange (Perera et al. 1992; Perera et al. 1999). 

Most studies on environmental exposures to PAHs in human populations focus 

on areas where air pollution is a concern. Epidemiological studies show that exposures 

to PAHs (or air pollution) is associated with increases in mortality and/or morbidity from 

respiratory illnesses, cardiovascular diseases and cancer (Taioli et al. 2007). A number 

of epidemiological studies have revealed that urban communities are at an increased risk 

for developing cancer especially lung cancer, with a relative risk of 1.5 (Nielsen et al. 
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1996).The first report considered as an evidence that environmental pollution might 

elicit DNA adduct formation in humans was by Hemminki et al. (1990). The main 

objective of the study was to evaluate occupational PAH exposures in coke oven 

workers in Poland. Two control groups were recruited for the study, one composed of 

local residents and another included rural residents. Unexpectedly, DNA adduct levels in 

local control subjects were nearly as high as the levels detected in the coke oven 

workers. Seasonal variations in adduct levels measured in white blood cells of the 

residents of Upper Silesia in Poland were consistent with air pollution levels and found 

to be more than two-fold higher in winter compared to summer (Perera et al. 1992).  

DNA adducts measured by 32P-postlabeling in white blood cells of a non-smoking 

women group with outdoor occupations in an air polluted city in the Czech Republic was 

associated with their personal PAH exposure (Binkova et al. 1995). In a recent study on 

the genotoxic effects of air pollutant exposures on a human population living downwind 

to an industrial complex in Thailand, Peluso et al. (2008) found that the level of bulky 

DNA adducts in the leukocytes of residents was 0.85 ± 0.07 per 108  nucleotides which 

was significantly elevated compared to residents living in a control district which had 

DNA adduct levels of 0.53 ± 0.05 per 108 nucleotides. Smoking habits did not seem to 

have had any effect on the DNA adduct levels in this study.  

Non-smoking healthy male subjects from a rural and urban areas of Denmark and 

Athens, Greece were recruited in a PAH biomonitoring study. DNA adducts were found 

to increase going from rural to small urban and large urban residential areas (Athens, 

Greece). No influence of the GSTM1 genotype on DNA adduct levels was found in this 

study (Nielsen et al. 1996). No difference in lymphocyte PAH-DNA adduct levels 

between GSTM1 deficient and proficient persons was observed in other studies 

(Binkova et al. 1998; Hou et al. 1995; Ryberg et al. 1994). However, findings reported 

by Georgiadis et al. (2004) indicate that non-smoking students exposed to urban air 

pollution and ETS with GSTM1 deletion had higher levels of DNA adducts in their 

lymphocytes compared with GSTM1 “wild-type” subjects. Never smoking women with 

GSTM1 null had statistically significant greater risk of developing lung cancer from 
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exposure to ETS (Bennett et al. 1999). Lung cancer risk in GSTM1 null individuals 

exposed to indoor coal combustion emissions was elevated compared to individuals with 

an active copy of GSTM1. GSTT1 polymorphisms did not seem to be associated with 

lung cancer risk (Lan et al. 2000). However, individuals with null genotypes of GSTT1 

were found to seemingly have an increased risk for developing colorectal cancers 

(Deakin et al. 1996). Inactive GSTT1 was also associated with increased risk for some 

forms of brain tumors (Hand et al. 1996; Kelsey et al. 1997). 

The biological effects of GSTT1 deletion are still considered difficult to predict 

because it has both activating and detoxifying properties which affect many 

environmental pollutants (Pavanello 2006). Previous studies have found that the GSTT1 

null variant to be associated with increased DNA damage and adduct levels (Georgiadis 

et al. 2005; Perera et al. 2002). However in a report of BPDE-DNA adduct levels in the 

leukocytes of smokers, while the GSTM1 deletion variant led to an increase in adduct 

levels, the GSTT1 variant led to a decrease (Lodovici et al. 2004). In addition, a recent 

report by Garte et al. (2007) suggested that GSTT1 deletion had protective effects on 

DNA oxidation over a group of 8 different individual PAH compounds.  

Polymorphisms in DNA repair genes are also being developed as genetic 

predisposition indicators. As an example, excision repair cross-complementing group 2 

(ERCC2) is involved in the nucleotide excision repair pathway (NER) by recognizing 

and repairing many structurally unrelated lesions such as bulky adducts and thymidine 

dimers (Manuguerra et al. 2006). DNA adducts levels in leukocytes of coke oven 

workers (16.6 ± 2.1 per 109 nucleotides) were significantly higher than those in 

metropolitan residents (5.2 ± 1.4 per 109 nucleotides) and suburban gardeners (6.5 ± 1.0 

per 109 nucleotides). DNA adducts in subjects with ERCC2 Lys751Gln wild genotype 

was significantly higher than in those who have either heterozygous or homozygous 

variant alleles. No significant association between DNA adducts and polymorphisms of 

metabolic enzymes (GSTM1, GSTT1, CYP1A1 and mEH) was detected (Hu et al. 

2007).  
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The study described in this chapter was directed at the analysis of biomakers of 

exposure, effect and susceptibility in parents of children with birth defects and controls 

in the Chinese province of Shanxi.  As a measure of the internal dose of PAHs, PAH 

concentration in blood plasma was measured.  The frequency of aromatic DNA adducts 

was quantified by 32P-postlabeling technique in white blood cells from recruited subjects 

as a measure of internal effective dose. Polymorphims of two major Phase II metabolic 

enzymes (GSTM1, GSTT1) were also evaluated to detect genetic senstivities.  

The biomarkers of exposure, effect, and sensitivity evaluated for this diissertation 

(Chapters III and IV) are summarized in Table 3.1.  

 

Table 3.1. Summary of the PAH biomarkers tested in the study. 

Biomarker Sample Method Reference     
Exposure           
PAH 
Concentrations 

Venous Blood 
(Plasma) 

SW-846 Methods  3545 
and 8270C (USEPA 1997)  

 Placenta     
Effect           
Aromatic DNA 
Adducts 

White Blood 
Cells 32P-postlabeling 

(Reddy and Randerath 
1986) 

 Placenta     
Susceptibility           

GSTM1 
White Blood 

Cells 
Polymerase Chain 
Reaction (PCR) (Bailey et al. 1998)  

 Placenta     

GSTT1 
White Blood 

Cells 
Polymerase Chain 
Reaction (PCR)    

 Placenta     
XRCC1 Placenta SNPlex, TaqMan Assay    
OGG1 Placenta     
MGMT Placenta     
ERCC2 Placenta     
APEX1 Placenta     
XRCC3 Placenta     
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3.2 Materials and Methods 

3.2.1 Study Site 

Shanxi province in China was selected as a site for this research since it was 

anticipated that elevated concentrations of PAHs were present in the environment. 

Shanxi is located in north China approximately 200 miles northwest of the capital, 

Beijing. Shanxi – known as the ‘Coal Warehouse of China’– is the leading province in 

coal production in China and provides as much as one quarter of China’s coal. The coal 

mined from this region is commonly used indoors for cooking and heating. Residents in 

Shanxi may be exposed to PAHs and other byproducts either by inhalation of the 

airborne soot particles or ingestion of soot particles that deposit on food. The incidence 

of NTDs in Shanxi is one of the highest in the world. The overall prevalence rate for 

neural tube defects in China is 12.95 per 10,000 live-births; while in the northern part of 

the country (where this study was conducted), the rate is 19.90 per 10,000 births (Dai et 

al. 2002). In comparison, the estimated NTD prevalence in the United States, based on 

birth certificate data for 1995, was 4/10,000 (Mathews et al. 2002). Subjects were 

recruited for participation in the study through a collaboration with Dr. Li Zhu and the 

Institute for Children and Reproductive Health located in Beijing, China. Staff at county 

hospitals in Taigu, Pingding, Xiyang and Zezhou recruited participants for the study.  

 

3.2.2 Subject Recruitment 

Children and parents of children born with NTDs as well as children and parents 

of children from a matched control population were recruited for the study from four 

county birth hospitals. The types of congenital malformations that were studied were 

selected based on evidence suggesting an environmental component in their etiology. 

Neural tube defects, including anencephaly and spina bifida, are readily recognizable at 

birth based on a routine newborn physical examination. All spontaneous abortions, late 

fetal deaths (stillbirths), and live births occurring in four hospitals in the Shanxi region 

(including Tai Yuan) in northern China were recruited for the study.  Subject recruitment 

was facilitated by the presence of a birth defects surveillance system in China since 1992 
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as described by Li et al. (2003). The consent form, questionnaire and all study protocols 

were reviewed and approved by the Texas A&M University Institutional Review Board 

(IRB) prior to initiation of the study. A copy of the Texas A&M University IRB 

approved protocols (No. 2003-0430) for this research is attached to this document. Each 

hospital received training from project staff, as well as a protocol book that was 

translated into Chinese.  

 

3.2.2.1 Case Ascertainment 

Babies with NTDs were identified at the time of birth by the attending physician.   

Birth attendants were trained to perform a standardized assessment of the infant 

immediately after delivery.   Procedures were established at each of the participating 

hospitals for a standardized examination of all babies, both live births and late fetal 

deaths.  Information on malformations of any type was entered on the reporting form.  

When a baby was born with an NTD a special case reporting form was completed and a 

study coordinator was contacted and informed of the birth of a potential “case.”   In 

cases of fetal or neonatal deaths, procedures were established with the hospital to retain 

the remains in the pathology department until the diagnosis can be confirmed.  If the 

diagnosis was confirmed the birth was entered into the registry and the mother contacted 

to participate in the case-control study. 

 

3.2.2.2 Case Mother Enrollment 

When the physician verified the diagnosis of the appropriate congenital 

malformation, they confirmed with the hospital staff that it is acceptable to contact the 

mother.  Whenever possible, the mother was contacted while in the hospital and the 

study was described to her. The details of the study were presented and, if it is 

considered appropriate by the physician, informed consent for participation was obtained 

and the questionnaire was administered.  The mother was asked to sign an informed 

consent form (in Chinese) and to complete the study interview at that time or another 
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time before discharge.  If this was not possible, information on how to contact her after 

discharge was obtained and a possible timeframe for the interview was determined.  

 

3.2.2.3 Control Selection  

One control was selected for each case from among the births at the same 

hospital where the case was born.   Each month of the study, one additional control was 

recruited from each birth hospital.  Controls were identified from the hospital’s birth 

registry records, selecting births immediately following the case, or when case subjects 

were born preterm a case was selected from children born at the approximate date for a 

full term delivery.  The babies’ records were reviewed for the presence of congenital 

malformations.  If there was any record of the baby having a congenital malformation, of 

any type, the next birth from the birth records was selected and reviewed. 

 

3.2.2.4 Study Questionnaire 

Case and control mothers who provided informed consent to enroll in the study 

were interviewed in-person using a standardized questionnaire that was translated to 

Chinese. The questionnaire was designed to ask about potential risk factors and 

confounders that are relevant to the circumstances in China. The questionnaire was 

based on the one developed by the Centers for Disease Control and Prevention and the 

California State Birth Defects Surveillance programs. This questionnaire is currently 

being used in a national collaborative case-control study of congenital malformations in 

the United States.  It included questions on topics such as: occupation, chronic and acute 

illnesses, smoking habits, nutrition and alcohol use, prescription and non-prescription 

drug use, socio-demographic information, a complete reproductive history along with a 

family history of birth defects or genetic diseases, and a maternal residential history 

relative to the study pregnancy. The questions were time specific, asking about these 

factors for the period three months prior to pregnancy and during pregnancy, by 

trimester.  Questions about the father of the subject included inquiries about occupation, 

race and ethnicity, age, smoking habits, and alcohol and drug use.  Questions related to 
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history of congenital malformations and genetic diseases in either the mother’s or the 

father’s family and about consanguinity were also included. The questionnaire was 

developed in English with modifications appropriate for Chinese culture. The 

questionnaire was reviewed by an individual outside of the project for consistency with 

the English version and was approved by the Texas A&M University Institutional 

Review Board. A copy of the questionnaire is attached as appendix I. 

 

3.2.3 Sample Collection and Shipping 

3.2.3.1 Environmental Samples 

Floor or window dust was collected from selected households in the study 

province of Shanxi. The households were comparable in terms of the presence of dirt in 

the sampling areas. All of the floors from which dust was collected were made of brick.  

The materials used to collect residential dust samples included a pre-ashed and pre-

weighed glass fiber filter cloth (type A/E, 20.3 cm x 25.4 cm, Gellman Sciences, Ann 

Arbor, MI), a measuring tape, an aluminum foil pouch, a plastic bag and nanograde 

isopropyl alcohol. Whenever possible, dust samples were collected from an area in the 

kitchen. Dust samples were collected from adjacent areas delineated on the floor, 

window or wall surface of each house. The precise dimensions of the sampling areas 

were recorded. A glass fiber filter cloth was saturated with isopropyl alcohol. The 

collection of the dust sample was accomplished by wiping the cloth across the delineated 

floor area from the near end to the far end and back until the entire area to be sampled 

was wiped. The cloth was checked periodically for dust accumulation. If the cloth 

appeared to be saturated with dust, sampling was stopped and the area that had been 

sampled was measured and recorded. Upon completion of the floor swipe sample 

collection, each glass fiber filter cloth was wrapped in an aluminum foil pouch and 

transferred to a ziploc bag. All the dust samples were shipped on ice packs to the 

analytical laboratory in the United States. 
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3.2.3.2 Venous Blood Samples 

Biological samples were collected from all study subjects.  These included the 

case and control children, as well as their mothers and fathers.  These samples were 

collected in the field by hospital personnel and processed for transport to the Peking 

University Health Science Center in Beijing, China. A volume of 10-15 mL of venous 

blood was collected in sodium heparin BD Vacutainer tubes (VWR, catalogue # 

VT6480) from the parents of all case and control subjects. Venous blood samples were 

divided into plasma for organics analysis and white blood cells (WBCs) for DNA 

isolation. Samples were stored at appropriate temperatures to be shipped on refrigerant 

gel packs to Texas A&M University for processing and analysis. Shipment of samples 

was carried out according to the regulations of the US Department of Transportation and 

International Air Transport Association (IATA). Samples were packaged according to 

IATA packing instruction 650 and classified under the category of “Diagnostic 

Specimens” UN 3373.  

 

3.2.4 Sample Extraction and Chemical Analysis 

3.2.4.1 Extraction of Dust Samples.  

 Extraction of dust filters was performed as described in Chapter II.  

 

3.2.4.2 Extraction of Venous Blood 

Venous blood samples were centrifuged in the heparinized collection tubes at 

3000 RPM for 10 minutes. This procedure served to separate blood into an upper lighter 

plasma layer and a lower denser cell layer. The plasma layer was transferred by pipette 

to borosilicate glass vials to store at -80oC for PAH extraction and analysis.  

The method of plasma liquid-liquid extraction is modified from the USEPA 

Manual of Analytical Methods for the Analysis of Pesticides in Human and 

Environmental Samples (Watts1980).  Five ml of plasma and 10 ml of methanol were 

mixed together to denature plasma proteins. Samples were then sonicated for 1 minute 

intervals for 3 times. A break during sonication is needed to prevent heating of the 
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samples. Afterwards, samples were decanted into seperatory funnels and 10 ml of 

dichloromethane was added to begin the extraction process and to rinse each sample 

vial. Following the first extraction, plasma samples were extracted with 3 x 20 ml 

dichloromethane. Each extraction was shaken for 3 minutes with a 20 minute settling 

period. The combined extracts were filtered on a solid phase extraction (SPE) column 

(Restek) that contains a layer of combusted sodium sulfate which aids in removing 

aqueous sample residues. The volume of the extract was reduced to 2 to 3 ml and 

submitted for determination of PAH analytes in a gas chromatography-mass 

spectrometry (GC/MS) tandem.  

 

3.2.4.3 Chemical Analysis   

A modified USEPA SW-846 Method 8270C (USEPA 1997) was used for the 

quantitative determination of polycyclic aromatic hydrocarbons (PAHs) and their 

alkylated homologues in extracts of dust and biological tissue. This method was 

developed for PAH quantitation and was described previously (Cizmas et al. 2003).  

Analysis was conducted on a Hewlett-Packard 5890 Series II gas chromatograph with a 

5972 mass selective detector in selected ion monitoring mode.  A 60m x 0.25mm ID x 

0.25mm film thickness column (Agilent Technologies, Palo Alto, CA) was used.  The 

injection port is maintained at 300°C and the transfer line at 280°C.  The temperature 

program is as follows:  60°C for 6 minutes, increased at 12°C/min to 180°C and then 

increased at 6°C/minute to 310°C and held for 11 minutes for a total run time of 47 

minutes. 

 

3.2.5 DNA Isolation and 32P-Postlabeling  

 DNA was extracted from human tissues, digested and labeled with �32P[ATP] 

following methods described previously by Reddy and Randerath (1986).  A 0.2 to 0.5 g 

weight of minced mouse tissue was weighed into a 15 mL glass tube.  A 3 mL volume of 

1% SDS/1mM EDTA was added, and the tissue was homogenized with an Ultra Turrax 

(Ultra Turrax T25, Fisher Scientific, Pittsburgh, PA) for 30 to 60 sec at 15,000 to 20,000 
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RPM.  Next, 100 to 150 µL proteinase K (15 mg/mL) was added to the homogenate, and 

the sample was then vortexed and incubated for 40 min at 38°C.  The next step involves 

deproteinization using three solvent extractions.  A 170 µL volume of 1M Tris-HCL, pH 

8.0, and 35 µL 100 mM EDTA were added, and then vortexed.  For the first extraction, a 

3 mL volume of phenol saturated with 50 mM Tris-HCL, pH 8.0, 1 mM EDTA was 

added, and shaken for a minimum of 3 minutes.  The sample was then spun for 10 min at 

10000 rpm.  The aqueous phase was transferred to a fresh tube.  For the second 

extraction, a 3 mL volume of 1:1 mixture of saturated phenol and SEVAG (24 volumes 

Chloroform + 1 volume isoamyl alcohol) was added, and shaken for at least 3 minutes.  

The sample was then spun as described above.  The aqueous phase was then transferred 

to a fresh tube.  For the third extraction, a 3 mL volume of SEVAG was added, and 

shaken as described above.  The sample was then processed as previously described, and 

the aqueous phase was transferred to a fresh tube.   

 For precipitation of DNA (+RNA), 0.3 mL (=0.1 volume) 5 M NaCl + 3.3 mL ice-

cold absolute ethanol are added, and vortexed.  The sample was placed in -20°C freezer 

for 30 min.  The sample was then spun for 10 min at 10000 rpm, and supernatant 

discarded.  Precipitant was washed 2 times with 3 mL 70% ice-cold ethanol, and 

supernatant decanted.  The sample was semi-dried for 4-5 min.  The DNA (+RNA) was 

dissolved in 1 mL 0.01 SSC (150 mM NaCl, 15 mM Na citrate) + 10 µL 100 mM 

EDTA.  Next, 50 µL 1 M Tris-HCL, pH 8.0, + 15 µL Rnase A (10 mg/mL) + 16.5 µL 

Rnase T1 (5,000 units/mL) are added to the sample.  The sample was then vortexed, and 

incubated for 40 min at 38°C.  After incubation, 500 µL 0.01 x SSC was added to 

increase volume.  Deproteinization was again carried out by solvent extraction.  A 1.5 

mL volume of SEVAG was added, and shaken for at least 3 minutes.  The sample was 

processed as stated above, and the aqueous phase transferred to a fresh tube.  DNA was 

precipitated by adding 150 µL 5 M NaCl + 1.5 mL ice-cold absolute ethanol.  The 

sample was put in -20°C freezer for 30 minutes.  The DNA was spun, washed, and semi-

dried as stated above.  DNA was redissolved in 0.3 to 0.6 mL 0.01 x SSC to reach the 
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desired concentration of 2 µg/µL.  The concentration of DNA was checked via UV-Vis 

Spectrophotometer, the A260 (DNA)/A280 (RNA) ratio should range from 1.6 to 1.8.   

DNA digestion and labeling were preformed as follows: 6 to10 µg of DNA in 5 µL 

of SSC and/or water were digested using 3 µL of 0.2 U micrococcal nuclease and 2.4 µg 

spleen phosphodiesterase per µL (MN/SPD) and 2.4 µL of IS-buffer mix (10 µg DNA, 

100 mM CaCl2 and 300 mM Na succinate) for 3.5 hr. at 37°C.  MN/SPD digestion 

cleaves the 5’-nucleotide-phosphate bonds, leaving the 3’-monophosphates of the 

normal and adducted deoxyribonucleosides.  The DNA was then digested with 4.75 µL 

of nuclease P1 digestion mix (4 µg/µL nuclease P1, 1 M NaOAc and 1 mM ZnCl2) for 

40 min at 37°C.  Nuclease P1 digestion cleaves the 3’-nucleotide-phosphate bonds on 

normal nucleotides only.  It was reported that adducted nucleotides were mostly or 

partially resistant to nuclease P1 3’-dephosphorylation (Reddy and Randerath 1986).  

The sample was then labeled using 3.86 µL of polynucleotide kinase (PNK) labeling mix 

(kinase buffer, 100 µCi/µL ATP and 30 U/µL PNK) and incubated for 40 min at 37°C.  

PNK labeling attaches the radioactive phosphate ([�-32P]ATP) at the 5’-hydroxyl group 

end of the adducted nucleotides through [32P]phosphate transfer from ([�-32P]ATP).  The 

normal nucleotides lost their 3’-phosphate during nuclease P1 digestion, so PNK will not 

phosphorylate them with the ([�-32P]ATP).  Once samples were labeled, two specific 

activity (SA) tubes (2 pmol/µL dAP and 50 mM CHES, pH 9.5) were then labeled with 

2.5 µL PNK labeling mix, and incubated the same as the samples.   

The samples, with the exception of the SA tubes, were then digested with 1.5 µL of 

40 mU/µL potato apyrase for 30 min at 37°C.  Apyrase digestion destroys the excess 

ATP by removing [32P] from the ATP ([32P]-ATP        ADP + [32P]).  Once apyrase 

incubation was completed, normals and SA tubes were diluted.  Normals are a 

qualitative check to make sure that each sample was digested and labeled well.  Tubes 

contain 250 µL of 20 mM CHES, pH 9.5.  1 µL of sample was added to the 

corresponding tube, and then 5 µL per sample were spotted on PEI-cellulose sheets.  SA 

dilution tubes contain 996 µL of 20 mM CHES, pH 9.5.  4 µL of labeled SA tubes 

(d*pAp mix) were added to each corresponding SA tube, and then 5 µL were spotted on 
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PEI-cellulose sheets.  Normals and SA PEI-cellulose sheets were run in 0.28 M 

NH4(SO4)2 + 50 mM NaH2PO4, pH 6.7 to 13 cm past the origin line, approximately 1 to 

2 hr.  While normals and SA sheets were running, labeled samples are spotted onto a PEI 

cellulose sheet (D1 development).  D1 sheets were run in 80 mL of 2.3 M NaH2PO4, pH 

5.75, for 16 hr.  D1 development removes traces of normal nucleotides after the nuclease 

P1 treatment, as well as residual orthophosphate by pushing them to the wick at the top 

of the sheet, leaving the [32P] adducted nucleotides behind.  D1 sheets were developed 

on autoradiographic film, and locations of the spots were then drawn on the back of the 

PEI-cellulose sheets.  Spots were then cutout from the D1 PEI-cellulose sheet and 

transferred to single PEI-cellulose sheets (2D maps) using a strong magnet.  The 2D 

maps were run vertically in 65 mL of 95%  LFU, pH 3.35 + 5%  dH2O (D3 

development) to top marked line after being pre-developed in 25 mL of dH2O to the 

origin.  The 2D maps were then checked for transfer, cut at the second line from the top, 

washed twice in 250 mL of dH2O for 7 minutes, dried, and a wick attached to the right 

side in preparation for the final development (D4 development).  For the D4 

development, the 2D maps were run horizontally in 65 mL of 90%  PTU, pH 8.20 + 10%  

dH2O to the top of the wick after being pre-developed in 25 mL of 50%  0.8 M 

NaH2PO4, pH 8.2 + 50%  dH2O to the second line marked from the left side.  The 2D 

maps were then checked for separation, cut just below the wick, washed twice in 250 mL 

of dH2O for 5 min, dried, and cut for autoradiographic development and imager reading.  

An instant imager was used to calculate counts per minute (CPM) per spot. DNA adduct 

levels were quantified as mean relative adduct labeling (RAL) values + SD using the 

following equation:   

RAL = sample count rate/ (DNA-P x specific activity ATP), where the 

sample count rate is measured in CPM, DNA-P represents the pmol of 

DNA monomer units assayed per replicate, and the specific activity of the 

ATP is in units of cpm/pmol.  
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3.2.6 Genotyping  

DNA from whole blood cell samples were genotyped for null deletions in 

GSTM1 and GSTT1 using the methods described by Bailey et al. (1998). PCR was used 

to amplify and assay the GSTM1 and GSTT1 alleles. The products were digested with 

the restriction enzymes HinfI and NcoI, electrophoresed, and visualized using ethidium 

bromide staining. The genotyping call rate was about 99.6%. 

 

3.2.7 Statistical Analyses 

Statistical analyses were performed using SigmaStat (Systat 2004). Data was 

available from environmental and human measurements (DNA adducts, genetic 

polymorphisms, and PAH levels in blood). Values, including PAHs in environmental or 

biological samples, were normalized by log transformation as needed and arithmetic 

values used for other variables. Descriptive statistics was performed first.  Second, 

multivariate analyses were performed by using t-test or One Way Analysis of Variance 

(ANOVA) unless the normality test failed (P<0.05). When the normality failed, Mann-

Whitney Rank Sum Test or Kruskal-Wallis One Way Analysis of Variance on Ranks 

was carried out. For bivariate correlation, Pearson’s correlation coefficient was 

determined. The criterion for statistical significance was a P-value < 0.05.  
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3.3 Results 

 Dust samples collected from houses located in the study site were chemically 

characterized for sixty different PAH compounds. These compounds are listed in Table 

3.2. They include low and high molecular weight PAHs, in addition to their alkylated 

homologues. Low molecular weight PAH compounds typically consist of 2- or 3- ring 

PAHs such as naphthalene (2 benzene rings) and anthracene (3 benzene rings). High 

molecular weight PAHs generally include compounds with 4 or more rings such as 

benz[a]anthracene (4 rings) and the model carcinogenic PAH, BaP (5 rings). The 

chemicals analyzed in this study include carcinogenic PAH congeners (USEPA Class 

B2) as well as those listed as priority pollutants by the USEPA.  

 The dust samples collected from residential environments in Shanxi province, 

included 13 floor dust samples, 8 window dust samples, as well as 2 wall dust samples 

and 2 samples of light bulb dust. Table 3.3. summarizes the concentrations of PAHs 

detected in house dust. The data is reported by sample type and divided by carcinogenic, 

priority and total PAHs, in mass per area sampled. The data indicate the presence of 

PAHs in residential dust. The total PAH concentration however seems to vary between 

sample types and was found to range from 19 to 10,093 ng/m2.
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Table 3.2.  List of the 60 PAHs quantified in environmental and biological samples.  Chemicals listed in bold are class B2 carcinogens, whereas those 
listed in italics are USEPA priority PAHs.   
 

List of PAHs Quantified in Environmental and Biological Samples by Number of Rings. 

2-Ring PAHs: C2-Benzothiophene Phenanthrene C2-Fluoranthenes/Pyrenes Benzo(b)fluoranthene 

Decalin C3-Benzothiophene 
C1-Phenanthrene/ 
Anthracene C3-Fluoranthenes/Pyrenes Benzo(k)fluoranthene 

C1-Decalin Biphenyl 
C2-Phenanthrene/ 
Anthracene Naphthobenzothiophene Benzo(e)pyrene 

C2-Decalin 3-Ring PAHs: 
C3-Phenanthrene/ 
Anthracene C1-Naphthobenzothiophene Benzo(a)pyrene 

C3-Decalin Acenaphthylene 
C4-Phenanthrene/ 
Anthracene C2-Naphthobenzothiophene Perylene 

C4-Decalin Acenaphthene Dibenzothiophene C3-Naphthobenzothiophene Dibenz(a,h)anthracene 

Naphthalene Dibenzofuran C1-Dibenzothiophene Benz(a)anthracene C1-Dibenz(a,h)anthracene 

C1-Naphthalenes Fluorene C2-Dibenzothiophene Chrysene C2-Dibenz(a,h)anthracene 

C2-Naphthalenes C1-Fluorenes C3-Dibenzothiophene C1-Chrysenes C3-Dibenz(a,h)anthracene 

C3-Naphthalenes C2-Fluorenes 4-Ring PAHs: C2-Chrysenes 6-Ring PAHs: 

C4-Naphthalenes C3-Fluorenes Fluoranthene C3-Chrysenes Indeno(1,2,3 c,d)pyrene 

Benzothiophene  Carbazole Pyrene  C4-Chrysenes Benzo(g,h,i)perylene 

C1-Benzothiophene  Anthracene C1-Fluoranthenes/Pyrenes 5-Ring PAHs:  
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Table 3.3. Summary of Concentrations of Total and Carcinogenic PAHs (�g/m2), as well as USEPA Priority PAHs Detected in Various Dust Samples 
Collected from Homes in Shanxi, China.  
 

Floor (N=13) Window (N=8) Wall (N=2) Light Bulb (N=2) 

USEPA Priority PAHs USEPA Priority PAHs USEPA Priority PAHs USEPA Priority PAHs 
Mean 632 Mean 110 Mean 29 Mean 162 
Median 133 Median 36 Median 29 Median 162 
Min 26 Min 12 Min 17 Min 25 
Max 4288 Max 426 Max 42 Max 299 
Std. Dev. 1181 Std. Dev. 144 Std. Dev. 17 Std. Dev. 193 
SEM 328 SEM 51 SEM 12 SEM 137 

Carcinogenic PAHs Carcinogenic PAHs Carcinogenic PAHs Carcinogenic PAHs 

Mean 313 Mean 38 Mean 22 Mean 110 
Median 53 Median 25 Median 22 Median 110 
Min 12 Min 5 Min 9 Min 15 
Max 2058 Max 107 Max 35 Max 205 
Std. Dev. 574 Std. Dev. 35 Std. Dev. 18 Std. Dev. 134 
SEM 159 SEM 12 SEM 13 SEM 95 

Total PAHs Total PAHs Total PAHs Total PAHs 

Mean 1482 Mean 200 Mean 84 Mean 412 
Median 307 Median 84 Median 84 Median 412 
Min 50 Min 19 Min 45 Min 65 
Max 10093 Max 823 Max 123 Max 759 
Std. Dev. 2794 Std. Dev. 271 Std. Dev. 55 Std. Dev. 491 
SEM 775 SEM 96 SEM 39 SEM 347 
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 Carcinogenic PAHs (cPAHs) ranged from 5 to 2,000 ng/m2. Figure 3.1 

represents bar graphs of priority, carcinogenic and total PAHs compared across sampling 

surfaces. According to the graph, wall dust seems to contain the least amount of PAHs 

whereas floor is clearly the most abundant in PAHs. Hence, when breaking up PAHs by 

benzene ring number, results from floor dust was compared to all other sampling 

surfaces combined (window, wall and light bulb dust). Four-ring PAHs were the most 

abundant in house dust. The mean concentration of 4-ring PAHs detected in floor dust 

was 376 ng/m2, whereas in other surfaces it was 64 ng/m2. In floor dust, 5-ring PAH 

were the second most abundant class with a mean concentration of 128 ng/m2 followed 

by 3-ring PAHs at 91 ng/m2. Table 3.4 summarizes the PAH levels in house dust by ring 

number. Figure 3.2 consists of a graphical representation of the levels of PAH in floor 

and other surface dust.  These data indicate the presence of PAHs in the residential 

environment of the study population.  
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Figure 3.1. Graphical representation of total and carcinogenic PAHs, as well as USEPA priority PAHs 
detected in various dust samples collected from homes in Shanxi, China.  
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Table 3.4. Summary of PAHs detected in floor and other dust samples (�g/m2) collected from homes in 
Shanxi, China by number of rings.  
 
 Floor Other 

PAHs Mean Std. Dev. SEM Mean Std. Dev. SEM 

2 rings 1 1 0 0 1 0 

3 rings 91 182 50 21 42 12 

4 rings 376 701 194 64 80 23 

5 rings 128 231 64 18 23 7 

6 rings 20 40 11 1 2 1 
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Figure 3.2. Graphical representation of PAHs detected in floor and other dust samples collected from 
homes in Shanxi, China by number of rings.  
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Venous blood was collected from 53 mothers that delivered a baby in a 

participating birth hospital during the time of the study. In addition, 51 of their husbands 

provided venous blood samples for analysis in this study. Among the mothers, 35 

delivered a baby with a neural tube defect and 18 delivered visibly normal babies and 

were recruited as controls. As for the fathers, 32 were the parents of a baby with a neural 

tube defect and 19 were fathers of visibly normal children. More characteristics of the 

adult population that provided venous blood samples are summarized in Table 3.5. As a 

measure of internal dose, venous blood samples from mothers and fathers were extracted 

by liquid-liquid extraction and analyzed for the same list of PAHs described previously 

in Table 3.2. Concentrations of PAHs in mothers and fathers by case status are 

summarized in Table 3.6. The median level of PAHs detected in venous blood from 

mothers of cases (232 ng/mL) was significantly higher than that detected in venous 

blood from control mothers (99 ng/mL). Similar results were found for fathers where 

case fathers had a median PAH level of 170 ng/mL whereas control father has median 

PAH level of 130 ng/mL, however the difference was not statistically significant. Figure 

3.3 illustrates the difference in total PAH concentration in venous blood of mothers and 

fathers by case status.  
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Table 3.5. Characteristics of the adult population that provided venous blood for analysis.  
 
Characteristic N(Valid Percent) 
Sex  
    Male 51(49%) 
    Female 53(51%) 
Mothers  
    Case 35(66%) 
    Controls 18(34%) 
Fathers  
    Case 32(63%) 
    Controls 19(37%) 
Smoking status among fathers  
    Yes 38(75%) 
    No 13(25%) 
Passive smoking among mothers  
     Exposed 27(51%) 
     Not Exposed 26(49%) 
Mother's occupation  
    Farmer and fishery 52(79%) 
    Other 14(21%) 
Mother's highest level of education  
    Primary school or lower 15(22%) 
    Junior high 47(70%) 
    High school or higher 5(8%) 
Father's highest level of education  
    Primary school or lower 8(12%) 
    Junior high 52(78%) 
   High school or technical secondary school 7(10%) 
Mothers cooking in the kitchen  
    Almost none 11(16%) 
    Sometimes 18(27%) 
    Every day 38(57%) 
Major fuel for cooking  
    Black coal, Firewood or Natural Gas 17(26%) 
    Hard coal 48(72%) 
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Table 3.6. Concentrations of total PAHs (ng/mL) in venous blood of mothers and fathers by case status.  
 
 Mother Father 

 Case  Control Case  Control 

Min 29 33 52 25 
Median 232 99 170 130 
Max 762 234 523 345 
Mean 258 120 217 159 
Std dev 156 69 152 102 
SEM 26 16 27 23 
Sample size 35 18 32 19 
P-value <0.001  0.25  
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Figure 3.3. Bar graph representing the concentrations of total PAHs detected in venous blood collected 
from mothers and fathers of neural tube defect cases and controls.  

 

* 

* = P < 0.05 
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 More importantly, cPAHs were detected in venous blood samples from both 

parents of cases and controls. In addition, cPAHs were significantly more elevated in 

case mothers (14 ng/mL) when compared to controls mothers (6 ng/mL). Among fathers, 

those with case children had a median cPAHs level of 10 ng/mL; whereas those with 

control children had a median cPAHs level of 5 ng/mL. These differences in cPAH 

levels among case and control fathers were also statistically significant. Table 3.7 and 

Figure 3.4 summarize the data on carcinogenic PAHs among case and control mothers, 

as well as case and control fathers. 

 
 
 
Table 3.7. Concentrations of carcinogenic PAHs (ng/mL) in venous blood of mothers and fathers by case 
status.  
 

 Mother Father 

 Case Control Case Control 

Min 0.2 1 1 1 

Median 14 6 10 5 

Max 65 49 50 48 

Mean 19 9 15 10 

Std dev 16 11 13 14 

SEM 3 3 2 3 

Sample size 35 16 31 18 

P-value 0.045  0.014  
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Figure 3.4. Bar graph representing the concentrations of carcinogenic PAHs detected in venous blood 
collected from mothers and fathers of neural tube defect cases and controls.  
 

Passive smoking was self-reported by mother subjects through the study 

questionnaire. Table 3.8 reviews the concentration of carcinogenic and total PAHs in 

mothers exposed to passive smoking (occasionally or everyday) and those who were not 

exposed. Mothers exposed to passive smoking had median levels of total and cPAHs in 

their blood of 219 ng/mL and 9 ng/mL respectively. Mothers who were not exposed to 

passive smoking had median levels of 187 ng/mL total PAHs and 7 ng/mL cPAHs. 

However, these differences in PAH concentrations were not statistically significant.  

Smoking among fathers was very common with seventy-five percent reporting to 

be smokers. Smokers included subjects who occasionally smoked to those who smoked 

more than 20 cigarettes per day. Total and carcinogenic PAH were broken up by the 

smoking status of the fathers to detect any difference in their levels among smokers and 

non-smokers. Non-smoking fathers had a median level of 272 ng/mL total PAHs in their 

venous blood compared to 120 ng/mL for smokers, but the difference were not 

statistically significant. Table 3.9 sums up these results. 

* 

* 

* = P < 0.05 
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Table 3.8. Concentrations of total and carcinogenic PAHs (ng/mL) in venous blood of mothers by 
exposure to passive smoking.  
 

 Total PAHs Carcinogenic PAHs 

 Exposed Not Exposed Exposed Not Exposed 

Min 33 29 1 0.2 

Median 219 187 9 7 

Max 762 533 65 51 

Mean 233 188 16 15 

Std dev 176 110 16 15 

SEM 34 22 3 3 

Sample size 27 26 25 25 

P-value 0.493  0.831  
 

 

 

 

Table 3.9. Concentrations of total and carcinogenic PAHs (ng/mL) in venous blood of father by smoking 
status.  
 

 Total PAHs Carcinogenic PAHs 

 Smoker Non-Smoker Smoker Non-Smoker 

Min 25 52 1 2 

Median 120 272 8 9 

Max 523 441 50 41 

Mean 182 236 12 13 

Std dev 135 143 13 12 

SEM 22 40 2 4 

Sample size 38 13 38 11 

P-value 0.430  0.606  
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In addition to measuring levels of PAHs in venous blood, white blood cells 

(WBCs) were isolated from blood to be used for DNA extraction. Once isolated, bulky 

DNA adducts were analyzed by 32P-postlabeling. Control mothers and control fathers 

exhibited a significantly higher level of DNA adducts as compared to case mothers and 

case fathers. Table 3.10 summarizes the DNA adduct levels detected in WBCs of 

mothers and fathers by case status. Median level of DNA adducts in case mothers was 

11 per 109 normal nucleotides as compared to 16 per 109 nucleotides in controls. 

Similarly, median level of DNA adducts in case fathers was 10 per 109 nucleotides 

which was significantly lower than 19 per 109 nucleotides, the median levels of bulky 

DNA adducts in control fathers. Smoking status did not seem to be associated with DNA 

adduct levels in this study. Table 3.11 reviews the levels of DNA adducts by passive 

smoking status in mothers and smoking status in fathers. Figures 3.5 and 3.6 

demonstrate representative autoradiograms of smoker and non-smoker as well as case 

and control subjects.  

 

Table 3.10. Bulky DNA adduct levels (per 109 nucleotides) in venous blood of mothers and fathers by 
case status.  
 

 Mother Father 

 Case Control Case Control 

Min 4 8 4 6 

Median 11 16 10 19 

Max 22 32 23 55 

Mean 12 17 11 21 

Std dev 4 7 5 12 

SEM 1 2 1 3 

Sample size 33 16 28 16 

P-value 0.013  0.001  
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Table 3.11. Bulky DNA adduct levels (per 109 nucleotides) in venous blood of mothers and fathers by 
smoking status.  
 

 Mother Father 

 
Passive 
Smoker 

Not Passive 
Smoker Smoker Non-Smoker 

Min 8 4 4 4 

Median 12 13 12 15 

Max 26 32 27 55 

Mean 13 14 13 17 

Std dev 5 7 6 14 

SEM 1 1 1 4 

Sample size 24 25 31 13 

P-value 0.565  0.681  



 

 

146 

  
 

                               
 

                                                                                                                                                                                                                                                                           
 

                               
 
 
 
Figure 3.5. Autoradiograms of 32P-postlabeled WBC bulky DNA adducts from smoker subjects. 
Autoradiography for 24 hr. at -80oC using Kodak XAR-5 film.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a. Mother Passive Smoker Control b. Father Smoker Control 

c. Mother Passive Smoker Case d. Father Smoker Case 
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Figure 3.6. Autoradiograms of 32P-postlabeled WBC bulky DNA adducts from non-smoker subjects. 
Autoradiography for 24 hr. at -80oC using Kodak XAR-5 film.  

a. Mother Non-Smoker Control b. Father Non-Smoker Control 

c. Mother Non-Smoker Case d. Father Non-Smoker Case 
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Interestingly, among the variables that significantly affected the concentrations 

of DNA adducts was the type of fuel used for cooking. Mothers reported using different 

types of cooking fuel including hard coal, black coal, firewood and natural gas. Hard 

coal seems to be the most abundantly used cooking fuel. When DNA adduct levels in 

WBCs of mothers who used hard coal as a cooking fuel were compared to those who use 

another type of cooking fuel, they seemed significantly elevated. In fact, median levels 

of DNA adducts in WBCs of mothers using hard coal were 14 per 109 nucleotides which 

was significantly elevated compared to 10 adducts per 109 nucleotides, the median level 

found in WBCs of mothers using other types of cooking fuel. These data are 

summarized in Table 3.12 and graphically presented in Figure 3.7.  

 
 
 
 
Table 3.12. Bulky DNA Adduct Levels (per 109 nucleotides) in Venous Blood of Mothers by Cooking 
Fuel Type.  
 

 Hard Coal Other types 

Min  7 4 

Median 14 10 

Max 32 22 

Mean  15 11 

Std dev 6 4 

SEM 1 1 

Sample size 34 14 

P-value 0.022  
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Figure 3.7. Bar graph representing bulky DNA adduct levels in venous blood collected from mothers by 
cooking fuel type.  

 

 

Genotyping of two major Phase II metabolic enzymes, GSTM1 and GSTT1, 

revealed that the GSTM1 deletion occurred in 26% of mothers and 19% of fathers; 

whereas GSTT1 null genotype was found in 19% of the mothers and 19% of the fathers 

(Table 3.13). GSTM1 null mothers had a median level of DNA adducts of 11 per 109 

nucleotides compared to 13 per 109 nucleotides in wild-type mothers. Fathers on the 

other hand had median levels of 14 adducts per 109 nucleotides in null individuals and 

12 adducts per 109 nucleotides in individuals with an active copy of GSTM1. However, 

the difference in median levels of DNA adducts were not statistically significant (Table 

3.14). Mothers with an inactive copy of GSTT1 exhibited a median level of 11 adducts 

per 109 nucleotides, compared to 13 adducts per 109 nucleotides in wild-type individuals. 

Fathers with an inactive copy of GSTT1 were found to exhibit a median level of 15 

adducts per 109 nucleotides in their WBCs, as compared to a median level of 11 adducts 

per 109 nucleotides for those with a functional GSTT1 enzyme. Similarly to GSTM1 

* 

* = P < 0.05 
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results, difference in DNA adduct levels among different GSTT1 genotypes were not 

statistically significant (Table 3.15).  

 
 
Table 3.13. Prevalence of GSTT1 and GSTM1 Deletion in Recruited Subjects.  
 

 Genotype N(Valid Percent) 
  
GSTT1 - Mother  
  Wildtype 27(59%) 
  Null 19(41%) 
GSTT1 - Father  
   Wildtype 25(57%) 
  Null 19(43%) 
GSTM1 - Mother  
  Wildtype 20(44%) 
  Null 26(56%) 
GSTM1 - Father  
  Wildtype 25(57%) 
  Null 19(43%) 

 

 

 

Table 3.14. Bulky DNA adduct levels in venous blood of mothers and fathers by GSTM1 genotype. 
 

 Mother  Father  

 GSTM1 GSTM1 

 Null Wild-type Null  Wild-type 

Min  4 8 8 6 

Median 11 13 14 12 

Max 32 32 55 36 

Mean  13 15 16 15 

Std dev 6 6 11 8 

SEM 1 1 3 2 

Sample size 23 19 18 19 

P-value 0.266  0.727  
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Table 3.15. Bulky DNA adduct levels in venous blood of mothers and fathers by GSTT1 genotype. 
 

 Mother  Father  

 GSTT1 GSTT1 

 Null Wild-type Null  Wild-type 

Min  4 8 6 6 

Median 11 13 15 11 

Max 32 32 55 36 

Mean  14 14 19 13 

Std dev 7 6 12 7 

SEM 2 1 3 2 

Sample size 16 26 15 22 

P-value 0.990  0.080  
 

 

In an attempt to find if exposures in mothers and fathers are correlated, a scatter 

plot was generated with total PAH levels in blood from fathers versus those from 

mothers (Figure 3.8). The computed correlation coefficient (R) was 0.4 and the 

correlation was statistically significant (P=0.01). Additionally, the levels of blood PAHs 

in non-smoking fathers were plotted against the levels of total PAH in mothers. The 

correlation seemed to be stronger (R=0.7) and still statistically significant (P<0.01) 

(Figure 3.9). 
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Figure 3.8. Scatter plot, total PAHs in venous blood from fathers versus total PAHs in venous blood from 
mothers. 
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Figure 3.9. Scatter plot, total PAHs in venous blood from non-smoking fathers versus total PAHs in 
venous blood from mothers.  
 

R = 0.7 
P < 0.01 

R = 0.4 
P = 0.01 
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3.4 Discussion 

This research followed the biomarkers paradigm linking chemical exposures to 

adverse health outcomes (NRC, 1987). This paradigm describes the intermediate stages 

following chemical exposures, where the chemical or its metabolite can be monitored by 

measuring biochemical changes that occur in the exposed organism. This paradigm 

typically consists of four major phases leading to the onset of the undesirable effect. 

These consist of external exposure, internal dose, biologically effective dose and early 

biological effects. The human study portion of this dissertation described in chapters III 

and IV measured external exposure, internal dose as well as biologically effective dose 

in an attempt to understand the potential link between PAHs and birth defects.  

External exposure consisted of measuring chemical levels in homes located in the 

study area of Shanxi, China. House dust was analyzed for PAHs to assess their 

abundance inside living places in the study province. Results indicated that the 

concentration of PAHs was elevated. The detected levels of PAHs were 10-fold higher 

than levels detected in the homes of other environmentally devastated study populations 

such as for example Sumgayit, Azerbaijan (data not shown). Floor dust exhibited the 

highest levels of PAHs compared to other sampling surfaces such as window, wall or 

light bulbs. In addition, the PAHs detected in floor dust were mostly high molecular 

weight compounds such as BaP which are typically more potent than their lower 

molecular weight congeners. Floor dust therefore presents a potential threat to the health 

of individuals living in this area, especially children who have behavioral and 

pharmacokinetic characteristics that might lead to higher exposures than adults.  

As a measure of internal dose, venous blood samples from parents of NTD cases 

and control were analyzed for PAHs. Levels of PAHs in venous blood typically reflect 

more recent exposures. Interestingly, total PAH levels in parents of cases were higher 

than those of controls. The differences were striking in venous blood samples collected 

from mothers.  

DNA adducts were measured as biomarkers of early biological effects and 

surprisingly were significantly higher in controls when compared to NTD cases. 
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Smoking in fathers and passive smoking in mothers did not seem to have a significant 

effect on the levels of PAHs or DNA adducts in blood.  

Deletions in two major Phase II metabolic enzymes GSTM1 and GSTT1 were 

evaluated as a measure of genetic sensitivity in this population. However, individuals 

with inactive copies of GSTM1 or GSTT1 did not seem to exhibit significantly higher 

levels of DNA adducts.  

Among the variables that significantly affected DNA adduct levels in venous blood 

of mothers was the type of fuel used for cooking. Mothers who used hard coal seem to 

have higher levels of DNA adducts in their blood when compared to those using a 

different type of cooking fuel. Solid fuel for cooking was previously associated with an 

increased risk of lung cancer in Europe (Lissowska et al. 2005). In China, cooking 

frequency was associated with higher levels of urinary 1-hydroxypyrene in females as 

well as males (Chen et al. 2007). These findings suggest a common environmental 

source of exposure in males and females. The strong correlation between total PAHs in 

blood of non-smoking fathers and mothers could be another indication of a common 

source of PAH exposures.  

Overall, these data indicate an elevated PAH exposure in the residential 

environment of the study population. Presence of genotoxic PAH compounds was 

confirmed in the environment as well as biological tissues from the study participants. 

Major limitations to this study include sample size as well as genetic polymorphism 

data. Polymorphisms in additional  metabolic genes (such as Phase I metabolic enzymes) 

as well as DNA repair genes needed to be evaluated in the future to help identify genetic 

sensitivities that might help explain the relationship between internal dose of PAHs and 

bulky DNA adducts.  
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CHAPTER IV 

BIOLOGICAL INDICATORS OF EXPOSURE TO COMBUSTION BY-

PRODUCTS IN PLACENTAL TISSUE  

 

4.1 Introduction  

The placenta is considered an important source of materials for molecular 

epidemiologic studies because it is readily available and responsive following maternal 

exposure to environmental pollutants (Marafie et al. 2000). Through placental transfer, 

all lipid-soluble xenobiotics potentially enter the conceptus. The factors influencing the 

rate of the xenobiotic transfer include placental membrane permeability, placental blood 

flow, and pH differences between the maternal and fetal circulations as well as 

molecular size, lipid solubility and protein binding properties of the compound itself. 

Exposure of the embryo or fetus to xenobiotic compounds might lead to deleterious 

effects including in utero death, initiation of birth defects, and production of functional 

abnormalities. The fetus is potentially very sensitive to environmental air pollution 

exposures due to high rates of cell proliferation, greater number of cells at risk, lower 

immunologic competence and decreased capacity to metabolize carcinogens and repair 

DNA.  

Experimental evidence indicates that the placenta contains a mixed function 

oxidase (MFO) system induced by maternal smoking or exposure to other xenobiotics 

(Everson et al. 1986; Juchau et al. 1978; Manchester et al. 1988; Vaught et al. 1979). 

Drug metabolizing enzymes such as CYP1A1, 1B1, 2C8, 2D6, 2E1, 3A4, 3A5, 3A7 are 

also present in the fetal liver after the embryonic phase (8 to 9 weeks of gestation) 

(Hakkola et al. 1998). A growing number of studies demonstrate relationships between 

DNA adduct levels in placenta, exposure to environmental PAHs or tobacco smoke and 

the activity of cytochrome P450s (Everson et al. 1987; Everson et al. 1988; Everson et 

al. 1986; Hansen et al. 1993; Lagueux et al. 1999; Topinka et al. 1997; Whyatt et al. 

1998).  
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Maternal exposure to chemicals could not only compromise placental 

development and exchange but also the hormonal signaling necessary for the continued 

growth of the fetus in utero (Miller et al. 2004). The timing of the exposure to hazardous 

chemicals is critical in determining the effects on the fetus. Sensitive periods of 

development exist during gestation due to higher rates of cell proliferation or changing 

metabolic capabilities (Moore and Persaud 2003). For neural tube defects (NTDs) this 

window is the first 28 days of gestation. NTDs especially spina bifida has a strong 

environmental component in its etiology coupled with a possible genetic predisposition 

in some cases (Thorogood 1997). While less investigated, paternal exposures to 

chemicals can possibly induce direct genetic damage to male germ cells transmitted to 

the offspring (Chia and Shi 2002; Selevan et al. 2000; Sram et al. 1999). A recent study 

suggest that semen quality indicators such as sperms total motility, forward progression, 

functional test, kinetics were lower in men employed at motorway toll gates compared to 

controls (De Rosa et al. 2003). Table 4.1 summarizes the established and suspected risk 

factors for NTDs.  

Epidemiological studies revealed that high levels of ambient air pollution 

increase the risk of morbidity and mortality and cause higher incidence of respiratory 

and cardiovascular diseases and lung cancer. Emerging evidence indicates that air 

pollution is also associated with elevated risk of adverse pregnancy outcomes 

(Glinianaia et al. 2004; Maisonet et al. 2004). Potential teratogens in tobacco smoking 

include PAHs, metals, formaldehyde and others. Air pollution was linked to childhood 

mortality, low birth weight (LBW), premature birth, intra uterine growth retardation 

(IUGR), and birth defects (Sram et al. 2005). The association of ambient air pollution 

and birth defects was described in one report only. Ritz et al. (2002) evaluated the effects 

air pollutants such as carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), and 

particulate matter less than 10 �m in diameter (PM10) on occurrence of birth defects in 

Southern California between 1987 and 1993. The average monthly exposure for each 

pregnancy was estimated from ambient monitoring stations. The study was inconclusive 

for PM10. Certain fetal heart phenotypes were susceptible to the adverse effects of two 
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ambient pollutants CO and O3. Carbon monoxide was associated (during the second 

month of gestation) with ventricular septal defects and O3 exposure with aortic artery 

and valve defects.  

Biological indicators of exposure, effect and susceptibility provide a useful tool 

to evaluate chemical exposures on the placenta and determine their effects on the fetus. 

Reports of DNA adduct detection in human placenta of smoking women were published  

as early as the 1980s (Everson et al. 1986). Earlier studies demonstrated that DNA 

adducts can be detected in cord blood and other fetal tissues (Hatch et al. 1990).  

Studies have suggested that PAH-DNA adducts are positively associated to the risk of 

IUGR (Dejmek et al. 2000; Sram et al. 1999), decreased birth weight and length and 

head circumference (Perera et al. 1999; Perera et al. 1998). Exposure to particulate 

matter early in the pregnancy was associated with IUGR or fetal growth retardation 

leading to low birth weight (Dejmek et al. 1999). After evaluating a larger population, it 

was found that carcinogenic PAHs are responsible for the fetal growth retardation. First 

gestational month was the critical exposure window for fetal growth retardation (Dejmek 

et al. 1999). IUGR positively related to the level of DNA-PAH adducts in placenta and 

DNA adduct levels depended on metabolic genotypes (Sram et al. 1999; Topinka et al. 

1997; Topinka et al. 1997). Low birth weight was associated with increased fetal, 

neonatal, and infant mortality (Arias et al. 2003; Rees et al. 1996; Seeds and Peng 2000),  

subsequent poorer health and delayed physical and cognitive development (Barker 1996; 

Dietz 1994; Matte et al. 2001; Rice and Barone 2000; Richards et al. 2002), and 

increased susceptibility to stress in adulthood (Nilsson et al. 2001) as well as an increase 

in risk of type II diabetes, hypertension, and coronary heart disease during adulthood 

(Barker et al. 2002).  

 In animal studies, BaP impacted fertility (Kristensen et al. 1995), body weight 

(Bui et al. 1986), incidence of malformation (Legraverend et al. 1984), immunologic 

effects (Rodriguez et al. 1999), sexual behavior (Csaba et al. 1993) and transplacental 

carcinogenesis (Anderson et al. 1995). Prenatal exposure of rats to 25-100 �g/m3 BaP  
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Table 4.1. Established and suspected environmental risk factors for NTDs. 

Variable Relative Risk Selected References   

Established Risk Factors           

Inadequate maternal intake of folic acid 2 - 8 (Wald 1993)   

Pre-gestational maternal diabetes 2-10 (McLeod and Ray 2002)  

Anticonvulsants (Valproic Acid and carbamazepine) 3-4 (Lammer et al. 1987; Matalon et al. 2002) 

Suspected Risk Factors           

Maternal Obesity 1.5-3.5 (Waller et al. 1994; Watkins et al. 2003) 

Maternal Hyperthermia 2 (Chambers et al. 1998; Shaw et al. 1998) 

Maternal Vitamin B12 Status 3 (Ray and Blom 2003; Suarez et al. 2003) 

Maternal Diarrhea 3-4 (Felkner et al. 2003)   

Isotretinoin Unknown (Rothman et al. 1995)   

Gestational Diabetes Unknown (Janssen et al. 1996; Sheffield et al. 2002) 

Fumonisins Unknown (Hendricks 1999; Sadler et al. 2002) 

Agent Orange (paternal exposure) Unknown (IOM 1994)  

Chlorination Disinfection by-products Unknown (Dodds and King 2001; Klotz and Pyrch 1999) 

Electromagnetic Fields Unknown (Blaasaas et al. 2002)   

Pesticides Unknown (Shaw et al. 1999)   

Proximity to Hazardous Waste Sites Unknown (Dolk et al. 1998; Orr et al. 2002)  



 

 

159 

through maternal inhalation significantly decreased the fetal survival rate and birth 

weight in a dose-dependant manner (Archibong et al. 2002). 

Reported mechanisms by which PAHs can affect in utero fetal development 

include binding of PAHs to AhR receptors causes anti-estrogenic activity through 

increased metabolism and depletion of endogenous estrogens (Carpenter et al. 2002) 

thus disrupting the endocrine system by altering steroid function. In addition, DNA 

damage resulting in activation of apoptotic pathways (Nicol et al. 1995) or binding to 

receptors for placental growth factors resulting in a decreased exchange of oxygen and 

nutrients available (Dejmek et al. 2000) may induce fetal toxicity or interference with 

transcription, DNA replication, or protein synthesis (Bostrom et al. 2002).  

Total bulky DNA adduct levels in placenta samples collected from mothers 

living in two regions of the Czech Republic with different pollution levels was 

significantly higher in the most polluted area (2.12 ± 1.46 per 108 nucleotides compared 

to 1.48 ± 1.09 per 108 nucleotides). Elevated DNA adduct levels were also found in 

smoking mothers (10 or more cigarettes per day) by comparison with non-smoking 

mothers (3.21 ± 1.39 versus 1.32 ± 0.88 adducts per 108 nucleotides). Higher DNA 

adduct levels were detected in the individuals with GSTM1 null genotype by comparison 

with GSTM1 wild-type genotype (2.05 ± 1.30 versus 1.66 ± 1.39 adducts per 108 

nucleotides). Seasonal variation in DNA adduct levels was noted only in GSTM1 null 

genotype (Topinka et al. 1997).  

Epidemiological case-control studies in Southern California showed that 

increased risk of low birth weight and premature birth associated with increases in 

ambient air pollution related to traffic and the resulting petroleum combustion products 

emitted from vehicles residential proximity to heavy traffic roadways influenced the 

occurrence of low birth weight and/or pre-term birth in infants in Los Angeles County 

between 1994 and 1996. Exposure to traffic-related air pollution was estimated using a 

distance-weighted traffic density measure that includes residential proximity and traffic 

levels on roadways surrounding homes. Relative risk for pre-term birth was reported to 

be 1.08 (95%CI= 1.01-1.15) for infants in the highest distance-weighted traffic density 
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quintile (Ritz et al. 2002; Wilhelm and Ritz 2003). Mean adduct levels in human 

placenta and umbilical cord vessels were two-fold higher in smokers (43 ± 11 per 109 

nucleotides) as compared to non-smokers (20 ± 4 per 109 nucleotides) (Hansen et al. 

1992).  

This text reports on a study to evaluate biomarkers of exposure and early genetic 

damage by PAHs in placenta samples collected from NTD cases and controls in the 

Chinese province of Shanxi. Polymorphims of two major Phase II metabolic enzymes 

(GSTM1, GSTT1) and six DNA repair genes (XRCC1, OGG1, MGMT, ERCC2, 

APEX1, XRCC3) were also measured to evaluated genetic sensitivities. 

 

4.2 Materials and Methods 

4.2.1 Subject Recruitment 

Children and parents of children born with NTDs as well as children and parents 

of children from a matched control population were recruited for the study from four 

county birth hospitals. The types of congenital malformations that were studied were 

selected based on evidence suggesting an environmental component in their etiology. 

Neural tube defects, including anencephaly and spina bifida, are readily recognizable at 

birth based on a routine newborn physical examination. All spontaneous abortions, late 

fetal deaths (stillbirths), and live births occurring in four hospitals in the Shanxi region 

(including Tai Yuan) in northern China were recruited for the study.  Subject recruitment 

was facilitated by the presence of a birth defects surveillance system in China since 1992 

as described by Li et al. (2003). The consent form, questionnaire and all study protocols 

were reviewed and approved by the Texas A&M University Institutional Review Board 

(IRB) prior to initiation of the study. A copy of the Texas A&M University IRB 

approved protocols (No. 2003-0430) for this research is attached to this document. Each 

hospital received training from project staff, as well as a protocol book that was 

translated into Chinese.  
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4.2.2.1 Case Ascertainment 

Babies with NTDs were identified at the time of birth by the attending physician.   

Birth attendants were trained to perform a standardized assessment of the infant 

immediately after delivery.   Procedures were established at each of the participating 

hospitals for a standardized examination of all babies, both live births and late fetal 

deaths.  Information on malformations of any type was entered on the reporting form.  

When a baby was born with an NTD a special case reporting form was completed and a 

study coordinator was contacted and informed of the birth of a potential “case.”   In 

cases of fetal or neonatal deaths, procedures were established with the hospital to retain 

the remains in the pathology department until the diagnosis can be confirmed.  If the 

diagnosis was confirmed the birth was entered into the registry and the mother contacted 

to participate in the case-control study. 

 

4.2.2.2 Case Mother Enrollment 

When the physician verified the diagnosis of the appropriate congenital 

malformation, they confirmed with the hospital staff that it is acceptable to contact the 

mother.  Whenever possible, the mother was contacted while in the hospital and the 

study was described to her. The details of the study were presented and, if it is 

considered appropriate by the physician, informed consent for participation was obtained 

and the questionnaire was administered.  The mother was asked to sign an informed 

consent form (in Chinese) and to complete the study interview at that time or another 

time before discharge.  If this was not possible, information on how to contact her after 

discharge was obtained and a possible timeframe for the interview was determined.  

 

4.2.2.3 Control Selection  

One control was selected for each case from among the births at the same 

hospital where the case was born.   Each month of the study, one additional control was 

recruited from each birth hospital.  Controls were identified from the hospital’s birth 

registry records, selecting births immediately following the case, or when case subjects 
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were born preterm a case was selected from children born at the approximate date for a 

full term delivery.  The babies’ records were reviewed for the presence of congenital 

malformations.  If there was any record of the baby having a congenital malformation, of 

any type, the next birth from the birth records was selected and reviewed. 

 

4.2.2.4 Study Questionnaire 

Case and control mothers who provided informed consent to enroll in the study 

were interviewed in-person using a standardized questionnaire that was translated to 

Chinese. The questionnaire was designed to ask about potential risk factors and 

confounders that are relevant to the circumstances in China. The questionnaire was 

based on the one developed by the Centers for Disease Control and Prevention and the 

California State Birth Defects Surveillance programs. This questionnaire is currently 

being used in a national collaborative case-control study of congenital malformations in 

the United States.  It included questions on topics such as: occupation, chronic and acute 

illnesses, smoking habits, nutrition and alcohol use, prescription and non-prescription 

drug use, socio-demographic information, a complete reproductive history along with a 

family history of birth defects or genetic diseases, and a maternal residential history 

relative to the study pregnancy. The questions were time specific, asking about these 

factors for the period three months prior to pregnancy and during pregnancy, by 

trimester.  Questions about the father of the subject included inquiries about occupation, 

race and ethnicity, age, smoking habits, and alcohol and drug use.  Questions related to 

history of congenital malformations and genetic diseases in either the mother’s or the 

father’s family and about consanguinity were also included. The questionnaire was 

developed in English with modifications appropriate for Chinese culture. The 

questionnaire was reviewed by an individual outside of the project for consistency with 

the English version and was approved by the Texas A&M University Institutional 

Review Board. A copy of the questionnaire is attached as appendix I. 
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4.2.2 Placenta Samples Collection 

Placental tissue samples corresponding to a wet weight of 20 g each were 

collected postpartum from the fetal side. Tissue sections were taken from all parts of the 

placenta to be representative of the whole placenta. Excess blood was drained and the 

tissue sample was rinsed with 30 ml of sterile saline solution. Tissue samples were 

placed in sterile 50 ml polypropylene centrifuge tubes (BD Falcon, BD Biosciences, San 

Jose, CA) on dry ice. 

 

4.2.3 Extraction of Solid Tissue Samples 

Prior to extraction, pre-weighed aliquots of placenta samples were lyophilized in 

a FreeZone 12 Liter Console Freeze Dry System (Labconco, Kansas City, MO) at -50oC 

and 0.012 mBar which is the setting specific for human tissues. Three days later, dried 

placenta samples were ground using pre-cleaned glass mortars and pestles pre-rinsed in 

ethanol. Dried placenta samples are weighed and submitted for extraction.  

This standard operating procedure is based on EPA SW-846 Method 3545, and 

provides an accurate and precise method for extraction, isolation, and concentration of 

selected organic compounds from solid samples. Final extracts were used in the 

quantitative determination of aromatic hydrocarbons by chromatographic procedures.  

An automated extraction apparatus (Dionex ASE200 Accelerated Solvent Extractor) was 

used to extract various organics from 2 to 15 g of pre-dried samples.  The extractions 

were performed using dichloromethane solvent inside stainless-steel extraction cells held 

at elevated temperature and solvent pressure.  The extracts dissolved in the solvent were 

then transferred from the heated extraction cells to glass collection vials containing 

activated copper granules to minimize matrix interference during quantitative 

determinations.  Extracts were then concentrated to a final volume of 1 mL and 

transferred to pre-weighed sterile glass culture tubes with teflon-lined caps, dried under a 

stream of nitrogen, reweighed using an evaporative solvent reduction apparatus (Zymark 

TurboVap II) and stored at 4°C. 
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4.2.4 Clean-up of Placenta Samples   

4.2.4.1 Glassware and Preparation of Sodium Sulfate and Alumina 

Glassware was thoroughly cleaned with a detergent solution and rinsed with 

water. Glassware openings were rinsed with clean aluminum foil and the glassware was 

combusted at 400°C for a minimum of 4 hr.  Glassware not suitable for combustion 

(such as volumetric glassware) was rinsed 3 times with acetone to remove water, then 

rinsed 3 times with dichloromethane.  Glassware was sealed with solvent-rinsed 

aluminum foil.  All glassware was stored in a clean environment to prevent the 

accumulation of dust and other contaminants.   

Sodium sulfate was purified by combustion in a pre-cleaned shallow aluminum 

pan at 400°C for at least 4 hours.  The sodium sulfate was then stored in an oven at 

120°C until use.  Immediately prior to use, sodium sulfate was placed in a desiccator to 

cool. 

Alumina was purified by combustion in a pre-cleaned shallow aluminum pan at 

400°C for at least 4 hours and stored in an oven at 120°C until use.  Immediately prior to 

use, alumina was placed in a desiccator to cool. Silica gel was purified by placing it in a 

suitable glass container in an oven at 170°C for at least 16 hr. and stored in an oven at 

170°C until use.  Immediately prior to use, silica gel was placed in a desiccator to cool. 

 

4.2.4.2 Silica-gel/Alumina Column Cleanup 

Extracts were processed through a silica-gel/alumina column cleanup and then an 

HPLC cleanup to remove interfering lipid compounds. It is important that the laboratory 

temperature is below 27°C in order to keep the reagents in the columns from separating. 

Prior to use, the sodium sulfate, alumina and silica gel were removed from the oven, 

placed in a desiccator and allowed to cool. To deactivate the alumina prior to use, 

alumina (10 g per chromatography column including one extra) was weighed into a 

combusted glass jar with a Teflon-lined screw cap and 1% (w/w) reagent water was 

added to the alumina.  The jar was placed on the tumbler and mixed for a minimum of 1 

hour.  The deactivated alumina was used the same day it was prepared. 
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To deactivate silica gel prior to use, silica gel (20 g per chromatography column 

including one extra) was weighed into a combusted glass jar with a Teflon-lined screw 

cap and 5% (w/w) reagent water was added to the silica gel.  The jar was placed on the 

tumbler and mixed for a minimum of 1 hour.  Deactivated silica gel was used the day it 

was prepared. 

A glass wool plug was added into the bottom of a clean solvent rinsed liquid-

chromatography column and packed down using a clean solvent rinsed glass or stainless 

steel rod.  A beaker was placed beneath the column opening to catch waste effluent.  The 

column was rinsed three times with dichloromethane.  The stopcock was closed and the 

column filled the column with 20 cm of dichloromethane. One cm of combusted sodium 

sulfate was added to the column and rinsed down with dichloromethane.  In order to 

evenly distribute the sodium sulfate the column glass was gently tapped. 

Ten grams of alumina was weighed into a beaker.  The alumina was poured into 

the column and the remaining alumina was rinsed from the beaker into the column using 

dichloromethane.  Gently, the column glass was tapped to evenly distribute the alumina.  

The alumina was allowed to settle and the stopcock was opened for 15 to 20 seconds in 

order to pack the alumina tightly and remove air bubbles, then closed. 

Approximately 20.0 g of silica gel was weighed into a beaker and 

dichloromethane added to form a slurry.  The slurry was poured into the column and the 

remaining silica gel was rinsed from the beaker into the column using dichloromethane.  

Gently the column glass was tapped to evenly distribute the silica gel.  The silica gel was 

allowed to settle and as performed with alumina, the stopcock was opened for 15 to 20 

seconds to pack the silica gel and remove air bubbles, and then closed. 

Another 1 cm of combusted sodium sulfate was added to the top of the column 

and rinsed down with dichloromethane.  The column glass was tapped to evenly 

distribute the sodium sulfate.  The sodium sulfate was rinsed down with 

dichloromethane.  The stopcock was opened and the solvent drained to the top of the 

sodium sulfate. 

A 50 mL volume of pentane was added to the column through a glass funnel, 
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slowly not to disturb the top of the column.  The column was drained to the top of 

sodium sulfate layer.  The tip of the column was rinsed with dichloromethane.  The 

waste beaker is then replaced with a clean 250-mL flask. 

The sample extract was transferred to the top of the column with a combusted 

disposable glass pipette.  The column was drained to just below the top of the sodium 

sulfate layer.  The extract vial was rinsed three times with 1-mL portions of 50:50 

pentane/dichloromethane, transferring the rinses to the top of the column with the same 

disposable glass pipette tip used to transfer the extract to the column.  The solvent was 

drained to just below the top of the sodium sulfate layer. 

A volume of 200 mL of the 50:50 pentane/dichloromethane solution was added 

to the column through a glass funnel, slowly not to disturb the top of the column.  The 

stopcock was partially opened to totally drain the solvent at a flow rate of 1 mL/min. The 

collected fraction contains aromatic and chlorinated hydrocarbons. 

 

4.2.4.3 Water Bath Extract Concentration 

Three to five Teflon boiling chips were added to the collection 250-mL flask and 

a 3 ball Synder column was inserted.  Each boiling flask was placed into a 55 - 60°C 

water bath to reduce the solvent volume to approximately 5 mL.  The reduced volume 

extract was transferred into a Kurderna-Danish (KD) concentrator tube.One boiling chip 

was added to each KD tube and the sample volume was reduced from 1 mL to 5 mL in a 

water bath maintained at 55 - 60°C.  The residual sample is then transferred into a 4 mL 

clean extract vial using a disposable glass pipette and stored at 4°C ± 2°C until HPLC 

analysis.  The extract vial was rinsed two times with 1-mL portions of dichloromethane, 

transferring the rinses to the HPLC vial with the same disposable glass pipette.  

Dichloromethane was added to the HPLC vial to a final volume of 4 mL.   

 

4.2.4.4 HPLC Cleanup 

Lipid removal from the aromatic fraction was accomplished using a Waters 

Model 590 Programmable Solvent Delivery Module high performance liquid 
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chromatography (HPLC) pump with two size exclusion columns in series (21.2 x 300 

mm Phenogel 10µm GPC 100A columns) and a guard column (7.8 x 50mm Phenogel 

100A).  The columns were operated at 25°C.  A volume of 2 mL of the aromatic fraction 

sample extract was injected onto the HPLC columns using the autosampler, and eluted 

with 7 mL/min dichloromethane. Samples were introduced into the column using a 

Waters 717 plus autosampler, capable of introducing a 0.5 mL to 2 mL sample.  Elution 

times for compounds of interest were monitored by the use of a Waters 486 UV 

absorbance detector and recorded on a Waters 746 Data Module.  The appropriate 

fraction was collected with a Waters Fraction Collector. The following HPLC conditions 

were used: 

 

                                    Pump: delivered 7 mL/min dichloromethane 

Autosampler: injected 2 mL/min 

Run Time: 35 min 

Absorbance Detector: 254 nm 

 

Collection time intervals were based on the retention time of three standards; 

4,4’-dibromooctochlorobiphenyl, biphenyl, and perylene.  This standard mixture was 

initially injected in duplicate and re-injected after every 6 samples.  The collection 

window was set to minimize the collection of interfering lipid compounds but maximize 

the collection of analytes of interest.  Analytes of interest were collected at specific time 

intervals into 40-mL TurboVap II concentrator tubes with 0.5-mL endpoint marks. 

The following fraction collector conditions were used: 

 

Action Mode: 7(= B window) 

Bottle Arrange (1, 2, 3, 4 = microplate): No 1  

Waiting Time [bottle mode]: 

Wait Time: 0 min 0 sec 
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Windows: 

Window 1: 

Start Time: 17 min 10 sec 

End Time: 22 min 40 sec 

Window 2: 

Start Time: 0 min 0 sec 

Fraction Capa (bottle mode): 

Time Fraction: 5 min 31 sec per tube* 

Condition (bottle mode): 

Multiple Sample (0 = single, 1 = mult): 1 

Peak (0 = nonpeak, 1 = +peak): 0 

 

*The time fraction was set for 1 sec longer than the total window 

time. 

The Waters 746 Data Module was programmed as follows: 

CH A 

Plot Off 

CS 0.5 

Attenuation 128 

 

The following standard retention times were used to adjust the collection window: 

 

4,4’-dibromooctachlorobiphenyl: 17.60 min 

Biphenyl:  19.07 min 

Perylene:  21.66 min 

 

Collected extracts were reduced to a volume of 0.5 mL following the procedures 

described previously, and transferred to clean 2 mL amber vials.  After all processing 

steps have been completed, each extract was transferred to a 2-mL amber extract vial 
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using a combusted disposable glass pipette and stored at  –20°C ± 4°C until further 

analysis. 

 

4.2.5 DNA Isolation from Placenta Samples and 32P-postlabeling 

DNA was isolated from placenta samples and postlabled following the methods 

described in Chapter III. 

 

4.2.6 Genotyping  

Genotyping assays for variants of selected genes were performed in Dr. Richard 

Finnell’s laboratory at the Institute of Biosciences and Technology. Placenta DNA from 

a subset of case and control subjects were used in those assays. Based on experience 

with this population and information from the literature, the study focused on 

polymorphisms in genes for three Phase I and II metabolizing enzymes (CYP1A1, 

GSTM1, GSTT1) and six DNA repair genes (XRCC1, OGG1, MGMT, ERCC2, 

APEX1, XRCC3). 

The selected SNPs were submitted to Applied Biosystems (Foster City, CA) to 

establish our unique SNPlex 48-plex assays on the 6 DNA repair candidate genes that 

were analyzed for in DNA isolated from biological samples. One limitation of the 

SNPlex technology is that realistically, anywhere from 5~20% of the SNPs will fail in 

the assay design, due to factors such as GC content or distance between SNPs. For those 

SNPs that were identified but could not be included in this SNPlex design, alternative 

methods such as individual TaqMan assays were used. For insertion/deletions and short 

tandem repeat (STR) polymorphisms, we performed our analyses on the fragment size, 

either using gel or capillary electrophoresis (Genescan on ABI 3100 Genetic Analyzer). 

Direct sequencing using BigDye Terminator (Applied Biosystems, Foster City, CA) 

continued to serve as the 'gold standard' for validation of genotyping data.  

According to the manufacturer, the SNPlexTM genotyping system (Applied 

Biosystems, Foster City, CA) is considered a high throughput and low cost assay based 

on universal multiplexed oligonucleotide ligation assay (OLA)/PCR technology and drag 
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chute mobility modifiers. The SNPlex assay starts with 3 unique ligation probes and a 

region of target gene sequence called the Genome Equivalent Region (GER). This is a 

portion of sequence that is complementary to the gDNA target on either side of the SNP 

site. The Locus Specific Oligo (LSO) requires a phosphate group on the 3’ end to enable 

the ligase enzyme to perform the ligation. There are two allele specific oligos (ASO) 

each contains a unique "ZipCode" sequence and they play the role in identifying the 

PCR amplified ligation products prior to detection. After the ligation, the residual LSO 

and ASO probes will be removed utilizing two different exonucleases. Each of these 3 

probe constructs contains universal PCR priming sites, which enable the assay to use the 

same PCR primers for every multiplexed PCR reaction. The reverse universal PCR 

primer has a Biotin attached to the 5’ end that will be used to isolate or capture the 

double stranded DNA for detection. This technology allows up to 48 SNPs to be tested 

in a single reaction, consuming as little as 1ng DNA per SNP. The data was analyzed 

using GeneMapperTM v 3.5.  

In addition to using SNPlex to analyze target SNPs in our DNA repair candidate 

genes, TaqMan assays were used for CYP1A1 SNPs that were impossible to multiplex.  

The TaqMan assay used two primers surrounding the SNP to generate short amplicons 

(about 50 to 100bp). The amplicon was subsequently interrogated with two allele 

specific probes labeled with different fluorescent dyes. These allele specific probes each 

had a fluorescent tag (e.g., FAM and VIC) on one end and a quenching dye at the other 

end. When the probe sequence matched the template sequence, the probe bound tightly 

to the template and the Taq polymerase cleaved the quencher free using its 5’ 

exonuclease activity and allowed the fluorescence of the reporter to release. The 

TaqMan allele discrimination assay was performed on ABI PRISM® 7900HT Sequence 

Detection System (Applied Biosystems, Foster City, CA).  The Assay was purchased 

from ABI either as an Assay-on-Demand (off-the-shelf), or Assay-by-Design (made-to-

order). The reaction was performed in 384-well plate format and duplicates were used 

for each sample to ensure accurate genotyping. The results were then exported into 

EXCEL file for statistical analysis. The TaqMan assay is considered a very efficient and 
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accurate technique however, this assay cannot run in a multiplex manner and requires 

relatively large amount of DNA for multiple SNP assays. 

 

4.2.7 Statistical Analyses 

Statistical analyses were performed using SigmaStat (Systat 2004). Data was 

available from environmental and human measurements (DNA adducts, genetic 

polymorphisms). Values, including PAHs in environmental or biological samples, were 

normalized by log transformation as needed and arithmetic values used for other 

variables. Descriptive statistics was performed first.  Second, multivariate analyses were 

performed by using t-test or One Way Analysis of Variance (ANOVA) unless the 

normality test failed (P<0.05). When the normality failed, Mann-Whitney Rank Sum 

Test or Kruskal-Wallis One Way Analysis of Variance on Ranks was carried out. The 

criterion for statistical significance was a P-value < 0.05.  

 

4.3 Results  

Neural tube defects cases and matched controls were recruited from participating 

birth hospitals in Shanxi, China. Among the 156 families that signed consent to be 

included in the study, 72 were identified as cases and 84 were identified as controls 

(Table 4.2). Among neural tube defect cases, 37% were diagnosed with anencephaly, 

whereas 44% were diagnosed with spina bifida and 11% had both types of neural tube 

defect as reported in Table 4.3.  

 

Table 4.2. Case status of study subjects. 

Case Status N(Valid Percent) 
  Case  72(46%) 
  Control 84(54%) 
 
Table 4.3. Type of neural tube defect cases.  

Type of Neural Tube Defect N(Valid Percent) 
  Anencephaly 22(37%) 
  Spina Bifida 26(44%) 
  Anencephaly + Spina Bifida 11(19%) 
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During the initial period of the study, neural tube defects were monitored in four 

participating study counties including PingDing, Taigu, Xiyang and Zezhou. The results 

indicate that the frequency of NTDs ranged from 8 to 24 cases per 1,000 births in these 

counties as displayed in Table 4.4.   

 
Table 4.4. Frequency of neural tube defects in Shanxi province, China from January to June, 2005. (Data 
from Pingding and Taigu counties is from January to May, 2005. Data from Xiyang and Zezhou counties 
is from January to June, 2005.)  
 
    

Area Live-births Stillbirths NTDs cases 
NTDs Incidence Rate 
(per 1,000 live-births) 

Pingding 1,363 21 21 15 
Taigu 1,145 17 9 8 
Xiyang 1,289 5 23 18 
Zezhou 1,761 37 42 24 

 

Questionnaire results are summarized in Table 4.5. Lifestyle questions related to 

PAH exposures were framed. Briefly, 97% of the mothers did not report smoking during 

pregnancy. However, around 88% reported being exposed to passive smoking. In 

addition, 88% reported using hard coal as cooking fuel, while the rest used black coal, 

firewood or natural gas. Only 37% of the fathers did not smoker, whereas the rest smoke 

at least “occasionally” according to the questionnaire results. Also of importance in the 

etiology of NTDs is folic acid supplementation. Only 10% of the mothers participating 

in this study reported using folic acid supplementation.  
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Table 4.5. Summary of questionnaire responses by mothers that provided placenta samples for analysis.  
 
 N(Valid Percent) 
Sex of Baby  
    Male 77(52%) 
    Female 70(48%) 
Pregnancy Unexpected  
    Yes 35(24%) 
    No 111(76%) 
Sequence of Pregnancy  
    1st pregnancy 65(44%) 
    2nd or more pregnancy 84(56%) 
Sequence of Delivery  
    0 to 1 81(55%) 
    2 or more 66(45%) 
Number of Prenatal Exams during Pregnancy  
    0 to 2 exams 70(48%) 
    3 to 8 exams 76(52%) 
Maternal BMI  
    Underweight (Below 18.5) 4(2%) 
    Normal (18.5 - 24.9) 90(68%) 
    Overweight (25.0 - 29.9) 43(26%) 
    Obese (30.0 and above) 7(4%) 
Maternal Age at Delivery  

    Under 25 56(38%) 
    25 to 35 74(53%) 
    Over 35 13(9%) 
Current Occupation  
    Farmer and fishery 115(77%) 
    All other occupations 34(23%) 
Maternal Education Level  
    Primary school or lower 24(16%) 
    Junior high 108(73%) 
    High school or technical secondary school 11(7%) 
    Junior college or higher 6(4%) 
Previously had babies with birth defects  
    Yes 8(5%) 
    No 141(95%) 
Paternal Education Level  
    Primary school or lower 17(11%) 
    Junior high 111(74%) 
    High school or technical secondary school 18(12%) 
    Junior college or higher 4(3%) 
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Table 4.5. (continued)  

 N(Valid Percent) 
 
Consanguinity  
    Yes 1(1%) 
    No 148(99%) 
Cold or Fever 1 month before to 2 months after conception  
    Yes 29(19%) 
    No 118(79%) 
Anemia 1 month before to 2 months after conception  
    Yes 9(6%) 
    No 139(93%) 
Hyperemesis gravidarum 1 month before to 2 months after 
conception  
    Yes 29(20%) 
    No 117 (79%) 
Hepatitis 1 month before to 2 months after conception  
    Yes 2(1%) 
    No 144(97%) 
Other infectious diseases 1 month before to 2 months after 
conception  
    Yes 3(2%) 
    No 144(97%) 
Prophylactic medication 6 months before to 2 months after 
conception  
    No 150(100%) 
Anti-epilepsy or sedatives 1 month before to 2 months after 
conception  
    Yes 2(1%) 
    No 147(99%) 
Antibiotics 1 month before to 2 months after conception  
    Yes 8(5%) 
    No 141(95%) 
Analgesic 1 month before to 2 months after conception  
    Yes 4(3%) 
    No 145(97%) 
Other medications 1 month before to 2 months after conception  
    Yes 13(9%) 
    No 136(91%) 
Folic  acid supplementation  
    Yes 13(10%) 
    No 116(90%) 
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Table 4.5. (continued)  
 N(Valid Percent) 
Smoking 1 month before to 2 months after conception  
    Yes 5(3%) 
    No 145(97%) 
Passive smoking 1 month before to 2 months after conception  
    Yes 88(59%) 
    No 62(41%) 

Drinking liquor 1 month before to 2 months after conception  
    Yes 22(15%) 
    No 127(85%) 
 
Drink beer, red or rice wine 1 month before to 2 months after 
conception  
    Yes 28(19%) 
    No 122(81%) 
Cook in kitchen 1 month before to 2 months after conception  
    Almost none 22(15%) 
    Sometimes 47(31%) 
    Every day 81(54%) 
Drink herbal tea 1 month before to 2 months after conception  
     Almost none 125(83%) 
    Sometimes 21(14%) 
    Every day 4(3%) 
Kitchen separate from living room or bedroom  
    Yes 129(87%) 
    No 20(13%) 

Major fuel for cooking  
    Black coal, Firewood or Natural Gas 60(41%) 
    Hard coal 88(59%) 

Pregnancy during winter  
    Yes 53(38%) 
    No 86(62%) 
Stove used for heating  
    Yes 38(72%) 
    No 15(28%) 
Stove in living room or bedroom  
    Yes 31(82%) 
    No 7(18%) 
Major fuel for heating  
    Black coal, Firewood or Natural Gas 13(34%) 
    Hard coal 25(66%) 
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Table 4.5. (continued)  
 N(Valid Percent) 
Ventilation use  
    Daily 14(37%) 
    Sometimes 22(58%) 
    Almost none 2(5%) 
Air quality during heating  
    Fume every day 2(5%) 
    Fume sometimes 21(55%) 
    Clean air 15(40%) 
Contact with toxis materials 1 month before to 2 months after 
conception  
    Yes 6(4%) 
    No 143(96%) 
Long term exposure to noise 1 month before to 2 months after 
conception  
    Yes 2(1%) 
    No 147(99%) 
Ultrasonic examination 1 month before to 2 months after 
conception  
    None 14(9%) 
    Once 39(26%) 
    More than once 96(65%) 
X-ray examination or treatment 1 month before to 2 months after 
conception  
    None 149(100%) 
Meat consumption 1 month before to 2 months after conception  
   Less than 1 meal per week 88(59%) 
   1 to 3 meals per week 41(28%) 
   4 or more meals per week 19(13%) 
Egg or milk consumption 1 month before to 2 months after 
conception  
    Less than 1 meal per week 55(37%) 
    1 to 3 meals per week 47(32%) 
    4 or more meals per week 46(31%) 
Fresh veggie consumption 1 month before to 2 months after 
conception   
    Less than 1 meal per week 11(7%) 
    1 to 3 meals per week 29(20%) 
    4 or more meals per week 108(73%) 
Fresh fruit consumption 1 month before to 2 months  
after conception  
    Less than 1 meal per week 16(11%) 
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Table 4.5. (continued)  
 N(Valid Percent) 
    1 to 3 meals per week 41(27%) 
    4 or more meals per week 92(62%) 
Soy bean consumption 1 month before to 2 months after 
conception  
    Less than 1 meal per week 57(38%) 
    1 to 3 meals per week 59(40%) 
    4 or more meals per week 33(22%) 
Pickle or preserved food comsumption 1 month before to 2 
months after conception  
    Less than 1 meal per week 90(60%) 
    1 to 3 meals per week 37(25%) 
    4 or more meals per week 22(15%0 
Pullulated potato consumption 1 month before to 2 months after 
conception  
    Less than 1 meal per week 117(80%) 
    1 to 3 meals per week 24(16%) 
    4 or more meals per week 6(4%) 
Vinegar consumption 1 month before to 2 months after 
conception  
   Less than 1 meal per week 17(11%) 
    1 to 3 meals per week 37(25%) 
    4 or more meals per week 95(64%) 
Cooking habit 1 month before to 2 months after conception  
    Non-fried foods (salad or roasted) 23(15%) 
    Stir-fried 126(85%) 
Source of drinking water 1 month before to 2 months after 
conception  
    Tap water 99(66%) 
    Other water sources (well, river, pond or others) 50(34%) 
Major crops consumed 1 month before to 2 months after 
conception  
    Wheat flour 144(97%) 
    Rice or other 4(3%) 
Psychic trauma 1 month before to 2 months after conception  
    Yes 2(1%) 
 
    No 147(99%) 

Husband’s smoking behavior  
    None 37(25%) 
    Occasionally 41(27%) 
    1 to 10 per day 33(22%) 
    More than 10 per day 38(26%) 

Husband drinking liquor  
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Table 4.5. (continued)  
 N(Valid Percent) 
    None 48(32%) 
    Occasionally 89(60%) 
    Frequently 11(8%) 
Husband drinking beer, red or rice wine  
    None 47(32%) 
    Occasionally 92(62%) 
    Frequently 9(6%) 
Husband contact with toxic materials 1 month before to 2 months 
after conception  
    Yes 13(9%) 
    No 136(91%) 
 

 

Placental tissue samples were collected from participating mothers after their 

delivery of a NTD case child or control. Placentas were used as a mean to explore the 

chemical exposures occurring to the fetus during gestation. After freeze-drying and 

solvent extraction, placentas were analyzed for PAHs listed in Table 3.2. Median 

concentration of PAHs in placental tissue sampled obtained from cases was 168 ng/g dry 

weight as opposed to 158 ng/g dry weight of PAHs detected in placental tissue collected 

from controls. Carcinogenic PAHs were at median concentrations of 6 ng/g dry weight 

in cases and 11 ng/g dry weight in controls. However, differences in PAH levels in 

placenta by case status were not statistically significant. Levels of total and carcinogenic 

PAHs in case and controls are presented in Table 4.6 and graphically in Figure 4.1.  
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Table 4.6. Concentrations of total and carcinogenic PAHs (ng/g dry weight) in placental tissue by case 
status.  
 

 Total PAHs Carcinogenic PAHs 

 Case Control Case Control 

Min 7 44 1 1 

Median 168 158 6 11 

Max 505 529 108 196 

Mean 165 159 15 17 

Std dev 116 98 24 37 

SEM 19 19 4 7 

Sample size 39 26 38 26 

P-value 0.810  0.279  
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Figure 4.1. Bar graph representing mean total and carcinogenic PAH levels in placental tissue collected 
from NTD cases and controls.  
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The effect of passive smoking on placenta levels of total and carcinogenic PAHs 

was also evaluated. The median concentration of total PAHs in placentas from mothers 

who reported being exposed to passive smoking was 173 ng/g dry weight which was 

elevated compared to placentas originating from mothers with no exposure to passive 

smoking that had a total PAH median concentration of 140 ng/g dry weight. 

In addition, carcinogenic PAH in the same two groups showed an elevation in placenta 

tissues from mothers exposed to passive smoking. These data reviewed in Table 4.7 and 

presented graphically in Figure 4.2 did not show any statistically significant difference in 

PAH concentrations.  

 
 
 
Table 4.7. Concentrations of total and carcinogenic PAHs (ng/g dry weight) in placental tissue by passive 
smoker status of the mothers that provided the samples.  
 

 Total PAHs Carcinogenic PAHs 

 
Passive 
Smoker 

Not Passive 
Smoker 

Passive 
Smoker 

Not Passive 
Smoker 

Min 7 12 1 1 

Median 173 140 9 7 

Max 529 389 196 92 

Mean 172 152 19 12 

Std dev 127 81 37 17 

SEM 21 15 6 3 

Sample size 36 29 35 29 

P-value 0.787  0.710  
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Figure 4.2. Bar graph representing total and carcinogenic PAH levels in placental tissue by passive 
smoking status of the mothers.  

 

In addition to measuring the internal dose of PAHs in placental tissue, DNA was 

extracted from placentas and used to measure bulky DNA adducts by 32P-postlabeling. 

However, as displayed in Table 4.8, levels of DNA adducts in placenta tissue from cases 

or controls were not to be statistically different. Mean levels of DNA adducts were 9 

adducts per 109 nucleotides in both groups.  DNA adducts levels were seemingly not 

significantly different between mothers exposed to passive smoking and mothers who 

are not. Mean levels of DNA adducts were around 9 adducts per 109 nucleotides in both 

groups also (Table 4.9). Figure 4.3 shows scanned autoradiograms of DNA adducts in 

placentas from a control non-smoker, case non-smoker, control smoker and case smoker.  
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Table 4.8. Bulky DNA adduct levels (per 109 nucleotides) in placental tissue by case status.  
 

 DNA Adducts 

 Case Control 

Min 3 3 

Median 8 9 

Max 18 17 

Mean 9 9 

Std dev 3 3 

SEM 0.4 1 

Sample size 62 54 

P-value 0.510  
 
 
 
 
 
 
 
Table 4.9. Bulky DNA adduct levels (per 109 nucleotides) in placental tissue by passive smoking status of 
the mothers that provided the samples.  
 

 DNA Adducts 

 Passive Smoker Not Passive Smoker 

Min 3 4 

Median 8 8 

Max 17 18 

Mean 9 9 

Std dev 4 3 

SEM 0.4 0.4 

Sample size 67 49 

P-value 0.739  
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Figure 4.3. Autoradiograms of 32P-postlabeled placenta bulky DNA adducts from non-smoker subjects. 
Autoradiography for 24 hr. at -80oC using Kodak XAR-5 film. 

 

Cooking fuel type seemed to be associated with DNA adducts in WBCs of 

fathers and mothers as described in the previous chapter. Concentrations of total and 

carcinogenic PAHs as well as DNA adducts in placenta samples from mothers who 

reported using hard coal as cooking fuel were compared to those leves in placentas from 

mothers who used other cooking fuel types. These results are reported in Table 4.10. 

Total and carcinogenic PAH median levels did not seem to be elevated in placentas from 

mother using hard coal when compared to the rest. However, median DNA adduct levels 

seem to be slightly increased in hard coal users (9 adducts per 109 nucleotides) as 

a. Control Smoker b. Case Smoker 

c. Control Non-Smoker c. Case Non-Smoker 
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compared to the others (7 adducts per 109 nucleotides). The difference in DNA adducts 

levels between these two groups was statistically significant.  

 Bulky DNA adduct levels were also evaluated by time of delivery, winter or 

summer (Table 4.11). Winter included births during the months of January through 

April, whereas summer included births during the months of May through July 

according the date of delivery provided by the study questionnaires. Around 58% of 

mothers in this study have delivered in the summer. Interestingly, DNA adducts levels 

seem to be significantly more elevated in summer deliveries as compared to winter 

deliveries. Placentas collected in the summer exhibited median DNA levels of 9 adducts 

per 109 nucleotides, whereas as those collected in the winter were found to have median 

DNA adduct levels of 7 adducts per 109 nucleotides.  

 

 
 
Table 4.10. Total and carcinogenic PAHs (ng/g dry weight) as well as bulky DNA adduct levels (per 109 
nucleotides) in placental tissue by cooking fuel type.  
 

 
Total PAHs  

(ng/g dry weight) 
Carcinogenic PAHs 

(ng/g dry weight) DNA Adducts 

 
Hard 
Coal Other  

Hard 
Coal Other  

Hard 
Coal Other  

Min  44 12 1 1 3 4 
Median 154 161 7 13 9 7 
Max 529 505 196 108 17 18 
Mean  166 172 14 24 9 8 
Std dev 98 136 29 32 3 3 
Std error 14 34 4 8 0.4 0.5 
Sample 
size 47 16 47 15 74 40 
P-value 0.788  0.122  0.049  
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Table 4.11. Bulky DNA adduct levels (per 109 nucleotides) in placental tissue by time of delivery.  
 

 DNA Adducts 

 Winter Summer 

Min  3 3 

Median 7 9 

Max 16 18 

Mean  8 9 

Std dev 3 4 

Std error 0.4 0.4 

Sample size 49 67 

P-value 0.007  
 
 
 

In addition to adduct measurement, DNA was used in genotyping two major 

Phase II metabolism enzymes in addition to DNA repair enzymes of which ERCC2 is 

most involved in bulky DNA adduct repair. The prevalence of GSTM1 and GSTT1 

deletions in placental tissue were 41% and 40% respectively (Table 4.12). Median DNA 

adducts were 8.2 per 109 nucleotides in placentas with an inactive copy of GSTM1 as 

compared to 7.9 adducts per 109 nucleotides in placenta with a functional GSTM1. Wild-

type GSTT1 placentas exhibited median levels of 8.4 adducts per 109 nucleotides, as 

compared to 7.6 adducts per 109 nucleotides in GSTT1 null placentas. These results 

summarized in Table 4.13 were not statistically significant.  
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Table 4.12. Prevalence of GSTM1 and GSTT1 deletion in placentas.  

 

Genotype N(Valid Percent) 
GSTT1   
  Wildtype 70(64%) 
  Null 40(36%) 
GSTM1   
  Wildtype 69(63%) 
  Null 41(37%) 
 
 
 
Table 4.13. Bulky DNA adduct levels in placental tissue by GSTM1 and GSTT1 genotype. 
 

 DNA Adducts (per 109 nucleotides) 

 GSTM1 GSTT1 

 Null Wild-type Null  Wild-type 

Median 8.2 8.0 7.6 8.4 

Sample size 38 64 36 66 

P-value 0.592  0.435  
 

 

The presence and frequency of heterozygote alleles on the ERCC2 gene at 

position 312 and 751 are summarized in Table 4.14. At position 312, homozygous allele 

CT was present in 12% of placentas, whereas on position 751, GT was present in 18% of 

the placenta samples. Median DNA adduct levels were higher for the heterozygote 

alleles at both positions of the ERCC2 gene compared to the homozygous alleles. 

Placentas with the heterozygote CT allele on position 312 of the ERCC2 gene had 

significantly lower DNA adduct levels (6 adducts per 109 nucleotides) compared to the 

homozygous individuals (9 nucleotides per 109 nucleotides). As for position 751 on the 

ERCC2 gene, placentas of individuals with GT alleles also exhibited lower DNA adduct 

levels compared to the homozygous alleles, however the difference was not statistically 

significant (Table 4.15).  
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Table 4.14. Prevalence of homozygous and heterozygous alleles of ERCC2 DNA repair gene position 751 
and 312 in Study Subjects.  
 

Allele ERCC2 (Asp312Asn) Allele ERCC2 (Lys751Gln) 
 N(Valid percent)  N(Valid percent) 
CC + TT 107(88%) TT + GG 100(82%) 
CT 14(12%) GT 22(18%) 

 

 
 
Table 4.15. Bulky DNA Adduct Levels in Placental Tissue by Single Nucleotide Polymorphism in 
ERCC2 gene. 
 

 DNA Adducts (per 109 nucleotides) 

 ERCC2 (Asp312Asn) ERCC2 (Lys751Gln) 

 CT CC+TT GT  TT+GG 

Median 6 9 6 8 

Sample size 13 101 20 95 

P-value 0.021  0.147  
 

 

 

Finally, Table 4.16 summarizes the total and carcinogenic PAH concentrations in 

addition to DNA adduct levels across children, mothers and fathers. The levels of PAHs 

in tissues from the parents or the children did not seem to vary significantly. 

Nevertheless, DNA adduct levels were significantly lower in children compared to the 

levels in WBCs from their parents. Interestingly, when cases and controls were divided 

by high or low total PAH exposures in their mothers, cases were 11 more times (Odds 

Ratio =11; 95% Confidence Interval= 3-46) likely to be born to a mother with a high 

PAH exposure (Table 4.17). High PAH exposure was defined as total PAH level above 

the median in venous blood of mothers (206 ng/mL) and lower exposure was defined as 

total PAH level below the median.  
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Table 4.16. Summary of biomarker of exposures in children and their parents. (tPAHs = total PAHs in venous blood in ng/mL or placenta in the case of 
a child in ng/g dry weight; cPAHs = carcinogenic PAHs in venous blood in ng/mL or placenta in the case of a child in ng/g dry weight; DNA adducts in 
WBCs or placenta in the case of a child in adducts per 109 normal nucleotides).  
                     

 Child Mother Father 
 tPAHs cPAHs DNA Adducts tPAHs cPAHs DNA Adducts tPAHs cPAHs DNA Adducts 
Min  7 0.5 3 29 0.2 4 25 1 4 
Median 154 8 8 206 8 12 162 8 13 
Max 529 196 18 762 65 32 523 50 55 
Mean  163 16 9 211 16 14 195 12 14 
Std dev 109 30 3 148 16 6 137 12 9 
Std error 13 4 0.3 20 2 1 19 2 1 
Sample size 65 64 116 53 50 49 51 49 44 
P-value 0.170 0.517 <0.001       
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Table 4.17. Contingency table categorizing cases and controls by their mother PAH exposure (median of 
PAH levels in mothers blood = 206 ng/ml, OR=Odds Ratio). 
 

 

 
Total PAHs (ng/mL) in Mothers 

  
 Case Control Total 
Higher than Median 24 3 27 
Lower than Median 11 15 26 
Total 35 18 53 

   
OR = 11  

(95% CI = 3 - 46) 
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4.4 Discussion 
 

The research described in this chapter is the second part of the human exposure 

assessment study discussed in chapter III. This part of the study measured biomarkers of 

exposure, early biological effect and susceptibility in placenta samples collected from 

NTD cases and controls. At the onset of the study, the frequency of NTDs was 

monitored in four study counties in Shanxi. Compared to the incidence of NTDs in the 

United States and most of the Western countries, the frequencies of NTDs in Shanxi was 

alarmingly high. The frequencies of NTDs in the selected counties of Shanxi ranged 

from 8 to 24 cases per 1,000 live-births. The reported NTD rates in the United States is 

below one case per 1,000 births (Mathews et al. 2002).  

This research proceeded by measuring biological indicators of coal byproducts 

such as PAHs in placenta tissues from cases and controls. The internal total and 

carcinogenic PAH dose in NTD cases were elevated compared to controls, but were not 

statistically significant. In addition, the levels of PAHs were higher in the placentas of 

mothers who reported being exposed to passive smoking compared to those who did not. 

However, these differences in PAH levels were not statistically significant.  

DNA adducts in placenta were not significantly different among cases and 

controls. Mothers exposed to passive smoking did not seem to have statistically 

significant differences in the DNA adduct levels in their placenta compared to those who 

reported not to be exposed to passive smoking.  

Deletions in two major Phase II metabolic enzymes GSTM1 and GSTT1 were 

evaluated as a measure of genetic susceptibility in placentas. However, differences in 

DNA adduct levels between placentas with inactive copies of GSTM1 or GSTT1 did not 

seem to be statistically significant when compared to those with wild-type genotypes.  

Single nucleotide polymorphisms (SNPs) on positions 312 and 751 of the ERCC2 

gene seem to be the most studied SNPs of this specific DNA repair gene. ERCC2 is 

involved in bulky DNA adduct repair as part of the Nucleotide Excision Pathway 

(Manuguerra et al. 2006). Heterozygote alleles on positions 312 and 751 of the ERCC2 

gene seem to have a protective effect against DNA adduct formation. This finding needs 
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to be confirmed with a bigger sample size as it suggests that individuals with the less 

common SNP may have a more efficicent nucleotide excision repair mechanisms.  

Although total PAHs and carcinogenic PAHs did not show statistically significant 

differences, DNA adducts formed in placentas of mothers who used hard coal as cooking 

fuel were significantly higher than adducts in placentas of mothers who used other fuel 

types. This finding seems to be consistent with the data from the mother population 

discussed in chapter III. Therefore, it might prove to be important to further investigate 

the coal type that is associated with higher DNA adduct levels in the human population.  

It is important to note that while levels of PAHs in biological tissues did not vary 

significantly between a child and his mother or father, DNA adducts in the parents were 

significantly higher than those detected in children. This finding suggests that fetuses 

might be protected to a certain extent against chemicals that their mothers are exposed 

to.  Another interesting finding was the association between maternal PAH exposures 

and disease. NTD cases were 11 times more likely to be born to mothers with a PAH 

exposure level higher than the median as compared to mothers with exposure levels 

lower than the median. This result may be worthy of further investigation in future 

studies about the potential role of maternal exposures to PAHs in the etiology of human 

birth defects.  

Overall, these results suggest a potential role of PAHs in causing birth defects in 

the human study population. Genotoxic PAH compounds were present in placenta 

tissues and were capable of inducing DNA adduct formation in these tissues. Hard coal 

as cooking fuel seem to be of potential concern due to its association with elevated levels 

of DNA adducts in the study participants.  Limitations to this study include sample size 

as well as genetic polymorphism data. A larger sample size is required to increase the 

power of the study and the ability to detect any weak associations between exposure and 

outcome variables. Polymorphisms of additional  metabolic genes (such as Phase I 

metabolic enzymes) as well as DNA repair genes needed to be analyzed in the future to 

help identify genetically sensitive groups and help elucidate the relationship between 

PAHs levels in tissues and bulky DNA adduct formation.  
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CHAPTER V 

SUMMARY 

 

The research in this dissertation was conducted to monitor biomarkers of exposure 

to complex mixtures of PAHs in a human population exhibiting an unusually high rate of 

neural tube defects. PAHs are ubiquitous in the environment and may present a threat to 

the health of exposed human and ecological receptors. The study population was located 

in Shanxi province, North China where the weather is typically cold and dry most of the 

year. Individuals particularly in this part of China rely heavily on indoor burning of coal 

for heating and cooking. Coal mining in Shanxi is very prevalent as the province is 

considered to be the top coal-producing region in China. Coal combustion is a source of 

various harmful chemicals of which are PAHs.  

This research included identification of the level of PAH contamination in dust 

collected from selected homes in the study region, as well as their profile and 

genotoxicity using a battery of tests such as microbial cell cultures, acellular assays and 

animal models. Floor dust was sampled from several houses in the study area. Dust 

loading on surfaces such as windows, walls and light bulbs was also sampled to compare 

the PAH profiles of the different residential surfaces. After pressurized fluid extraction, 

the dust organic residues were chemically analyzed for PAHs. PAH concentrations from 

the analyzed dust samples were variable but generally elevated as compared to other 

environmentally devastated study sites such as Rio Bravo in South Texas and Sumgayit, 

Azerbaijan. The main sources of PAH seem to be pyrogenic, especially that high 

molecular weight PAHs (4 rings or more) were more abundant than lower molecular 

weight ones. This finding was compatible with the fact that the major source of PAHs 

was thought to be burning coal indoor. A sample of unburnt coal collected from a 

stockpile in the study location was also extracted and analyzed for PAHs. Levels of PAH 

in coal were significantly lower than the ones detected in house dust. In addition, the 

PAH profile in coal was petrogenic, as anticipated.  
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A series of short-term bioassays were then conducted to investigate the genotoxic 

potential of the residues isolated from house dust. In the Salmonella microsome assay, 

complex chemical mixtures isolated from house dust generally induced a strong positive 

mutagenic response, whereas those isolated from coal only exhibited a positive response.  

In the acellular assay, DNA isolated from the placenta of neural tube defect cases and 

matched controls was incubated with dust and coal residues in the addition of a 

metabolic enzyme system. Following incubation, bulky DNA adducts were detected and 

quantified by 32P-postlabeling. House dust residues exhibited a strong response and 

elicited significantly higher levels of DNA adducts as compared to coal. The response 

did not vary by whether DNA was isolated from a NTD case or control. Overall, the 

patterns of DNA adducts observed after treatment with house dust and coal were similar, 

however the one induced by complex mixtures isolated from coal was of lower intensity.  

Residues from dust and coal were also applied to the skin of CD-1 mice to measure 

the induction of DNA adducts. Benzo[a]pyrene and methylene chloride were also 

applied to mice to serve as positive and negative controls, respectively. Following 

dermal application, dust samples induced the maximum level of genotoxic damage in 

skin tissue, with a much lower frequency of adduct observed in lungs.  Interestingly, the 

coal extract induced significantly higher levels of DNA adducts in skin tissue as 

compared to dust.  Possible explanations to these findings include a plateau effect caused 

by saturation of activating enzyme systems and/or cell death triggered by higher levels 

of adducts induced by dust mixtures. It was also observed that the overall pattern of 

bulky DNA adducts were slightly different between dust and coal.  The autoradiogram 

for the dust showed multiple distinct spots, whereas the coal which contained lower 

levels of PAHs exhibited less distinct spots and more of a diagonal radioactive zone 

typical of complex chemical mixtures such as cigarette smoke. Results from the short-

term bioassays and animal study, suggest that dust collected in houses in Shanxi contains 

complex mixtures of chemicals with a potential to induce genotoxic damage in human 

receptors. Moreover, the genotoxic response seems to be correlated to the fraction of 

class B2 carcinogen PAHs.   
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With the knowledge that potentially genotoxic compounds exist in the residential 

environment of the study population, parents of neural tube defect cases and those of 

matched controls were recruited for the biomonitoring part of this research. Indicators of 

exposure and early effect were measured in biological specimens from parents of cases 

and controls as well as placenta tissues to assess fetal exposures. A questionnaire was 

also administered to the mothers of cases and controls to gather data on lifestyles, 

nutritional status among other risk factors of birth defects. In addition, DNA extracted 

from biological tissues was genotyped for Phase II metabolic enzymes and DNA repair 

enzymes. 

Venous blood from parents of cases and controls was collected in China and 

shipped back to Texas A&M University for analysis. Plasma was isolated from whole 

blood and extracted by liquid-liquid extraction to be used to measure levels of PAHs in 

blood as an indicator of internal dose. DNA was isolated from blood cells and used for 

adduct analysis as well as genotyping. Total PAH levels in parents of cases were higher 

than those of controls. The differences were especially remarkable in venous blood 

samples collected from mothers of cases and controls. Surprisingly, DNA adducts in 

WBCs were significantly higher in controls when compared to NTD cases. Smoking 

(active or passive) did not seem to have a significant on the levels of PAHs or DNA 

adducts in blood.  Phase II metabolic enzymes GSTM1 and GSTT1 polymorphisms did 

not seem to be significantly associated with DNA adducts induction in this population.  

The type of fuel used for cooking seems to have significantly affected DNA adduct 

levels in venous blood of mothers. Hard coal use induced higher levels of DNA adducts 

in blood cells of mothers when compared to those using a different type of cooking fuel. 

Total PAHs in blood of non-smoking fathers and mothers were strongly correlated 

which could be an indication of a common source of PAH exposures more likely to be 

environmental.  

Placenta samples were collected in participating birth hospitals immediately after 

the delivery of a recruited case child or matched control. The placenta samples were also 

shipped back to Texas A&M University for analysis. After homogenization, an aliquot 
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of placental tissue was freeze-dried and solvent extracted by pressurized fluid extraction 

to be used for measuring PAH levels as internal dose. Another aliquot of placental tissue 

was used to isolate DNA for adduct and genotyping analyses. Total and carcinogenic 

PAH levels in NTD cases were higher compared to controls, but were not statistically 

significant. Passive smoking did not seem to be associated with significantly higher 

levels of PAHs in placentas.  

Placenta of NTD cases did not exhibit higher levels of DNA adducts when 

compared to controls. Passive smoking did not seem to be associated with the induction 

of significantly higher levels of DNA adducts in placentas. 

Differences in DNA adduct levels between placentas with null copies of GSTM1 

or GSTT1 did not seem to be statistically significant as compared wild-type genotypes. 

Heterozygote alleles on position 312 of the ERCC2 DNA repair gene were associated 

with a lower level of DNA adducts and imply that these subjects may possibly have 

more efficient DNA repair capabilities.  

As detected in blood cells from mothers, hard coal induced significantly higher 

levels of DNA adducts in placentas of mothers who used it as cooking fuel compared to 

mothers who used other fuel types. It was also found that DNA adducts formed in the 

parents were significantly higher than those identified in children. Finally, elevated PAH 

levels in mothers appear to be a potential risk factor for having a child with neural tube 

defects.  

Humans are exposed to complex chemical mixtures such as PAHs at every stage of 

their life.  The dose, frequency, and timing of the exposure determine to a large extent 

the severity of the adverse health effects exhibited by human receptors. Neural tube 

defect was a suitable disease to investigate as an adverse health effect of PAH exposures 

due to its relatively short latency period. The potential link between exposure to PAHs 

and adverse reproductive outcomes has been thoroughly investigated in recent years.  

However, the association between PAH exposures and birth defects is still novel and not 

very well studied yet. The conclusions of this research include: 
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1. Dust collected from houses in the study province contained elevated levels 

of PAHs that have proved to have genotoxic potential in in vitro and in 

vivo bioassays 

2. PAHs detected in venous blood of mothers were significantly higher in 

cases as compared to controls, but did not correlate well with DNA adduct 

levels 

3. DNA adduct levels detected in placenta tissues did not correlate with 

disease and did not seem to be associated with GSTM1 or GSTT1 

polymorphisms 

Future studies are warranted on biomonitoring a larger sample size of the study 

population to enhance the statistical power of the study.  More whole families (father, 

mother and child) need to be recruited for the study. It also seems substantial to include 

more genes in the genetic polymorphism analyses, especially polymorphisms of Phase I 

metabolic enzymes that might be common in Chinese populations. The available 

literature almost invariably stresses upon the importance of evaluating a combination of 

genetic polymorphisms with functional compatibility as opposed to single 

polymorphisms. While the logistics (sample collection, storage conditions and shipping) 

of studies might tend to be undervalued in scientific contexts, future studies would 

benefit from improved logistics to ensure the best quality of biological samples shipped 

back to the United States for processing.  In addition, future efforts would profit from 

indoor air sampling as a measure of external dose to airborne hazardous chemicals, as 

well as the measurement of nutritional and tobacco smoking markers in study subjects. 

Identification of other chemicals of concern that might be emitted by coal combustion or 

during coal mining activities would also be of importance in deciphering any links 

between environmental contamination and disease.  
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