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1.0 SUMMARY

This contract had two main objectives involving both numerical and experimental

investigations of a small highly loaded two-stage axial compressor designated

Advanced Small Turboshaft Compressor (ASTC) which had a design pressure

ratio goal of 5:1 at a flowrate of 10.53 lbm/s. The first objective was to conduct

3-D Navier-Stokes multistage analyses of the ASTC using several different flow

modelling schemes. The second main objective was to complete a numerical/

experimental investigation into stall range enhancement of the ASTC. This

compressor was designed under a cooperative Space Act Agreement and all

testing was completed at NASA Lewis Research Center.

For the multistage analyses, four different flow model schemes were used,

namely: (1) steady-state ADPAC analysis, (2) unsteady ADPAC analysis, (3)

steady-state APNASA analysis, and (4) steady state OCOM3D analysis. The

results of all the predictions were compared to the experimental data.

The steady-state ADPAC and APNASA codes predicted similar overall

performance and produced good agreement with data, however the blade row

performance and flowfield details were quite different. In general, it can be

concluded that the APNASA average-passage code does a better job of predicting

the performance and flowfield details of the highly loaded ASTC compressor.

The stall range enhancement investigation involved studies of forward sweep for

the first stage rotor and a tandem vane configuration for the outlet guide vane.

The forward swept rotor was designed with the use of ADPAC and was tested at

NASA Lewis Research Center in the same rig as the baseline rotor. The test

results showed that the forward swept design had a large performance

improvement over the baseline rotor with twice the high speed stall margin and

four percent higher off-design efficiency.

For the tandem vane investigation, a parametric study was conducted to

determine if a tandem vane could provide performance benefits over a

conventional design of the ASTC second stage stator. No tandem configuration

was found that had lower design point loss than the conventional design.

However, it was determined that a tandem vane configuration maintains lower

loss at off-design conditions extending it's stall range.
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2.0 INTRODUCTION AND BACKGROUND

2.1 Introduction

Increased emphasis on improved fuel efficiency, reduced weight, and lower life

cycle costs for turbofan and turboshaft engines has produced aggressive

compression system design, performance and operability goals. Future fans and

compressors will be required to have high stage loading to reduce the number of

parts and engine length, cost and weight. However, high stage loading adversely

affects efficiency because of attendant elevated shock, diffusion and secondary

flow losses. In small machines and back stages of larger compressors, the

efficiency penalty with high stage loading is amplified because regions of loss-

producing viscous endwall, secondary, and tip clearance flows, driven by blade-

to-blade pressure gradients, occupy a large portion of the flow passage. Efforts to

reduce losses through the use of complex airfoil shapes have resulted in highly

three-dimensional flows that are not adequately modeled with current-generation

compressor design and analysis systems. High stage loading can also lead to

stage mismatching because of significant rotor-stator interactions that are not

accounted for in the design process. Therefore, to meet future compressor

performance goals, there is a critical need to incorporate into the design process a

3-D Navier-Stokes multistage flow model with capability to model these 3-D and

interactive flow phenomena.

Fan and compressor design systems have been evolving for over 50 years starting

with the one dimensional fluid dynamics based designs used in the 1940"s and

1950"s. By the 1960"s, 2D inviscid streamline throughflow calculations were

available along with cascade test data derived correlations used for 2D blading.

The introduction of blade-to-blade flow solvers with simple boundary layer

models in the 1970"s allowed designers to better optimize the 2D blade shapes.

By the 1980"s three dimensional Euler codes were used to analyze 3D airfoil

shapes with the viscous blading effects accounted for by 2D Navier-Stokes

solvers. Despite these flow modeling advances, empirical correlations derived

from compressor test data was still relied upon to account for endwall, tip

clearance and secondary flow effects. The introduction of faster computers and

3D viscous codes in the late 1980's allowed compression system designers to get a

better understanding of the internal flow physics of a single blade row and rely

less on empirical correlations. These 3D viscous codes became fairly reliable in

the early t990's for single stage fans or the first few blade rows of a multistage

3



compressor. However, blade row interaction effects and uncertain inlet boundary
conditions for embedded stages render these isolated blade row codes nearly
useless for multistage compressor design.

The latest evolution in compression system design is the development of viscous
multistage CFD models that simultaneously solve multiple blade rows to include
rotor-stator interaction effects. With the availability of more powerful computers
it has become more practical to incorporate these models into compressor design
systems. This allows the designer to evaluate new multistage design concepts
and to progressively replace the empirical correlations with physics-based CFD
models and to meet the future compression system goals.

This contract had two main objectives involving both numerical and experimental
investigations of a small two-stage highly loaded axial compressor. The first
objective was to conduct 3-D Navier-Stokes multistage analysis of this compressor
using several different flow modelling schemes. The second main objective was a
numerical and experimental investigation into stall range enhancement of the
baseline compressor. This compressor has a design pressure ratio goal of 5:1 at a
flowrate of 10.53 lbm/s and was designed with the use of a three-dimensional
Navier-Stokes multistage code developed by Dr. John Adamczyk of NASA Lewis
Research Center.

For the numerical performance analysis, three flow modeling schemes were used
in addition to the Adamczyk average-passage code. Two of the performance
predictions were obtained using the ADPAC analysis code. The ADPAC code is
a general purpose code that solves the Reynolds-averaged Navier-Stokes
equations using a proven time-marching formulation. Both multistage steady
state and an unsteady flow solutions were obtained. A third analysis was
obtained using: the 3-D Navier-Stokes code OCOM3D. This code solves the full
Navier-Stokes equations and was derived from the ARC3D code. The results of
all the predictions were compared to the limited experimental data.

The stall range enhancement investigation utilized forward sweep in the first
stage rotor and a tandem vane configuration for the outlet guide vane. The
forward swept rotor design was completed with the use of ADPAC. The forward
swept rotor was tested at NASA Lewis and the results compared to the baseline
rotor test data. For the tandem vane investigation, a parametric study was
conducted with ADPAC to determine if a tandem vane configuration could
provide any performance benefits.
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2.2 Baseline Compressor

The baseline compressor used in this study was designed under a 1991 Space Act

Agreement Between Allison, NASA and the Army Propulsion Directorate. This

agreement provided for the application of the APNASA multistage average-

passage computational code to assess and design the highly loaded multistage

Advanced Small Turboshaft Compressor (ASTC). Under this agreement Allison

was to design and fabricate the compressor and NASA was to perform the

APNASA analysis. In addition, NASA supported the test of this compressor in

the Lewis Research Center's Small Compressor Test Cell. The final design and

test results of this compressor are presented in this section.

2.2.1 Design

The compressor design was completed using Allison's Axial Compressor Design

System with the guidance of the APNASA multistage code. This design system

uses an axisymmetric, radial equilibrium, streamline curvature preliminary

design module to conduct parametric studies on a wide range of design variables.

This module establishes a reasonable approximation of the flow path, work

distribution and blading parameters. The module uses correlations for profile

and shock losses, deviation and tip clearance effects with the associated mixing

losses. Through each step of the design, the airfoil shapes are updated to

establish optimum configurations that can achieve the stage mass flow and work

requirements with minimum loss. This process involves detailed analysis of the

blade-to-blade flow, entrance region flow capacity, and blade surface boundary

layers using 3D viscous single blade row models. Additionally, the aerodynamic

design system is interfaced with the structural analysis system to provide

structurally and aerodynamically sound airfoils.

For the design of the baseline compressor discussed here an additional iterative

loop using the multistage APNASA code is included. This code was developed at

NASA Lewis Research Center by Adamczyk (Ref 1-3) and solves the 3-D average-

passage Navier-Stokes equations, which are obtained from the Reynolds-

averaged form of the equations through the application of an averaging operator.



Averaging is first performed over the time period required for one rotor

revolution. The resulting system of equations contains additional source terms

with body forces, energy sources, energy correlations, and velocity correlations

which account for the presence of neighboring blade rows. These additional

terms must be appropriately modeled and require empirical modeling of the

averaged turbulence effects, time-averaged effects, and passage-to-passage

averaged effects. The resulting "average-passage" flow is steady relative to a

given blade row and spatially periodic.

The APNASA results had considerable impact on design decisions concerning

stage matching, flowpath and airfoil shapes of the ASTC. The resulting final

design parameters are presented in Table 2-1. The compressor cross-section,

shown in Figure 2-1, shows the design to have low aspect ratio blading, a

constant outer diameter and variable inlet guide vanes (IGV) and first stator. The

two rotors are integrally bladed disks (blisks) machined from Ti 6-2-4-6 pancake

forgings. The second vane is fixed geometry and is a one piece ring machined

from a 17-4PH forging.

Table 2-1. Baseline two-stage compressor design parameters.

Corrected flow, Wcor

Pressure ratio, Rc

Adiabatic efficiency

Polytropic efficiency

Corrected speed

Tip speed

Specific flow
Inlet Rh/Rt

Exit Rh/Rt

Last Blade Height

Rotor AR

Stator AR

Rotor solidity

Stator solidity

10.53 Ibrn/sec

5.0

83.2%

86.5%

49,000 rpm
1676 ft/sec

42.5 Ibm/sec-ft 2

0.494

0.881

0.468 in.

Stage 1
0.733

0.680

1.77

1.77

Stage 2
0.803

0.550

1.71

2.19
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Figure 2-1. Baseline ASTC cross-section.



2.2.2 Instrumentation

The compressor was tested with a full set of aerodynamic instrumentation to

ensure that adequate information was collected to fully understand the compres-

sor aerodynamics. Total pressure and temperature rakes and static pressure taps

positioned upstream in the plenum were used to determine inlet conditions.

Interstage instrumentation consisted of a series of casing wall static pressure taps

over the rotor blade tips and in the leading edge plane of each blade row, fast

response dynamic pressure sensors over the blade tips, and total pressure and

temperature probes located at the first stator leading edge. The small size of the

second stator precluded the use of leading edge instrumentation, as the size of the

probes could substantially affect the flowfield. Compressor discharge conditions

were determined by six 5-element total pressure and temperature rakes and static

pressure taps positioned in the same plane on the hub and casing. In addition,

three clearance probes were positioned over each rotor to monitor blade tip

clearance and to detect rotor/casing rub.

2.2.3 Two-Stage Baseline Test

The compressor was installed in the Small Compressor Test Facility at NASA

Lewis Research Center (Ref 4). The schematic of this facility in Figure 2-2 shows

it to have a typical compressor test facility layout with atmospheric or condi-

tioned supply air that passes through a plenum chamber with screens to provide

uniform flow into the compressor. The facility also has the ability to exhaust to

atmospheric conditions or the altitude exhaust system. The installation drawing

of Figure 2-3 shows this rig to have very long inlet bell that is over seven

compressor diameters in length from the plenum to the compressor inlet face.

Due to the concern of a large boundary layer build-up on the case wall, a

boundary layer suction bleed system was installed just upstream of the IGV's.

Bleed optimization tests showed that 2% bleed was required to remove the

boundary layer sufficiently. The bleed could be modulated from the control

room and was set at 2% of the supply air corrected to standard day for all

compressor testing.

The compressor was mapped with distortion free ambient inlet conditions with

the variable vanes scheduled with speed for best performance. The resulting

compressor performance map is shown in Figure 2-4. The overall performance

results at the design pressure ratio condition are listed in Table 2-2. The Figure 2-

4 map shows the compressor had to be run at 102% design speed to achieve the

design flow and pressure ratio. The efficiency at this condition was more than 2

8
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points lower than the design intent, partly due to the higher speed. The over-
speed was required to get the first rotor to swallow the shock and to operate in a
started condition as is evident by the large jump in flow and efficiency from 95%
to 102% speed. This was also confirmed by the casemounted dynamic pressure
transducers located near the leading edge. The transducer signals plotted in
Figure 2-5 are for one rotor revolution and show a large decrease in shock
strength between 95% and 102% speed for all 16 rotor passages. The first rotor
could be made to start at 100%speed by opening the IGV 8 degrees but a
substantial efficiency penalty was measured in this case. The poor starting
characteristic of the first rotor was a result of the second stage back pressuring the
first stage. This was indicated by the high measured first rotor pressure ratio of
2.78 or higher compared to the design value of 2.66. The source of the back
pressure may be a result of the second stage having low flow capacity and/or
excessive blockage produced by the first stator.

Table 2-2. Overall test performance at design pressure ratio.

Corrected flow, Ibm/s
Pressure ratio
Adiabatic Eft., %
polytropic Eft., %
Corrected speed, rpm
Stall marqin, %

Design
Pressure ratio

10.5
5.0
80.9
84.8
49,980
8.5

Much of the lower than goal efficiency may be attributed to effects of small size as

the last blade height was less then 0.5 inches. These effects include large

clearance to span ratios and large portions of the flow passage containing endwall

boundary layers and secondary flows. Small size effects also include manufactur-

ing limitations on fillet radii, blade leading edge radii and blade thickness to

chord ratios. Also contributing to the low measured efficiency were losses

associated with a long inlet containing two sets of struts and a long centerbody

which were included in the measurements. When correcting for size and inlet

loss, the compressor efficiency would be 88% which is exceptional when

compared to efficiencies for other high tip speed compressors as shown in Figures

2-6 and 2-7.
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2.2.4 Single Stage Baseline Test

To confirm that the poor starting characteristic of the first rotor was caused by

back pressure from the second stage, the compressor rig was modified to run as a

single stage compressor as shown in Figure 2-8. The inlet guide vanes were also

removed from the single stage rig to allow for a forward swept rotor test

described later in Chapter 4. The single stage rig was also modified to allow for a

radial traversing eleven element total pressure and temperature wake rake

located aft of the first vane for determining detailed stage and stator performance.

Figure 2-8. Single stage compressor rig.
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The results of this test are compared with the rotor performance data from the

two stage test in Table 2-3. The first rotor compressor map is shown in Figure 2-9

along with a few two stage test points with the inlet guide vane set at the nominal

position. These results show that the rotor was started at 100% speed for the

single stage test and even overflowed by 2%. This confirms that the second stage

of the two-stage configuration was not matched properly with the first stage

causing it to operate at a higher pressure ratio.

Table 2-3. First Rotor measured performance at 100% corrected speed.

Corrected flow, Ibm/s
Pressure ratio
Adiabatic Eft., %
polytropic Eft., %

Single staqe Two stage
10.75 10.0
2.66 2.65
87.8 84.2
89.3 86.2

More details of the single stage test will be provided in the comparison with the

forward swept rotor results in Chapter 4.
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3.0 BASELINE COMPRESSOR ANALYSIS

The performance of the ASTC was predicted using the ADPAC multistage

Navier-Stokes code. This code was used to obtain both steady and unsteady

solutions to be compared to test data and to the results of the APNASA analysis

described above. The baseline compressor was also analyzed using the single

blade row OCOM3D code by "stacking" the solutions from each blade row. Only a

few primary parameters that describe the performance of the compressor are

presented. The intent of this chapter is to compare the accuracies and

inaccuracies of three types of multistage analysis methods.

3.1 ADPAC MULTISTAGE ANALYSIS

The ADPAC code is a general purpose turbomachinery aerodynamic design

analysis tool which has undergone extensive development, testing, and

verification as described in Ref 5-8. Detailed code documentation is also available

for the ADPAC program in Ref 9-10. A brief description of the theoretical basis

for the ADPAC analysis is given below, and the interested reader is referred to

the cited references for additional details.

Briefly, the ADPAC analysis solves a time-dependent form of the three-

dimensional Reynolds-averaged Navier-Stokes equations using a proven time-

marching numerical formulation. Solutions may be obtained using either a

rotating cylindrical coordinate system for annular flows, or a stationary Cartesian

coordinate frame for linear cascades or other non-cylindrical geometries. The

numerical algorithm employs proven numerics based on a finite volume, explicit

multigrid Runge-Kutta time-marching solution algorithm derived from the

developmental efforts of Jameson, Adamczyk, and others. (Ref 3 and Ref 11-15).

A relatively standard implementation of the Baldwin-Lomax (Ref 16) turbulence

model is available to compute turbulent shear stresses. A turbulent wall function

formulation is also available to compute complex three-dimensional flows

economically on relatively coarse meshes. Steady state flows are obtained as the

time-independent limit of the time-marching procedure. Several steady state

convergence acceleration techniques (local time stepping, implicit residual

smoothing, and multigrid) are available to improve the overall computational

efficiency of the analysis. Nonsteady flows are captured through direct time-

accurate application of the time-marching solution procedure.

An attractive feature of the ADPAC code is the versatility and generality in mesh
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systems upon which the analysis may be performed. The ADPAC code permits

the use of a multiple-blocked mesh discretization which provides extreme

flexibility for analyzing complex geometries. The block gridding technique

enables the coupling of complex, multiple-region domains with common (non-

overlapping) grid interface boundaries through specialized user-specified

boundary condition procedures. Applications of the block-gridding techniques

for multistage turbomachinery flows include circumferential averaging (mixing

planes, Ref 17) between adjacent blade rows, or by solving the complete time-

dependent rotor/stator aerodynamic interaction problem using spatial/temporal

interpolation techniques. The ADPAC analysis has been successfully utilized to

predict both the steady state and time-dependent aerodynamic interactions

occurring in modern multistage compressors and turbines, and is believed to be

sufficiently mature to be applicable to the multidisciplinary design optimization

problem previously described (Ref 18-21).

3.1.1 Steady State Analysis Results

The steady state multistage ADPAC viscous solution was obtained for all five

blade rows of the ASTC baseline compressor (IGV, rotor 1, stator 1, rotor 2 and

stator 2) using a mesh similar to that used for the APNASA analysis and

illustrated in Figure 3-1. Since ADPAC utilizes a mixing plane between blade

rows, a separate mesh blocks were used for each row and were coupled at

interblade row interface planes to construct the mesh. The individual mesh block

sizes are given in Figure 3-1.

An ADPAC analysis was performed at standard day inlet conditions, 102%

corrected speed and an exit static pressure value to give an overall pressure ratio

near the design value of 5.0. An analysis by the APNASA code at this condition

was also completed and compared to the ADPAC results. A comparison of the

solutions for these two codes is of interest as each employs a different method of

passing flow field information between the blade rows. The ADPAC code uses

mixing plane theory while APNASA uses the more complex average-passage

formulation of the Navier-Stokes equations.

The overall performance predictions from these codes are compared with the two

stage rig test data in Table 3-1. This table shows that there are significant

differences between the solutions from these codes. Both codes overpredicted

2O
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Meridional View

Top View

Mesh Block 1 :

Mesh Block 2:
Mesh Block 3:
Mesh Block 4:
Mesh Block 5:
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71x41x31 = 90,241
69x41x31 = 87,699
69x41x31 = 87,699
77x41x31 = 97,867

Total 373x41x31 = 474,083

Figure 3-1. ADPAC multistage mesh is made up of five blocks.
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the mass flowrate from the measured value of 10.5 lbm/sec. The ADPAC flow

rate prediction was 2.4% high while the APNASA code overpredicted the flow

rate by only 1%. The measurement uncertainty for flowrate was 0.6%. Each code

also predicted different adiabatic efficiencies, with ADPAC over predicting by

1.6% and APNASA under predicting by 0.9%. These inaccuracies compare to a

measurement uncertainty error for efficiency of +0.5%.

Table 3-1. Mass-average overall performance predictions from

ADPAC and APNASA at 102% speed.

Data ADPAC APNASA

Overall

Wac 10.50 _+0.06 10.75 10.60

Rc 5.03 _+0.01 4.99 4.96

Efficiency 80.5 _+0.5 82.3 79.6

The stage performance data given in Table 3-2 show even further how the two

analysis methods predictions differ for this compressor. Even though the overall

performance predictions are similar, the intermediate values are quite different.

For example, ADPAC predicted the first stage efficiency to be 4.7 points higher

then the APNASA results. On the other hand, ADPAC predicted the second rotor

efficiency to be 5.3 points lower then APNASA. Similar differences occur for the

stage pressure ratios with APNASA predicting higher rotor pressure ratios then

ADPAC but also higher stator total pressure loss to arrive at the same overall

pressure ratio. A graphical representation comparing the cumulative pressure

ratio and adiabatic efficiency differences through the compressor is provided in

Figure 3-2.
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Table 3-2. Mass-average stage performance predictions from

ADPAC and APNASA at 102% speed.

Data ADPAC APNASA

Rc Eft. Rc left. Rc Eft.

StaK 
IGV

Rotor 1

Stage 1
Rotor 2

Stage 2
Cumulative

2.82 +_0.06 88.2 _0.8

0.977 ..... 0.982 .....

2.73 90.6 2.79 88.0

2.67 88.3 2.66 83.6
1.96 83.6 1.98 88.9

1.92 81.2 1.90 80.9

IGV 0.977 ...... 0.982 .....

Rotor 1 2.78 +_o.o6 86.7 +_o.8 2.66 88.2 2.74 86.4

Stage 1 2.60 85.9 2.61 82.0
Rotor 2 5.08 83.4 5.16 83.2

Stage 2 5.03 ___O.Ol 80.5 +_.o.5 4.99 82.3 4.96 79.6

The spanwise plots of pitchwise mass-averaged cumulative pressure ratio in

Figure 3-3 show more details on where the analysis methods differ. The

APNASA code correctly predicted the high hub pressure ratio of the first rotor,

however both codes under-predicted the pressure ratio near the tip. Through the

rest of the machine, it is evident that each code gives similar profile shapes with

differences occurring near the endwall regions. The average level of pressure

ratio differs between the codes with ADPAC having a lower level out of the rotors

and a higher level out of the stators. This is caused by APNASA predicting

higher rotor pressure ratios as shown in Figure 3-4 and higher stator total

pressure loss as shown in Figure 3-5. Even though the codes predict very

different stage pressure ratios, the overall pressure ratio profiles at the exit of the

compressor are similar as a result of specifying a back pressure to obtain a

pressure ratio of 5.0. The exit pressure ratio profiles agree well with the test data

plotted in Figure 3-3 and are off mainly in the level of pressure ratio. The same

overall average pressure ratio could be achieved by raising the specified value of

exit static pressure for each analysis. Instead of re-running each solution, the exit

total pressures have been normalized by their respective mass average values and

plotted in Figure 3-6. This figure shows how similar the overall pressure profiles

are for both methods and how well they compare to measured values.
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The spanwise profiles of circumferential mass-averaged cumulative adiabatic
efficiency are compared in Figure 3-7. From this figure it can be seen that the
APNASA model provides better agreement with the measured values at both

rotor one exit and compressor exit. The predicted efficiencies for the first rotor is

similar for each code except near the tip where the APNASA code predicts the

higher loss consistent with the test data. It is also evident from this figure that

higher loss in the first stator is predicted by APNASA. However, the efficiencies

are roughly equal out of rotor 2 due to the lower rotor efficiency predicted by

ADPAC as shown in Figure 3-8. The stator 2 exit cumulative efficiency presented

in Figure 3-7 shows higher efficiency predicted by ADPAC over most of the span.

The predicted rotor inlet and exit relative flow angles are plotted in Figures 3-9

and 3-10, respectively. These figures show that both rotors are operating at I to 2

degrees higher incidence angles and lower deviation angles in the APNASA

simulation. This is consistent with the lower flow and higher rotor work

predicted by this model. The stator inlet flow angles of Figure 3-11 show the

APNASA model to be operating with 2 to 4 degrees higher incidence for most of

the span and as much as 8 degrees higher near the tip for both vanes. The stator

exit flow angles shown in Figure 3-12 show the ADPAC code to predict lower

exit swirl over much of the span, while APNASA predicts lower swirl near the tip

for both vanes.

The final comparison to be made is with the case static pressures. The test rig was

instrumented with static pressure taps located between each blade row and

several over each rotor to fully describe the static pressure rise through the

compressor. The tip circumferential mass averaged static pressures from both

solutions are compared to the test data in Figure 3-13. This figure shows good

agreement with the data for both models with APNASA doing a better job at

predicting the location of the shock in rotor 2.
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3.1.2 Unsteady Analysis Results

The unsteady aerodynamics of the ASTC were analyzed by the ADPAC code at

100% speed. To simplify the analysis, the time-dependent solution was performed

without inlet guide vanes and the second stage rotor count was reduced from 33

to 32. This slight blade count modification was made to permit a time-dependent

analysis using a reduced domain consisting of 4, 9, 8, and 15 blade passages per

blade row equaling a 90 degree sector of the compressor. The resulting

computational mesh consisted of 36 blocks with a total of 1.8 million grid points

and is presented in Figure 3-14. The time-dependent analysis was first initiated

on a course mesh (half the grid points) before using this finer mesh. The solution

was advanced over 20 thousand time-steps equalling approximately 2 revolutions

requiring over 700 Cray C90 equivalent CPU hours before it was halted for data

analysis.

Examination of the solution showed that the inlet flow was 10.6 lbm/sec and the

outlet flow was 9.8 lbm/sec indicating the solution had not converged. Due to

the large amount of CPU time that would be required to obtain convergence, it

was determined not to advance the solution further. Since the solution was not

fully converged only a few results are presented to provide an indication of the

amount of unsteadiness occurring in the ASTC compressor and show the need to

consider unsteady effects during the design.

The unsteadiness of the flowfield is evident in the instantaneous plot of entropy

contours at 50% span in Figure 3-15. This figure shows the rotor wakes

convecting through the downstream stator rows. The first stator wakes are not

evident between second rotor airfoils due to the sparse mesh in that location as

seen in Figure 3-14. The radial profiles of pressure ratio and efficiency

fluctuations out of the first stage stator and compressor exit are compared to the

steady-state ADPAC solution and test data in Figures 3-16 and 3-17, respectively.

These figures show the time-dependent solution is significantly different from the

steady-state analysis and has characteristics that more closely resemble the test

data. It is unknown at this time if the time-dependent solution would continue to

approach the experimental results if it were allowed to run to convergence.
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Figure 3-14. Section oJ:ADPA C meshed used for multistage unsteady analysis.
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Figure 3-15. Instantaneous plot of predicted entropy contours
from ADPAC unsteady analysis.
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The unsteady envelope of the first stage stator exit flow angle is plotted in Figure

3-18 and shows that the exit flow angle fluctuates as much as 5 degrees. This

corresponds to an equivalent fluctuation in the downstream rotor incidence.

Similar levels of unsteadiness were observed for the second stator and only 2

degrees of flow angle variations for the rotor exit. This unsteadiness influences

compressor performance and should be considered during the design. However,

even though an unsteady solution provides valuable flow field information, it is

clearly too costly to make it practical for compressor design.
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3.20COM3D Analysis

The ASTC compressor was also analyzed using the single blade row OCOM3D

code by "stacking" the solutions from each blade row. For the ASTC blade row

calculations, the approach used was to calculate the flow for the first rotor blade

row assuming uniform total pressure and total temperature profiles. The inlet

guide vanes and their effect on the first rotor flow field were not simulated. For

the first stator, the circumferential averaged exit conditions from the first rotor

were used to specify the stator inlet total pressure, total temperature, and flow

angles. This approach of stacking solutions by using the exit flow conditions from

the upstream blade row to specify the inlet conditions for the adjacent
downstream blade row was also used for the 2nd rotor and 2nd stator

calculations. With this approach, the communication between the blade rows is

all downstream and does not account for information which is necessarily passed

upstream in this subsonic throughflow compressor. A drawback of this method

is that there are many possible solutions for blade rows operating in their choke

region. For this one-way multistage solution process many iterations are required

to achieve the desired overall total pressure ratio. One iteration of this process

employing the OCOM3D code was conducted on the ASTC at 102% corrected

speed. The results of this analysis are presented in this Chapter along with

comparisons to the ADPAC and APNASA results and test data.
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3.2.1 Code Description

OCOM3D is a general multiple grid code for turbomachinery flow developed at

Allison Engine Company (Ref 22). The flow solver is fully viscous and is based

on the Beam and Warming imp!icit algorithm for solution of the Navier-Stokes

equations. The analysis uses the blocked or embedded grids through the

application of the CHIMERA grid embedding technique (Ref 23) developed at

NASA Ames Research Center and Arnold Engineering Development Center

(AEDC). Turbulence effects are modelled using the Thomas (Ref 24) formulation

of the Baldwin-Lomax turbulence model.

With this analysis, relatively simple grids, each describing a component of the

geometry or flow field region, are combined into a composite mesh. For

individual blade rows, a body conforming O-grid is generated around the blade

and H-grids attached are upstream and downstream to extend the computational

domain. The attached H-grids are blocked with the O-grid. This means that the

boundary points for the H-grids are coincident with inner field points in the O-

grid, and the boundary points for the O-grid are coincident with the inner field

points in the H-grids. Tip clearance flow is simulated on a fine H-grid embedded

in the clearance region. The solutions on the blade passage O-grid and the

embedded H-grid communicate through interpolation of boundary data in the

overlap regions to produce a composite calculation.

3.2.2 Analysis Results

Rotor 1

The first rotor was modeled with a four block O-H mesh system that uses H-

meshes for the inlet and exit regions, an O-grid around the airfoil, and an

embedded H-grid for the tip clearance region. A tip section of the mesh is

pictured in Figure 3-19 along with the grid dimensions. This mesh is much finer

than was used for the ADPAC and APNASA models with over 4 times the grid

points for a single blade row.
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Block Type Dimension Size

Inlet H 20x35x47 32,900

Blade O 191 x31 x47 278,287

Tip Clearance H 151x25x7 26,425

Exit H 20x35x47 32,900

Total 370,512

Figure 3-19. First stage rotor 4 block mesh system used by OCOM3D.
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The overall results from this analysis at 102% design speed are compared with

test data in Table 3-3 along with the ADPAC and APNASA results as shown in the

table. The OCOM3D code does a better job of predicting the flow capacity of this

rotor then the other codes. (The back pressure produced by the second stage

prevented the measurement of first stage rotor choke flow in the test rig.) This

better agreement with data may be related to the much finer mesh used by

OCOM3D. On a mass-averaged basis, the OCOM3D predicted efficiency is 1.6%

higher than measured values, however,the spanwise plot of efficiency shown in

Figure 3-20 shows relative good agreement with the test data. Good agreement

with the measured pressure ratio profile may also be seen in Figure 3-20. It is

evident from this figure that the predicted efficiency from the APNASA code

most closely matches the experimental data.

Table 3-3. OCOM3D results for rotor I compared to test data at 102% speed.

Data OCOM3D ADPAC APNASA

Flow rate, Ibm/s 10.50 10.54 10.75 1 0.60
Pressure ratio 2.825 2.815 2.72 2.79

Efficiency,% 88.3 89.8 88.2 88.0

Choke Flow, Ibm/s ..... 10.63 ....

It should be noted that the test data plotted in Figure 3-20 includes the loss

associated with the long inlet which includes 2 sets of struts and the IGV's (see

Figure 2-3). The test values listed in Table 3-3 however, represents rotor only

performance by assuming a 1.5% inlet loss determined by an inlet system

calibration measurement (Ref 25).
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The predicted blade-to-blade relative Mach number contour plot at 91% span is

shown in Figure 3-21. This figure shows the details of the predicted passage

shock near the leading edge and the shock-boundary layer interaction on the

suction surface. This figure also shows substantial boundary layer development

on the pressure surface that is initiated by a weaker passage shock interacting

with the pressure surface boundary layer. The dense mesh used for this solution

allows for these details to be resolved.

Stator I

The first stage vane was modeled with OCOM3D using the O-H mesh system

illustrated in Figure 3-22. The endwall clearances associated with this variable

vane, of approximately 0.010 inches, were not modeled in this analysis. The

circumferential mass-averaged exit pressure, temperature and flow angle profiles

from the first rotor solution were used as the inlet conditions for the analysis of

this vane and are shown in Figure 3-23. The exit static pressure was set to obtain

the same flow rate as was calculated in the first stage rotor solution.

The inlet corrected flow and total pressure loss values from the three analysis

methods are listed in Table 3-4. This table shows a wide range in total loss

predicted by the codes with OCOM3D and ADPAC predicting much lower loss

than APNASA. The predicted radial profile of total pressure loss from OCOM3D

is compared with ADPAC and APNASA predictions in Figure 3-24. A comparison

to test data could not be made as no data were obtained at the trailing edge of the

first stator.

Table 3-4. Predicted stator l jqowrate and total pressure loss comparison.

OCOM3D ADPAC APNASA

Corrected Flow, Ibm/s 4.52

Total Press Loss, % 1.8

4.72 4.56

2.1 4.7
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Figure 3-22. Radial slice of _rst stage stator mesh used by OCOM3D.
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The OCOM3D results show some interesting flow field behavior as illustrated by

the suction surface particle trace of Figure 3-25. This figure shows the

predominately radial flow near the surface demonstrating the highly three-

dimensional nature of the flow field caused by strong radial pressure gradients

and tangential bow. This Figure also shows a vortex near the leading edge at the

tip and a sink or stagnation point at mid span near the trailing edge. The Mach

number contour plots of Figure 3-26 show the boundary layer to be separated

near the leading edge at 90% span (location of the vortex) and at 75% chord at

mid span (location of the stagnation point). The suction surface boundary layer at

10% span is not separated in the normal sense of having backflow, however, the

purely radial flow downstream of the shock produces large amounts of blockage

similar to separated flow.

Rotor 2

For the analysis of the second rotor, a four block mesh system similar to that used

in the first rotor was used. The first stator circumferential mass averaged exit

conditions were used as inlet conditions for this rotor and are shown in Figure 3-

27. As in the previous blade row, the intent was to set the exit static pressure at a

value to obtain a flowrate of 10.54 lb/sec. This would be the same flow rate as

was calculated in the previous blade row solutions. However, the rotor became

unstarted at a flowrate of 10.59 lb/sec and a solution could not be obtained at a

lower flow rate. The pressure ratio at this condition was 2.14 which is much

higher than that predicted by the other models as shown in Table 3-5 and Figure

3-28. This table also shows that the inlet corrected flow is low, explaining the

higher pressure ratio and stalling conditions for the OCOM3D solution. This

situation was caused by the higher pressure ratio predicted for rotor I compared

to ADPAC and APNASA. At this point, a new solution for rotor I and stator 1

should be obtained at a lower pressure ratio to raise the second stage corrected

flow. However, for this exercise the process will continue using these results.
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Figure 3-25. Stator I suction surface particle trace from OCOM3D.
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Table 3-5. OCOM3D results dCor rotor 2 compared to ADPAC and APNASA results.

OCOM3D ADPAC APNASA

Flow rate, Ibm/s 10.59 10.75 10.6

Corr. flow, Ibm/s 4.61 4.82 4.88
Pressure ratio 2.14 1.947 1.976

Efficiency,% 83.3 83.2 88.8

Although the predicted average rotor efficiencies are nearly equal for the ADPAC

and OCOM3D predictions, the radial efficiency profiles of Figure 3-28 are very

different with OCOM3D predicting much lower efficiency above mid span due to

the unstarted shock. The blade-to-blade relative Mach number contour plot at

90% span, presented in Figure 3-29, shows the bow shock to be detached from the

leading indicating the rotor is unstarted or spilled. A large suction surface

boundary separation is also evident in Figure 3-29 as a result of the shock

interaction with the boundary layer.

Stator 2

The mesh used for the analysis of the second stator was identical in size to that

used for stator 1. The predicted circumferential mass averaged exit pressure,

temperature and flow angle distributions from the second rotor solution

presented in Figure 3-30 were used as the inlet conditions. The exit static

pressure was set to obtain nearly the same flow rate as was calculated in the first

stage rotor solution.
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Figure 3-29. OCOM3D predicted rotor 2 relative Mach number contours at 91% span.
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The resulting inlet corrected flows and total pressure losses predicted by the three

analysis methods are listed in Table 3-6. This table shows a wide range in total

loss predicted by the codes as was the case for stator 1. However, for stator 2

OCOM3D predicted high loss similar to that predicted by APNASA. The radial

profile of total pressure loss is shown in Figure 3-31. The OCOM3D inlet

corrected flow is low for the same reason discussed for rotor 2. The low corrected

flow and the radial profiles out of rotor 2 also explain the high predicted total

pressure loss.

Table 3-6. Predicted stator 2 flowrate and total pressure loss comparison.

OCOM3D ADPAC APNASA

Flow rate, Ibm/s 2.42

Total Press Loss, % 3.7

2.76 2.74

1.95 3.95

To show some of the complex secondary flow features captured by this code, a

plot of suction surface particle traces is shown in Figure 3-32. This figure shows

the predominately radial flow near the surface demonstrating the highly three-

dimensional nature of the flow field caused by pressure gradients and tangential

bow. This figure also shows the boundary layer has separated near the leading

edge at the hub. The Mach number contour plots of Figure 3-33 show the

boundary layer to be separated over most of the suction surface chord at 10% and

50% spans. The suction surface boundary layer at 90% span is separated over the

front portion of the blade and then reattaches at 50% chord.
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Figure 3-32. Stator 2 suction surface particle trace from OCOM3Do
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Figure 3-33. Stator two OCOM3D predicted Mach number contours.



3.3 Summary of Results

The stage and cumulative performance results for the three steady-state flow

models are compared with test data in Table 3-7. Based on this information and

the radial profiles presented in this chapter and the previous chapter, the

conclusion can be made that the APNASA average passage code does a better job

at predicting the performance and flowfield details of this highly loaded two

stage compressor.

Table 3-7. Mass-average stage performance predictions at 102% speed.

Data ADPAC APNASA OCOM3D

Rc Eft. Rc Eft. Rc Eft. Rc Eft.

IGV

Rotor 1

Stage 1
Rotor 2

Stage 2

Cumulative

IGV

Rotor 1

Stage 1
Rotor 2

Staqe 2

2.82 _+0.06 88.2 +_0.8

0.977 ..... 0.982 ..... 0.985 ---

2.73 90.6 2.79 88.0 2.82 90.5

2.67 88.3 2.66 83.6 2.77 89.4

1.95 83.6 1.98 88.9 2.16 83.3

1.92 81.2 1.90 80.9 2.08 78.8

0.977 ...... 0.982 ..... 0.985* -....

2.66 88.2 2.74 86.4 2.78 89.1

2.60 85.9 2.61 82.0 2.73 87.2

5.08 83.4 5.16 83.2 5.89 84.3

4.99 82.3 4.96 79.6 5.66 81.8
* Inlet loss from test results.
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4.0 FORWARD SWEPT ROTOR ASSESSMENT

It was revealed in chapter 2 that the ASTC first stage rotor would not swallow the

passage shock at 100% speed as designed. It had been determined that this was

caused by the low flow capacity of the second stage thereby back pressuring the

first stage. This problem could be remedied by increasing the flow capacity of

the second stage and/or redesigning the first rotor to tolerate the higher back

pressure. The objective of the chapter is to assess the feasibility of improving the

shock starting characteristic of the ASTC first stage rotor with blade sweep

through numerical analysis and then experimentally verify these findings.

4.1 Aerodynamic Design and Analysis

Fan and compressor designers have long been attempting to reduce shock loss by

sweeping the rotor blade aft to produce a more oblique shock. Previous

investigations found that back sweep has an adverse affect on stall margin.

Results from 3-D Navier-Stokes models for back sweep reveal that the passage
shock tends to remain near the same location within the annulus as the rotor is

swept back as illustrated in Figure 4-1. This places the rotor leading edge closer

to the shock causing the rotor to unstart sooner (and start later) leading to less

stall margin. The results of these investigations led to the concept of sweeping the

airfoil forward to move the leading edge away from the passage shock to increase

stall margin.

The baseline first stage rotor of the ASTC was redesigned and restacked to

introduce forward sweep. The only aerodynamic design constraints were to use

the same flowpath and rpm as the baseline design. The rotor exit conditions were

also consistent with the baseline design to match with the existing first stage

vane. The forward swept rotor had to meet structural integrity requirements to

safely run the test. Since the intent of this program was to improve the perfor-

mance and shock starting characteristics of the baseline first stage rotor several

design parameters are different for the two designs eliminating a true back-to-

back comparison for swept and unswept rotors.
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Figure 4-1. Schematic showing effect of back sweep on shock location.
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The design of the forward swept rotor was accomplished using the Allison Axial
Compressor Design System briefly described in Chapter 2. The three-
dimensional viscous code ADPAC (see Chapter 3) was used as the primary

analysis tool to determine the performance of each design configuration. The

predicted radial profiles of a few main design parameters are plotted in Figure 4-

2 and Figure 4-3 where they are compared to the baseline design profiles. These

figures show how similar the two designs are with the exception of the rede-

signed rotor having 12.5% higher solidity and higher tip choke margin. The final

salient design parameters for the redesigned swept rotor are listed in Table 4-1.

The rotor inlet corrected flow is higher than the compressor flow presented

earlier due to the absence of the inlet guide vane loss.

Table 4-1. Comparison of salient design parameters of the redesigned
and baseline rotors.

Parameter Redesign Baseline

Corr. Flow rate, Ibm/s 10.63
Pressure Ratio 2.69

Corr. Tip Speed, ft/s 1676

Inlet Spec. Flow, Ibm/s-ft 2 42.5
No. Airfoils 18

Mean Solidity 1.993

Aspect Ratio 0.672

10.63

2.69

1676

42.5

16

1.767

0.680

The forward sweep was accomplished by using nonlinear leans in both the axial

and tangential directions. The amount of sweep introduced was limited by

structural design criteria discussed in the following section. As a result, a

parametric study on sweep was conducted to find the optimum sweep to

maximize stall margin and still meet the structural requirements. To limit the

number of variables, the axial lean of the airfoil was fixed and the non-linear

tangential leans were varied. The leading edge axial sweep angle profile used for

the redesigned blade is compared to the baseline design in Figure 4-4. Meridi-

onal views of the two rotors are compared in Figure 4-5 illustrating the amount of

forward lean in the new design. A wide range of tangential leans were investi-

gated to determine their impact on rotor performance and steady-state stress

levels. Several of the tangential lean angle radial distributions are plotted in
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Figure 4-6 where negative lean is in the opposite direction of rotation. The final

selected tangential lean along with the baseline linear tangential lean is also

presented in Figure 4-6. The illustration in Figure 4-7 shows the final 3D shape of

the forward swept rotor design.

To determine the impact on performance of the many blade tangential leans

described in Figure 4-6, ADPAC was used to predict the 100% design speed

characteristic to stall for each lean. The results for a few of the designs are shown

in Figure 4-8. It is evident from this figure that the tangential lean has a signifi-

cant influence on the shape of the speedline, the maximum pressure ratio

capability and the peak efficiency. In general, increased negative tangential lean

produces flatter (more flow range) speedlines than positive lean. The final design

of the forward swept rotor shows it to have 6% stall margin while the baseline

rotor has no stall margin from the design pressure ratio value of 2.69. It is also

evident from this figure that the forward swept design has approximately 0.5%

less peak efficiency potential. The forward swept design also has significantly

more flow range compared to the baseline design. The ADPAC predicted

spanwise distribution of pressure ratio and efficiency for the two designs are

presented in Figure 4-9. This figure shows the redesigned rotor to have a slightly

more hub-strong pressure ratio gradient than the baseline. It is also evident that

the baseline rotor has slightly higher efficiency over most of the span, likely

caused by the baseline's lower solidity.

The improved stall margin is partially a result of the passage shock being located

further from the leading edge at design pressure ratio for the forward swept

design as illustrated in the near tip contour plots of Figure 4-10. The increased

stall margin and flow range is also attributed to the redesigned blade unstarting

from hub to tip rather than tip to hub for the baseline design. This is illustrated in

Figure 4-11 which shows static pressure contours on the pressure surface for

incremental increases in back pressure for the two designs. For the baseline

design the stronger tip shock reaches the leading edge before the weaker lower

span shock causing the blade row to unstart and stall. As the back pressure is

increased for the forward swept rotor the shock reaches the leading edge at the

lower spans first. The shock at the lower spans is not strong enough to unstart

the rest of the blade allowing it to go to higher pressure ratios.

It is typical for conventionally designed blades for the suction surface boundary

layer to have a strong radial flow direction downstream of the passage shock

location as illustrated in the particle trace of Figure 4-12. This boundary layer
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Figure 4-7. Final geometry of the forwrad swept rotor design.
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Figure 4-11b. Forward swept rotor pressure surface predicted static pressure contours
at increasing pressure ratios.
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Figure 4-12. ADPAC predicted suction surface particle trace for baseline and forward swept rotors.



flow tends to collect near the tip creating blockage that back pressures the rotor

tip streamlines. This flow pattern shown in Figure 4-12 for the baseline design is

not observed for a forward swept design. For the forward swept design two

things occur, the radial boundary layer flow runs off the trailing edge before it

has an opportunity to travel very far and the shock strength at lower spans

appears to be weakened by the forward sweep due to the more oblique shock.

These characteristics also contribute to the higher stall margin achieved by the

forward swept design.

4.2 Structural Analysis

The forward swept rotor was designed to meet structural integrity requirements

consistent with safe rig operation and does not meet engine criteria for full life,

LCF, birdstrike, etc. The design life requirement was 1000 hours and 1000 cycles

consistent with the rest of the rig hardware. For HCF life, the allowable steady

state stress levels were determined by the modified Goodman diagram of Figure

4-13 assuming a vibratory stress level of _10ksi. The Ti6_2_4_ 6 material properties

were obtained from test specimens cut from a forging from the same lot as the

forging used to fabricate this rotor. A summary of the allowable stress levels is

listed in Table 4-2. The design conditions for this analysis assumes standard day

inlet with a steady state rpm of 49,000.

Several design iterations were required to find a tangential lean that would

satisfy both th6 aerodynamics and steady stress requirements. The final results

from the finite element analysis are provided as contour plots of uniaxial

equivalent stress in Figure 4-14 for both surfaces of the airfoil. These plots and

the summary in Table 4-2 show that the airfoil meets all allowable stress criteria.

It should be noted that the stress levels for the forward swept rotor are much

higher than the peak stress of 70 ksi for the baseline design.
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Figure 4-14. Calculated uniaxiaI equivalent stress for the forward swept rotor.
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Table 4-2. Allowable steady stress levels to satisfy HCF criteria.

Max

Allowable Calculated

Location Kt Stress, ksi Stress, ksi

Blade Surface 1.0 136 134

Filet Radius 1.4 130 114

Blade Edges 3.0 97 90

The structural analysis also showed that the static to hot running deflections for

forward swept design are significantly different than the baseline design. The

three- dimensional sweep of the redesigned blade causes it to deflect in a complex

manner different from the baseline rotor as illustrated by the blade tip radial

deflections shown in Figure 4-15. For the forward swept design the leading edge

deflects 0.016 inches more than mid-chord and 0.006 inches more than the trailing

edge requiring the blade tips to be machined to a contour in order to maintain tip

clearance less than 0.005 inches along the entire chord.

These results indicate that this design is near the maximum forward sweep

allowed and still have a structurally acceptable design to meet compressor rig test

requirements. It should be mentioned that this design is not structurally

acceptable for flight hardware and would require a significant reduction in

forward sweep or much stronger material to meet flight worthy criteria.

4.3 Single Stage Test results

The forward swept rotor was installed in the single stage rig discussed in section

2.2.4 and tested in the NASA Lewis Research Center small compressor test

facility. The cross-section of the test rig is illustrated in Figure 4-16. Note that the

inlet guide vanes were removed to prevent interference with the forward swept

rotor. The aerodynamic instrumentation was the same as that used in the

baseline test described in Section 2.2.2.
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The stage was mapped from open throttle to stall at speeds ranging from 70% to

100% in 5% increments. The primary objective of this test was to determine the

forward swept rotor performance and to compare it to the baseline rotor

performance. The stator performance was measured with a traversing wake rake

and will not be discussed in detail.

The rotor only test map comparing both designs is presented in Figure 4-17 which

reveals the substantial performance improvement for the forward swept rotor.

Figure 4-17a shows both designs had a 100% design speed choke flow of 10.77

lbm/sec compared to the design intent of 10.63 lbm/sec. This figure also shows

the forward swept design has much more constant speed stall margin than the

baseline design as predicted by ADPAC. The forward swept design had nearly

20% stall margin from design pressure ratio compared to 9.2% for the baseline

rotor. The increased stall margin is due to both increased pressure rise capability

and the additional flow range. This increased flow range is a result of the shock

spilling sequence of the forward swept rotor as discussed in Section 4.1.

The measured rotor adiabatic efficiency map of Figure 4-17b shows the forward

swept rotor to have substantially higher efficiency (3-4%) below 98% speed and

the same peak efficiency at 100% speed. This figure clearly shows the difference

in shock starting characteristics between the two designs. It is evident that the

baseline rotor does not become fully started until 98% speed where the efficiency

jumps 3.5% from 95% to 98% speed. The forward swept rotor on the other hand,

has less than a 1.0% efficiency increase between 85% and 90% speed indicating an

earlier and more gentle starting characteristic. A summary of the 100% speed

measured performance for both rotor designs is compared to ADPAC predictions

in Table 4-3. The measured peak adiabatic efficiency is 89.2% for both rotors

occurring at 95% speed for the forward swept rotor and 98.6% speed for the

baseline design.

Table 4-3. Rotor only measured performance summary at 100% speed

and design pressure ratio.

Forward Swept Baseline
ADPAC Test ADPAC Test

Flow Rate, Ibm/s 10.52 10.77 10.59 10.77
Pressure Ratio 2.69 2.69 2.69 2.69

Adia. Efficiency, % 89.1 87.5 89.2 87.0
Stall Margin, % 19.5 9.2
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The measured and ADPAC predicted radial profiles of pressure ratio are

compared in Figure 4-18. This figure shows that the predictions are in good

agreement with the measured data for both designs and that ADPAC predicted

the slight increase in hub strong gradient for the forward swept design. The

efficiency profile comparison in Figure 4-18 is also in good agreement and

indicates the lower measured efficiency occurs primarily outside the 10% and

70% span locations.

Figure 4-19 shows the measured total pressure ratio profiles at 100% speed for the

two rotor designs while throttling from a low operating line to near stall. The

improved pressure rise capability of the forward swept design is evident in

Figure 4-19a as it shows much higher pressure ratios are achieved at all spans as

it approaches stall. The baseline design on the other hand, begins to stall at a

pressure ratio slightly higher than the design value as illustrated in Figure 19b. It

is interesting to note that both designs have a near stall pressure ratio that is less

than their maximum values with the baseline stalling below the design pressure

ratio.

In summary, the redesigned forward swept blade had substantially improved

performance over the baseline design with double the design speed stall margin

and up to 4% higher off-design efficiency. The high stress induced by the sweep

is a major drawback with forward sweep that must be overcome before this

technology can be transitioned to a product.
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5.0 TANDEM VANE ASSESSMENT

Experimental data and numerical analysis results for the ASTC baseline compressor

indicate that high loss is produced in the second stator row and that the stator may

be partially stalled over a significant portion of the operating range. The poor

performance of this vane contributes substantially to the lower than design

efficiency of this compressor as reported in Chapter 2.0. This chapter investigates a

tandem vane configuration as a concept to reduce losses and increase the vane row

operating range. This concept has been studied and attempted previously with

limited success, however, new 3D viscous analysis tools provide a better under-

standing of the complex flowfield allowing for potential design improvements of

this concept.

5.1 Design and Analysis Methodology

The strong adverse pressure gradient in a highly loaded compressor vane can lead

to strong separations and high losses. With the tandem vane concept the flow

pattern in a high Mach number, high turning passage, the passage is split into two

rows to reduce the diffusion to within acceptable limits. The tandem vane provides

high solidity locally without introducing extra blockage in the inlet region. This

concept is similar in nature to splitter vanes in centrifugal compressors.

Parametric trade studies of the tandem vane concept were conducted to determine

the best configuration for both low design point loss and increased stall range. To

reduce the number of design variables, a few design constraints were enforced. The

first constraint was that the tandem vane configuration must have the same total

axial length as the baseline vane so it may be installed into the existing rig. The

second constraint fixed the chord of the first vane and the axial position of the

tandem vane leading edge. These values were estimated from an earlier prelimi-

nary analysis and are not necessarily optimum values. A typical tandem vane

configuration is presented in Figure 5-1 illustrating the design constraints and
definitions.

The ADPAC code (Chapter 3) was used to analyze each design to determine its

relative performance compared to the baseline design. The primary performance

measurement used was total pressure loss at the design condition. Each tandem

vane analysis was performed using the same two-block mesh defined in Figure 5-2.
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Figure 5-1. Tandem vane configuration definitions.
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Figure 5-2. Typical tandem vane ADPAC two block mesh.
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To minimize grid related differences, the baseline vane was also analyzed using a
similar two-block mesh.

The inlet profiles to the tandem vane were obtained from a data match study
conducted with data from the rig test corresponding to the compressor design point.
The vane inlet profiles used asboundary conditions in ADPAC for total pressure,

total temperature and flow angle are presented in Figure 5-3.

5.2 Parametric Trade Studies

The design parameters chosen for this investigation included the tandem vane

pitchwise location, solidity and chordwise loading distribution. The results of these

studies are provided in the following sections.

5.2.1 Tandem Vane Pitchwise Location

A parametric study on the influence of tangential spacing on the performance of the

tandem vane configuration was conducted. This study consisted of four tandem

vane designs with the pitchwise spacing, Sp, ranging from 0.40 to 0.70 as defined in

Figure 5-1. Higher values of Sp position the tandem vane closer to the primary vane

suction surface. All of these designs are illustrated in Figure 5-4. All tandem

configurations have the same meanline solidity and axial chord as the baseline vane.

The ADPAC predicted mass flow rate and total pressure loss is compared to the

conventional design in Table 5-1.

Table 5-1. Tandem vane tangential spacing parametric study results.

Flow rate

Design Sp Ibm / sec APt / Ptin

Baseline NA 11.02 0.0199

T02 0.51 10.77 0.0253

T03 0.40 10.77 0.0254

T04 0.60 10.73 0.0262

T05 0.70 10.68 0.0268
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PITCHWlSE LOCATION STUDY

Figure 5-4. Tandem vane geometries used for pitchwise location study.
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The spanwise profiles of total pressure loss for all designs are shown in Figure 5-5

and the chordwise distribution of loss through the vanes are illustrated in Figure 5-

6. These figures along with Table 5-1 indicate that the tangential placement of the

tandem vane has very little impact on the vane row performance with all tandem

vane designs having approximately 0.5% higher total pressure loss than the baseline

vane. The mid-pitch design (T02) has only a slight advantage over the other tandem

designs and will be used in the following trade studies. The chordwise distribu-

tions of loss in Figure 5-6 show the tandem designs to have lower loss in the inlet

region due to lower solidity and that most of the additional loss is produced at the

inlet to the tandem vane or second vane.

5.2.2 Solidity

The effect of solidity on vane loss was investigated by designing several tandem

configurations with effective solidities ranging from 1.39 to 2.85. Where effective

solidity is defined as:

and,

($ __Cl +OaS

C 1 = chord of primary vane
Ca = chord of tandem vane
S = pitch of primary vane

The various solidities were achieved by changing the number of blades and holding

the chord of each airfoil constant. The ADPAC predicted mass flow rate and total

pressure loss is provided in Table 5-2 for each design. These results indicate that

solidity also had a small impact on the mass-averaged total pressure loss with

values ranging fr'om 2.49% to 2.59%. However, in the case of the lowest solidity

design (T08), the higher blade loading creates large airfoil surface boundary layers

as seen in Figure 5-7 compared to a higher solidity design creating blockage and

reducing it's flow capacity. It is interesting to note that an area-averaged total

pressure loss greatly reduces the difference in loss between the baseline and tandem

designs. This indicates that the baseline design is actually producing more blockage

with less loss than the tandem design.
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Table 5-2. Tandem vane solidity parametric study results.

No. Meanline Wac APt/Pti n

Design Vanes Solidity lbm/sec mass ave. area ave.

Baseline 60 2.19 11.02 0.0199 0.0272

T02 49 2.27 10.77 0.0249 0.0287

T06 44 2.04 10.76 0.0246 0.0285

T07 40 1.85 10.74 0.0246 0.0286

T08 30 1.39 10.59 0.0259 0.0307

T09 50 2.85 10.77 0.0257 0.0294

The tandem vane solidity has some impact on the turning ability of the vane row.

Figure 5-8 shows that the higher solidity designs have lower exit flow angles by as

much as 4 degrees. Each of the tandem designs had the same inlet flow angles and

exit metal angle so a higher exit flow angle means less turning and higher deviation.

This figure also shows that the baseline design has better turning capability than the

tandem design with equivalent solidity (T02). This is a result of the locally low

solidity at the trailing edge region of the tandem configuration as illustrated in

Figure 5-1. This may be corrected by doing more of the turning in the high solidity

overlap region.

5.2.3 Chordwise Loading Distribution

The next parametric study involved the investigation into the influence of the

primary vane camber distribution on tandem configuration losses. Three tandem

vane configurations were designed with different camber distributions that

provided forward, aft, and evenly distributed primary vane loading levels. In

addition, each design had higher turning in the primary vane than previous tandem

designs as suggested in the previous section. The leading edge and trailing edge

camber levels at 50% span for each design along with the predicted mass-averaged

total pressure loss and mid-span exit flow angle are provided in Table 5-3. These

results indicate that loading distribution had little impact on mass-averaged total

pressure loss with the evenly loaded design having the lowest loss at 2.49% and the

aft loaded design the highest with 2.77%. However, these higher loaded primary
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vane designs had a positive effect on the total turning of the tandem vane configura-

tions with exit flow angles equal to or less than the baseline design as presented in

Table 5-3 and Figure 5-9. The chordwise loading distribution did have an influence

on the amount of turning each design achieved as illustrated in Figure 5-9. The

front loaded design (T17) had the highest level of turning and the evenly loaded

design had the lowest level equal to that for the baseline vane. The differences in

the exit flow angles is the result of differences in the vane surface boundary layer

growth for each design. The front loaded design had a smaller boundary layer

growth on the tandem vane causing it to have lower deviation angles and more

turning.

Table 5-3. Tandem vane camber distribution results.

Front Rear APt/Pti n Exit Flow

Design Camber Camber mass ave. Angle

Baseline 29.7 9.0 0.0199 6.0

T16 11.3 29.6 0.0277 4.3

T17 28.7 8.8 0.0261 3.0

T18 17.2 17.2 0.0249 6.0

The loading distribution effect on the blade surface pressure gradient is apparent

from Figure 5-10. This Figure indicates that these designs are operating with high

incidence on the tandem vane which is contributing to the higher loss in this region

as illustrated in Figure 5-6. The tandem vane of configuration T18 was redesigned

with higher inlet metal angles to reduce this incidence and the loss associated with

it. The mid-span predicted blade loading plot for this design is provided in Figure

5-11 which shows the improved pressure distribution around the tandem vane.

This resulted in a reduction in total pressure loss to 2.27% from 2.49%. The total

pressure loss profiles for the new design (T20) and the T18 design are compared

with the baseline design profiles in Figure 5-12.
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5.3 Optimized Tandem Vane Configuration

The best designs from each trade study were combined to form the best overall

tandem vane configuration. This included a 50% pitchwise location tandem vane

(T02), an effective solidity of 1.85 (T07) and an even loading distribution (T18) with

low tandem vane incidence (T20). This design, designated T21 and illustrated in

Figure 5-13, had a mass-averaged total pressure loss of 2.19%, only slightly higher

than the baseline vane. The radial profiles of total pressure loss are compared in

Figure 5-14 showing the higher loss of the tandem vane design occurs in the 50% to

90% span range.

5.3.1 Off- Design Performance

The off-design performance figures for the baseline and T21 tandem vane configura-

tion were determined using ADPAC. Each configuration was analyzed at several

incidence values ranging from -14 ° to +8 ° delta from design. The exit static pressure

supplied as a boundary condition in ADPAC was held constant for all cases. The

total pressure loss as a function of incidence is presented in Figure 5-15 and shows

that the tandem vane configuration has a lower minimum loss value than the

conventional design. The tandem vane design also has a flatter loss bucket

indicating a wider operating range of low loss performance compared to the

baseline. These results indicate that a tandem vane configuration could be designed

at a lower incidence level than a conventional vane design. This would allow the

compressor to run at to a higher operating line before the vane stalls producing

large amounts of loss. The off-design flow rate characteristics of the tandem vane

configuration also supports this capability as shown in Figure 5-16. The tandem

design is able to maintain a high flowrate at very low incidence levels compared to

the baseline desi,gn which begins to drop flow rate as incidence goes more negative.

This study has shown that there is a potential benefit of a properly designed tandem

vane configuration in improving the off-design performance of highly loaded

compressors and suggests that this concept should be explored further.
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Figure 5-13. Final tandem vane design T21.
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