
NASA-CR-203940

Technical Report •March 1993

A REPORT ON STOCHASTIC FAIRNESS
QUEUEING (SFQ) EXPERIMENTS

Barbara A. Denny, Computer Scientist
Information and Telecommunications Sciences Center

Project 8600
ITAD-8600-TR-93-62

Prepared for:

NASA Ames Research Center
Moffett Field, California 94035

Attn: Dr. Henry Lum, Code RI, M/S: 244-7

and

Defense Advanced Research Projects Agency
3701 North Fairfax Drive

Arlington, Virginia 22203-1714

Attn: Dr. Paul Mockapetris

Approved by:

Boyd C. Fair, Director
Information and Telecommunications Sciences Center

Michael S. Frankel, Vice President and Director

Information, Telecommunications, and Automation Division

3.2,3Flavt.,r_swoodAv_i_:_:. t, McrlioPark CA94025-34fi_, • (41[)d_'"i"'b ,.-(.,_ " i:':,>: _ :>_, '.,:._..=• ,. ,_., : -'_
..... . ,/

https://ntrs.nasa.gov/search.jsp?R=19970014215 2020-06-16T02:59:55+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42774532?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONTENTS

LIST OF FIGURES AND TABLES ... iii

1 EXECUTIVE SUMMARY ... 1

2 INTRODUCTION ... 2

3 SFQ CONFIGURATION .. 2

4 EXPERIMENTS ... 3

4.1 FAIR UTILIZATION ... 5

4.1.1 Objective and Procedure .. 5
4.1.2 Data Description ... 6
4.1.3 Results ... 6

4.2 STARVATION PREVENTION .. 11

4.2.1 Objective and Procedure .. 11
4.2.2 Data Description ... 12
4,2.3 Results ... 12

4.3 GRACEFUL DEGRADATION ... 16

4.3.1 Objective and Procedure .. 16
4.3.2 Data Description ... 17
4.3.3 Results ... 17
RESOURCE USAGE .. 27

4,4.1 Objective and Procedure .. 27
4.4.2 Data Description ... 28
4.4.3 Results ... 28

4.4

5 CONCLUSIONS .. 31

ii

FIGURES

1 Experiment Topology ... 4
2 Fair Utilization Traffic Flow ... 5

3 Starvation Prevention Traffic Flow ... 11

4 Graceful Degradation Traffic Flow .. 16

5 Resource Usage Traffic Flow ... 27

TABLES

Graceful Degradation

Graceful Degradation

Graceful Degradation

Graceful Degradation

Graceful Degradation

Graceful Degradation

Graceful Degradation

1 Fair Utilization Results .. 6

2 Starvation Prevention Results .. 12

3 Results From Time 0 to 30 Seconds 23

4 Results From Time 30 to 60 Seconds 23

5 Results From Time 60 to 90 Seconds 24

6 Results From Time 90 to 120 Seconds 24

7 Results From Time 120 to 245 Seconds 25

8 Results From Time 245 to 275 Seconds 25

9 Results From Time 275 to 305 Seconds 26

10 Graceful Degradation Results From Time 305 to 335 Seconds 26

11 Resource Usage ... 30

iii

1 EXECUTIVE SUMMARY

SKI International (SKI) has developed an improved queueing algorithm, known as Stochastic

Fairness Queueing (SFQ), for best-effort traffic (i.e., traffic that does not require any guaranteed

service). SFQ is a probablistic variant of strict fair queueing where instead of a single queue being

allocated per flow, a fixed number of queues are used and a hash function maps the IP source and

destination to a particular queue. A seed to the hash function is also perturbed occasionally to help

distribute the flows amongst different queues when more than one flow maps to the same queue

during the lifetime of the flow. SFQ provides "fair" access by trying to ensure that each flow from

source to destination host obtains equal access to the available bandwidth.

This report covers a series of experiments performed on DARTnet* evaluating the behavior

and performance of SFQ against a FIFO queueing discipline. These experiments were designed to

show SFQ's advantages and performance, and include tests demonstrating

• Fair utilization of available resources

• Starvation prevention

• Graceful degradation under overload conditions

• Resource usage.

The details of each experiment, including objective, procedures, data, and results, are presented in

Subsections 3.1 through 3.4.

In general, the experiments do show that SFQ is better than FIFO queueing at allocating

bandwidth equally among a set of flows. SFQ also prevents a stream from dominating the available

bandwidth, which seems to be a tendency with FIFO queueing (i.e., if a flow demands more than

its share of the available bandwidth, with FIFO queueing that stream receives a disproportionate

amount when compared to flows demanding less than their share). Furthermore, SFQ seems to

reward "nice" users of the network by providing a lower variance in delay and more throughput

when their resource demand is less than their available share. Both SFQ and FIFO queueing seem

to degrade fairly well as the network becomes saturated and to recover well as the network becomes

less congested. Not unexpectedly, FIFO queueing is a little more efficient than SFQmthe delays

are less and the throughput slightly higher because SFQ requires more processing. However, the

performance difference between the two queueing disciplines is relatively small.

However, the experiments do point out some interesting behavior. FIFO queueing can behave

better than SFQ with seed perturbation. We recommend further evaluation of the hash function and

the seed perturbation technique. There are probably weaknesses in their current selection that cause

this unexpected behavior. SFQ also seems to possess good scaling properties. To verify this, more

experiments with a larger number of streams from more hosts need to be executed and examined,

including the staggered introduction of streams. Staggering the streams may prove important,

because graphs in the degradation experiment revealed some unexpected increases and decreases

in throughput, which should be examined. This may again be due to the interaction of the hash

function with the seed perturbation but it may also be related to some other unknown problem.

*DARTnet is a T1 testbed network sponsored by DARPA.

2 INTRODUCTION

This report summarizes a set of experiments comparing first-in, first-out (FIFO) queueing and

Stochastic Fairness Queueing (SFQ). Historically, FIFO queueing has been the discipline in

general use in routers. A single queue is used for all packets, which are serviced in a first-come,

first-served manner. However, FIFO queueing often exhibits unfair behavior in the presence of

multiple streams, especially during times of overload. A one-to-one mapping between queues and

streams, with round-robin bitwise service of these queues, would eliminate this problem, but this

algorithm, know as strict fair queueing, is expensive in terms of processing and space requirements.

SFQ is a probabilistic variant of strict fair queueing. Instead of requiring that each flow have its

own queue, SFQ has a fixed number of queues and uses a hashing function to map the IP source

and destination address into one of the queues. Packets are entered into their assigned queues in a

FIFO manner and are removed in a round-robin fashion between all nonempty queues (in the

current implementation, the round-robin service is on a packet-by-packet basis). A seed to the hash

function is occasionally perturbed, to allow a redistribution of the address pair mapping. This

mapping redistribution is done to ensure that flows are not consistently mapped into the same

queue, so that a well-behaved source is not penalized by an ill-behaved source if the flows happen

to map to the same queue at some point in time. For a more complete description of SFQ, see the

referenced paper by Paul E. McKenney.*

3 SFQ CONFIGURATION

SFQ has many parameters that can be tuned to improve its performance. These parameters
include

• Individual queue depth

• Total number of queues

• Hash function

• Seed perturbation technique.

The setting of these parameters for these experiments was somewhat arbitrary, because the

experiment design was on a small enough scale that these factors did not affect the outcome

significantly in most cases. More research needs to be done to determine the optimum choice for

larger scenarios. The parameters chosen for this set of experiments are described next.

The choice of the hash function is crucial to good behavior, because the hash function is

responsible for distributing the packets among the queues. If the hash function is poor, many

different flows map into the same queue and the behavior approaches that achieved with FIFO

queueing. The current implementation provides five different hash functions using XOR or rotate

operations. For the set of addresses used in the experiments, each hash function displayed similar

behavior. We therefore chose an XOR type of hash function.

*McKenney, P.E. 1991. "Stochastic Fairness Queueing," in Internetworking: Research and Experience, Vol. 2, pp.
113-131.

2

The individual queue depth was set to 100. This parameter value was chosen to match the

queue depth provided by the DARTnet kernel with its FIFO queueing discipline. Queue depth is a

compile time constant and can be changed easily.

The total number of queues used is also an important factor in the behavior of SFQ. As

mentioned earlier, too few queues result in behavior similar to FIFO; too many queues, and the

behavior, and space overhead, resemble strict fair queueing if a suitable hash function is used. To

ensure that the condition arises where more than one flow maps to the same queue during the

lifetime of an experiment (i.e. a collision occurred during the hash computation), the number of

queues was limited to 9. This number is controlled by a compile-time constant and is easy to

change; however, in our implementation, the number of queues has to be equal to 2m+ 1, where m

is an integer. We are using a software implementation of the modulo operator, which works only

for these values, because the current SPARC* architecture lacks the hardware support necessary

for an efficient implementation. The modulo operator is used to reduce the result of the hashing

function to the desired range.

As previously mentioned, collisions into the same queue will occur for the host addresses used

in the experiments below. Thus, the experiments will show the results with and without seed

perturbation. To preserve packet ordering, the current implementation increments the seed when

all the queues are empty. In a congested router, it is anticipated that this will be infrequent;

therefore, different techniques for seed perturbation need to be developed and tested.

4 EXPERIMENTS

The experiments were executed on DARTnet, a DARPA research testbed network. DARTnet

is a cross-country T1 networkS- that connects research sites via T1 tail circuits. The routers and

most of the hosts are SPARC 1+, with the exception of two hosts, MM6 and Malarky, which are

SPARC 2s. Figure 1 illustrates the portion of the network used in these experiments.

The objectives of the experiments were to show the benefits and performance of SFQ. These

experiments therefore demonstrate

• Fair utilization of available resources

• Starvation prevention

• Graceful degradation under overload conditions

• Resource usage.

Each experiment was run at least twice to verify its repeatability; however, in this report we

will include only a single case. Each run of an experiment consisted of executing the experiment

with a special kernel on the routers that support SFQ, with and without seed perturbation in most

cases, and with the standard DARTnet kernel, which provided the FIFO queueing mechanism. The

version number of the DARTnet kernel was 6. All traffic streams originated from machines using

*All product names mentioned in this report are the trademarks of their respective holders.
tDue to hardware constraints, the network operates at 1.334 Mb/s instead of 1.536 Mb/s.

3

MM6
(IPX) DARTnetl

ETHERNET

DART3 DART5

ETHERNET

E

ETHERNET

T1

LA POP I

T1 T1

T1

T1

IDC, Oq

ETHERNET

T1
Malarky

_ (IPX)

ETHERN_,_ _

Lawndart Ant

Figure 1. Experiment Topology

version 6 of the DARTnet kernel. Each stream in the experiment ran for 245 seconds, but the total

time of the experiment was 335 seconds, due to the staggering of the start times for each stream.

All experiments were designed to overload the link so that the network's behavior in times of

congestion could be observed.

The DARTnet traffic generator (TG) was used to create the traffic streams. TG is an SRI-

developed tool for creating high-quality and repeatable experiments on packet-switched networks.

It executes as a source and sink program that enables experimenters to generate one-way traffic

streams and gather statistical data about the transmission and reception of each stream. The TG is

driven by a control language (script) that specifies different operating modes, protocols, addressing

functions, traffic parameters, and execution times. At present, packet lengths and packet offer rates

can be specified according to the following distributions: constant, uniform, exponential, and 2-

state Markov. The delay and throughput for each of the experiments, therefore, is measured from

user process to user process.

4

4.1 FAIR UTILIZATION

4.1.1 Objective and Procedure

This experiment was designed to show that streams receive equal portions of the available

bandwidth. In this experiment, four equal UDP streams are created; these streams occupy 60

percent of the link capacity of a T1 line. The traffic distribution for each stream is identical: each

stream's offer rate is exponentially distributed with a interarrival mean of 0.007692 seconds (-130

packets per second) and a constant size of 782 bytes (including UDP and IP headers). The source,

destination, and direction for each stream is as follows (see Figure 2):

• Dartnetl to Malarky

• Lawndart to Dart5

° LBL router to Dart3

° MM6toAnt.

At the start of the experiment, the stream from DARTnetl to Malarky and the stream from MM6
to Ant collide with the initial seed value.

MM6
(IPX) DARTnetl DART3 DART5

Malarky
(IPX)

Lawndart Ant

Figure 2. Fair Utilization Traffic Flow

5

4.1.2 Data Description

The graphs below show the offer rate, the SFQ throughput, and the FIFO throughput for each

stream. The experiments were executed with and without seed perturbation: SFQ Experiment 29

ran without seed perturbation, and SFQ Experiment 49 ran seed perturbation.

Table 1 summarizes the results of the experiments, including the average offer rate, average

throughput, average delay, and delay variance for each stream.

4.1.3 Results

The results of this experiment show that SFQ does provide better equal access to the available

resources, while FIFO queueing allows the LBL to Dart3 to dominate the resource. Furthermore,

seed perturbation does seems to improve SFQ performance when collisions occur. It is important

to note that the throughput bottleneck occurs on the link from AMES to LA and on the link from

LA POP to the DC POP. At each of these points in the network, three streams are trying to share

the same link. Under perfect utilization, each stream would receive 32.3% of link capacity.* In

experiment 49 with SFQ, the utilization for each stream was 31.8%, 31.6%, 31.7%, and 31.8%.

Table 1. Fair Utilization Results

AVERAGE AVERAGE
OFFER RATE THROUGHPUT AVERAGE

EXPERIMENT (percentage of (percentage of DELAY DELAY

STREAM NUMBER 1.344 Mb/s) 1.344Mb/s) (seconds) , VARIANCE

Dartnetl to Malarky fifo29 60.26 26.64 1.4704 0.0057

sfq29 60.25 22.85 1.5186 0.0074

sfq49 60.25 31.84 2.8637 0.1215

LBL to Dart3 fifo29 60.25 47.49 0.5367 0.0007

sfq29 60.26 36.00 1.3415 0.0095

sfq49 60.26 31.62 1.5221 0.0095

Lawndart to Dart5 fifo29 60.25 23.08 1.01 98 0.0029

sfq29 60,25 36.15 2.2988 0.0384

sfq49 60.25 31.72 1.9565 0.0849

MM6 to Ant fifo29 60.26 34.73 0.9608 0.0024

sfq29 60.25 24.71 1.4666 0.0071

sfq49 60.25 31.84 2.4286 0.0398

*In previous baseline measurements of the DARTnet FIFO kernel, the throughput for a packet size of 750 bytes was

96.9% of the link capacity.

6

SFQ EXPERIMENT 29

SFQ Dartnetl-->Malarky(150 pps, 782 Bytes)
OfferRate,Thruput [sfq29_dartnet1_malarky_stream: Fri Jdl 17 20:40:30 1992]

0.70 I l ,

&

_. 0.50

_D

E 0.40

Q_

0.20

0,0 100.0

]qme (seconds)

200.0

g I Offer Rate

_ FIFO Throughput

= "_ SFQ Throughput

300.0

0.70

0.60

&
-13

,_. 0.50

E 0.40

0.30

0,20

0.0

SFQ LBL->Dart3(130 pps, 782 Bytes)

OfferRate,Thruput [sfq29_lbl_dort3_streom: Sat Jul 18 03:40:30 1992]
I , I

, I , I

100.0 200.0

lime (seconds) I

Q

i

300.0

i Offer Rate

-'- FIFO Throughput

o SFQ Throughput

7

SFQ EXPERIMENT 29

U',.

"6

¢.

¢.

0.70

0.60

0.50

0.40

0.30 -

0.20
0.0

SFQ Lawndart-->Dart5(130 pps, 782 Bytes)

OfferRate,Thruput [sfq29_lawndart_dartS_streom: Sat Jul 18 03:40:50 t 992]
' I 1

100.0 200.0 300.0

]qme (seconds) i t Offer Rate
-" FIFO Throughput

m = SFQ Throughput

0.70

0.60

69

t'_

__ 0.50

0.40

0.30

0.20

0.0

SFQ MM6->Ant(150 pps, 782 Bytes)

OfferRate,Thruput [sfq29_mm6_antstreum: Sat Jul 18 03:40:50 1992"
' I ' I

, I _ I ,

100.0 200.0

]qme.(seconds) i i Offer Rate

[]

300.0

-_ FIFO Throughput

[] SFO Throughput

8

SFQ EXPERIMENT 49

SFQ Dortnet1->Malarky(130 pps, 782 Bytes)

Offer-Rate,Thruput [sfq49_dartnetl_malarky_strearn: Fri Jul 17 22:41:50 1992]
0.70 I I

0.60

&
-D

0.50

_6

-'E 0.40

I)

0.30

0.20

0.0

I I I I

100.0 200.0

]]me (seconds) I I Offer Rate
FIFO Throughput

u = SFO Throughput

300.0

0.70

0.60

t_
r_

0.50

t_)

E 0.40

13_

0.30

0.20

SFQ LBL->DartS(130 pps, 782 Bytes)

OfferRate,Thruput [sfq49_lbLdartS_stream: Sat Jul 18 05:41:50 1992]

, I ' I '

1.0 100.0

i I

200.0

I
Time (seconds) ,_

13

I

300.0

I Offer Rate

± FIFO Throughput

o SFQ Throughput

9

SFQ EXPERIMENT 49

0.70

0.60

Z.
"5

0,50

"6
"_ 0.40

0.50

0.20
0.0

0.70

SFQ Lawndart-->DartS(150 pps, 782 Bytes)

OfferRate,Thruput [sfq49_lawndort_dort5_strearn: Sat Jul 18 05:41:50]
' I ' I

100.0 200.0

Time (seconds) I i Offer Rate

n

300.0

-_ FIFO Throughput
[] SFQ Throughput

SFQ MM6-->Ant(150 pps, 782 Bytes)

OfferRate,Thruput [sfq49_mm6_antstream: Sat Jul 18 05:41:30 1992"
I I

0.60

.¢ 0.50

0.40

m

0.30

0.20
0.0

, I ,

100.0

]qme (seconds)

I

200.0

I

I

300.0

Offer Rate

m FIFO Throughput

= SFQ Throughput

10

4.2 STARVATION PREVENTION

4.2.1 Objective and Procedure

This experiment was designed to show SFQ's ability to prevent starvation. In the experiment,

three unequal UDP streams are created. The source, destination, and direction of each stream are

as follows (see Figure 3):

• Lawndart to Ant

• MM6toDart5

• Dartnetl to Malarky.

The stream from Lawndart to Ant occupies 95% of the link capacity of a T1 line. This stream is

exponentially distributed, with an interarrival mean of 0. 004902 seconds (-204 packets per

second) and a constant packet size of 782 bytes (including UDP and IP headers). The streams from

MM6 to Dart5 and Dartnet 1 to Malarky each occupy 20% of the link capacity of a T1 line. Each

stream is exponentially distributed, with an interarrival mean of 0.023256 seconds (-43 packets per

second) and a constant packet size of 782 bytes. At the start of the experiment, the streams from
Lawndart to Ant and from MM6 to Dart5 collide with the initial seed value.

MM6
(IPX) DARTnetl DART3 DART5

Malarky
(IPX)

Lawndatt Ant

Figure 3. Starvation Prevention Traffic Flow

11

4.2.2 Data Description

Each graph below shows the offer rate, the SFQ throughput, and the FIFO throughput for each

stream. The experiments were executed with and without seed perturbation: SFQ Experiment 28

ran without seed perturbation and SFQ Experiment 47 ran with seed perturbation.

Table 2 summarizes the results of the experiments, including average offer rate, average

throughput, average delay, and delay variance for each stream.

4.2.3 Results

This experiment does show that SFQ helps prevent starvation by ensuring that those streams
that demand less than their fair share of the available bandwidth receive their entire quota; while

with FIFO queueing, they receive a disproportionate amount. In particular, with FIFO queueing,

the stream that demanded -95 % of capacity received 74%, approximately 78% of its request.

However, the two streams that wanted only 20% of the bandwidth received ~ 11%, or only 58% of

their requested utilization. The variance in delay for the smaller streams was also less with SFQ

than with FIFO: SFQ thus rewards "nice" users of the network.

STREAM

Lawndart to Ant

M M6 to Dart5

Table 2. Starvation Prevention Results

EXPERIMENT
NUMBER

fifo27

sfq28

sfq47

AVERAGE
OFFER RATE

(percentage of
1.344 Mb/s)

94.72

94.72

94.72

fifo27 20.01

sfq28 20.01

sfq47 20.01

AVERAGE
THROUGHPUT

(percentage of
1.344 Mb/s)

74.12

AVERAGE

DELAY

(seconds)

0.5727

DELAY
VARIANCE

0.0057

55.05 1.0888 0.0272

55.07 1.0897 0.0271

11.68 0.5383 0.0007

20.01 0.0853 0.0004

20.01 0.0770 0.0003

Dartnetl to Malarky fifo27 20.01 11.44 0.5377 0.0008

sfq28 20.01 20.01 0.0796 0.0003

sfq47 20.01 20.01 0.0796 0.0004

12

1.00

0,90

B_

.,_ 0.80
r-"D

%
_'6 0.70

0.60

0.50
0.0

0.25

SFQ EXPERIMENT 28

SFQ Lawndart-->Ant(204 pps, 782 Bytes)

OfferRate,Thruput [sfq28_lawndart_anhstream: Sat Jul 18 02:39:00 1992]

100.0 200.0 .500.0

Time (seconds) 0 i Offer Rate
_ FIFO Throughput

D o SFQ Throughput

SFQ MM6->DartS(45 pps, 782 Bytes)

OfferRate,Thruput [sfq28_mmd_dart5_streom: Sat Jul 18 02:39:00 1992]

0.20

e.3
_ 0,15

EL

0.10

0.05

0.0

, I , I

I00.0 200.0

Time' (seconds) '
z_

[3

I

300.0

Offer Rate

_- FIFO Throughput

r_ SFQ Throughput

13

_6

q>

SFQ EXPERIMENT 28

SFQ Dartnet1-->Malarky(45 pps, 782 Bytes)

OfferRate,Thruput [sfq28_dartnet1_molarky_strearn: Fri Jut 17 19:39:00 1992]
0.25 I ' i

• 0.15

0.10

0.05 , I J I
0.0 100.0 200.0 500.0

Time (seconds) i I Offer Rate
_ FIFO Throughput

c = SFQ Throughput

1.00

SFQ EXPERIMENT 47

SFQ Lawndart-->Ant(204 pps, 782 Bytes)

OfferRate,Thruput [sfq47_lawndart_ant_stream: Sat Jul 18 06:10:30 1992

0.90

t-,

.¢ 0.80

r'b

"_ 0.70

Q2,
r3

0.60

0.50
0,0 100.0 200.0 .500.0

Time '(seconds) t q Offer Rate
•_ -, FIFO Throughput

= SFQ Throughput

14

SFQ EXPERIMENT 47

0.25

SFQ MMG-->Dart5(45 pps, 782 Bytes)

OfferRate,Thruput [sfq47_mm6_dartS_stream: Sat Jul 18 06:10:30 1992
, 1 ' 1 '

0.20

_g

,_ 0.15

ID

0.10

, I0.05
0.0 100.0 200.0 500.0

t i Offer Rate
Time (seconds) & ± FIFO Throughput

o o SFQ Throughput

SFQ Dartnet1->Malarky(45 pps, 782 Bytes)

OfferRate.Thruput [sfq47_dar[net1_malarky_stream: Fri Jul 17 23:10:30 1992"
0.25 I I

&
r-_

_6

CL

0.20

0.15

0.10

0.05 , I , I

0.0 100.0 200.0

Time (seconds) I

[3

I

300.0

0 Offer Rate

-_ FIFO Throughput

a SFQ Thn:)ughput

15

4.3 GRACEFUL DEGRADATION

4.3.1 Objective and Procedure

This experiment was designed to show that SFQ degrades gracefully in periods of overload;

each stream receives its fair share of the available bandwidth as more streams are added. In the

experiment, four equal UDP streams were created; the streams occupy 60 percent of the link

capacity of a T1 line. The traffic distribution for each stream is identical: each stream's offer rate

is exponentially distributed, with a interarrival mean of 0.007692 seconds (~ 130 packets per

second) and a constant size of 782 bytes (including UDP and IP headers). A stream is added every

30 seconds after the previous one. The source, destination, and direction of each stream, in the

order in which the streams were created, is as follows (see Figure 4):

• Dartnetl to Malarky

• LBL router to Dart3

• Lawndart to Dart5

• MM6toAnt.

At the start of the experiment, the stream from DARTnet 1 to Malarky and the stream from MM6

to Ant collide with the initial seed value.

MM6
(IPX) DARTnetl DART3 DART5

Malarky
(IPX)

Lawndart Ant

Figure 4. Graceful Degradation Traffic Flow

16

4.3.2 Data Description

The graphs below show the offer rate, the SFQ throughput, and the FIFO throughput for each

stream. The experiments were executed with and without seed perturbation: SFQ Experiment 31

ran without seed perturbation and SFQ 41 ran with seed perturbation.

Tables 3 through 10 summarize the progression of the experiment, by including the average

offer rate, average throughput, average delay, and delay variance for each significant time period

for every stream. The time periods displayed are related to the times when streams are added and

deleted, including a time period when all streams are executing simultaneously. To summarize,

• Table 3 shows the first 30 seconds, when only the Dartnet 1 to Malarky stream exists.

• Table 4 shows the second 30-second interval, when the stream from LBL to Dart3

has been added.

• Table 5 shows the third 30-second interval, when the stream from Lawndart to Dart5

has been added.

• Table 6 shows the fourth 30-second interval, when the stream from MM6 to Ant has

been added.

• Table 7 shows the next 125 seconds, when all the streams are running.

• Table 8 shows the next 30 seconds, when the stream from DARTnet to Malarky has

dropped out and only the streams from LBL to Dart3, Lawndart to Dart5, and MM6

to Ant are running.

• Table 9 shows the next 30 seconds, when only the streams Lawndart to Dart 5 and

from MM6 to Ant are present.

• Table 10 shows the final 30 seconds, when the stream from MM6 to Ant is the only

one left.

As in the fair utilization experiment, the throughput bottleneck occurs on the links from

AMES to LA and from LA POP to DC POP. The bottleneck on the AMES to LA link affects the

streams from Dartnetl to Malarky, Lawndart to Dart5, and MM6 to Ant; while the bottleneck on

the link from LA POP to DC POP affects the streams from Dartnet 1 to Malarky, LBL to Dart3, and

Lawndart to Dart5. At each of these locations, the streams are trying to share the same link.

4.3.3 Results

The results of this experiment should be the following:

1. As the first three streams are added, the amount of throughput on each stream should

decrease proportionately to the number of streams running, since they all use the LA

POP to DC POP link.

2. As the fourth stream (MM6 to Ant) is added, there should be little effect on the first

three streams, since the bottleneck has not substantially changed.

3. As Dartnetl to Malarky drops out, the throughput on all the remaining streams

should reach approximately 50%.

4. As LBL to Dart3 drops out, there should be no real effect on the two remaining

streams, because the AMES-LA bottleneck now comes into play.

5. As the Lawndart to Dart5 stream drops out, throughput on the stream from MM6 to

Ant should match the offer rate.

17

In general, both SFQ and HFO exhibited the behavior described above. However, SFQ seems

to be "more" fair overall than FIFO queueing. The range ofthroughputs achieved under SFQ more

closely matched the ideal; under FIFO queueing there may be a tendency for a stream to
"dominate" the available resources under heavy utilization (see Table 7). Not unexpectedly,

"strict" fair queueing (SFQ with no collisions) behaved better than SFQ with seed perturbation (see

Table 5). However, in one instance, HFO queueing behaved better than SFQ with seed

perturbation (see Table 5). This underlines the need to find optimal hashing functions and good

seed perturbation techniques.

18

SFQ EXPERIMENT 31

0.60

0.50
r_

0,40

%

0.30
P,

SFQ Dartnet1->Malarky(150 pps, 782 Bytes)

OfferRate,Thruput [sfq31_dartnet1_malarky_stream: Fri Jul 17 21:13:00 1992]
' i ' I ' I '

0.20

0.10

0.0

, I , I

100.0

, I ,

200.0 300.0 400.0
i i Offer Rate

]]me (seconds) _ _ FIFO Throughput

o [] SFO Throughput

0,60

_- 0.50
t%

-- 0,40

P 0.30
tt

0.20

0.10
0.0

$FQ LBL->Dort.3(1.30 pps, 782 Bytes)

OfferRate,Thruput [sfq31_lbl_dartE_streom: Sat Jul 18 04:1.3:00 1992]
' I ' I ' I '

I I i I J

100.0 200,0

Time (seconds)

[i

300,0 400.0

i I Offer- Rote

•_ _ FIFO Throughput
m m SFO Throughput

19

SFQ EXPERIMENT 31

0.70

0.60

0.50
m

-- 0.40

%

0.30
@

r,,

0.20

0.10
0.0

SFQ Lowndort->Do_5(130 pps, 782 Bytes)

OfferRate,Thruput [sfq31_lowndortdart5_streom: Sat Jul 18 04:13"00]
I ' I I

I I a I =

100.0

I I

200.0 300.0 400.0

"rime (seconds) i i Offer Rate
-_ -_ FIFO Throughput
: " SFO Throughput

0.60

I#

b o.5o

0.40

E

B 0.30
@

13-

0.20

0.10
0.0

SFQ lvlM6->Ant(130 pps, 782 Bytes)

OfferRate,Thruput [sfq31_mm6_onLstream: Sot dul 18 04:13:00 1992]

, I , I , I ,

lOOO 200.0 sooo 400.0
Time (seconds) L, : Offer Rate, FIFO Throughput

= a S#-O Throughput

2O

SFQ EXPERIMENT 41

0.60

1,9

" 0.50JD

z;

0.40

_ 0.30
15

13-

0.20

0.10
0,0

SFQ Dartnet1-->Matarky(150 pps, 782 Bytes)

OfferRate,Thruput [sfq41_dartnet1_malarky_streom: Fri Jul 1 7 22:05:30 1992]
' I ' I ' I '

, I _ I ,

100.0 200.0

"lqme (seconds)

SFQ LBL->Dart3(150 pps,

I i

300.0 400.0

t i Offer Rate

_ FIFO Throughput
,, u SFQ Throughput

782 Bytes)

OfferRate,Thruput [sfq41_lbl_dart3_streum: Sat Jul 18 05:05:,t0 1992]

0.60

0.50
r_

_E

0.40

*6

0.30
¢>

0.20

i

i
0.10 I

0.0

' I ' I ' I i

, I = I

100.0 200.0

]]me (,seconds)

I i

300.0 400.0

I Offer Rate

_- FIFO Throughput
= SFQ Throughput

21

0,70

0.60

_- 0.50
..D

--_ 0.4-0

E

0.30
n

0,20

SFQ EXPERIMENT 41

SFQ Lawndart-->Dart5(150 pps, 782 Bytes)

OfferRate,Thruput [sfq41_lawndartdart5_stream: Sat Jul 1,9 05:0.3:50 1992
I I I

0.10

0.0

0.60

0.50

rO
0.40

1)

0.30
Q>

O_

0.20

0,10

0,0

z I , I ,

100.0 200.0

Time (seconds)

SFQ MM6->Ant(150 pps,

] i

300.0 400.0

i i Offer Rate

-_ _ FIFO Throughput

= = SFO ThrouahDut

782 Bytes)

OfferRate,Thruput [sfq41_mm6_anLstream: Sat Jul 18 05:03:30 1992"

' I ' I ' I '

I , I

100.0 200.0

]qme (seconds)

I I

300.0 400.0

I Offer Rate

FIFO Throughput

a SFQ Throughput

22

Table 3. Graceful Degradation Results From Time 0 to 30 Seconds*

AVERAGE AVERAGE
OFFER RATE THROUGHPUT AVERAGE

EXPERIMENT (percentage of (percentage of DELAY DELAY
STREAM NUMBER 1.344 Mb/s) 1.344 Mb/s) (seconds) VARIANCE

Dartnetl to Malarky fifo31 61.61 61.61 0.0605 0.000044

sfq31 61.47 61.47 0.0583 0.000049

sfq41 61.63 61.63 0.0588 0.000051

*Time is approximate.

Table 4. Graceful Degradation Results From Time 30 to 60 Seconds*

STREAM

Dartnetl to Malarky

EXPERIMENT
NUMBER

AVERAGE
OFFER RATE

(percentage of
1.344 Mb/s)

AVERAGE
THROUGHPUT

(percentage of
1.344 Mb/s)

AVERAGE
DELAY

(seconds)

DELAY
VARIANCE

fifo31 60.39 48.35 0.5212 0.00503

sfq31 60.43 48.53 0.9591 0.04639

sfq41 60.39 48.47 0.9537 0.04045

LBL to Dart3 fifo31 61.45 49.79 0.5179 0.00557

sfq31 61.45 48.58 0.9650 0.04815

sfq41 61.46 48.56 0.9605 0.0429

*Time is approximate.

23

Table 5. Graceful Degradation Results From Time 60 to 90 Seconds*

STREAM

Dartnetl to Malarky

LBL to Dart3

Lawndart to Dart5

EXPERIMENT
NUMBER

fifo31

sfq31

sfq41

fifo31

AVERAGE
OFFER RATE

(percentage of
1.344 Mb/s)

59.38

59.38

59.39

60.45

AVERAGE
THROUGHPUT

(percentage of
1.344 Mb/s)

33.34

32.43

48.52

30.24

AVERAGE
DELAY

(seconds)

0.995O4

2.4168

1.8293

0.5426

DELAY
VARIANCE

0.00743

0.05466

0.05488

0.00004

sfq31 60.45 31.44 1.5327 0.00016

sfq41 60.45 25.85 1.0463 0.00005

fifo31 61.47 34.43 0.9950 0.00896

sfq31 61.47 33.98 2.3087 0.26848

sfq41 61.47 22.31 1.9382 0.05580

*Time is approximate.

Table 6. Graceful Degradation Results From Time 90 to 120 Seconds*

STREAM

Dartnetl to Malarky

LBL to Dart3

Lawndart to Dart5

MM6 to Ant

EXPERIMENT
NUMBER

AVERAGE
OFFER RATE

(percentage of
1.344 Mb/s)

AVERAGE
THROUGHPUT

(percentage of
1.344 Mb/s)

AVERAGE
DELAY

(seconds)

fifo31 59.97 27.42 1.4656

sfq31 59.95 23.69 1.6404

sfq41 59.95 31.90 1.9922

fifo31 59.38 47.29 0.5370

sfq31 59.38 34.47 1.3963

sfq41 59.38 36.03 0.8097

fifo31 60.43 22.02 1.0237

sfq31 60.43 34.62 2.2354

sfq41 60.43 25.71 2.2667

fifo31 61.47 34.96

sfq31 61.46 24.07

sfq41 61.46 33.50

0.9547

1.4622

1.8455

DELAY
VARIANCE

0.00532

0.06492

0.00157

0.00012

0.00701

0.00358

0.00010

0.00730

0.00098

0.00582

0.00585

0.13713

*Time is approximate.

24

Table 7. Graceful Degradation Results From Time 120 to 245 Seconds*

STREAM

Dartnetl to Malarky

EXPERIMENT
NUMBER

AVERAGE
OFFER RATE

(percentage of
1.344 Mb/s)

AVERAGE
THROUGHPUT

(percentage of
1.344 Mb/s)

AVERAGE
DELAY

(seconds)

DELAY
VARIANCE

fifo31 60.25 26.94 1.4840 0.00021

sfq31 60.20 23.42 1.5336 0.00026

sfq41 60.21 31.54 2.0037 0.00025

LBL to Dart3 fifo31 60.19 47.28 0.5370 0.00013

sfq31 60.20 35.46 1.3625 0.00223

sfq41 60.19 37.23 0.7953 0.00008

Lawndart to Dart5 fifo31 59.66 22.62 1.0238 0.00012

sfq31 59.62 35.48 2.3359 0.00245

sfq41 59.66 22.62 1.0238 0.00012

MM6 to Ant fifo31 60.04 33.93 0.9735 0.O(X)I 2

sfq31 60.03 23.91 1.4822 0.0(X) 10

sfq41 60.01 31.53 1.9654 0.00024

*Time is approximate.

Table 8. Graceful Degradation Results From Time 245 to 275 Seconds*

STREAM

LBL to Dart3

Lawndart to Dart5

EXPERIMENT
NUMBER

fifo31

sfq31

sfq41

fifo31

sfq31

AVERAGE
OFFER RATE

(percentage of
1.344 Mb/s)

60.01

60.02

60.01

61.29

61.83

AVERAGE
THROUGHPUT

(percentage of
1.344 Mb/s)

53.26

46.52

51.16

42.86

46.63

AVERAGE
DELAY

(seconds)

0.5177

1.0397

0.5553

0.9837

2.0102

DELAY

VARIANCE

0.00109

0.00238

0.00207

0.00778

0.00273

sfq41 61.79 41.23 1.5244 0.01237

MM6 to Ant fifo31 58.70 48.47 0.5099 0.00276

sfq31 58.85 46.30 1.0008 0.00304

sfq41 58.85. 45.49 1.0091 0.01186

*Time is approximate.

25

Table 9. Graceful Degradation Results From Time 275 to 305 Seconds*

STREAM

Lawndart to Dart5

MM6 to Ant

EXPERIMENT
NUMBER

fifo31

sfq31

sfq41

fifo31

sfq31

sfq41

AVERAGE
OFFER RATE
(percentage of

1.344 Mb/s)

60,01

AVERAGE
THROUGHPUT
(percentage of

1.344 Mb/s)

43.82

60.01 47.23

60.01 47.30

61.79 48.68

61.78 47.17

61.77 47.22

*Time is approximate.

AVERAGE
DELAY DELAY

(seconds) VARIANCE

0.5380 0.00029

1.0401 0.002752

1.0317 0.000472

0.5028 0.00016

0.9937 0.00070

0.9941 0.00075

Table 10, Graceful Degradation Results From Time 305 to 335 Seconds*

STREAM

MM6 to Ant

EXPERIMENT
NUMBER

fifo31

AVERAGE
OFFER RATE
(percentage of

1.344 Mbls)

60.01

AVERAGE
THROUGHPUT
(percentage of

1.344MWs)

60.01

AVERAGE
DELAY

(seconds)

0.0313

DELAY
VARIANCE

0.001457

sfq31 60.01 59.78 0.0551 0.01628

sfq41 60.01 59.81 0.0567 0.01707

*Time is approximate.

26

4.4 RESOURCE USAGE

4.4.1 Objective and Procedure

SFQ Experiment 24 experiment is similar in design to the experiment on starvation prevention

(see Subsection 3.2). However, instead of three UDP streams flowing in the same direction, this

experiment used two UDP streams flowing in one direction, and another stream in the reverse

direction. This was to done to test SFQ's performance in relation to FIFO queueing. It also

provided a stress test of the network, since previous experiments with cross streams failed

(blackouts occurred).The source, destination, and direction of each stream are as follows (see

Figure 5):

• Lawndart to Ant

• MM6 to Dart5

• Malarky to Dartnet 1.

The streams from Lawndart to Ant and Malarky to Dartnet 1 occupy 95 % of the link capacity of a

T1 line. Each of these streams is exponentially distributed, with an interarrival mean of 0.004902

seconds (-204 packets per second) and a constant packet size of 782 bytes (including UDP and IP

MM6
(I PX) DARTnetl DART3 DART5

Malarky
(IPX)

Lawndart Ant

Figure 5. Resource Usage Traffic Flow

27

headers). The stream from MM6 to Dart5 occupies 20% of the link capacity of a T1 line. This

stream is exponentially distributed, with an interarrival mean of 0.023256 seconds (-43 packets per

second) and a constant packet size of 782 bytes.

4.4.2 Data Description

Each graph below shows the offer rate, the SFQ throughput, and the FIFO throughput for each

stream. The experiment was executed without seed perturbation, which was not of interest.

Table 11 following the graphs summarizes the results of the experiments, including average

throughput, average delay, and delay variance for each stream.

4.4.3 Results

This experiment does show that SFQ does not significantly affect the throughput of the

network, compared with FIFO queueing. At -95% offer load, the average throughput for FIFO

queueing was 94.68%, while for SFQ it was 94.46%. As in all experiments, the average delay and

variance in delay is greater with SFQ than with FIFO, because SFQ requires more processing.

However, when a stream is competing for scarce resources, the variance seems to be lower with

SFQ for streams that are demanding less than their share.

28

SFQ EXPERIMENT 24

I ,00

o.go

-,::l-
r,o

r--
i1)

0.80
,..-,

0.70
0.0

SFQ Lawndart->Ant(204- pps, 782 Bytes)
OfferRote.Thruput [sfq24_lawndart_antstreom: Sun Jul 12 05:01:50 1992

' I ' I

100.0 200.0

lime (seconds) i i Offer Rate

o

300.0

-_ FIFO Throughput
a SFQ Throughput

0.25

I/)

0.20

P 0,15
Q)

[3_

SFQ MM6->Dort5(45 pps, 782 Bytes)

OfferRate.Thruput [sfq24_mm6_dart5_stream: Sun Jul 12 03:01:30 1992]

0.10
0.0

I , I

100.0 200.0 500.0

]qme,(seconds) i _ Offer Rote

," _ FIFO Throughput

,-, u SFQ Throughput

29

SFQ EXPERIMENT 24

SFQ Malarky->Dartnet1(204 pps, 782 Bytes)

[sfq24_matarky_dartnet1_stream: Sun dul 12 05:01:30 1992]
1 "oOfferRate'Thruput' I ' t

0.98

0.96

_6

_ 0.94
p

0,92 R

0.90 r

0.0 100,0

I I

Time (seconds)

I I

200,0 500.0

I i Offer Rate

FIFO Throughput
a u SFQ Throughput

Table 11. Resource Usage

EXPERIMENT
NUMBER

AVERAGE
OFFER RATE

(percentage of
1.344 Mb/s)

AVERAGE
THROUGHPUT

(percentage of
1.344 Mb/$)

AVERAGE
DELAY

(seconds)STREAM

Lawndart to Ant fifo21 94.72 84.71 0.5714 0.0065

sfq24 94.72 74.99 0.8562 0.0189

MM6 to Dart5 fifo21 20.01 12.34 0.5337 0.0015

sfq24 20.01 20.01 0.0802 0.0001

Malarky to Dartnetl fifo21 94.72 94.68 0.1455 0.0069

sfq24 94.72 94.46 0.2808 0.0153

DELAY
VARIANCE

30

5 CONCLUSIONS

SFQ is an efficient queueing discipline for providing equal access to the available bandwidth.

The isolation of the streams helps to ensure that no stream receives more than its fair share and that

each stream degrades gracefully as more streams are added. SFQ also seems to possess very good

scaling properties; but more work needs to be done to verify this. In particular, the choice of hash

function and seed perturbation technique needs further investigation. The current choices may

prove inadequate in a more stressful environment.

31

