This microfiche was

produced according to

ANSI/AllM Standards

and meets the

quality specifications
 contained therein. A

 poor blowback image is the result of the characteristics of the original document.
Studying Turbulence Using Numerical Simulation Databases - VI

Proccedings of the 1996 Summer Program

Center for Turbulence Research

December 1996

Ames Researct Cenier

Studying Turbulence Using Numerical Simulation
 Databases - VI

Proceedings of the 1996 Summer Program

Center for Turbulence Research

December 1996

Ane Reserthl (entet

Stanford I niversiiy

CONTENTS

Preface 1
I. Modeling
Overview 3
Von-linear $k-\varepsilon-v^{2}$ modeling with application to high-lift. F. S. Lien and P. A. Durbin 5
Application of the $\dot{R}-\varepsilon-v^{2}$ model to multi-component airfoils. G. Iaccarino and P. A. Durbin 23
A new approach to turbulence modeling. B. Perot and P. Moin 35
Second moment closure analysis of the backstep flow database. S. Parneix. D. Lacrence and P. Durbin 47
On modeling pressure diffusion in non-homogeneous shear flows.
A. O. Demcren. M. M. Rogers, P. Duhbin and S. K. Lele 63
Prediction of the backflow and recovery regions in the backward facing step at various Reynolds numbers. V. Michelassi, P. A. Durbin and N. N. Mansoun 73
II. Combustion
Overview 87
A-priori testing of sub-grid models for chemically reacting nonpremixed turbulent shear flows. J. Jiménez, A. Liñín, M. M. Rogers and F. J. Higuera 89
Turbulent flame propagation in partially premixed flames T. Poinsot, D. Veynante, A. Trouvé and G. Ruetsch 111
A dynamic subgrid-scale model for LES of the G-equation. A. Bolrlioux, H. G. Im and J. H. Ferziger 137
A new methodology to determine kinetic parameters for one- and two- step chemical models. T. Mantel, F. N. Egolfopoulos and C. T. Bowman 149
Evaluation of joint probability density function models for turbulent nonpremixed combustion with complex chemistry. N. S. A. SMITH, S. M. Frolov and C. T. Bowman 167
Effect of chemistry and turbulence on NO formation in oxygen-natural gas flames. J. M. Samaniego, F. N. Egolfopoulos and C. T. Bowman 187
Asymptotic solution of the turbulent mixing layer for velocity ratio close to unity. F. J. Higuera, J. Jiménez and A. Liñín 207
The effects of complex chemistry on triple flames. T. EcHEKKI and J. H. Chen 217
III. Large Eddy Simulation
Overview 235
Ensemble averaged dynamic modeling. D. Carati. A. Whay and IV. Cabot 237
Anisotropic eddy visosity models. D. Carati and W. Cabot 249
Dynamic Smagorinsky model on anisotropic grids. A. Scotti, C. Meneveal, and M. Fatica 259
Dynamic model with scale-dependent coefficients in the viscous range. C. Meneveai and T. S. Lund 275
The incremental unk...wns - multilevel scheme for the simulation of turhulent channel flows. M. Chen, H. Choi, T. Dubois, J. Shen and R. Tfmam 291
A priori testing of subgrid-scale models for the velocity-pressure and vorticity-velocity formulations. G. S. Winckelmans, T. S. Lund. D. Carati and A. A. Whas 309
LES on unstructured deforming meshes: towards reciprocating IC engines. D. C. Hawohth and K. Jansen 329
Large eddy simulation of a backward faring step How using a least squares spectral element method. D. C. Chav and R. Mittal. 347
Evaluation of a wortex-based subgrid stress model using DNS databases A. Misra and T. S. Lund 359
IV. Control, Structures, and Hydroacoustics
Overview 367
Hydroacoustic forcing function modeling using DNS database.
I. Zawadzhi. J. L. Gehshfeld. Y. Na and M. Wang 369
A study of the turbulence structures of wall-bounded shear flows. M. S. Chong, J. Sohia. A. E. Perry. J. Chacis. Y. Na and B. J. Cantwell 383
Optimal and robust control of transition T. R. Bewlfy and R. Agarwal. 405
Simulation and modeling of the elliptic streamline flow. G. A. Blats- dell and K. Shahift 433
Drag reduction in turbulent MHD pipe flows. P. Orlavid 44

Preface

The Sixth Summer Program of the Center for Turbulence Research was held during the four-week period June 24 to July 19, 1996. There were thirty-seven participants from the U. S. and nine other countries and twenty-six local Stanford, NASA-Ames, and CTR staff who devoted virtually all of their time to the program. As in the previous summer programs, the participants used the archived direct numerical simulation databases to test turbulence models and study turbulence physics. In addition, several calculations of complex flows and new simulations were performed during the Program.

A hallmark of the 1996 Summer Program was a very large turbulence modeling and application group. The so-called Reynolds averaged modeling. RANS. is an important industrial tool for prediction of turbulent flows. New modeling ideas recently put forward at CTR and a special focus on a specific application were the catalysts that brought together this group of turbulence modelers and computational fluid dynamicists.

As in the past Summer Programs, the combustion community was well represented. Of particular interest were promising findings in the application of the large eddy simulation technique, LES, to turbulent reacting flows. The LES group contributed the largest number of papers to this volume. New subgrid scale models were tested and several important issues in application of LES were addressed. The LES group also included two representatives from aerospace and automobile industries which recently have shown interest in using this tool for simulation of complex flows encountered in power systems. The control, structures, and hydroacoustics group included such fundamental studies as control strategies for laminar/turbulent transition and detection of organized structures in separated flows. It also included a group from David Taylor Laboratory who evaluated models of space/time characteristics of wall pressure fluctuations in separated flows.

As part of the Summer Program three review tutorials were given on Large eddy simulation (Parviz Moin), DNS of premized combustion (Thierry Poinsot and Denis Veynante), and Turbulence/shock wave interection (Krishnan Mahesh); and one seminar entitled Controlling complex systems with MEMS was presented by James McMichael. A number of colleagues from universities, government agencies, and industry attended the final presentations of the participants on July 19. They provided valuable input on the work accomplished and participated in the discussions.

There are twenty eight papers in this volume grouped in the above four areas. Each group is preceded with an overview by the CTR coordinator of the group. Early reporting of thirteen of the projects occurred at the Forty Ninth Meeting of the Division of Fluid Dynamics of the American Physical Society in Syracuse. New York, November 24-26. 1996.

The success of an intensive program such as this results from the efforts of many professionals. We are grateful to several administrative staff members of NASA Ames for going beyond the call of duty to facilitate this Summer Program. It is also
a pleasure to acknowledge the diligent efforts of Debra Spinks in the organization of the Program and compilation of this report. Her cfforts in the planning and operation of this and other CTR Summer Prograns have been invaluable.

Parviz Moin
William C. Reynolds
Nagi N. Mansour

The turbulence modeling group

This introduction will highlight notable aspects of the reports from the turbulence modeling group. Five visitors participated in this group: Fue-Sang Lien, from the University of Manchester Institute of Science and Technology (UMIST); Gianluca laccarino, from the Centro Italiano Ricerche Aerospaziali (CIRA); Dominique Laurence, from the Electricité de France (EDF); Deji Demuren, from Old Dominion University; Vittorio Michelassi, from the University of Florence; and Blair Perot, a private consultant. The NASA and CTR hosts were Sacha Parniex, Mike Rogers. Parviz Moin, Nagi Mansour and Paul Durbin. The projects involved exploring new modeling approaches, variants on existing models, e priori testing of models with DNS data, and computation of complex flows. Turbulent flow in high-lift aetodynamics was a special subtopic for this summer progiam: Laccarino and Lien's contributions address that application.

Blair Perot's report proposes 'a new approach to turbulence modeling'. He asks whether predictions comparable to those obtained by second-moment closure can be obtained from a simpler closure, if only the mean flow is required. The mathematical origin of this question comes from applying the Helmholtz decomposition of vector fields to the RANS equations. The mean flow equation contains a Reynolds-stress force: $F_{i}=-\partial_{j} \bar{u}_{i} \bar{u}_{j}$. This is a vector field, to which the Helmholtz decomposition into curl and divergence-free components applies: $\mathbf{F}=\nabla \phi+\nabla \times \psi$. What are the physical meaning of the scalar and vector potentials ϕ and ϕ ? Can one develop a closure model for ϕ and ψ ? Will it contain as much 'physics' as SMC? Read Blair's contribution for a status report on these questions.

Gianluca laccarino and Fue-Sang Lien worked on 'modeling with application to high-lift aerodynamics'. Phenomena that arise in high-lift flows include trailing edge separation at high angles of attack, 3-dimensional separations, impinging wakes, gap jets, and other element-element interactions. So this application challenges the abilities of turbulence models and turbulence modelers.
laccarino and Lien worked primarily with the $k-\varepsilon-v^{2}$ model. laccarino computed flows around two and three-element airfoils. He found that the basic model did a good job of capturing many of the pertinent features of these flows. A good deal of his time was spent on numerical issues; after some disappointment with his explicit, compressible code, he decided to work with our version of INS-2D (RS.INS) that has the model implemented. His are the first II ulti-block and climera-grid computations with this model.

Lien implemented the $k-\varepsilon-v^{2}$ model into his finite-volume, pressure-correction, incompressible code. His article explores several variations on the basic model: the first is a non-linear constitutive equation that is developed with the nid of DNS data; second is a 'code friendly' variation that is proposed in the interest of numerical schemes that solve the equations in an uncoupled form; finally, he investigates transitional properties of the model, introducing a Reynolds numbet dependent coefficient. The non-linear constitutive relation allows for normal stress anisotropies
that are not accommodated by the usual Boussinesq relation. "Ahe natural boundary conditions for the $l-\varepsilon$ and $\overline{v^{2}}-f$-equations are imposed. explicitiy on A and $\overline{v^{2}}$ and determine ε and f implicitly, so it is natural to solve these as coupled paiss of equations. However, some CFD codes are written to sodve equations one at a time, or use fully explicit methods. It is for these types of codes that the 'rode friendly' variant - primarily in the $\overline{v^{2}}$ boundary condition -.. is proposed in Lien's contribution. Lien computed flow around a single element airfoil and around a three-dimensional, inclined prolate spheroid. The flow romud the spheroid contains a three-dimensional separation line.

Dominique Laurence. Deji Demuren and Vittorio Michelassi worked on 'moleling dissipation and turbulence transport".

Michelassi's article compares the original $k-\varepsilon-v^{2}$ model to a variant that offers some apparent improvements to the analytical formulation. He found that the predictions of the two forms are very similar. which suggests that the modifications are viable. In his RANS computations Michelassi focuses on flow over a backstep, looking at how the model affects reattachment and recirculation. Various shortcomings are discussed.

Laurence and Parneix's article describes an innovative method for studying turbulence modeling by using a DNS database. Commonly, a priori tests of turbulence models consist of plugging DNS datu into algebraic formulas used in the models. Such tests are of little value: the formulas in question are chourcs for a set of differential equations. they are not algebaic models. Their mathematical and predietive value can only be assersied by solving the differential equations. Is there any way to use DNS data that will test the properties of the differential equations? Laurence and Parneix's idea is to solve a subset of the model equations. using the entire DNS fields for the other rariables. This permits an assessment of the model in its proper mathematical context. For example: if the convection velocity ℓ and production rate $\overline{u_{i} u}, \partial, V_{\text {, }}$ are right, do the differential equations prediet k and ε correctly" This technique uses the DNS fields more comprehensively than have previous a priori model tests: see this article for more on this intriguing development.

Demuren evaluated pressure-diffusion and pressure-strain terms in turbulent mixing layers and wake's using DNS data. His article discusses comparisoms between Lumley's formula relating pressure-diffusion to third moments of velocity and Mike Roger's DNS data. However, these third moments are not variables in secondmoment closures, so it is usual to invoke a gradient diffusiou assumption to relate third and second moments. Demuren shows that Lumley's formula is often quite good, but that the gradient diffusion assumption often fails. The velocity-pressure gradient correlations were split into slow and rapid parts, in the usual manner. Their relative roles are investigated in Demuren's article. with some interesting results.

NEXT DOCUMENT

Non-linear $\boldsymbol{k - \varepsilon - \boldsymbol { v } ^ { 2 }}$ modeling with application to high-lift

By F. S. Lien and P. A. Durbin ${ }^{2}$

The $1-z-\overline{i^{2}}$ model has been investigated to quantify its predictive periormance on tw; high-lifi configurations: 2D flow over a single-clement aerofoil, involving closedtype separation: 3D flow over a prolate spheroid, involving open-type separation. A 'code-friendly' modification has been proposed which enhances the numerical stability. in particular, for explicit and uncoupled flow solvers. As a result of introducing Reymolds tumilet de: cadence into a coefficient of the ε-equation, the skin-friction distribution for the ty-pass transitional flow over a flat plate is better predicted. In order to improve deficiencies arising from the Boussinesq approximation, a nonlinear stress-strain constitutive relation was adopted, in which the oaly one free constant is calibrated on the basis of DNS data, and the Reynolds-stress anisotropy near the wall is fairly well represented.

1. Introduction

Eddy-viscosity models based on the linear Boussinesq relations are known to be afficted by numerous weaknesses. including an inability to capture normal stress anisctropy. insufficient sensitivity to secondary strains, seriously excessive generatiou of turbulence at impingenent zones, and a violation of realizability at large rates of strain. Notwithstanding these defects, eddy-viscosity models remain popular. and their use in complex flows is widespread due. principally, to their formalistic simplicity. numerical robustness, and computational economy. Second-moment closure, on the other hand, accounts for several of the key features of turbulence that are misrepresented by linear eddy-viscosity models, but is considerably more complex and can suffer from poor numerical stability due to the lack of dominance of second-order fragments in the set of terms representing difusion. As a result, the CPU requirements for second-moment closure models can be high, especially in 3D flows.
A potential alternative to second-moment closure, but one which retains adrantageous elements of the linear eddy-viscosity framework, is to use a constitutive relation that equates the Reynolds-stresses to a non-linear expansion in powers of the mean rate of strain and rate of rotation tensors. This may be cast in the form of a sum of terms, each pre-multiplied by an apparent viscosity-hence the term 'non-linear eddy-viscosity models'. Examples include the models of Speziale (1987), Shih et al. (1993). Durbin (1995a), Craft et al. (1995) and Lien et al. (1996). The
main differences between the above modeling strategies ran be summarized in the following table:

Authors(s)	$\begin{aligned} & \text { Mode } \\ & \text { form } \end{aligned}$	Order in the stressstrain relationship	Number of turbalence transport equations
Speringe (19\%7)	Efig-Re	quadratic	$2, \ldots-\varepsilon$
Shih ef el (1953)	High-re	quadratic	2, $E-\varepsilon$
Durbin (1995a)	Low-Re	quadratic	3, $4-\varepsilon-v^{2}$
Craf et el (1\%)	Low-ie	cubic	3, $2-\varepsilon-A_{2}$
Lien et al. (1936)	Low-he	cubic	2, $\mathrm{E}-\mathrm{E}$

The A_{2} value the serond Reynolds-stress invariant in Craft et al.'s $k-\varepsilon-A_{2}$ model is obtained by solving a related transport equition as follows:

$$
\begin{align*}
\partial_{1} A_{2}+ & I \cdot \nabla A_{2}=-2 \frac{A_{2}}{k}\left(d_{k}+P_{k}-\xi\right) \\
& +2 \frac{a_{j j}}{k}\left(d_{1 j}+P_{i j}+\phi_{i j}-\varepsilon_{i j}\right), \tag{1}
\end{align*}
$$

with fragments consistent with second-moment closure. In order to be free from topological constraints. the unit vector in the wall-reflection term is repiaced by the length-srale gradicnt. The expansion of (1) in 3D curvilinear coordinate systems is tedious and prone to crror. Also, a major drawbeck of this model is the high level of sensitivity to the near-wall grid parameters, including resolution, distribution, and aspect ratio.
The $\overline{\boldsymbol{r}^{2}}$ equation in Durbin's $k-\varepsilon-\overline{\boldsymbol{r}^{2}}$ model, to be addressed in Section 2, was simplifird from second-moment closure on the basis of the IP pressure-strain model in coajunctiou with elliptic relacation. This approach is algorithmically simple, applicable to the low-Re region, and naturally mimics the kinematic blocking effect on the turbulence of a solid wall.
Another important frature which distinguishes Durbin's model from most others is the expression of eddy-viscosity ν_{ℓ}. which plays an important role in determining the correct level of shear stress. In Craft et di's model,

$$
\begin{equation*}
\nu_{t}=0.734 \frac{r_{q}\left[1-\exp \left\{-0.145 \exp \left(1.3 \eta^{3 / 6}\right)\right]\right]}{1+1.8 \eta} \frac{\sqrt{E / \epsilon}\left\{1-0.8 \exp \left(-\dot{R}_{t} / 30\right)\right\}}{1+0.6 A_{2}+0.2 A_{2}^{3.5}} \tag{kT}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{4}=1+\left[1-\exp \left(-\frac{f_{2}^{3}}{0.125}\right)\right]\left[1+4 \sqrt{\exp \left(-\hat{R}_{t} / 20\right)}\right], \eta=\max (\tilde{S}, \tilde{\Omega}) r_{i} \tag{3}
\end{equation*}
$$

and \dot{S} and $\dot{\Omega}$ are strain and vorticity invariants. While in Durbin's model,

$$
\begin{equation*}
\nu_{t}=0.19 \frac{\overline{v^{2}}}{k}(k T) \tag{4}
\end{equation*}
$$

One distinct differ uce between Eqs. (2) and (4) is that the latter does not require any damping function: a result of using $\overline{v^{2}}$ as the velocity scale in the direction of the wall. The former, on the other hand, sensitizes ν_{i} to $\dot{S}, \tilde{\boldsymbol{\Omega}}, \hat{\boldsymbol{R}}_{\mathbf{i}}$ (i.e., Reynolds number) and A_{2}, with the functional dependency being carefully calibrated on a range of flows, including straining fow, channel flow, impinging jet, and transitional fow. However whea this model was tested for turbomathinery fows at (and near) off-design conditions, the size of the leading-edge sepmatation bubble was overestimated, and in some casea so coaverged solution ovald be obthined. This is due to η (strain and vorticity) and A_{2} being too large along the curved shear layer. As a result of both parameters appearing in the derominator of v e expression, the level of shear stress was significantly under-predicted (Chen, 1996).

In the present work, the $k-\varepsilon-\overline{v^{2}}$ model of Durbin (1995b) is applied to high-lift configurations, both 2D and 3D. In the course of this study, numerical instability arising from the boundary condition at wall was encountered, due to our use of a solution algorithm that uncouples the $\overline{v^{2}}$ and f-equations. A 'code-friendly' modification is introduced. which not oaly circumvents this numericel dificiculty, but also gives better predictions for transitional liows. This variant is then combined with the non-linear stress-strain constitutive equation with the aim of improving the near-wall behavior of normal-stress anisotropy.

2. $k-c-\boldsymbol{F}^{3}$ model

The turbulence model uses the standard $k-\varepsilon$ equations:

$$
\begin{gather*}
\partial_{t} k+U \cdot \nabla k=P_{k}-\varepsilon+\left[\left(\nu+\frac{\nu_{t}}{\sigma_{k}}\right) \nabla k\right], \tag{5}\\
\partial_{t} \varepsilon+U \cdot \nabla \varepsilon=\frac{C_{k 1} P_{k}-C_{e 2} \varepsilon}{T}+\left(\left(\nu+\frac{\nu_{t}}{\sigma_{t}}\right) \nabla \varepsilon\right] . \tag{6}
\end{gather*}
$$

On no-stip boundaries, $\boldsymbol{y} \rightarrow 0$,

$$
\begin{equation*}
k=0, \epsilon \rightarrow 2 v \frac{k}{y^{2}} . \tag{7}
\end{equation*}
$$

The $\overline{\mathbf{r}^{2}}$ transport equation is

$$
\begin{equation*}
\partial_{1} \overline{v^{2}}+U \cdot \nabla \overline{v^{2}}=k f-n \overline{v^{2}} \frac{\varepsilon}{k}+\nabla \cdot\left[\left(\nu+v_{i}\right) \nabla \overline{v^{2}}\right], \tag{8}
\end{equation*}
$$

where $\mathrm{K} f$ represents redistribution of turbulence energy from the streamwise component. Non-locality is represented by solving an elliptic relaxation equation for f :

$$
\begin{equation*}
L^{2} \nabla^{2} f-f=\frac{1}{T}\left[\left(C_{1}-n\right) \frac{\overline{v^{2}}}{k}-\left(C_{1}-1\right)-\frac{2}{3}\right]-C_{2} \frac{P_{k}}{k} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
T=\max \left[\frac{k}{\varepsilon}, 6\left(\frac{\nu}{\varepsilon}\right)^{1 / 2}\right], L=C_{L} \max \left[\frac{k^{3 / 2}}{\varepsilon}, C_{\psi}\left(\frac{\nu^{3}}{\varepsilon}\right)^{1 / 4}\right] . \tag{10}
\end{equation*}
$$

The Boussinesq approximation is used for the stress-strain relation:

$$
\begin{equation*}
a_{i j}=\frac{\overline{u_{i} \Psi_{j}}}{k}-\frac{2}{3} \delta_{i j}=-\frac{\nu_{i}}{k} S_{i j} \tag{11}
\end{equation*}
$$

where the eddy viscosity is given by

$$
\begin{equation*}
\nu_{t}=C_{\rho} \overline{v^{2}} T . \tag{12}
\end{equation*}
$$

The constants of the model are:

$$
\begin{gather*}
C_{\mu}=0.19, \sigma_{\mathrm{t}}=1, \sigma_{4}=1.3, \\
C_{61}=1.55, C_{62}=1.9 \\
C_{1}=1.4, C_{2}=0.3, C_{L}=0.3, C_{7}=70 . \tag{13}
\end{gather*}
$$

As $y \rightarrow 0-y$ being the minimum distance to walls - and $k \rightarrow(1 / 2 \nu) y^{2}$, Eq. (8) becomes:

$$
\begin{equation*}
\nu \partial_{\bar{s}}^{2} \overline{v^{2}}-2 n \nu \frac{\overline{v^{2}}}{y^{2}}=k f \tag{14}
\end{equation*}
$$

The viscous and kinematic conditions at the wall show that $\overline{v^{2}}$ should be $O\left(y^{4}\right)$ as $y \rightarrow 0$. In the original $k-\varepsilon-\overline{v^{2}}$ model, $n=1$, yielding the boundary condition for f

$$
\begin{equation*}
f(0) \rightarrow-\frac{(24-4 n) \nu^{2} \overline{v^{2}}}{\varepsilon(0) y^{4}} \operatorname{ln=1}=-\frac{20 v^{2} \overline{v^{2}}}{\varepsilon(0) y^{4}} . \tag{15}
\end{equation*}
$$

on no-slip walls.

2.1 Code-friendly modification

Equation (15) works fairly well for coupled, implicit solvers [e.g. INS2D code of Rogers \& Kwak (1990)|. However, for explicit and uncoupled schemes, numerical instability arising from y^{4} in the denominator of Eq. (15) sometimes occurs. Therefore, a code-friendly modification is made here by setting $n=6$, which allows $f(0)=0$ to be inposed as the boundary condition. In addition, C_{61} and $C_{e 2}$ are replaced by

$$
\begin{equation*}
C_{e 1}=1.55+\left.\exp \left(-A_{t} R_{y}^{2}\right)\right|_{A_{t}=0.00285} . C_{\ell 2}=1.92 \tag{16}
\end{equation*}
$$

where $R_{y}=y \sqrt{k} / \nu$, and the other model constants are:

$$
\begin{gather*}
C_{R}=0.19, \sigma_{k}=1, \sigma_{4}=1.5 \\
C_{1}=1.4, C_{2}=0.3, C_{L}=0.17 C_{7}=70 . \tag{17}
\end{gather*}
$$

2.1.1 Fully-developed channel flow

The model constants, in particular $A_{f}=0.00285$ and $C_{L}=0.17$, were first calibrated with the channel-flow DNS data of Kim et al. (1987) and then optimized

Figure 1. Channel flow: (Left) mean velocity; (Right) k and $\overline{v^{2}}$. DNS: \bullet velocity; $\Delta k ; a \overline{v^{2}}$.
on the basis of 2D/3D separated flows to be presented later. As seen in Fig. 1, both the mean-velocity and turbulence profles, the latter including k and $\overline{v^{2}}$, agree reasonably well with the data.

2.1.2 By-pass travsitional flow over a fat plate

The second case examined here is the flow over a flat plate with free-stream turbulence intensity $T_{\mathrm{a}}=3 \%$ and dissipation length scale $\ell_{e}^{\infty}=10 \mathrm{~mm}$. The experimental study was conducted at Rolls Royce Aeroengines in Derby, UK. The skin-friction distributions, obtained with the original and code-friendly $k-\varepsilon-\overline{v^{2}}$ variants and Launder-Sharma model (1974), are shown in Fig. 2(L). As seen, introducing the $R_{\text {, }}$-dependency in $C_{e 1}$ for the code-friendly variant improves trarsition predictions. Although the resulting onset of transition is slightly earlier than that returned by the Launder-Sharma model, the length of transition is better represented. As the flow becomes fully turbulent, the velocity profiles obtained with both $k-\varepsilon-\overline{v^{2}}$ variants are almost identical as demonstrated in Fig. 2(R).

2.2 Non-lineer constitutive relation

A general constitutive relation of the type proposed hy Pope (1975) can be written as:

$$
\begin{equation*}
a_{i j}=\frac{\overline{u_{i} u_{j}}}{k}-\frac{2}{3} \delta_{i j}=\sum_{\lambda=1}^{10} G^{\lambda}\left(S_{i j}, \Omega_{i j}, \overline{v^{2}} / k, T\right) T_{i j}^{\lambda} \tag{18}
\end{equation*}
$$

where $T_{i j}^{1}=S_{i j}, T_{i j}^{2}=S_{i k} \Omega_{k j}-\Omega_{i k} S_{k j}, T_{i j}^{3}=S_{i k} S_{k j}-\frac{1}{3} \delta_{i j} S_{1 k} S_{k 1} \cdots$. Truncating at the third term for simplicity gives rise to

$$
\begin{equation*}
a_{i j}=-\frac{\nu_{i}}{k} S_{i j}+G^{2}\left(S_{i k} \Omega_{k j}-\Omega_{i k} S_{k j}\right)+G^{3}\left(S_{i k} S_{k j}-\frac{1}{3} \delta_{i j} S_{1 k} S_{k 1}\right) \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{i j}=\frac{\partial U_{i}}{\partial x_{j}}+\frac{\partial U_{j}}{\partial x_{i}}, \quad \Omega_{i j}=\frac{\partial U_{i}}{\partial x_{j}}-\frac{\partial U_{j}}{\partial x_{i}} . \tag{20}
\end{equation*}
$$

Figure 2. Flat plate: (Left) skin friction; (Right) mean-velocity profile. - expt.; $---k-\varepsilon ;-$ - o original $k-\varepsilon-\overline{v^{2}}$; modified $k-\varepsilon-\overline{v^{2}}$

Two constrains for parallel flow will be imposed:

$$
\begin{equation*}
a_{22}=a_{\overline{v^{2}}}, \quad a_{11}=\omega a_{22}=a a_{\overline{v^{2}}} \tag{21}
\end{equation*}
$$

where $a_{r^{2}}=\frac{\overline{r^{2}}}{k}-\frac{2}{3}$. These yield

$$
\begin{equation*}
G^{2}=\frac{1}{4} \frac{(1-a) a_{\sigma^{2}}}{S^{2}} T^{2}, \quad G^{3}=\frac{3}{2} \frac{(1+\alpha) a_{V^{2}}}{S^{2}} T^{2} \tag{22}
\end{equation*}
$$

where $S=\frac{k}{e}\left|\frac{\partial i}{\partial y}\right|$ or $\left(=\frac{t}{e} \sqrt{S_{i j} S_{i j} / 2}\right.$, in general) and T is defined in Eq. (6). The remaining unknown. a, can be evaluated from DNS data of channel flow (Kim et al., 1987), boundary-layer flow (Spalart, 1988) and flow over a backward-facing step (Le et al., 1993). As seen in Fig. 3,

$$
\begin{equation*}
a=-1-\frac{6 S}{15+10 S} \tag{23}
\end{equation*}
$$

fits DNS data reasonably well. The algebraic model was initially used by Durbin (1995a) as an a postiori formula for evaluating $\overline{u_{i} u_{j}}$. In order to apply Eq. (19) to mean flow prediction while preventing computational intractability, the coefficients G^{2} and G^{3} are modified as:

$$
\begin{equation*}
G^{2}=\frac{1}{4} \frac{(1-\alpha) a \overline{v^{2}}}{S^{2}+1} T^{2}, \quad G^{3}=\frac{3}{2} \frac{(1+\alpha) a \overline{p^{2}}}{S^{2}+1} T^{2} \tag{24}
\end{equation*}
$$

3. Numerical method

All flows have been computed with the STREAM general geometry, block-structured, finite-volume code (Lien \& Leschziner, 1994a). Advection is approximated by a TVD scheme with the UMIST limiter (Lien \& Leschziner, 1994b). To avoid checkerboard oscillations within the co-located storage arrangement, the "Rhih and Chow" interpolation method (1983) is used. The solution is effected by an iterative pressure-correction SIMPLE algorithm, applicable to both subsonic and transonic conditions (Lien \& Leschziner, 1993).

Figure 3. Correlation of α in the non-linear constitutive equation with DNS data. Top: DNS channel: $\boldsymbol{R}_{\boldsymbol{r}}=395, \Delta$; formula, ---- . DNS boundary layer: $R_{0}=1410 \circ$; formula, 一- Bottom: Backstep DNS: $x=1,-; x=2$,
 $x=8,-\cdots-x=9$, ——.

Figure 4. A-zerofoil: geometry and partial grid

4. Results and discussion

4.1 Aerospetiele A-aerofon

Computations for transition on the s side prescribed at 12% of chord. The geometry and a partig in stream velocity and chord length, is 2.1×10^{6}. Solutions have been obtained on a grid containing 177×65 lines, extending to 10 chords into the free stream.

In total, four turbulence-model variants have been applied to this case [comparisons to second-moment closure can be found in Lien \& Leschziner (1995)]:
(1) the low-Re $k-\varepsilon$ model of Lien \& Leschziner (1993);
(2) the original $k-\varepsilon-\overline{c^{2}}$ model of Durbin (1995b);
(3) the code-friendly variant:
(4) the above variant combined with the non-linear stress-strain relation.

The skin-friction and wall-pressure distributions obtained with three linear eddyviscosity models, one $k-\varepsilon$ and two $k-\varepsilon-\overline{v^{2}}$, are compared in Fig. 5. These, as well as the associated profiles of strearnwise velocity and shear stress on the suction side in Figs. 6-7. clearly demonstrate the superiority of $k-\varepsilon-\overline{v^{2}}$ variants relative to the conventional $k-\varepsilon$ model.

Attention is turned next to comparisons between linear and non-linear $k-\varepsilon-\overline{\mathbf{v}^{2}}$ models in Figs. 8-10 for profiles of streamwise velocity and Reynolds normalstresses. It is found from these figures that the Reynolds-stress anisotiopy is fairly well predicted by the non-linear model at $x / c=0.5$, which is consistent with the constraints in Eq. (21) imposed on the constitutive equation. As the flow approaches the trailing edge, streamline curvature arising from secondary strain becomes important and the omission of its production term ($\sim \frac{\partial v}{\partial x}$) in the v^{2} equation is no longer valid, resulting in large discrepancies between predictions and data at $x / c=0.9$.

4.2 DLR prolate spheroid

The shape of this body and a partial view of the numerical grid surrounding it are shown in Fig. 11. The Reynolds number, based on the chord, is 6.5×10^{6}.

Figure 5. A-aerofoil: (Left) skin friction; (Right) pressure coefficient. e expt.: $-\cdots-k-\varepsilon ; \longrightarrow$ original $k-\varepsilon-\overline{v^{2}} ; \cdots$ modified $k-\varepsilon-\overline{v^{2}}$

Figure 6. A-aerofoil: profiles of streamwise velocity. o expt.; --~ $k-\varepsilon$; ——original $k-\varepsilon-\overline{v^{2}} ;$ ——modified $k-\varepsilon-\overline{v^{2}}$

Computations have been performed at 30° incidence in which transition is free. The solution domain, containing $65 \times 65 \times 65$ lines, extends 10 chords into the outer

stream.

Numerical solutions have been obtained with two models [comparisons with secondmoment closure can be found in Lien \& Leschziner (1995b)]:
(1) the low-Re $k-\epsilon$ model of Lien \& Leschziner (1993);
(2) the code-friendly $k-\varepsilon-\overline{v^{2}}$ variant in conjunction with Launder and Kato's modification in the turbulence production P_{k} (1993).
A well-known defect of any conventional, linear eddy-viscosity model is that it predicts excessive levels of turbulence energy in impingement regions, due to the fact that the irrotational strains appearing in the turbulence-energy equation ($\sim S_{i j} S_{i j}$) act to generate turbulence irrespective of their sign. The rationale behind Launder \& Kato's proposal is to partially replace the strain by the vorticity, i.e.

$$
\begin{equation*}
P_{k}=0.5 \nu_{i} \tilde{N}_{i j} \Omega_{i j} \tag{25}
\end{equation*}
$$

A similar idea, based on 'realizability' constraints on the turbulence time scale, has been suggested recently by Durbin (1996), in which a upper bound to k / ε proportion to $\sqrt{2 / S_{i j} S_{i j}}$ was introduced. As a result, the rate of turbulence-energy generation in the vicinity of stagnation regions becomes linear, which is similar to that returned by most of the non-linear eddy-viscosity models mentioned in Section

Figerf. 8. A-aerofoil: profiles of streamwise velocity. o expt.; -- - linear $k-\varepsilon-\overline{v^{2}}$; non-linear $k-\varepsilon-\overline{v^{2}}$

Figure 9. A-aerofoil: profiles of streamwise normal stress. o expt.; - - linear $k-\varepsilon-\overline{v^{2}} ;$ non-linear $k-\varepsilon-\overline{v^{2}}$

Figure 10. A-aerofoil: profiles of transverse norinal stress. o expt.; ——— linear $k-\varepsilon-\overline{v^{2}} ;$ non-linear $k-\varepsilon-\overline{v^{2}}$

Figure 11 . Prolate gulecudl geonmety and partial guid

1. Hhose models ise

$$
\begin{equation*}
c_{n}=\frac{a}{1+3 \sqrt{0.5 S_{i} S_{n}}} \tag{1201}
\end{equation*}
$$

 in the toundary layer flow to the wimforerl side. Althougle the momel in whine on fundamental gromuls to prediet any aspert of natural thestion. lle juciliter Iransitional plenonemon is manly due to a stong cupperswon wf tulbleme cietgy

triggers transition. It is chen from Fis 14 that the extent of pus sue pluthet
 under estimated by both models. This wimervation is romsivtent with the annutlat distributions of skinfriction direction a shown in Fis 13 : $=0$ demotes vilier

 Some of the discrepances between predictions and expenment niglt be due tw the grid ensity adopted here, in particular. close to the reat enf of the sphemel it is too coarse amd in grdewfiement test is requirel.

5. Conclusions

A computational study has been undernaken to investinate the predictive rypa bilities of $k-c=\sqrt{r^{2}}$ ratiants when applied to high litt confeumations. meluding 20 aerofoil and 30 prolate spheioid. Both the limeat mid mon limen ctress stran constitutive ehations are examined. The ont cone of the premen stuly nety be summarized as follows.

Figuice 12. Prolate sphervid: skin-. Etion magnitude. o expt.; ---- $k-\varepsilon$; ——modified $k-\epsilon-\overline{v^{2}}$;
(1) The $k-\varepsilon-\overline{v^{2}}$ model and its variants, whether linear or non-linear, return superior predictions relative to the conventional $k-\varepsilon$ model.
(2) This superiority can be attributed to the use of $\overline{v^{2}}$ as the velocity scale in the eddy-viscosity expression without resorting to an ad hoc damping function.
(3) The $\overline{v^{2}}$ is obtained from a simplified form of Reynolds-stress transport equation, governing the turbulence intensity normal to streamlines, the pressure-strain term of which is represented mathematically by en elliptic relaxation model.
(4) A code-friendly modification is proposed here, including the assurance of the near-wall behavior $\overline{v^{2}} \rightarrow O\left(y^{4}\right)$ as $y \rightarrow 0$, the introduction of R_{y}-dependency in $C_{t 1}$, and the use of $f=0$ as the boundary condition on no-slip boundaries. As a resuit, the numerical stability, in partic lar, for the unccupled soluiion procedure used herein is giently enhanced.
(5) The introduction of R_{y} in $C_{a 1}$ yields improved results for the transitional flow. However, it requires the minimum distance to walls, which can be difficult to apply to complex geometries.
(6) Following a similar idea suggested by Durbin \& Laurence (1996), a first attempt

Figure 13. Prolate spieroid: skin-friction direction. o expt.; ---- k - ϵ; - modifal $\mathrm{k}-\mathrm{t}-\overline{R^{2}}$
has bret: marde by adopting

$$
C_{11}=1.44(1+0.0333 \sqrt{k / \sqrt[v^{2}]{ }}), C_{t 2}=185 . C_{l}=0.188
$$

and preliminary results for flows over a fat plate apd the A-acrofoil, described in Sertions 2.1.1-2.1.2. are giveu in Figs. 15-17. As seen, the use of $\sqrt{k / \mathrm{c}^{2}}$ returns wry similar mean velocity profiles for the A-serofoil case. However, the onset of tratisition for the flat-plate case is too early and the length or transition is too long.
(7 ; In order :c improve the performance of $k-\varepsilon-\overline{\boldsymbol{v}^{2}}$ model for both transitional and fully turbuient flows. in particular, in complex geometries. instead of adoptiag R, and $\sqrt{k / \overline{r^{2}}}$. thers is a need to devise a new parameter. depending on the local Reynolds number and avoiding the use of the minimum distance to walls.
(8) The level of normal stress anisotropy returned by the non-linear model is fairly we!! represented at the mid-chord of A-aerofoil, where the curvature effect is unimportant. Close to the trailing edge, however, both $\overline{u^{2}}, \overline{v^{2}}$ and. consequently, k and its produrtion P_{k} are under-predicted. Since $P_{k}=\nu_{l}\left(\frac{\partial L_{L}}{\partial x_{2}}+\frac{\partial L_{L}}{\partial r_{1}} \frac{\partial U_{1}}{\partial x_{i}}+\cdots\right.$ and the mean-"elocity profile and, hence, its gradient atr $/ \mathrm{c}=0.9$ are in good agreement with the data. this indicates that ν_{i} is too low. which is consistent with the under estimation of $\overline{v^{2}}$ at the same location.

Figure 14. Prolate spheroid: pressure coefficient. o expt.; a inviscid solution; $---k-e ;$ modified $k-\epsilon-\overline{v^{2}}$;

Figtre 15. Flat plate: skin friction. - expt.; ——based on $\boldsymbol{R}_{\mathbf{y}}:$ - - based on $\sqrt{k / \overline{v^{2}}}$
(9) For open 3D separation, the size of separation zone, reflected by the azimuthal extent of pressure plateau, is slightly under-predicted by the $k-z-\overline{v^{2}}$ model, which might be partially attributed to the grid density adopted here being insufficient.
(10) To ensure a wide range of applicability of the non-linear model, the frec coefficients

Figure 16. A-aerufuil: rrofiles of streamwise velority. o expt.: _- based on $\boldsymbol{R}_{\mathrm{g}}:$ —— based on $\sqrt{\sqrt[k]{1 / c^{2}}}$

Figlre 17. Prolate spheroid: skin-friction magnitude. o expt.: - based on R_{y}; - - based on $\sqrt{k / r^{2}}$
and their assoriated functionals need to be more rarefully optimized by reference to different types of flow. featuring separation. impingement, swirl, rotation. and transition.

Acknowledgments

The first anthor would like to express his gratitude to CTR. CMIST and the Royal Academy of Engincering in the UK for 'heir financial support.

REFERENCES

Chen, W. L. 1996 Turbulence Modeling for highly-loaded cascade blade. Ph.D Thesis, liniversity of Manchester Institute of Srience and Technology, UK.

Craft, T. J. Launder, B. E. \& Suga, K. 1995 A non-linene eddy viscosity model including sensitivity to stress anisotropy. Proc. IOth Symp. on Trrbulent Shear Flows. 2, 23.19-23.24.
Durbin. P. A. 1995a Constitutive equation for the $k-\varepsilon-\overline{v^{2}}$ model. Proc. 6 th Int. Symp. on Computational Fluid Dynamics. 1, 258-262.
Dirbin, P. A. 1995b Separated flow computations with the $k-\varepsilon-\overline{v^{2}}$ model. AIAA J. 33, 659-664.
Durbin. P. A. 1996 On the $k-e$ stagnation point anomaly. Int. J. Heat and Fluid Flow. 17, 89-90.
Derbin, P. A. \& Lathence, D. 1996 Non-local efects in single point closure. Adonnces in Turbulence Reseerch, Seoul. Korea, May 17, 1996, 109120.
Latinder. B. E. \& Sharma, B. I. 1974 Application of energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mess Trensfer. 1, 131-138.
Lalnder, B. E. \& Kato, M. 1993 Modeling flow-induced uecillations in turbulent flow around a square cylinder. ASME FED. 157, 189-199.
Le. H., Moin, P. \& Kim, J. 1993 Direction numerical simulations of turbulent flow over a backward-facing step. Proc. gth Symp. on Turbulent Shear Flows. 2, 13.2.1-13.2.5.
Lien, F. S. And Leschzinen. M. A. 1993 A pressure-velocity solution strategy for compressible flow and its application to shock/boundary-layer interaction using second-moment turbulence closure. ASME J. Fluids Engineering. 115, 717-725.
Liex, F. S. and Leschziner, M. A. 1994a A general non-orthogonal collocated finite volume algorithm for turbulent flow at all speeds incorporating secondmoment closure, Part 1: Computational implementation, Part 2: Application. Comput. Methods Appl. Mech. Eng. 114, 123-167.
Lien. F. S. and Lescmziner, M. A. 1994b Upstream monotoaic interpolation for scalar transport with application to complex turbulent flows. Int. J. Numer. Methods Fluids. 19, 527-548.
Lien, F. S. d Leschziner, M. A. 1995a Modeling 2D separation from a highlift aerofoil with a non-linear eddy-viscosity model and second-moment closure. Acronautical J. 99, 125-144.
Liev, F.S. \& Leschziner. M.A. 1995b Computational modeling of multiple vortical separation from streamlined body at high incidence. Proc. 10th Symp. on Turbulent Shear Flows. 1, 4.19-4.24.
Lien, F. S., Chen, W. L. \& Leschziner, M. A. 1996 Low-Reynolds-number eddy-viscosity modeling based on non-linear stress-strain/vorticity relations. Engineering Turbulence Modeling and Experiments. 3, W. Rodi \& G Bergeles (ed.) 91-101.

Kim, J., Monn, P. \& Moser, R. D. 1987 Turbulence statistics in fully-developed channel fiow at low Reynolds number. J. Fluid Mech. 177, 133-166.
Pope, S. B. 1975 A more general effective-viscosity hypothesis. J. Fluid Mech. 72, 33-340.
Rhie, C. M. \& Chow, W. L. 1983 Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21, 1525-1532.
Rogers, S. E. \& Kwak, D. 1990 Upwind differencing scheme for the timeaccurate incompressible Navier-Stokes equations. AIAA J. 28, 253-262.
Speziale, C. G. 1987 On non-linear $K-I$ and $k-\varepsilon$ models of turbulence. J. Fluil Mech. 178, 459-475.
Spalart, P. R. 1988 Direction simulation of a turbulent boundary layer up to $R_{0}=1410$. J. Fluid Mech. 187, 61-98.

NEXT DOCUMENT

Application of the $k-\varepsilon-v^{\mathbf{2}}$ model to multi-component airfoils

By G. Laccarimo' and P. A. Durbin ${ }^{2}$

Abstract

Flow computations around two-element and three-element configurations are presented and compared to detailed experimental measurements. The $k-\varepsilon-\bar{v}^{2}$ model has been applied and the ability of the model to capture streamline curvature effects, wake-boundary layer confluence, and laminar/turbulent transition is discussed. The numerical results are compared to experimental detasets that include mean quantities (velocity and pressure coefficient) and turbulent quantities (Reynolds normal and shear stresses).

1. Introduction

An accurate prediction of turbulent flow over a wing is still a challenging problem. Even a two-dimensional computation over a multi-element airfoil close to the maximum lift is an unsolved problem due to the complex geometry producing complicated viscous flow.
Within the aircraft industry the design of high-lift devices is an important topic which can have a major influence on the overall economy and safety of the aircraft. Therefore, development and improvements of numerical tools capable of handling separated viscous flows are of great interest. Computational methods for the design of high-lift systems are, traditionally, based on the viscous-inviscid interaction approach with integral methods for boundary layers and wakes.
Today, due to developments in computer technology and improvements in numerical algorithms. there is a renewed interest in the possibility of obtaining Reynolds averaged Navier-Stokes solutions for high-lift flows. The main open topics in this field of appliration are grid generation and turbulence modeling. The first one has been addressed and partially solved with the introduction of the zonel methods. By this way, the computational domain is divided into zones and the mesh and solutions are computed independently; the matching conditions between different regions provide boundary conditions for the zones. In particular, multiple-zones meshes can be either patched (pointwise continuous) or chimere (overlapping) grids. The use of unstructured grids is another interesting answer to this problem and is still under development for viscous applications.

The other crucial point is the handling of the turbulence for such a complicated flow situation. There is no shortage of numerical methods to take into account turbulent fluctuations when solving Reynolds Averaged Navier-Stokes (RANS) equations based either on algebraic or differential equations. It is only the effectiveness of the models that is at issue.

2. Numerical model

2.1 RANS flow solver

The numerical method is based on an extended version of the incompressible Navier-Stokes two-dimensional (INS2D) code of Rogers and Kwak (Rogers, 1991). The incompressible, Reynolds Averaged Navier Stokes equations are solved by an artificial compressibility method. The basic technique is based on cell-vertex finite differences over structured meshes. The spatial discretization scheme is a third-order upwind biased for convective contributions and second-order centered for diffusive terms. The time integration is implicit and the equations are solved in a coupled way. The implicit matrices are inverted by ADI line relaxations.

2.2 Turbulence modeling

The turbulence model is based in part on the standard $k-\varepsilon$ equations:

$$
\begin{gather*}
\partial_{\mathrm{t}} k+U \cdot \nabla k=P_{k}-\varepsilon+\nabla \cdot\left[\left(\nu+\frac{\nu_{\mathrm{t}}}{\sigma_{k}}\right) \nabla k\right], \tag{1}\\
\partial_{\mathrm{t}} \varepsilon+U \cdot \nabla \varepsilon=\frac{C_{\mathrm{e} 1} P_{\mathrm{k}}-C_{\mathrm{e} 2} \varepsilon}{T}+\nabla \cdot\left[\left(\nu+\frac{\nu_{t}}{\sigma_{\mathrm{e}}}\right) \nabla \varepsilon\right] . \tag{2}
\end{gather*}
$$

Auother transport equation is introduced to model near-wall effects and the anisotropy of the Reynolds stresses. This reads as

$$
\begin{equation*}
\partial_{t} \overline{v^{2}}+U \cdot \nabla \overline{v^{2}}=k f-\overline{v^{2}} \frac{\varepsilon}{k}+\nabla \cdot\left[\left(\nu+\nu_{t}\right) \nabla \overline{v^{2}}\right], \tag{3}
\end{equation*}
$$

where $\overline{v^{2}}$ can be regarded as the turbulent intensity normal to streamlines and $k f$, the production of $\overline{v^{2}}$, accounts for the redistribution of turbulence intensity from the streamwise component. By using this equation 'wall-echo' effects are automatically taken into account. The production of $\overline{v^{2}}$ is modeled by means of an elliptic relaxation equation for f (Durbin, 1991)

$$
\begin{equation*}
L^{2} \nabla^{2} f-f=\frac{1}{T}\left(C_{1}-1\right)\left[\frac{\overline{v^{2}}}{k}-\frac{2}{3}\right]-C_{2} \frac{P_{k}}{k} \tag{4}
\end{equation*}
$$

In the previous equations time and length scales are computed as

$$
\begin{equation*}
T=\max \left[\frac{k}{\varepsilon}, 6\left(\frac{\nu}{\varepsilon}\right)^{1 / 2}\right], L=C_{L} \max \left[\frac{k^{3 / 2}}{\varepsilon}, C_{\eta}\left(\frac{\nu^{3}}{\varepsilon}\right)^{1 / 4}\right] . \tag{5}
\end{equation*}
$$

The treatment of the wall boundary conditions for the turbulent quantities is based on the asymptotic behavior of k and $\overline{v^{2}}$. As $y \rightarrow 0$

$$
\begin{gather*}
k=0, t \rightarrow y^{2} \frac{\varepsilon}{2 v}, \tag{6}\\
\overline{v^{2}}=0, \overline{v^{2}} \rightarrow-y^{4} \in \frac{f}{20 v^{2}} \tag{7}
\end{gather*}
$$

The eddy viscosity is given by

$$
\begin{equation*}
v_{\mathrm{t}}=C_{\mu} \overline{v^{2}} T \tag{8}
\end{equation*}
$$

The constants of the model are:

$$
\begin{gather*}
C_{\mu}=0.19, \sigma_{t}=1, \sigma_{e}=1.3 \\
C_{e 1}=1.55, C_{\epsilon 2}=1.9 \\
C_{1}=1.4, C_{2}=0.3, C_{L}=0.3, C_{i}=70 \tag{9}
\end{gather*}
$$

The space discretization of Eqs. (1) to (4) is the same used for the mean flow and the time integration is based on the same implicit procedure. The equations are solved as a coupled two-by-two block tridiagonal system (the mean flow is solved as a coupled three-by-three system).

3. Two-component coniguration

9.1 Experimental test conditions

The experimental test was conducted in the 7×10^{n} wind tunnel at NASA Ames Research Center, Moffett Field, California (Adair, 1999). The airfoil/Alap configuration includes a NACA 4412 main airfoil section equipped with a NACA 4415 flap airfoil section. The geometric location of the flap was specified by the flap gap ($F G$), the flap overlap ($F O$), and the flap deflection (δ_{f}). In this work, we are using $F G=0.035 c, F O=0.028 c$ and $\delta_{f}=21.8^{\circ}$, where c is the chord length of the main airfoil. The angle of attack was set to $\alpha=8.2^{\circ}$ and flow conditions were specified as Mach number $M=0.09$ and Reynolds number $R e=1.8 \times 10^{6}$. Two-dimensionality of the measurements was ensured by using fences, ard the transition to turbulence was enforced by using trips at the main airfoil leading edge and at the suction side of the flap close to the flap pressure minimum.

9.2 Numerical test conditions

A two-dimensional model is used for the computations; it represents the midspan section of the experimental set-up. The airfoil configuration was characterized by the value of $F G, F O$, and δ_{ρ} indicated previously. The presence of the windtunnel walls was taken into account because of the large blocking effects, as was recommended by the experimental investigators (Adair, 1989); for simplicity, slip boundary conditions were imposed on the wind-tunnel walls. The inlet and outlet sections were set at 5 chords upwind and 15 chords downwind respectively to minimize their effects on the computed flow field. The angle of attack and the Reynolds

Figure 1. View of the computational grid.

Figure 2. Close up of the grid around the flap.
number were the same as the experiments, while the flow was assumed to be incompressible. Transition trips were not accounted for: the flow is considered to have a very low turbulence intensity at the wind tunnel inlet, and the model is allowed to undergo its natural. bypass transition.
The computational grid was generated by FFA (Sweden Recearch Center) under the auspices of the GARTETR Action Group AG 25. A reneral view of mesh is reported in Fig 1, while a close up of the grid around the flap is given in Fig. 2. Due to the romplexity of the geometry the computational grid was generated via a multiblock approach seven zones were created allowing very good resolution of the mesh close to the airfonk (a C type grid) about 100.000 total grid points were used. The square tralling edges of both aifoils were also retained (see Fig. 2) even though the resolution in the streamwise direction is quit- limited.

Frgure 3. Computed streamlines.

Figlere 4. Pressure distributions on the airfoil surface. - : computed results; 0 : measured data.

9.9 Results

The characterization of the flow field is reported in Fig. 3 by means of the streamlines. Only a portion of the flow domain is shown. The blocking effect of the wind tunnel walls and the large curvature of the wake downstream of the flap are evident. A little separation bubble is also preseat at the flap trailing edge, in accord with the experimental findings.

3.9.1 Mean flow: pressure

The comparison between computed and measured pressure coefficien ${ }^{*}$ is reported

Figure 5. Pressure distributions on the wind tunnel walls. -- : computed results; 0 : measured data.
in Fig. 4. These results can be compared to those published by Rogers et al. (1993).
Th.e agreement is quite satisfactory for both the main airfoil and the flap. The suction peak is very well captured on the main airfoil although the stagnation point is completely misplaced. This is probably due to three-dimensional effects in the experimental test as can be seen from Fig. 3 of (Adair, 1987). Another reasonable explanation for this discrepancy is a difference between the geometric location of the airfoil/flap configuration in the experimental and numerical models. It is worth noting that the numerical results of Rogers (1993) show this same discrepancy in the location of tiee stagnation point. We point out that the geometry definition of the airfoil/flap configuration (in terms of $F G, F O$, and δ_{f}) is somewhat confusing and this could have led to a different shape of the slot in the numerical and experimental models.
The pres sure peak over the flap is overpredicted and, in particular, located upstream with respect to the experimental one. The numerical model fails to capture the correct pressure plateau at the trailing edge of the flap and, therefore, the separation regicn. In particular, the separation point is well captured (it is located at 7% upstream of the trailing edge) as is shown in Fig. 4, but the maximum height of the recirculation bubble is underpredicted.

In Fig. 5, the pressure distribution over the wind tunnel walls is reported and compared to the experimental findings. On the working section roof, the agreement is satisfactory even though an overprediction of the pressure level is present. On the other hand, at the floor, a shitt in the pressure distribution is observed. However, the grid resolution in the region is quite coarse. Note that as the inlet and the

Figure 6. Mean velocity profiles: - : cumputed results; : measured data.
outlet are approached the pressure levels become constant. This shows that the computational domain was large enough.

9.9.2 Mean flow: velocity

The mean velocity was measured at three locations using a hot-wire anemometer and a 3-D laser velocimeter. The comparison between computed and experimental x-component velocity is reported in Fig. 6.

The agreement is very encouraging even if there is a difference between computed and measured flap boundary layer thickness. Comparisons with previous results by Rogers (1993) confirm that the main differencies are related to a different gap velocity off the surface of the flap leading edge. It is necessary to point out that in the numerical model no transition trips are mounted on the flap and, therefore, the development of the turbulent boundary layer is not the same as in the experiments.

9.9.9 Turbulence results

The evolution of the turbulent boundary layer on the flap surface can be analyzed from Fig. 7, where the tangential skin friction is reported. The model is capable of capturing the laminar/turbulent transition automatically as it is evident from the skin friction rise in the leading edge region. In the work by Lien et al. (1996)

Ficure 7. Computed tangential skin friction on the lap sufface.

Ficune 8. Turbulent kinetic energy contours.
the transitional flow in turbomachinery was investigated and the capability of the $k-\varepsilon-v^{2}$ were stressed in detail.

In Fis. 8 the turbuient kinetic energy contours are reported to show the strong interaction between tne mein airfoil wake ard the inviscid jet coming from the slot. It is also clear that on the lower surfaces of the main and Aap the boundary layer is laminar and very thin.

Cruise comforation

Take-ofl configuration

Figere 9. Three-element airioil configuration.

4. Three-component configuration

4. 1 Experimental test conditions

The threr element arfoil configuration of Fig. 9 was investigated in the Farnborough (CK wind tunnel by I.R. Moir (private communications) in the frame of the AGARD Working Group 14.

The geometric location of the flap and the slat with respect to the main airfoil onas prescribeci as:
dat/winig overtap: $S O=-0.01$ c
lat wing gap: $S G=0.02 c$
slat deffection: $1,=25^{\circ}$
Ning Hap overtap: $F O=0$

- wing; Hap gap: $F \mathbb{O}=0.023$ c

Hap de Fection: $\delta_{f}=20^{\circ}$
A set of atheles of attack were investigated, but relevant measurements correspond in : $=0^{\prime \prime}$. The Reynolds number was $R_{r}=3.52 \times 10^{6}$ and a trip was mounted over the main airfoil to control transition to turbulence since the wind tunnel turbulence intransty way low.

Exper inchtal data include pressure surface measurements over the airfoil surface at two spanwise bocations on the wind tunnel model to mutline the absence of tirer. dimencional efferts.

4. Sumirinal lest widulions

The aufinh configention whe iffined wing the mp will merlip rifinitions of the

 6) "mlulext "whuthuin wer not fxwl

 anforl trather ries werl lur they.

4.3 Results

 distributions wer the meilh wing and the fap are in wer whed agrechent:

The C, distributint ovet the slat premens an ovepredirtiot of the cuction peak ant this is the mem thertpitis, betwen experimme anl ral mhtions.

Figure 11. Pressure distributions on the airfoil surface. -_ : computed results; 4: measured data.

REFERENCES

Adair. D. \& Horve, W. C. 1989 Turbulent separated flow over and downstreari of a two-element airfoil. Experiments in Fluids. 7, 531-541.
Durbin, P. 1991 Near-wall turbulence closure modeling without 'damping functions'. Theoretical and Computational Fluid Dynamics. 3, 1-13.
Durbin, P. 1995 Separated flow computatious with the $k-\varepsilon-\bar{v}^{2}$ model. AIAA Journal. 33, 659-664.

Larsson, T. 1994 Separated and high-lift flows over single and multi-element airfoils. Proceedings of ICAS Conference 1994. 2505-2518.
Lien, F. S., Durbin, P. 1996 Non-linear $k-\varepsilon-\bar{v}^{2}$ modeling with application to high-lift. Proccedings of the Summer Progrem 1996. NASA Ames/Stanford Univ.
Papadakis, M., Lall, V. \& Hoffmann K. A. 1994 Performance of Turbulence models for planar flows: a selected review. AIAA Paper 94-187s.

Rogers, S. E. Kwak, D. \& Kiris C. 1991 Numerical solution of the incompressible Navier-Stokes equations for steady-state and time-dependent problems. AIAA Journal. 29, 603-610.

Rogers, S. E., Kwak, D. \& Wiltberger N. L. 1993 Sfficient simulation of incompressible viscous flow over single and multielement airfoils. Journal of Aircraft. 30, 736-743.

Rogers S. E., Menter F. R., Durbin P. A. \& Mansour N. N. 1994 A comparison of turbulence models in computing multi-element airfoil fows. AIAA Paper 94-0291.

NEXT DOCUMENT

A new approach to turbulence modeling

By B. Perot ${ }^{1}$ and P. Moin ${ }^{2}$

A new approach to Reynolds averaged turbulence modeling is proposed which has a computational cost comparable to two equation models but a predictive capability approaching that of Reynolds stress transport models. This approach isolates the crucial information contained within the Reynolds stress tensor, and solvis transport equations only for a set of "reduced" variables. In this work, direct numerical simulation (DNS) data is used to analyze the nature of these newly proposed turbulence quantitios and the source terms which appear in their respective transport equations. The physical relevance of these quantities is discussed and some initial modeling results for turbulent channel flow are presented.

1. Introduction

1.1 Beckground

Two equation turbulence models, such as the k / ϵ model and its variants. are widel: used for industrial computations of complex flows. The inadequacies of these models are well known. but they continue to retain favor because they are robust and inexpensive to implement. The primary weakness of standard two equation models is the Boussinesq eddy viscosity hypothesis: this constitutive relationship is often questionable in complex flows. Algebraic Reynolds stress models (or non-linear eddy viscosity models) assume a more complex (nonlinear) constitutive relation for the Reynolds stresses. These models are derived from the equilibrium form of the full Reynolds stress transport equations. While they can significanty improve the model performance under some conditions, they also tend to be less robust and usually require more iterations to converge (Speziale, 1994). The work of Lund \& Novikov (1092) on LES subgrid closure suggests that even in their most general form. non-linear eddy viscosity models are fundamentally incapable of completely represpliting the Reynolds stresses. Industrial interest in using full second moment closures (the Reynolds stress transport equations) is hampered by the fact that these equations are much more expensive to compute, converge slowly, and are susceptible to numerical instability.

In this work, a turbulence model is explored which does not require an assumed constitutive relation for the Reynolds stresses and may be considerably clecaper to compute than standard second moment closures. This approach is made possible by abandoning the Reynolds stresses as the primary turbulence quantity of interest.

[^0]The averaged Navier-Stokes equations only require the divergence of the Reynolds stress tensor, hence the Reynolds stress tensor carries twice as much information as required by the mean flow. Moving to a minimal set of turbulence variables reduces the overall work by roughly half. but introduces a set of new turbulence variables. which at this time are poorly understood. This project attempts to use DNS data to better understand these new turbulence variables and their exact and modeled transport equations.

1.2 Formuletion

The averaged Navier-Stokes equations take the following form for incompressibie, constant-property, isothermal flow:

$$
\begin{gather*}
\nabla \cdot \mathbf{u}=0 \tag{1a}\\
\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}=-\nabla p+\nu \nabla \cdot \mathbf{S}-\nabla \cdot \mathbf{R} \tag{1b}
\end{gather*}
$$

where u is the mean velocity. p is the mean pressure. ν is the kinematic viscosity. $\mathbf{S}=\Gamma \mathbf{u}+(\Gamma \mathbf{u})^{\boldsymbol{T}}$ is twice the rate-of-strain tensor. and \mathbf{R} is the Reynolds stress tensor. The evolution of the Reynolds stress tensor is given by:

$$
\begin{equation*}
\frac{\partial \mathbf{R}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{R}=\boldsymbol{v}^{2} \mathbf{R}+\mathbf{P}-\mathbf{\epsilon}+\mathbf{\Pi}-\nabla \cdot \mathbf{T}-\left[\nabla \mathbf{q}+(\nabla \mathbf{q})^{T}\right] \tag{2}
\end{equation*}
$$

where P is the production term. \in is the (homogenerns) dissipation rate tensor. Π is the pressure-strain tensor. \mathbf{T} is the velocity triple-correlation, and \mathbf{q} is the velocity-pressure correlation. The last four source terms on the right-hand side must be modeled in order to close the system. The production :erm \mathbf{P} is exactly represented in terms of the Reynolds stresses and the mean velocity gradients. This is the s:andard description of the source terms, but it is by no means unique and there are numerous other arrangements.

Note that turbulence effects in the mean momentum equation can be represented by a body force $f=\Gamma \cdot \mathbf{R}$. One could construct transport equations for this body force (which has been suggested by Wu et al., 1996), but mean momentum would no longer be simply conserved. To guarantee monentum ronservation, the body force is decomposed using Helmholtz decomposition, into its solenodal and dilatational parts. $f=\Gamma o+\Gamma \times \psi$. A constraint (or gauge) must be imposed on ψ to make the decomposition unique. In this work we take $\nabla \cdot \psi=0$. With this choice of gange, the relationship between 0 and ψ and the Reynolds stress tensor is given by.

$$
\begin{gather*}
\nabla^{2} \phi=\nabla \cdot(\nabla \cdot \mathbf{R}) \tag{3a}\\
\nabla^{2} \psi=-\nabla \times(\nabla \cdot \mathbf{R}) \tag{3b}
\end{gather*}
$$

Note that the choice of gauge influences the value of ψ. but does not affect how $\boldsymbol{\psi}$ influences the mean flow.

Using these relationships, transport equations for ϕ and ψ can be derived from the Reynolds stress transport equations.

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}+\mathbf{u} \cdot \nabla \phi=\nu \nabla^{2} \boldsymbol{\varphi}-2 \nabla \cdot \mathbf{q}-\nabla^{-2} \nabla \cdot \nabla \cdot[\epsilon-\Pi I+\nabla \cdot \mathbf{T}-\mathbf{P}]+\nabla^{-2} \mathbf{S}_{\phi} \tag{4a}\\
& \frac{\partial \psi}{\partial t}+\mathbf{u} \cdot \nabla \psi=\nu \nabla^{2} \psi+\nabla \times \mathbf{q}+\nabla^{-2} \nabla \times \nabla \cdot[\epsilon-\Pi+\nabla \cdot \mathbf{T}-\mathbf{P}]+\nabla^{2} \mathbf{S}_{\mathbf{i}} \tag{4b}
\end{align*}
$$

These equations contain extra production-like source terms S_{ϕ} and S_{ψ} which contan mean velocity gradients. Note that the production term is not an explicit function of ϕ and ψ (except under limited circumstances) and, in general, must be modeled. The inverse Laplacian ∇^{-2} that appears in these equations can be thought of as an integral operator.

2. Theoretical analysis

2.1 Turbulent pressure

Taking the divergence of Eq. (1b) (the mean momentum equation) gives the classic Poisson equation for pressure,

$$
\begin{equation*}
\nabla^{2} p=-\nabla \cdot(\mathbf{u} \cdot \nabla u)-\nabla \cdot(\nabla \cdot \mathbf{R}) \tag{5}
\end{equation*}
$$

Since this is a linear equation, the pressure can be split conceptually into two terms: one can think of the mean pressure as being a sum of a mean flow pressure due to the first term on the right-hand side,

$$
\begin{equation*}
\nabla^{2} P_{\text {mean }}=-\nabla \cdot(\mathbf{u} \cdot \nabla \mathbf{u}) \tag{6a}
\end{equation*}
$$

and a turbulent pressure due to the second term on the right-hand side,

$$
\begin{equation*}
\nabla^{2} P_{t u r b}=-\nabla \cdot(\nabla \cdot \mathbf{R}) \tag{6b}
\end{equation*}
$$

Given the definition of ϕ and assuming that ϕ is zero when there is no turbulence, then it is clear that $\phi=-P_{\text {turb }}$. For this reason, ϕ will be referred to as the turbulent pressure. This quantity is added to the mean pressure in the averaged momentum equation, which results in $P_{\text {mean }}=p+\phi$ being the effective pressure for the averaged equations. The quantity $P_{\text {mean }}$ tends to vary more smoothly than p, which aids the numerical solution of these equations.

For turbulent flows with a single inhomogeneous direction, the turbulent pressure can be directly related to the Reynolds stresses. In this limit Eq. (3a) becomes $\phi_{.22}=R_{22.22}$ where x_{2} is the direction of inhomogeneity. This indicates that $\phi=$ R_{22} for these types of flows. Note that R_{22} is positive semi-definite, so 0 is always greater than or equal to zero in this situation. Positive ϕ is consistent with the picture of turbulence as a collection of random vortices (with lower pressure cores) embedrled in the mean flow. It is not clear what the conditions for a negative turbulent pressure would be, if this condition is indeed possible.

2.2 Turbulent vorticity

To understand the role of ψ it is instructive to look again at turbulent flows that have a single inhomogeneous direction. Cnder this, restriction Eq. (3b) becomes $\xi_{2,22}=-\epsilon_{t 2 k} R_{k 2,22}$ where s_{2} is the direction of inhomogeneity. If ψ gees to zero when there is no turbulence then $\varepsilon_{1}=-\epsilon_{12 k} R_{k 2}$. (in $\varepsilon_{1}=-R_{32} . \vartheta_{2}=0$ and $\psi_{3}=R_{12}$). These are the of diagonal. or shear stress components of the Reynolds stress tensor.

For two-dimensional mean flows with two inhonogramms flow directions. only the third component of ψ is non-zero, and Eq. (3b) becomes

$$
\begin{equation*}
0_{3.11}+\imath_{2.22}=R_{12.22}-R_{12.11}+\left(R_{11}-R_{22}\right)_{12} \tag{i}
\end{equation*}
$$

Since $\boldsymbol{\psi}$ is responsible for vorticity generation. it is appropriate that it be aligned with the vorticity in two dimensional flows. As a first level of approximation, it is not unreasonable to think of ψ as representing the average vorticity of a collection of random vortices making up the turbulence, and therefore ψ will be referred to as the turbulent vorticity.

For two-dimensional flows with a single inhomegenemo direction $8_{3}=R_{14}$.
Note how the component of ψ reflect the dimensionality of the problem, white the mathematical expressions for these components reflects the degree of inhomogencity:

2.3 Relationship with the eddy viscosity hypothesis

The linear eddy viscosity hypothesis for incomprensible flows takes the form,

$$
\begin{equation*}
\mathbf{R}=-\nu_{T}\left(\Gamma \mathbf{u}+(\Gamma \mathbf{u})^{T}\right)+\frac{2}{3} h \cdot \mathbf{I} \tag{8}
\end{equation*}
$$

where ν_{T} is the eddy viseonity. I is the identity matrix. and d is one half the trace of the Reynolds stress tensor.

Taking the divergence of Eq. (8) and rearranging temts gives.

$$
\begin{equation*}
\mathbf{f}=\nabla \cdot \mathbf{R}=\Gamma\left(\frac{2}{3} k-\underline{\mathbf{u}} \cdot \nabla \nu_{r}\right)+\nabla \times\left(\nu_{T} \Gamma \times \mathbf{u}\right)+\underline{\mathbf{u}} \cdot \nabla\left(\nabla \nu_{7}\right) \tag{9}
\end{equation*}
$$

If the eddy viscosity varie telatively slowly as is usually the case then the very last term (involving the second derivation of the eddy viscosity) will be small and can be neglected. Under these circomstances the linear eddy viscosity model is equivalent to the following model.

$$
\begin{gather*}
\circ=\frac{2}{3} k-2 \mathbf{u} \cdot \Gamma \nu_{T} \tag{10a}\\
\boldsymbol{\psi}=\nu_{T} \Gamma \times \mathbf{u} . \tag{10b}
\end{gather*}
$$

So to a first approximation the turbulent vorticity: $\boldsymbol{\psi}$ should be roughly equal to the mean vorticity, times a positive eddy viscosity: and the turbulent pressure should be roughly equal to two thirds of the turbulent kinetic energy. These results are entirely consistent with the findings of the previous subsections.

 (iv) for He पpuntme lumitay laver of Xa A. Mom.

3. Computational results

 whl arlmente nutils.

Q.1 Suparatm buendery leur r

 become bixhly weiture in the wegon just in from (to the lift of the epuetme

 be numerical, but them is also some rason to blieve fhit thes wit a legitumate

 percypthe effect on the valus of a nitll:

*ar
-12
Figent 2: Contour of the normal Arynohs stress (h_{μ}) and negative turbulent sheat stress $\left(-R_{1 .}\right)$ for the sepatating boundaty layer of Na \& Moin.

It is also consistent with the (first order) notion of turbulenee as a collection of embedded wortice, with o representing the weriage vortex core pressure and y representing the average vortex strength.

In the case of a single inhomogeneous direction. $o=R_{22}$ and $v_{3}=R_{12}$ It is instructive therefore to compure the reults shown in F_{18} ! with the $R_{2 R}$ and $-R_{1 L}$ components of the Reznolds stress tenson. Shown in Fis. 2 . The magnitudes of the contours in Fig, 2 are the same as Fig 1 Thi comparisn cicaly shows the additional efferts that reselt from mhonogeneity in the streamwise diretion The leading and tralling bou dary layers | which luse very little streamwise inhomogene. ity) are almost identical. However, the magnitudes of the twhulent presure and
 inhomogenetty.

1.2 Bachuard farmes step

Computations of o and - 4 , for the backward facing step ate shown in Fig. 3. The flew is from left tw right ant there is an intind cuple sical whiment at the inflow as the intiow boundery condition becomes Nivier Subes turbulence. The boundary layer leading uy to the backstep has moderate levels of the turbulent presente and whblent vortiety wheh rlosely agrer with the viuss of R_{2} ant $-R_{1}$ in that regiont. As with the sepatatimg boundary layer. the turbuleth pressure and turbulent woticity increase siguifeantly in the sepetated shent hyes and ienttaclinent one. There is an atea of slight positive turlbulent pressum ant mgative turbulent vorticity in the far field about one step lieght) alove the liwkstep comer. This mey of may not be a mumetical artifact, and is discossed in the next section.

$$
\text { s. } \mathrm{F} \text { Et:L! }
$$

Identifing the exact natme of the enpticity of theme wex mululence quatitien is important waterstandine then overall behivior ant how thes should be modeled.

Fwart 3. Contours of turbulent pressure (o) and negative urbuk vorticity ($-\psi$) for the back ward faring step of Le \&. Moin.

When rewritten, Eq. (3a) and (3b) berome.

$$
\begin{align*}
& \left.\theta=\nabla^{-2} \nabla \cdot \nabla \cdot \mathbf{R}\right) \tag{110}\\
& \psi=\nabla^{-2} \nabla \times(\Gamma \mathbf{R}) \tag{1116}
\end{align*}
$$

These are elliptic, but order one, operators on the Reynolls stress tenson. As ifmon strated in $\$ 2$, when there is only a simgle inhomogeneous direction, these operators simply lead to varius Reynolds stress components. Under these condinons they do not produce "action at a distance" or long range effect normally asoocinted with elliptir (Ponson or Helmholts) operators.

For two and three nhomogeneous directions, it is still not dear whether these operators produce long range efferts. There are certainly some situations in which they din not. One example is when the Reywilds strese tensot can he reverentel in the following form (somewhat reminiscent of the linear edidy viscosity whation) $R_{v}=s_{0,}+c_{n, 1}+c_{1, n}$, where s 's some scalar and v is a wector. If this in the case then $\theta=+25 \quad v$ and $v=-\nabla \times v$, and there are no long range (©lliptic') effects.

In fact, the presence of long range effects in δ and v is somewhat mettling. It would suggest that these tutbulence quanti, os can exist in regions whert here: no Reynolds stress. Since $\Gamma \mathrm{R}=\Gamma 0+\nabla \times \psi$, this wonld imply that a precise cancellation of these long range effects must occur in trgions where the Reverids stresses ate small of neghigble. While the results presented in Fig. 1 and Fis. 3 seem to show that long range elliptic effects do indeed take place. they coult also
 double differentiation of the DNS dath this prodices compact Poison equation source terms that are only merginally mesolved by the mesh. It is out cutrent conjecture that these operators are actinity local in natire mido only sise to -mix-

Figure 4. Budget of the ϕ transport equation at a station roughly half way through the recirculation bubble of the backward facing step ($x / h=4.0$). ——dissipation or diffusion; -..- velocity pressure-gradient; ….... triple correlation term; —— production (positive) or convection.
various components of the Reynolds stress tensor. It is also conjectured from these computational results that the turbulent pressure is a positive semi-definite quantity.
Note that the ellipticity discussed here is not the same as an ellipticity in the governing evolution equations for these quantities. An elliptic term in the evolution equations is both physical and desirable (see Durbin. 1993). Such a term mimics long range pressure effects known to occur in the exact source terms. The exact evolution equations for ϕ and ψ, described below, have just this ellipic property.

9. 4 Turbulent pressure evolution

Considerable insight can be obtained about the evolution of the turbulent pressure by considering the case of a single inhomogeneous direction. It has been shown that under these circumstances $\phi=R_{22}$, so the evolution is identical with the Reynolds stress transport equation for the normal Reynolds stress, R_{22}. For the case of turbulent channel flow (Mansour et al., 1988), the R_{22} evolution is dominated by a balance between dissipation and pressure-strain, with somewhat smaller contributions from tarbulent transport and viscous diffusion. There is considerable interest in determining if these same trends continue for ϕ evolution in more complex situations, since the ultimate goal is to construct a modeled evolution equation for this quantity.
Figure 4 shows the terms in the exact ϕ evolution equation for flow over a backward facing step. at a station roughly in the middle of the recirculation bubble. These terms were calculated in the same manner as the turbulent pressure. Both

Figtre 5. Budget of the $\dot{\psi}_{3}$ transport equation at a station roughly half way through the recirculation bubble of the backward facing step: see Fig. 4 for caption.
the detached shear layer and the backward moving boundary layer are visible in the statistics. In the shear layer, the expected dominance of dissipation and pressureterms (presumably dominated by pressure-strain) is evident. In the recirculating boundary layer, turbulent transport and pressure-terms (probably dominated by pressure transport) are dominant. It is intercsting to note that the production term dominates in the middle of the recirculation bubble. The fact that some of these source terms are not exactly zero at roughly two step lieights away from the bottom wall is thought to be a numerical artifact similar to those found when calculating ϕ and ψ. Some of the curves have an erratic nature due to the lack of statistical samples. This phenomena is also present in the (unsmoothed) Reynolds stress transport equation budgets presented in Le \& Moin, 1993.

9.5 Turbulent vorticity evolution

As with the turbulent pressure, it is useful to consider the case of a single inhomogencous direction when analyzing the evolution of the turbulent vorticity. Under these circumstances ψ_{3} evolves identically to the Reynolds shear stress, R_{12}. In turbulent channel flow, the K_{12} evolution is dominated by a balance between production and pressure-strain, with somevh-: naller contributions from turbulent and pressure tiansport. This trend continues in the ψ_{3} evolution equation. which is shown in Fig. 5., for the backward facing step at a cross section roughly halfway through the recirculization bubble $(x / h=4.0)$. The small value of the dissipation is consistent with the fact that isotropic source terms can be shown not contribute to the evolution of ψ.

4. Modeling

4.1 Formulation

An inital proponal for moxdeled transport equations for the turbulent pressure and wrbulent vorticity are.

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}+u \cdot \Gamma \rho=\Gamma \cdot\left(x+v \cdot \Gamma \circ-\left(\frac{3}{2} C_{\mu}\right)\left(\frac{1}{T}\right) \sigma-\left(\frac{12 u t}{y^{2}}\right) 0+\left(\frac{2}{3}\right) \frac{\psi \cdot \psi}{1 \bar{T}+y_{T}}(12 a)\right. \\
& \frac{\partial \psi}{\partial t}+u \cdot \Gamma \psi=\Gamma \cdot\left(1+\nu_{T}\right) \Gamma \psi-\left(\frac{1}{T}\right) \dot{v}-\left(\frac{6 \nu}{y^{2}}\right) \psi+\infty \omega \tag{12b}
\end{align*}
$$

where. $C_{p}=0.09$. y in the nomal distance to the wall. tier time-scale is given by $T=$ $(\omega+\nu \tau) / 0$. and the celdy vincensity is given by $\nu T=|\psi| /|\omega|$. Dissipation (aud some redistribution) is noodeled an an exponcutial deray prosess (roughly corresponding to Rotta s. kow Reyoold numiner dissipation model). Turbulent and presure transport are oollectively nodeled an enhancel diffisive transport. Productiont and encegyredistribution are propertionai to the turbilence premere times the nean vorticity fo: the turbolent vorticity. and are propertional to the square of the turbulent vorticity magnitude or the th'bulent pressure. High Reynolds number constants are determined we that $\theta=\frac{2}{8}$ at high Regolds numbers The low Reynolds number constants (which appewn with a ${ }^{\prime \prime}$) are wet to obtain exact asymptotic behavior and pood agreement with the chanmel fow simulations of the next sertion.

Sote that both oand whe hase same unis An extra terbulent scale is currenty defined be using the :nean How timescale $|\omega|$ to define the eddy riscosity. The solution of an additional coll transpent equation (such as of would remedy a number of porential problems with the current model. It could climinate the singularity in the eddy viseovity at zero vorticity, remow any explicir refernces to the wall normal distance. and allow bettey deray rates for homogenems isotropic turbulence. The disadtantage of this apwerch (which will le tested in the future) is the added computational cost and additional cmpinicism.

$$
42 \text { Channtl flon sumulations }
$$

The model cynations (1 2a and 12 b) were solved in conjunction with mean flow equations for fully drewoped channel flow at R_{f}, of 150 and 395 . Since there is only one inhonogeneme ditertion. the turbulent presoure is propentional to the normal Revnolds stress, and es is proportional to the turbulent shear stress. Comparisons of the moxdel predictions and the DNS data of Kim. Moin. © Moser (1987). are shown in Fig. 6.

When a turbulent chamel flow is suddenly perturbed by a spanwise pessure gradient. the flow suddeny lecomes three dimensional and the turbulence intensities first drop before increasing due to the increased total shear (Mein et al. 1990). Durbin (1993) morbled this effert by adding a term to the dissipation equation which increases the disipation in these three-dimensional flows. The same qualitative effect can lo obtainel by defining the eddy viscosity in the proposed model as $v_{t}=\frac{\boldsymbol{\psi} \cdot \boldsymbol{\omega}}{\boldsymbol{\omega}} \boldsymbol{\omega}$. In two-dimensional flows this is identical to the precious definition.

Figire 6. Noxdel results (solid lines) and DNS data (ciseles) for turbulent chamed How. (Re $+=150$)

Howerer. in three-dimensional flows. the orientation of will lag w. and the eddy viscosi y will drop initially. A smaller eddy viscosity leads to a smaller timescale and in-reaserd disination. Unfortumately. the magnitude of this effect is severely underestimaterl in the present model, and a scale equation (and a correction like Durhin's) may be required to model this effect accurately.

5. Conclusions

This work proposes abandoning the Reynolds stresses as primary turbulence qua:tities in favor of a reduced set of turbuleace variabies, namely the turbulent pressure 0 . aind the turbulent vorticity ψ. The adrantage of moving to these alternative variables is the ability to simulate turbulent flows with the arcurary of a Reynoids stress transport model (i.e. with no assumed constitutive relations). but at a significantly reduced cost and simplified model complexity: As the names imply, these quantities are not simply mathematical constructs formulated to replace the Reynolds stress tensor. They are physically relevant quantities.

At first glance the operators which relate ϕ and ψ to the Reynolds stress tensor suggest the possibility of ellipticity or action at a distance. However. we have shown that under a number of different circumstances this does not happen, and conjecture that it may never happen. The physical relevance of these quantities would be complicated if they were finite when there was no turbulence (Reynolds stresses). A prof to this effect may also prove our second conjecture. that o is a positive definite quantity.

The budgets for the transport equations of these new variables ..edicated that the extra production terms were uot significant, and that these equations could be
moxeled analogously on the Reynolds stress transport equations. An initial morel was constructed for these cruations using basic modeling constructs which showed good results for turbuk chanmel flow. It is likely. that for this shearing fowe the turbulent timesfale is well represented by the mean How vorticity. However. for more complex situations, it is likely that an additional scale equation (such as an e equation) will be required.

Acknowledgments

The authors wonld like to thank Paul Durbin for his comments on this work. and particularly for discusion concerning the ellipticity of theve variables.

RFFERENCES

Bhadsataw. P.. Fermiss. D. H. \& Atwell. A. 1960 Cialenlation of boundary
 593-616.

Dirbin. P. A. 1993 Momblimg three-dimensional turbulent wall layers. Phys. Fluids A. 5(5), 1231-1238.
Kim. J. . MoIN. P. d Month. R. D. 198i Turbuletice statistics in fully-developed channel flow at low Reyaokls number. J. Fluid Mech. 177, 133-166.
Lf. H. A Mons, P. 1993 Direct numerical simulation of turbulent flow over a backward-facing step. Report TF-58. Thermosionces Divisios. Department of Mechanical Eiga.. Stanford Cuiv.
LrND. T.S. Le Novihow. E. A. 1992 Parameterization of subgrid-scate stress by the velocity quadient tensor. Annual Rescarch Briff. - 1992. Center for Turbulence Remarch. D.ASA Ames Stanford Univ
Mansotr. N. N.. Kim. J. A Mons. P. 1988 Reynolds stess and dissipation rate buigets in a turbulent channel fiow. J. Fhad Meck. 194, 1544.
Mon. P.. Shin. T. H. Drinek. D. A. Masoter. N. N. 1990 Direct numerical simulation of a threr-dimensonal turbulent boundary layer. Phys. Fluids A. 2(10), 1846-1553

NA. Y. \& Mons. P. 1996 Direct mumerical simulation of a turbulent separation bubble. Repert TF. Thermenciences Division. Department of Mechanical Engr.. Stanforl Lunv
Rotra. J. 1051 Stativical therery of inhomogeneous turhulence. Part I. Zeitachrift fur Physth. 129, 297 20?
Spfzial.e. C.G. 1994 A review of Reyuolds stress mexdels for turbulent flows.. 20th Symposium on Naral Hydrodynamics. Cniversity of Califomia. Santa Barbara.

Townsfad. A.A. 19.5G The Structure of Turbulent Shear Flow. Cambridge Coniwersity Prass. Lohdon.
Wi. J.-Z.. Zhor. Y. \& Wr. J.- M. 1996 Reduced stress tensor and dissipation and the tranyont of Lamb vector. ICASE report No. 9621 .

NEXT DOCUMENT

Second moment closure analysis of the backstep flow database

By S. Parneix, D. Laurence ${ }^{1}$ and P. Durbin ${ }^{2}$

Abstract

A second moment closure computation (SMC) is compared in detail with the di rect numerical simulation (DNS) data of Le and Moin for the backstep flow at $\operatorname{Re}=5,000$ in an attempt to understand why the intensity of the backflow and, consequently, the friction coefficient in the recirculation bubble are severely underestimated. The data show that this recirculation bubble is far from being laminar exrept in the very near wall layer. A novel 'differential e priori' procedure was used. in which the full transport equation for one isolated component of the Reynolds stress tensor was solved using DNS data as input. Conclusions are then different from what would have been deduced by comparing a full simulation to a DNS. One cause of discrepancy was traced back to insufficient transfer of energy to the normal stress by pressu.e strain, but was not cured. A significant finding. confirmed by the DNS data in the core region of a channel flow, is that the coefficient that controls destruction of dissipation, $C_{e_{2}}$, should be decreased by a factor of 2 when production is ranishing. This is also the case in the recirculation bubble, and a new formulation has cured 25% of the backflow discrepancy.

1. Introduction

The flow over a barkward facing step has been probably the most popular separated flow test case of the past 20 years, for which numerous experiments (by Kim. Johnston, Eaton. Vogel, Durst, Driver, etc.) provide data on the effects of geometry. inlet conditions, and Reynolds number. With the improvement of turbulence models and numerical methods, it is now generally possible to recover the reattachment length, but the intensity of the backflow and, as a consequence, the negative peak in skin friction are always underestimated by nearly a factor of 2 when second moment closures (SMC) are used.

The recent DNS database of Le and Moin (1993) at Re $=5,000$, well corroborated by the experiments of Jovic \& Driver (1995) and of Kasagi et al. (1995), is analyzed here to understand this severe defect common to all SMC.

2. Full simulation of the backward-facing step

The flow was computed using INS2D, a finite difference code in generalized coordinates written at NASA Ames Research Center. A fine, non-uniform grid of

[^1]2 Stanford Unversity
120×120 cells was used to cover the region $r / h=3$ to $35 . x=0$ being the location of the sudden expansion and h being the step leight. The inlet values for the mean velocities. Reynolds stresses, and dissipation were taken from the DNS database. The elliptic relaxation procedure of Durbin (1993) has been combined with the Sprziale. Sarkar, Gatski (SSG) pressure strain tumelel in the 'neutral' formulation as in Laurence et al. (1995) (sec Appendix).

Figuaf 1. Streamlines a Serond moment closure. (h) DNS
Figure 1 shows the predicted streanlines compared to the DNS data. The reat tachment is correct and a serondary bubble is found. However. the size of this rorner bubble is much smaller in the simulation than in the data. In fact, if one looks at the predicted friction coefficiont compared to the DNS and experimental data (Fig. 2). the intensity of the main remprulation is underpredieted ley a factor $1 / 2$ (the slight improvement shown be a dashed curved is discussed further in section 5). The stagnating flow betwerit the two recirculations at $r / h=2$ is alsomissed. Since it is believed that the underestimation of the seromelary bubbic is a consmpuce of the underestimation of the primary recirculation. we will concentrate in the following on curing the latter diwepancy. Note that the reowery after reattachment is also too slow this is a problem in tirtually all furbulence transport models.

Ficirnf. 2. (a) Frictmenfficient. o DNS (Le d. Momi. a experiment (Jovic de Driver), - SMC. - - modified SMC (ef. section j). (b) DNS C'-profiles at locations $x / h=-3(t) .4(0) .6(0) .10(\Delta), 15(\Delta)$ and $19(\nabla)$, ———: model.

The above observations are believed to reflert what ran be expected from any state of the art SMC. In Fig. 2, the mean streamwise velority l is shown. The center of the recirculation is well prodieted. but its intensity is soverely underestimated
(see station $x / h=4$). Since C_{f} is too weak, this is not due to an overprediction of turbulent mixing in the near wall region, but rather to an underestimation of the entrainment from the shear layer. Since the flow in the upper layer splits at the stagnation puint into the recirculation and the downstrean flow, this same velocity defect is transported into the recovery region. Le \& Moin noted, in good agreement with the Jovic \& Driver experiment, that the \log profile of the law of the wall was still not recovered at $x / h=19$; this as a consequence of the low Reynolds number. In the Reynolds-averaged Navier-Stokes (RANS) computation. the recovery at $x / h=19$ is, however, still slightly underestimated.

Figure 3. (a) Zoom of U in recirculation at locations $x / h=1$ (0), 2(a). 3(o). $4(\Delta) .5(\triangleleft)$ and $6(\nabla)$, (c) $x / h=4(d) r / h=6$, convection (\cdot DNS, —— SMC) turbulent force ! \times DNS. -- SMC $)$, viscous force (a DNS, --- SMC) , pressure force (\triangle DNS, $\cdots \cdots$. SMC).

Figure 3 focuses on the recirculation and shows the budgets of the U momentum equation. The underestimation of the backflow is most severe at station $x / h=4$. As expected. the adverse pressure gradient driving the backflow is fairly constant across the whole height and balatces the viscous shear stress at the wall; hence. the pressure gradient determines the value of $C_{\rho_{m . n}}$. Jovic and Driver (1995) found
that the minimum of C_{f} follows a 'laminar like' law, $C_{f_{m i n}}=-0.19 R_{e_{k}}{ }^{-1 / 2}$ for Reynolds numbers between 5,000 and 50,000 . It is very clear, however, that the recirculation is not laminar like, except for the very near wall region below the maximum of the reverse flow.

Figure 4. (a) Zoom of V in recirculation, legend ef. Fig.3a. (bed) Budget of V at (b) $x / h=2$ (c) $x / h=4$ (d) $x / h=6$. legend cf. Fig.3bed.

A possible explanation for the Reynolds number dependence, consistent with the fact that the turbulent Reynolds number remains high in the recirculation bubble, might be as follows. The pressure field is a consequence of the general form of the separated layer (which rauses flow expansion and pressure rise). The form of the separated layer is determin. d by the turbulence. The Reynolds number influence noted by Jovic and Driver (1995) might come from a wider (compared to h) shear layer detaching from the step, causing a stronger adverse pressure gradient at lower values of Re. This view is supported by our observation that RANS computations were more sensitive to model changes in the shear layer than in the recirculating flow. The near-wall, viscous layer of reversed flow results from a balance of the pressure force and the viscoms friction, and covers only a frw percent of the bubble height \cdots so this cannot lead to 'laminar like` behavior. The turbulent Reynolds
$k^{2} \varepsilon / \nu$ (i.e., $\approx 10 \nu_{1} / \nu$) in the bubble is in the range $400-500$ (Fig. 11), similar to its value in the shear layer. Incidently, this makes any low Reynolds 'damping function' ineffective in the main portion of the bubble.

The momentum budget station at $x / h=2$ shows that entrainment by the turbulent shear stress is underestimated right below the shear layer detaching from the corner. At $x / h=4$ it was checked that $\overline{u v}$ and $V d U / d y$ are by far the major contributors to the turbulent and convection terms. The shear is weakly opposing the recirculation (a pair of arrows in Figs. 3 and 4 indicates the position of $U=0$) while advection is driving the recirculation in its upper part. Overall, the model seems only slightly to underestimate this turbulent shear force in the full simulation, even if at this stage the defect is traced to insufficient entrainment at the top part of the recirculation. However, we will see that $\overline{u v}$ itself is in error.

The V component in the shear layer shown in Fig. 4 is severely underestimated. The turbulence force was found to be due almost entirely to $\overline{v^{\mathbf{2}}}$. Again, right near the corner, at $x / h=2$, the turbulent force is underestimated by about a factor of 2 , although not far upstream at $x / h=0$, the RANS results were in accordance with the DNS data. At $x / h=4$ and 6 (near reattachment), it is still $\overline{v^{2}}$ which is driving the flow downward. Advection (inertia or streamline curvature) effects are negligible, showing that a reattaching flow is different from an impinging flow. Fig. 1 shows that the streamlines become smoothly tangent to the wall; some RANS simulations have produced a kink in the streamlines at this reattachment point (Hanjalic, 1996).

3. Differential a priori tests

9.1 Reynolds stresses

The Reynolds stresses will now be analyzed from two different sets of computations. The first corresponds to the full simulation and explains the mean velocity budgets shown previously. The second is from a differential a priori test and permits an analysis of the true effects of the pressure-strain and transport models. The latter results are obtained by solving the full differential equations of each individual stress $\bar{u}_{i} \bar{u}_{j}$ one by one, while the other stresses and the mean flow are taken directly from the DNS database.

An overall glance at Figs. 5-7 explains why a comparison using only the full simulation may entail erroneous conclusions: the full simulation could lead one to believe that the model has problems in the recirculation bubble, whereas the a priori test shows that discrepancies are mainly located in the shear layer.

The $\overline{u^{2}}$ streamwise fluctuation in the a priori test is overestimated in the shear layer, but improved in the recirculation when the correct mean velocity (used in the a priori test) enters its production. In both the full and a priori simulations, the $\frac{1^{2}}{}$ component is seen to be underestimated in the she Ψ layer, and elsewhere at station $x / h=4$. On the other hand, the shear stress seems to be, on average. correct in the full simulation and overestimated in the a priori test. This is because in the former an erroncously small value of $\overline{v^{2}}$ is entering its produrtion term. The origin of the problem lies in insufficient return to isotropy in the SSG pressure-strain

Figure 5. $\overline{u^{2}}$ profiles (a) full computation, (b) a prioritest, at locations $x / h=0.1$ $(0), 0.5(0), 1(0), 2(\Delta), 4(\Delta)$ and $6(\nabla)$,

Figure 6. $\overline{v^{2}}$ profiles (a) full computation. (b) a priori test, legend cf. Fig.5.
model, which should increase $\overline{v^{2}}$ and decrease both $\overline{u^{2}}$ and $\overline{u v}$, but only in the shear layer.

S. 2 Budgets

For the analysis of budgets, the DNS data has been processed in the same form as the elliptic relaxation model (see appendix): i.e., some anisotropy effects in the dissipation are lumped with the so-called pressure-strain term.

For the budgets of $\overline{u^{2}}$ in Fig. 8 , the production terms coincide perfectly of course, since the mean velocities and Reynolds stresses other than $\overline{u^{2}}$, are taken from the DNS. That is the method of this differential, a priori test. The model for turbulent transport (Daly-Harlow) performs well, but the pressure gradient-velocity correlation ($k f_{12}$) is underestimated in the free shear layer.

The budgets of $\overline{v^{2}}$ (Fig. 9) show here again that in the shear layer the pressure correlation ierm is underestimated-at $x / h=2$ by a factor of 2 . The pro qure term

Figure 7. $\overline{\text { we }}$ profiles (a) full computation, (b) a priari test, legend ef. Fig.5.

Figure 8. A priori test: budget of $\overline{u^{2}}$ at locations (a) $x / h=2,(b) x / h=4$. (c) $r / h=$ G. production (\quad DNS, ———SMC) $\left[-\Sigma R_{i j} / k\right](\times$ DNS, $\cdots \cdots$ SMC), convection (\quad DNS, ---- SMC), transport (\triangle triple correlations DNS, - - - SMC), viscous diffusion (o DNS, —— SMC), pressure-deformation + dissipation anisotropy effects ($\nabla\left[\Pi_{i}^{\prime p g}-\varepsilon_{i j}+\varepsilon R_{i j} / k\right]$ DNS. $-\cdots\left\{k f_{1 j} \mid S M C\right)$

Figitre 9. A priori test: budget of $\overline{v^{2}}$ at locations (a) $x / h=2$, (b) $x / h=4$, (c) $x / h=6$, legend cf . Fig. 8 .
includes pressure-transport effects (in the present case countergradient transport effects) which partially balance the turbulent diffusion terms, and which, as a consequence, are also underestimated by the model. Note that the production term is making a significant contribution. and since it is mainly composed of $-\overline{r^{2}} \mathrm{DV} / \mathrm{dy}$, underestimations of both $\overline{r^{2}}$ and V (which is affected by $\overline{r^{2}}$) self-amplify through this term. Near the wall, turbulent diffusion is generating the wall normal fluctuations, while the wall blocking effect is impeding them; the latter is represented by the elliptic relaxation effect (the homogemoms solution to Eq. 4 of the appendix is actually positive in this area).

The budget of $\overline{a^{\prime}}$, on the other hand, shows an overestimation of the pressurecorrelation, though again this compensates for an underestimation of the turbulent transport. At $x / h=4$, near the wall, the production term is seen to change sign, but still $\overline{\text { i" }}$ remains approximately zero becanse of the strong transport term. Hence, in the narrow region between the maximum of the backflow and the wall, the mean flow is largely viscons, as sern previously. With increasing Reynolds number, one can expect the ratio of propluction to transport terms to become larger, and the turbulent shear stress wonld then decelerate this backflow, leading to a smaller peak in C_{f}. Because $\overline{u T}$ is comutergradient with respect to the velocity gradient,

Figerf. 10. A priori test: budget of $\overline{u v}$ at locations (a) $x / h=2$ (b) $x / h=4$, (c) $x / h=6$, legend cf. Fig.8.
the production of $\overline{\pi^{2}}$ and k becomes negative in this area.

4. Model parameters

Fine tuning of models is often based on functions of the following parameters: anisotropy of the Reynolds stresses, A; turbulent Reynolds number, Rct production over dissipation, P / ε (sometimes the non-dimensional rate of strain, $S k / \varepsilon$ is used); and turbulent lengthscale, $k^{3 / 2} / \varepsilon$. In seeking improvements here, one should look for parameters that exhibit different values from those in simpler shear flows, for which the model should not be changed. The above parameters have been computed from DNS data to see if they are pertinent.

The range of variation of A (Fig. 11) from 0.6 to 0.8 in the recirculation bubble shows no particularity; the $R e_{\text {, }}$ values in the range of 400 to 800 (Fig. 11) is too high to invoke low Reynolds effects; the ratio P/E (Fig. 12) decreases from 2 to 1.5 in the shear layer, but is seen to be particularly weak in the lower half of the recirculation bubble. This last is a feature that is significantly different from near wall regions of boudary layers and should be considered further. Indeed, even negative production occurs along the wall from the reattachment to $. r / h=4$.

Figure 11. DNS profiles (a) Turbulent Reynolds number $\boldsymbol{R e}_{\mathrm{t}}=\boldsymbol{k}^{2} /(\nu \bar{\nu})$, at locations $x / h=2(0), 4(0) .6(0), 8(\Delta)$ and $10(\times)$. (b) Anisotropy $A=$ $1-9 / 8\left(A_{2}-A_{3}\right), A_{2}$ and A_{3} are the second and third invariants of a_{1}, legend cf . Fig.11a.

Figure 12. DNS profiles (a) Production over dissipation P / ε, legend ef. Fig.11a. (b) Turbulent length scale $L=0.09^{3 / 4} h^{3 / 2} / \varepsilon$, at locations $x / h=2$ (0 DNS,
 and 10 (\times DNS, $-\cdots$ SMC), $n y \longrightarrow$.

The production of dissipation is usually modeled as proportional to that of k, and negative values might lead here to unphysical effects.

5. Modeling dissipation

Several attempts were made to increase the pressure-stri. i in the shear layer, but all resulted in a (sometimes dramatic) shortening of the reattachment length, without amplifying the strength of the recirculation. Though the previous analysis indicates that this is a route to pursue, the following only reports some success in improving the dissipation equation.

An a priori test of the l. $-\varepsilon$ equations was carried out by solving the coupled

Figure 13. A priori test: (a) k (b) ε, at locations $x / h=0.1(0), 0.5(0) .1(0)$. $2(\Delta), 4(\Delta)$ and $6(\nabla)$, ——model, ——: modified model (ε equation).
$k-E$ system with DNS data for $\overline{\bar{B}_{1} \overline{1},}$ and U. Dissipation is, of course, the exact source term for k, but k also has a strong relation to dissipation through the inverse timescale z / k in front of its scurce term: this is why the equations were solved as a coupled system.

Figure 13 seems to indicate that t is overestimated and dissipation is correct in the coupled. differential test. In the recirculatior. bubble the effert of the source term in the ε equation is destruction of ε. since production is low. The 'modification' cited in the figure caption that is detailed below was intended to iucrease dissipation. but actually it leaves: unchanged and decreases k, bringing it closer to the DNS. This is because when the source term coefficient in ε equation is decreased, the balance of the dissipation budget is re-established by a decrease of the tine-srale. i.e. a decrease of k / ε. that orcurs by k derreasing with little change of E.

Tuning of the dissipation equation has been a popular game for the past iwo derades, so it needs to be shown that the present modification should not deteriorate predictions in other flows, and what the rationale is behind it.

Various proc lures have been developed to enhance dissipation. In near wall How: below $y^{+}=10$, an extra viscous production term is usually included in low Re models. However, it is ineffective bere because of the relatively high value of Ref. Another dissipation enhancement is the 'Yap correction' (Launder 1989), which consists in a positive source term in the dissipation equation that is activated whenever the turbulent lengthscale L is larger than the mixing length $n y$. Though rather ad hor, this 'Yap correction' has been particularly effective for barkstcp or sudden exparsion flows (Hanjalic 1996), and shows that semething peruliar is happening to the dissipation that is still not understoord. In ieed Fig. 12 shows that L is overestimated in the recirculation bubble near the wall. Although the lap rorrection goes in the right direction, there is no justification for forcing L to be smaller than wy since the DNS data shows it to be considerabl; : rger than this.

Another way to increase the production of ε in the near-wall region is to use the non-dimensionalized parameter P / ε (Durbin 1993). This proved effertive for
dhannel and boundary layer flow, but showed unfortunately high levels of numerical instability in more complex flows. Morcover, this does not suffice in the barkfiow region since P / E is fairly small. Durbin and Laurence (1996) recentiy proposed to replace this unstable term by a ratio of k and $\overline{v^{2}}$ in the $k-\varepsilon-\overline{v^{2}}$ model: $C_{e_{1}}\left(1+a_{1} \sqrt{k / \overline{v^{2}}}\right)$ with $a_{1}=1 / 30$. In this study, we havr generalized this idea in the full SMC by introducing the following: $C_{e_{1}}\left(1+a_{1} \sqrt{P_{t-e} /\left|P_{S A C} \cdot\right|}\right)$ with $a_{1}=0.035 . P_{k-\varepsilon}=0.09 k T S_{i j} S_{j i}$ and $P_{S M C}=\overline{\bar{x}_{i} \bar{i}}{ }_{j} S_{i j}$ are respectively the $k-\varepsilon$ formula for production and the exact Reynolds-stress production. This correction has been forund to have similar effects to P / E in the near-wall region of channel fkow, without any numerical instabilities in more complex situations. It does not cure the unkerestimation of the backfow in the present case; of conurse, that was not its itutent.

Very little data is available concerning the dissipation equation budget aside from the channel flow DNS at CTR. From that data. the following adjustment to destruction of dissipation (which we called 'modified model') was devised: $C_{e_{2}}=$ $1.83=f\left(I_{e}\right)$ with $I_{z}=\left(P_{z}+D_{z}\right) / \geqslant D_{e}$. This urasures the weight of trausport in the budget of ε by using the imbilance of production minus destruction. The function f varims Srom 1 (for shrar flows) to 0.5 when promuction is zero. In order to preserve nunerical stability, wr combined this modification with the same adjustment for C_{e} (multiplication by $f\left(I_{z}\right)$). The following function f was rhosen to avoid nonrealistic coefficients: $f(x)=\max (\min (\boldsymbol{r}, 1), 0.5)$. The rmult for the backstep as concerns the Cf profik' was found to be urodest (see Fig. 2). yet it is larger than any results obtainerl throngh modifications of the ;ressure strain model.

Ficilne: 14. Bulget of $:$ for the $R_{t_{r}}=395$ chanmel fowe all the torms have Bren multiplied by ($\left.y^{+}\right)^{2}$. 'rapid part' $\left(\times\left\{P_{1}+P_{2}+P_{3}\right], \cdots-\right.$ modelisation term: $\left[1.44 P_{k}=/ k \mid\right]$ slow pait $\left(+\mid P_{f}-\Upsilon\right]$, mondelisation term: $\left.\left.-1.83 \varepsilon^{2} / \lambda\right]\right)$, transport (o DNS. - mordelisation term). viscous diffusion (Δ), sum of the modelisition terms (......).

The idea of re-adjusting C_{e}, actually came from the analysis of channel flow at $\mathrm{Re}_{\mathrm{r}}=395$, for which the budgets of dissipation are available (Mansour d: Kim. private communication). The near wall region has been analyzed in detail by Rodi \& Mansour, but what interests us here is the central part of the channel. It is well known to modelers that dissipation is underestimated in the core region. but with little consequence except that the modeled L is continuously increasing instead of leveling off just outside of the log-layer. Since ε decrenses as y^{-1} and the terms in its budget are as y^{-2}. all terms in this budget were multiplied by \boldsymbol{y}^{2} to produce Fig. 14.

The dissipation budget. as discussed by Mansour, Kin \& Moin 1988, or by Mansonur d. Moiu 1993, comprises a viscous transport term, negligible in the core region. a turbulent transport, very well modeled bere by gradient diffusion with $\sigma_{z}=1.3$. and five source terms. It is known on fundamental grounds that these five terms cannot be clearly grouped into production and destruction terms. For the present. the terns involving gradients of velocity are grouped as $P_{1}+P_{2}+P_{3}$ and compared to the 'rapid' part of the model, $\varepsilon / k \cdot P_{k}$, while the remaining 'slow' terms are compared to ε^{2} / k. The DNS ralues of k and ε are used in the novel terms. hence the jagged appearance of the model transport, due to double diffrrentiation of this DNS data. It would seem from Fig. 14 that both constants C_{f}, and $C_{t_{2}}$ arr severely overestimated; but egain, the present split is arguable. It is, however, very clear that near the center of the channel, where the rapid terms go to zero, a value of $C_{e_{2}}=1.63$ is too large by a factor of 2. Ou the other hand, the transport is accurately modeled with the standard value $\sigma_{\varepsilon}=1.3$.

6. Conclusion

A detailed comparison of a SMC computation with the DNS data for the backstep flow at $R c=5.000$ leads to the following conclusions:
(1) The intensity of the backflow and the friction coefficient in the recirculation bubble are severely underestimated.
(2) The recirculation bubble is far from being perudo-laminar; an understanding of the problems encountered by SMC should, thus, be of general interest.
(3) The SMC underestimates entrainment out of the recirculating bubble by the detaching shear layer. The merhanism is the following: pressure-strain $\phi_{22} \mathrm{gen}$ crates normal fluctuations $\overline{\mathbf{n}^{2}}$, which create the transverse mean velocity V : this in turn provides a momentum impulse to the bubble. In the shear layer, $\varphi_{22} \cdot \overline{r^{2}}$. $1 \cdot$ are underestimated.
(4) A new differential a priori procedure was used, in which the full transport equatims are solved oue by one.
(5) A modification was proposed to euhance dissipation in:, and only in, the recircnlation bubble. The new formulation cured 25% of the backflow discrepancy.
(6) The morel is supported by a significant finding from the DNS data in the core region of a chamel fow: the constant related to destruction of dissiontion. $C_{s_{2}}$. should le decreased by a factor of 2 as production vanishes.

REFERENCES

Drfbin, P. 1993 A Reynolds-stress model for near-wall turbulence. J. Fluid Meck. 249, 465-498.

Dirbin. P. A. \& Laurfnce, D. 1996 Nonlocal effects in single point closure. Turbulence Reseench Associetes- 96 meeting. Seoul Korea.

Hanjalic. K. 1996 Sonse resolved and unrsolved issues in modeling non-equilibrium and unsteady turbuleut flows. Engineering Turbulence Modehing and Meesurements. W. Rodi and G. Bergeles Eds.. Elsevier Puth. 3, 3-18.

Jovic. S. S. Driver. D. 1995 Reynolds number effect on the skin friction in separated flows behind a backward-facing step. Experiments in Fluids. 18.

Kanniche, M.. Laurence. D.. \& Wizman. V. 1995 Combining a second moment closure with elliptic relaxation in rotating turbulent flows. 10th. Symp. on Turbulent Shear Flows. Penn State Pennsglowne. 20-19.

Kasagi, X. \& Matsuliaga. A. 1905 Three-dinumsional particle-tracking velocimetry measurements of turbuleure statistics and energy budget in a backwardfacing step flow. Int. J. Heat and Flaid Flow. 16, 4:7-485.

Ko, S. \& Dirbis. P. 1994 Separated turbulent flows computed with a near-wall Reynolds stress model. ASME-FED Summer Meeting. 196, 83-92.

Latinder. B. E. 1989 Second-noment closure: present ... and future? Int. J. Heat and Fluid Flow. 10, N. 4, 289-300.

Lalirence. D., Dirbin. P. A. de Denteren. A. O. 1995 Modeling near wall effects in second nument closures by elliptic relaxation. 10th. Symp. on Turbulent Shear Flows. Prin State Penniglvanie. 20-1.

Le, H., Moin. P. \& Kim. J. 1993 Direct numerical simulation of turbulent flow over a barkward-facing step. Proc. 9th Symp. on Turbulent Shear Flows. Kyoto. Japan. 13.2.1-13.2.6

Mansotr. N. N.. Kim, J. \& Moin, P. 1986 Reymolds stress and dissipation-rate budgets in a turlulent channel flow. J. Fluid Mech. 194, 15-44.

Rodi W. d. Mansoth. N. N. 1993 Low Reymods number $k-\varepsilon$ modeling with the aid of dirert simulation data. J. Flnid Mech. 250, 509.529.

Sipzanif. C. G.. Sahkah. S. \& Gatshi, T. B. 1991 Moreling the pressurestrain correlation of turbulence: an invariant dynamical systems approach. J. Fluid Mech. 227, 245-272.

APPENDIX: Empelic rehncation

The Reynolds stress tranaport equation is written as:

$$
\begin{equation*}
D_{i} \overline{\bar{m}_{i} \bar{u}_{j}}=P_{i j}+\rho_{i j}-\overline{u_{i} \bar{u}_{j}} \frac{\varepsilon}{\underline{k}}+T_{i j}+\nu \nabla^{2} \overline{u_{i} \bar{E}}, \tag{1}
\end{equation*}
$$

with

$$
\begin{align*}
& T_{i j}=-\partial_{k}\left(\overline{\mu_{k} \bar{x}_{i} \pi_{j}}+\frac{2}{3} \overline{\bar{W}_{k}} \bar{W}_{i j}\right) \tag{2}
\end{align*}
$$

The term $p_{i j}$ dififers from the usual pressure-strain $\phi_{i j}$ since it includes a deviatoric dissipation tensor in the form

$$
\begin{equation*}
p_{i j}=\phi_{i j}-\left(\varepsilon_{i j}-\overline{\eta_{i} \epsilon_{j}} \frac{\varepsilon}{k}\right) \tag{3}
\end{equation*}
$$

The following neatrel formulation for the elliptic relaxation is now obtained (Durbin and Leurence 1996):

$$
\begin{equation*}
\frac{\rho_{i j}}{k}-L \nabla^{2} L \frac{\rho_{i j}}{k}=\frac{p_{i j}^{k}}{k} \tag{4}
\end{equation*}
$$

Fue bomogencous turbulence $p_{i j}\left(\equiv t f_{i j}\right.$) in Eq. 4 reduces to $p_{i j}^{\mathrm{A}}$, for which any standard redistribution model $\phi_{i j}^{k}$ can be used. The SSG rapid model is

$$
\begin{equation*}
\phi_{i j \text { ropic }}^{h}=-C_{2} \mathrm{dev}\left(P_{i j}\right)-C_{3} \operatorname{dev}\left(D_{i j}\right)-C_{\&} k S_{i j} \tag{5}
\end{equation*}
$$

The coefficients are:

$$
\begin{gathered}
C_{2}=\frac{g_{4}+g_{3}}{4} ; C_{3}=\frac{g_{4}-g_{3}}{4} ; \\
C_{3}=\frac{2}{3} g_{4}-g_{3}+\frac{g_{3}}{2} \sqrt{A_{2}}
\end{gathered}
$$

The slow term is of the form

$$
\begin{gather*}
\phi_{i j, 1 \ldots}^{k}=-\left\|\left(C_{1}+1\right) a_{i j}+C_{1}^{\prime} \operatorname{dev}\left(a_{i k} a_{k j}\right)\right\| \frac{k}{T} \tag{6}\\
C_{1}+1=\frac{1}{2}\left[g_{1}+g_{i} \frac{P}{\epsilon}\right], C_{i}^{\prime}=-\frac{g_{2}}{4}
\end{gather*}
$$

The dissipation equation is

$$
D_{1} \varepsilon=\frac{C_{t,}^{\prime} P-C_{\varepsilon z} \varepsilon}{T}+\partial_{k}\left(\left(\nu+\frac{C_{F} \overline{\overline{\alpha_{k}} u_{l} T}}{\sigma_{\varepsilon}}\right) \partial_{k} \varepsilon\right)
$$

The time scale, T, is defined as:

$$
\begin{equation*}
T=\sqrt{\frac{h^{2}}{\varepsilon^{2}}+36 \frac{\nu}{\varepsilon}} \tag{8}
\end{equation*}
$$

The length scale L appraring in Eq. 4 also is prevented from going to zero at the wall by using the Kolmegorov scale as a lower bound:

$$
\begin{equation*}
L=C_{\iota} \sqrt{\frac{k^{3}}{\varepsilon^{2}}+C_{i}^{2} \frac{\nu^{3 / 2}}{\varepsilon^{1 / 2}}} \tag{9}
\end{equation*}
$$

Lastly, the Daly-Harlow expression for the turbulent diffusion is used:

$$
\begin{equation*}
T_{i j}=\partial_{i}\left(C_{\mu} \overline{\bar{u}_{l} u_{m}} T \partial_{m} \overline{i_{i} \bar{u}_{j}}\right) \tag{10}
\end{equation*}
$$

The constants used in this report are:

$$
\begin{aligned}
C_{n}=0.2 . \sigma_{t} & =1.5 . C_{L}=0.1 . C_{\eta}=200 . \\
C_{t_{1}} & =1.44 . C_{\varepsilon_{2}}=1.83
\end{aligned}
$$

Also

$$
\begin{align*}
& \left.a_{1}=\operatorname{dev}\left(\overline{u_{i} u_{j}}\right) / k . A_{2}=a_{i,} a_{1}\right) \\
& A_{3}=a_{1}, a_{1} k a_{k}, A=1-M\left(A_{2}-A_{3}\right) / 8 \tag{11}
\end{align*}
$$

was used in the text.

NEXT DOCUMENT

On modeling pressure diffusion in non-homogeneous shear flows

By A. O. Demuren, ${ }^{1}$ M. M. Rogers, ${ }^{2}$ P. Durbin ${ }^{3}$ and S. K. Lele ${ }^{3}$

New models are proposed for the "slow" and "rapid" parts of the pressure diffusive transport based on the examination of DNS databases for plane mixing layers and wakes. The model for the "slow" part is non-local, but requires the distribution of the triple-velocity correlation as a local source. The latter can be computed accurately for the normal component from siandard gradient diffusion models, but such models are inadequate for the cross component. More work is required to remedy this situation.

1. Introduction

In higher-order turbulence models 'pressure diffusion' is usually neglected, or at best added to 'turbulent diffusion' (Launder 1984) and the two modeled in aggregate. Pressure diffusion refers to the term $\partial_{i} \overline{\bar{j}_{j} p}$ in the Reynolds stress budget: turbulent diffusion refers to $\partial_{k} \overline{u_{i} u_{j} u_{k}}$. The latter represents the ensemble averaged effect of random convection and can often be modeled as a diffusion process; the former, however, is harder to explain as diffusion. Turbulent diffusion is usually considered to be the dominant diffusion mechanism, and pressure diffusion is considered to be negligible. However, Lumley (1975a) showed that for homogeneous turbulence the application of symmetry and incompressibility constraints to the exact equation for the "slow" or non-linear part of the pressure diffusion led to the result that its magnitude is 20% that of the triple velocity correlation. In addition. it is of opposite sign, so that if turbulent diffusion could be modeled as a gradient transport, pressure diffusion would represent counter-gradient transport. Demuren et el. (1994) examined DNS databases for several shear flows, namely: the mixing layer simulation of Rogers and Moser (1994); the wake simulation of Moser et al. (1996); the boundary layer simulation of Spalart (1988); and the backward facing step simulation of Le et al. (1993). These confirm for the $\overline{q^{2}}$-equation that in simple shear regions pressure diffusion is roughly $20-30 \%$ of turbulent diffusion, and it appears to be mostly counter-gradient transport, so that it merely reduces the effect of turbulent diffusion, which is mostly gradient transport. Thus, the current practice of absorbing pressure diffusion and turbulent diffusion into a single model term appears reasonable, as far as the main shear regions are concerned. But the DNS data show that near the edges of the shear layers turbulent diffusion decreases

Figere 1. Reynolds stress budget of $\overline{\boldsymbol{q}^{2}}$ from DNS of a plane wake:-_ production:--- . turbulent diffusion;--- . velocity-pressure gradient:-...... . pressure diffusion:---- . viscous dissipation;x . viscons diffusion:+ , temporal drift. (Inset is a blowup of the vertical axis near the edge).
rapidly to zero, while pressure diffusion decreases only very gradually, so the latter then becomes dominant. Thus, the budgets show that near the free stream edge the balance is between pressure transport and mean convection, or temporal drift. rather than between turbulent transport and the latter. Further. where shear layer interactions occur. as near the middle of a wake. pressure diffusion no longer follows counter-gradient transport (see Fig. 1), and Lumley's model becomps inadequate. It in fact lercomes additive very close to the center. leading to an overall increase in total transport, in contrast to the effect in the simple shear layers on either side. Both effects cannot be capturel by a mere change in model coefficient. Therefore, in order to build a model for total diffusive transport in general shear thows one must look beyond the homogeneous model of Lumley. The pressure diffusion should also be modeled separately. Inhomogencous effects ran be introduced via a non-local morel based on the elliptic relaxation concept of Durbin (1991, 1993) as implemented in the previous study of Demuren et al. (1994). The local model. required in this formulation. will be based on the "slow" or mon-linear part of the pressure diffusion. A plitting of the pressure diffusion into "slow" and "rapid" parts is therefore neressary.

DN 3 databases for the mixing layer simulation of Rogers and Moser (1994) and the wake simulation of Moser et al. (1996) are post-processed to split the velocitypressure gradient and pressure diffusion terms into "slow" and "rapid" parts. Separate models are then proposed for these terms.

Figure 2. Reynolds stress budget of $\overline{u_{2}^{2}}$ from the DNS of plane wake. (See Fig. 1 for legend.)

Figure 3. Reynolds stress budget of $\overline{u_{1} u_{2}}$ from the DNS of plane wake. (See Fig. 1 for legend.)

2. Governing equations

The Reynolds stress equations can be written for time-developing plane shear flows as:

$$
\begin{gather*}
D_{i} \overline{u_{i} u_{j}}=-\left(\overline{u_{i} u_{k}} \partial_{k} U_{j}+\overline{u_{j} u_{k}} \partial_{k} U_{i}\right)-\partial_{k} \overline{u_{i} u_{j} u_{k}}-\left(\overline{u_{i} \partial_{j}(p / \rho)}+\overline{u_{j} \partial_{i}(p / \rho)}\right) \\
-2 \nu \overline{\partial_{k} u_{i} \partial_{k} u_{j}}+\nu \nabla^{2} \overline{u_{i} u_{j}} \tag{1}
\end{gather*}
$$

(D_{1} represents the total derivative and ∂_{k} the partial derivative in the x_{k} coordinate.) Thus, the time-derivative is balanced by the production, turbulent transport, velocity-pressure gradient correlation, dissipation, and viscous diffusion, respectively. For the cases under consideration in this study, only normal (x_{2}) derivatives of turbulent statistics are non-zero. There is also only one non-zero mean-velocity gradient, $\partial_{2} U_{1}$.

Budgets for the $\overline{u_{2}^{2}}$ normal component of the Reynolds stress and the shear stress $\overline{u_{1} u_{2}}$, obtained from the DNS database for the plane wake of Moser et al. (1996), are presented in Figs. 2 and 3. respectively. (In all these figures, y_{c} is the center-line, δ is the wake half-width, and δ_{m} is the mixing layer momentum thickness.) In both cases, turhulent and pressure transports are of comparable magnitude. Therefore, it would be inconsistent to model one and not the other. And, if one tries to model them together, then the comment in the introduction with respect to the $\overline{q^{2}}$ equation also applies to the $\overline{u_{2}^{2}}$ equation. On the other hand. in the $\overline{u_{1} u_{2}}$ equation, these terms virtually cancel each other out, except near the edges of the shear layers. Hence, it appears unlikely that a single composite model could reproduce all these features.

The velocity-pressure gradient correlation can be split into a pressure-strain correlation and a pressure diffusive transport as:

$$
\begin{equation*}
-\left(\overline{u_{i} \partial_{j}(p / \rho)}+\overline{u_{j} \partial_{2}(p / \rho)}\right)=\overline{(p / \rho)\left(\partial_{j} u_{1}+\partial_{1} u_{j}\right)}-(1 / \rho)\left(\delta_{32} \partial_{2} \overline{p u_{1}}+\delta_{32} \partial_{2} \overline{p u_{j}}\right) \tag{2}
\end{equation*}
$$

Further, each of these terms can be split into "slow" and "rapid" parts by splitting the pressure p, used in the rorrelations, into p_{s}, and p_{r}, respectively. In the present study, p_{s} and p_{r} are obtained from solution of the equations:

$$
\begin{gather*}
\nabla^{2} \eta_{s}=-\partial_{q} u_{p} \partial_{p} u_{q}+\partial_{22} \overline{u_{2}^{2}} \\
\nabla^{2} p_{r}=-2 \partial_{2} u_{1} \partial_{1} u_{2} \tag{3}
\end{gather*}
$$

Figure 4 shows results of the splittings of the velocity-pressure gradient correlations into "slow" and "rapid" parts for the four non-zero components of the Reynolds stresses. We note that for the diagonal components all energy is produced in the streamwise component $\overline{u_{1}^{2}}$ and then transferred to the normal $\widetilde{u_{2}^{2}}$ and transverse $\overline{u_{3}^{3}}$ components via pressure scrambling. The transfer mechanism appears to be quite different for these components; transfer to the normal component is solely
through the "slow" part, and transfer to the transverse component is through the "rapid" part. It is conjectured that some structural mechanism must be responsible for these, though it could not be identified from the analyzed data. However, these results agree quite well with those for the homogeneous shear flow simulation of Rogers et al. (1986). On the other hand, the shear stress results do not agree. Whereas the present results for wakes and mixing layers (not shown) show the velocity-pressure gradient correlation to be mostly in the "rapid" part, the homogeneous shear flow results showed nearly equal distribution between the "slow" and "rapid" parts. Figure 5 shows results of the splittings of the pressure diffusive transport the $\overline{u_{2}^{2}}$ and $\overline{u_{1} u_{2}}$ components, all others being zero. In both cases, "slow" and "rapid" parts are comparable, and are mostly of opposite sign. Hence, they are, in general, larger in magnitude than the sum. Further, the "slow" part appears to represent counter-gradient transport, and the "rapid" part gradient transport, i.e., more like turbulent diffusion.

3. Proposed transport models

It is proposed to model the transport terms in the Reynolds stress equations in three parts, namely, turbulent diffusion, "slow" pressure diffusion, and "rapid" pressure diffusion.

S. 1 Turbulent diffusion model

Turbulent diffusive transport (TDIFF) is modeled following the proposal of Mellor and Herring (1973), (hereafter denoted MH) as:

$$
\begin{equation*}
\operatorname{TDIF} F_{\overline{\bar{u}_{i} \bar{u}_{j}}}=-\left[\overline{u_{i} u_{j}, \bar{u}_{k}}\right]_{, k}=c_{3}\left[\left(k^{3} / \varepsilon\right)\left[\left(\overline{u_{j} u_{k}}\right)_{, i}+\left(\overline{u_{k} u_{i}}\right)_{j}+\left(\overline{u_{i} u_{j}}\right)_{k}\right]\right]_{, k} \tag{4}
\end{equation*}
$$

(",k" represents derivative with respect to x_{k}.) This model is derived from the isotropization of coefficients in the more complex Hanjalic and Launder(1972) diffusion model. It does preserve the symmetry of the indices in the triple-velocity correlation. It was found by Demuren and Sarkar (1993) to yield the correct anisotropy of the Reynolds stress in the wake region of channel flows, and a variant by Mellor and Yamada (1986) is widely used in geophysical flows. The model will also be used to calculate triple-velocity correlations which are required for the modeling of "slow" pressure diffusion in the next section.

9.2 "Slow" pressure diffusion model

The "siow" part of the pressure transport (SPDIFF) is modeled using a non-local elliptic relaxation approach as:

$$
\begin{equation*}
S P D I F F_{\overline{u_{i} u_{j}}}=-\left[\delta_{j k} \overline{p_{s} u_{i}}+\delta_{i k} \overline{p_{s} u_{j}}\right], k=\left[\delta_{j k} f_{i}+\delta_{i k} f_{j}\right]_{, k} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
L^{2} \partial_{2}^{2} f_{i}-f_{i}=-f_{i}^{L} \tag{6}
\end{equation*}
$$

The local source term f^{L} is given by Lumley's (1975a) model as:

$$
\begin{equation*}
f_{i}^{L}={\overline{p_{s} u_{i}}}^{L}=-0.2 \overline{q^{2} u_{i}} \tag{7}
\end{equation*}
$$

Figurt: i. Separation of velocity-pressure gradient correlation into "slow" and "rapid" pats, from DNS data for plane wake, (a) $\overline{u_{1}^{2}},(b) \overline{u_{2}^{2}},(c) \overline{u_{3}^{3}},(\mathrm{~d}) \overline{u_{1} \pi_{2}}$:——. total;…... . "slow";---- . "rapid".

It is assumed that the same length scale which governs the non-locality in the pressure redistribution would also govern the non-locality in the pressure transport. For the $\overline{u_{1} u_{2}}$ and $\overline{u_{2}^{2}}$ equations, respectively, $\overline{q^{2} u_{1}}$ and $\overline{q^{2} u_{2}}$ are obtained from the MH model. This treatment represents a generalization of the previous study by Demuren et al. (1994) in which the $k-\varepsilon$ turbulence model was used.

The principal effect of the non-local model is to "elliptically" spread the influence of the local source over the length scale L. Figures 6 and 7 present comparisons of the pressure diffusion, based on the local model, to DNS data for mixing layer. In each case, two model computations are made; one assumes that the triple-velocity rorrelations are known from DNS, and the other computes them from the MH model. For $\overline{u_{2}^{2}}$, shown in Fig. 6, both computations yield similar results. with peaks that are somewhat higher than in the DNS. Hence, full application of the non-local model

Figure 5. Separation of pressure diffusion into slow and rapid parts: DNS data for plane wake, (a) $\overline{u_{2}^{2}}$, (b) $\overline{u_{1} u_{2}}$. (See Fig. 4 for legend.)
would produce quice good agreement. For $\overline{\bar{H}_{1} \mathbf{v}_{2}}$, shown in Fig. 7, only the first approach, which assumes a pre-knowledge of the triple-velocity correlation, gives results in agreement with DNS. The MH model grossly underpredicts the $\boldsymbol{q}^{2} u_{1}$, and hence its derivative. This appears to be a general flaw of gradient-diffusion uodels for the triple-velocity correlation. They are usually calibrated to reproduce the normal component of the turbulent diffusion in simple shear flows. They fail to reproduce other components, if these are present, as in the 3D boundary layer study of Schwarz and Bradshaw (1994) or the st arless mixing layer study of Briggs et al. (1996). This problem will have to br addressed before a reliable, self-contained model for the pressure diffusion of $\overline{u_{i}} \cdot \overline{2}$ can be produced.

9.. "Rapid" pressure diffusion model

The "rapid" part of the pressure transport (RPDIFF) is modeled in terms of the Reynolds stresses and mean velocity gradients. The simplest such nooiel has the form:

$$
\begin{equation*}
R P D I F F_{\overline{a_{i} u_{j}}}=-\left|\delta_{j k} \overline{p_{r} u_{i}}+\delta_{i k} \overline{\operatorname{Pr}^{\prime} u_{j}}\right|_{, k}=\left\{\delta_{j k} g_{i}+\left.\delta_{i k} g_{j}\right|_{, k}\right. \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{i, k}=c_{r} \overline{u_{i} u_{i}} U_{l, k} \tag{9}
\end{equation*}
$$

Equation (8) is similar in form to the "rapid" part of some pressure-strain models. This is consistent with the suggestion of Lumley (1975b) that the traditional separation of velocity-pressure gradient correlation into a pressure-strain correlation and a pressure transport is not unique. Preliminary tests show that c_{c}, should have a value between 0.1 and 0.3 . It has been suggested that this part should also be modeled with non-local effects, consistent with the modeling of the slow part

Figite 6. Model predictions of pressure diffusion of $\overline{a_{2}^{2}}$ in the plane mixing iayer:- . DNS:- - . mordel with triple correlations fronn DNS: model with triple-correlations from MH.

 A:yes ire Fig. C for legenal
and the pressure-strain correlation, but evidence for such behavior could not :ex discerned from the DNS data. Further testing is desirable.

4. Conclusions

The "slow" and "rapid" parts of the velocity-pressure gradient correlations and the pressure transport have been calculated from DNS databases of plane mixing layers and wakes. These show that, in agreement with homogeneous shear flow simulation, the mechanism for the transfer of energy from the streamwise component of the Reynolds stress to the normal component is via the "slow" part, whereas for the transverse component it is through the "rapid" part. But pressure transport is distributed significantly into both "slow" and "rapid" parts, the former being mostly counter-gradient transport, and the latter closer to gredient transport. Models are proposed for both parts, which show qualitative agreement with DNS data for the normal component of t 'ee Rejnolds stress but have shortcomings when applied to the Reynolds shear stress. i he main flaw is the inability of gradient diffusion models to predict other than the normal component of the triplevelocity correlation for which they have been calibrated. Further development and teating is required.

REFERENCES

Brigg. D. A. Ferziger, J. H., Koseff. J. R.. \& Monismith, S. G. 1996 Entrainment in a sbear-free turbulent mixing layer. J. Fluid afech. 310, 215241.

Demiren. A. O.. Lele. S., \& Derbis. P. 1994 Role of pressure diffusion in non-homogencous shear flows. Proc. CTR Sammer Prog. Center for Turbulence Resparch, NASA Ames/Stanford Univ.
Demiren. A. O.. \& Sarkia, S. 1993 Perspective: Systematic stuc.y of Reynolds stress closure models in compiatations of plane channel flows. J. Fluxd Engr. $115,3-12$.
Dirbis. P. 1991 Vear-x If turbulence closure modeling without damping functions'. Theoret. Compet. Fluid Dynamics. 3, 1-13.
Difrbin, P. 1993 A Reynolds stress model for near-wall turbulence. J. Fluid Mech. 249, 465-498.
Hanjalic. K.. \& Lalnder, B. E. :972 A Reynolds stress model of turbulence and its applications to thin shear flows. J. Flusd Mech. 52, 609.638.
Le, H.. MoIN. P.. \& Kim. J. 1993 Dirert numerical simulation of turbulent flow ovet a backward facing step. Rep. TF-58. Thermosciences Division, Department of Merhanical Enginer, in 0 , Stankord University.
 bulence Models and Their Applicatruns. (Editions Eyrolles, Paris).
LIne.E.Y. J. L. 1975 a Prediction methods for turbulent flows - Introduction. Ler. ture Series 76. von Karman Inst.. Rhodes St. Genese. Belgium.

Li'mley. J. L. 1975b Pressure-strain correlation. Phys. Fluads. 18: 7an.
Mellor. G. L.. \& Herring, H. J. 1973 A survey of meau turbuleat field closure. AIAA J. 11, 590-599.
Mellon. G. L.. \& Yamada. T. 1986 Development of a turbuleuce chosure model for geophysical fluid problems. Rev. Geophys. Spece Phys. 20, 851-875.
Mosfa. R. D., Rogers. M. M.. \& Ewing, D. W. 1996 Self-similarity of timeevolving plane wakes. (Submitted).
Rogers. M. M. \& Moser, R. D. 1994 Direct simulation of a self-similar turbulent mixing layer. Phys. Pluids. 6, 903-923.
Rogens. M. M.. Moin. P.. te Reynolds, W. C. 1986 The structure and modeling of the hydrodynamic and passive scalar fields in honogeneous turbulent shear flow. Rep. TF-25. Thermosciences Division. Department of Mechanical Engineering. Stanford Luiversity.
Scimiarz, Wi. R.. \& Bradsmaw. P. 1994 Term-by-term tests of stress-transport turbukence models in a three-dimensional boundary layer. Phys. Fluids. 6, 986 998.

Spalant. P. R. 1988 Direct simulation of a turbulent boundary layer up to $R_{p}=$ 1410. J. Fluid Mech. 187, 61-98.

NEXT DOCUMENT

Prediction of the backflow and recovery regions in the backward facing step at various Reynolds numbers

By V. Michelassi', P. A. Durbin ${ }^{\mathbf{2}}$ AND N. N. Mansour ${ }^{\mathbf{3}}$

Abstract

A four equation model of turbulence is applied to the numerical simulation of flows with massive separation induced by a sudden expansion. The model constants are a function of the flow parameters. and two different formulations for these functions are tested. The results are compared with experimental data for a high Reynoldsnumber case and with experimental and DNS data for a low Reynolds-number case. The computations prove that the recovery region downstream of the massive separation is properly modeled only for the high Re case. The problems in this case stem from the gradient diffusion hypothesis, which underestimates the turbuleut diffusion.

1. Introduction

The Reynolds Averaged Navier Stokes equations (RANS) equations need a turbulence model for computation of Reynolds stresses that stem from averaging the non linear convective terms. A large family of turbulence models exists in the literature. The models range from simple algebraic expressions for the eddy viscosity to more elaborate formulations which introduce a separate transport equation for each component of the Reynolds Stress tensor. Eddy viscosity models such as the k - ϵ model still represent a good compromise between accuracy and computational efficiency and will be the subject of this investigation. Moreover, the results of a recent workshop (Rodi et el., 1995) showed that, even though full Reynolds stress models oring more physics into the model. the large increment in the computational effort assuciated with these models is not always followed by a proportional improvement in the quality of the predictions.
Two-equation models of turbulence have been recently tuned with the aid of Direct .Numerical Simulation (DNS) data (see e.g. Michelassi and Shih, 1991. Rodi et al. 1993). This tuning was mostly done to allow modeling of the near wall region and to reproduce the profiles of the turbulent kinetic energy, k, and of the dissipation rate c in this critical flow region. The tuning was done by using fully developed or turbulent boundary layer flows (Rodi and Mansour, 1990). Most of the so called "low Reynolds number modifications" ($L R$) to the two-equation models of

```
University of Florence Finergetics Department. Italy
Stanford University
NasA Ames Resmarch Cenle:
```

turbulence were able to improve the model capability in the flow layer close to the wall. Nevertheless. little or mo change at all was found in the core region of the flow since most of the mordifications were designed to vanish away from solid boundaries (Zhu and Shih, 1993).

The $L R$ models, which alkw the integration of the equations in the uear wall region, can successfully model a wide range of flows, but often do not allow flows with strong adverse pressure gradients and/or separation to be computed accurately. This seems to be a general problem assoriated with the tworequation formulation irrespective of the treatment of the near-wall region (Michelassi, 1993). In the backward facing step flow. both an adverse pressure gradient and flow separation are to be modeled. which nuakes this test case particularly challenging.

Durbin (1995) computed the backward facing step flow at different Reynolds numbers. His computations proved that downstream of the reattachment point the computed velocity profiles tead toms skowly to a boundary layer profile for the high Reynolds number case, but not for the low Reynolds number case. A similar failure was encountered by Rodi (1991) with a two-layer model of turbulence. Again. the velocity profiles in the recovery region tend too slowily to a developed profile. Durbin and Rodi use forms of the tworequation $k-\epsilon$ model which, while based on the Boussinesi assumption. have very little in common with the treatment. This indirates that the problems are stemming from the 1 - - frame and not from the wall treatment.

This phenournon is also of great importance in practical flows with engineering rekerance such as the flow in turbomachines. In fact. immediately downstream of the trailing eit, of a turbine or a compressen bladr. two connterrotating :ortices interact with the waine in a very similar manner to that found for the backward facing step. The modeling of the wake downstream of the two vortices is of primary importance in turbomachurery flows because of its impart on the stator-rotor interaction. In this case. the computed wake deray, which is similar to the flow recolery region in the barkward facius step, seems to be tox) skow compared to the measurements as indicated ly a number of computations for subsonic and transonic turlines (Michelassi at al. 1905!. These results were showin to be true regardless of the as umption of a fully turbulent or transitiona' boundary layer along the blade profile. In the turbonarhinery flow rase, it is not clear it the discrepancies are due to the inherentiy unsteady nature of the experimental fow field. or to deficiencies in the model as in the backward fa ing step where the steadiness of the flow is mot an issue.

Although the recovery rigion problem with computing the backstep has been often pointed out, very little has been done so far to identify the rauses of the slow recon ty downstrean of the reattachucnt point. Two equation models are known to have theoretical limitations which stem mainly from the eddy viscosity assumption. Still the ability of these simple turbulene models to mimir a flow with massive separation and the wake deray needs to be improved.

With this in mind three different backward facing step data sets are used to compare with the computations and to identify the reams for the discrepancies
betworn computations and measurements in the recovery region.

2. The turbulente model

The tubutiz :oriel uses the standard $k-\varepsilon$ equations:

$$
\begin{gather*}
\partial_{t} k+\left[\cdot \nabla k=P_{k}-\varepsilon+\left[\left(\nu+\frac{\nu_{t}}{\sigma_{k}}\right) \nabla k\right] .\right. \tag{1}\\
\partial_{1} \varepsilon+\varepsilon \cdot \nabla \varepsilon=\frac{C_{i 1} P_{k}-C_{22} \varepsilon}{T}+\left[\left(\nu+\frac{\nu_{t}}{\sigma_{t}}\right) \nabla \varepsilon\right] . \tag{2}
\end{gather*}
$$

The model constant C_{11} is computed as:

$$
\begin{equation*}
C_{a}=1.3+\frac{0.25}{\left(1+(d / 2 L)^{2}\right)^{4}} \tag{3}
\end{equation*}
$$

in which d is the minimum distance from the wall, and L is the furbulence Iength scale. On no-slip boundaries. $y \rightarrow 0$.

$$
k=0, \epsilon \rightarrow 2 \nu \frac{k}{y^{2}}
$$

Two additional equations are solved. The first transport equation determines the velocity Huctuation normal to the wall. $\overline{r^{2}}$. The $\overline{r^{2}}$ transport equation is

$$
\begin{equation*}
\partial_{t^{r^{2}}}+l^{\cdot} \cdot \Gamma \overline{r^{2}}=k f-\overline{r^{2}} \frac{\varepsilon}{k}+\nabla \cdot\left[\left(v+v_{f}\right) \nabla \overline{r^{2}}\right] \tag{4}
\end{equation*}
$$

Where $k f$ represnats redistribution of turbulence energy from the stramwise component. Non-locality is represented by solving an edliptic relaxation equation for $f:$

$$
\begin{equation*}
L^{2} \nabla^{2} f-f=\frac{C_{1}-1}{T}\left[\frac{\overline{r^{2}}}{k}-\frac{2}{3}\right]-C_{2} \frac{P_{k}}{k} \tag{5}
\end{equation*}
$$

in which

$$
\begin{equation*}
T=\max \left[\frac{k}{E} \cdot 6\left(\frac{v}{z}\right)^{1 / 2}\right] \cdot L=C_{L} \max \left[\frac{k^{3 / 2}}{\varepsilon}, C_{7}\left(\frac{v^{3}}{\xi}\right)^{1 / 4}\right] \tag{6}
\end{equation*}
$$

The Bonssinesq approximation is used for the stress-strain relation:

$$
a_{i j}=\frac{\overline{u_{1} i_{j}}}{k}-\frac{2}{3} \delta_{i j}=-\frac{v_{t}}{k} S_{i j}
$$

where the eddy viseroity is given by

$$
m_{1}=C_{\mu} \overline{r^{2}} T
$$

The constants of the model are:

$$
\begin{gather*}
\hat{C}_{\mu}=0.19, \sigma_{k}=1, \sigma_{\ell}=1.3, C_{1}=1.55, C_{L 2}=1.9 \\
C_{1}=1.4, C_{2}=0.3, C_{L}=0.3, C_{\eta}=70 \tag{7}
\end{gather*}
$$

The boundary conditions are

$$
\overline{v^{2}}=0 . f(0) \rightarrow-\frac{20 v^{2} \overline{v^{2}}}{\varepsilon(0) y^{4}}
$$

on no-slip walls.
The original model formulation was modified by Durbin and Laurence (1996) in the expressions for the length and time scales, L and T, and the definition of the model constant $C_{i 1}$. The length and time scales are now computed to allow a smoother switch from the core flow values to the near-wall values as follows:

$$
\begin{equation*}
L^{2}=C_{p}^{2}\left(k^{3} / \epsilon^{2}+C_{p}^{2} \nu^{3 / 2} / \epsilon^{1 / 2}\right) \cdot T^{2}=k^{2} / \epsilon^{2}+C_{T}^{2} \nu / \epsilon \tag{8}
\end{equation*}
$$

The selected values of the constants are $C_{7}=0.2 . C_{7}=70$, and $C_{T}=6$.
In Eq. (3) the scaling of C_{41} in the near wall region is done by using the wall distance y. The definition of the wall distance can be problematic in complex flows so that Durbin and Laurence (196r) replaced Eq. (3) with another expression based on $\overline{r^{2}}$ which is suited to feel the proximity of the wall:

$$
\begin{equation*}
C_{11}=1.44\left(1+1 / 30\left(k \cdot \overline{v^{2}}\right)^{1 / 2}\right) \tag{9}
\end{equation*}
$$

This expression, like the one in Eq. (3), is supposed to increase the production of dissipation in the near wall region, where $\overline{r^{2}}$ goes to zero faster than k. Both the original formulation, hereafter referred as form (1) of the model, and the modified formulation, hereafter referred as form (2), have been applied with the same inlet and boundary conditions.

3. The data sets and the computations

The turbulence model with the two different forms described in the previous section was applied to the romputation of three different backward-facing step geometries and different Reynolds numbers.

The first experimental data set considered here is that of Driver and Seegmiller (DS) (1985) which allowed testing the model in a high Reynolds-number configuration with a Reynolds number based on the step height of 37.500 . Measurements were takea by using laser velocinetry and include mean and instantancous quantities and triple correlations.

The low Reynolds-number case refers to the measurements by Kasagi and Matsunara ($K M$) (1995). In this case the flow Reynolds number, based again on the

Figime 1. DS Vincity profiles. oexperiments. ——medel version ill. - - murlel version (?)
step height. is 5.540 . Neasurements were taken by using a particle image velocimetry method ! PIV; which athowed measuring instantaneous and average quantities. The measured profiles were also carefully tested to verify mass conservation. A similar Reytolds mmber ($R \mathrm{R}=\mathbf{5 1 0 0}$) was achieved by Le and Moin (L.M) (1994) which prothed a DNS data set for the backward facing step geometry. The large anmont of information on the flow field makes this DNS data wet very valuable for testing and developing tworquation models of turbulence.

The investigation is carried out on three different data sets to test the mokel under different Reymolds mumber conditions. At the present stage of researeh it is still impowible to prom the DNS of a backward facing step at high Recuold. number. on the the of an experimental data set was compulsory. The two data sets for the low Reynolds number case were selected to verify that model testing done be neing at danical exprimental data set cond be extended to the DNS data for surh a flow firld.

The computational gr for the three test cases have 120×120 grid nodo chas tered abar whid wall- inlet section profiles have been carefully sperified as follown. For the $D S$ cave the inlet protiles have been romputed by a bendary layer conde matil the momentum thickness of 5000 was reached (Durbin. 1995). These pro-file- were then impored at the inlet section of the computational domain. For the K iI case the inlet profiles were those of a fully developed chanmel flow. as indicated
 the reparation point. For the test case proposed by Le and Moin. the inlet profiles Wree those computed by the DNS at the section upstrean of the sepatation point con :e, ..) uding to the inlet section of the present computational grid. No other grids - cte nod fon the calculations sine the 120×120 grid was already fomd aderuate for thi kind of computation by Durbin (1995).
 protile with these emmputal by wing the two versions of the atedel. In all the

Figile 2. DS Turbulent kinetic energy profiles. Symbols as in Fig. 1.

Figure 3. DS Turbulent shear stress profiles. Symbols as in Fig. 1.
following plots the ordinate $y=1$ corresponds to the step corner. The reattachment point is not affected by the change in the model. but the different functions adopted for the computation of the length scale L, the time scale T. and the coefficient of the production rate of dissipation C_{11} show some effect in the backfow region. Here version (2) of the model moves the computed profiles closer to experiments. A sensitivity analysis made by changing the coefficients in Eqs. $(8,9)$ proved that the model is sensitive to the value of C_{p}, which was set equal to 0.2 . The model can be seen to predict velocity profiles which are stecper than the measured ones in the backflow region. Moreover. in the recovery region the computations lag behind the experimental boundary layer profile. The agreement is indeed quite good in terms of turbulent kinetic energy (see Fig. 2) and turbulent shear stress (see Fig. 3). Apparently, the models succeed in reproducing the correct level of turbulent kinetic energy and shear stress with the only exception of a narrow region deep inside of the backflow, where the maximum of turbulent kinetic energy and turbulent shear stress are not correctly prodictei and somewhat misplaced.

Figure 4. $K M$ Velocity profiles. ---- experiments, - model version (1). ——— model version (2).

Figure 5. LM Velocity profiles. Symbols as in Fig. 4.
When moving to the $K M$ and $L M$ test cases, a more careful analysis is possible due to the large number of measurements. Figure 4 compares the measured and computed velocity profiles in several stations starting from the separation point for the $K M$ test case. The agreement is again quite good, and apparently the two versions of the model give almost identical results in this case. The recovery region is well predicted here. Again, the backflow region shows the steep velocity profiles predicted in the high Reynolds number case, while the experiments show a profile which seems to indicate quite a low turbulence level. Figure 5 shows the same velocity profiles for the $L M$ test case. In this last computation the recirculation bubble length was underestimated by approximately 4%. The backflow region length was computed in almost perfect agreement with the experiments for the $K M$ case. The plots also show that the differences in the computation of the length and time scales in the two versions of the code bring very little change to the computed profiles, which are almost collapsing on each other, in the low Re case.

Figure 6. LM Turbulent kinctic energy profiles. Symbols as in Fig. 4.

Figere 7. L.M Turbulent shear stress profiles. Symbols as in Fig. 4.
Figures 4 and 5 show that there is very little difference between the $L M$ and $K M$ data sets. Since the information given by the $K M$ and $L M$ cases do not show significant differences, only the later will be described in detail in what follows.

Figure 6 compares the measured and computed turbulent kinctic energy profiles at several stations stating from the separation point. The agreement between computations is generally satisfactory, even though the models overpredict the turbulent kinetic energy in the backfow region. Of the two, version (2) of the model seems to reduce the overprediction. This was also found in the high Reynolds number case. This overprediction spreads in the shear layer as the flow proceeds downstream.

The overprediction of k seems to !ave an effect in terms of turbulent shear stress also, as shown in Fig. 7. Here the turbulent shear stress is overestimated by both the formulations in the backflow region and underestimated in the recovery region. The change from overestimation to underestimation takes place gradually across the reattachment point and the fit between DNS and cotuphtations improves only far downstream.

Figare 8. L.M Dissipation rate profiles. Symbols as in Fig. 4.
The L. M data set aloo includes the dissipation rate. Figure S shows that the computed dissipation rate level is larger than that given by the D.NS in the backflow region. The e levels are well predicted in the recovery region.

The skin friction coefficients in Figs. 9 and 10 show that version (2) of the moded tends to recluce the recirculation bubble length in the low-Re number case (a similar trend was also fome for the $K M$ test). whereas the same model seems to increase the backtow region length in the high- R e case. In the $N M$ case, atso, a reduction of the recirculation bubble length was observed.

4. Discussion and conclusions

The brief deseription of the computations done in the precions section evidences how the compmed overall flow pattern agrees with the high-Re and how-Re cases. although some diserepancies between the computations and the measurements (and DNS a arine in :ems of turbulence quantities.

In the recovery region, as already pointed out by several authers. (e.g. Durbin. 1095). the :omputations recover to a bomdary layer poffe much more slowly than experiments would indicate at high Reynolds numbers. This disagreement fades away for smaller Reynolds numbers. as those typieal of the DNS. In the backHow region the romputed profiles seem too sterp. which would indicate too large a turbulence level.
Version (2) of the model was found to work slightly better than the original wrion: of the nodel in the lackflow region. This can be attributed to the different choice of the length scale formula. In version (1) the model chooses betwern two different walus of the length se:le, whereas in version (2) the expression for the length seale allows a smooth switch from the two values. Observe that the same sumoth switch in guarantered for the computation of the time scale. This serms to play a significant mole in the iaprovement of the results where. due to the shatl becal Reymeldemmber the expressions for the Inget and time scate are switching between the two walues. In the recovery region the local Reynolden momber is larger
and the beneficial effect; of the smooth transition between the two values of the time and length scale formuias disappear.

In terms of turbulent shear stress, the backflow region again shows some slight inaccuracies for both the high-Re and low-Re cases. This fits with the shape of the computed velocity profile, which indicates that the mean velocity gradient and the turbulence levels are too high. From the DNS data set it is possible to compute a turbulent viscosity μ_{t} via the definition of the turbulent shear stress given in the Boussinesq assumption. This sort of computation does not guarantee that the turbulent vis osity is positive, since there is no guaranter that the mean shear and the turbulent shear stress always have opposite sign: in fart Fig. 11 shows that turbulent viscosity compu: " from the turbulent shear stress ay DNS gives negative values.

The turbulent viscosity is small deep inside the bact 'iow region and grows toward the reattachment point. The two versions of the model are found to overestimate the turbulent viscosity in the backflow region. There is very little difference between the computations all through the computational domain. Observe that a latge turbulent viscosity would imply a large momentum diffusion. which should decrease the recirculation bubble length. Surprisingly. this is not the case in the computations: the overestimation in $\mu_{\text {t }}$ is followed by an excellent agreement between the computed and measured reattachment point. The figure also shows that the disagreement between the computations and the DNS fades away downstream of the reattachment point. But the same figure also shows that in the recevery region the turbulent viscosity is underestimated. The smallor momentum diffusion in the computation could partially explain why the computed velocity profiles tend to the boundary layer profiles too slowly. The discrepancies between DNS and computations are mainly in the backflow region and the shear layer, since above the latter the romputations seem to follow the DNS profiles quite well.

The DNS data set also contains all the terms of the transport equation for the turbulent kinetic energy. With these data it was possible to evaluate the accuracy of each term of the modeled transport equation for k. \& fuli comparison of all the terms (i.f. convection $=C_{h}$. vascous diffusic $=V^{\prime} d$, turbulent diffusion $=T d$, pressure diffusion $=1$ 'd , production $=P_{k}$, and dissipation- c) showed that the viscous diffusion $l^{\prime} d$ has nearly no effect. The computed convection of k, C_{k}, is in very good agrement with both the measurements by $K M$ and the DNS by $L M$. The dissipation rate, although not in perfect agrecment with the data in the backflow region. closely resemble; the DNS profiles in the shear layer. So, the terms which need a further check. and that are not often compared with the experiments for moder based on the eddy viscosit: are the production rate P_{k} and both the turbulent a . pressure diffusion terms $T d$ and $P d$ respectively.

Figure 12 compares the DNS production rate versus the profiles obtained by using the two different wersions of the molel. The agreement between computations and the DNS profiles is good. Observe that the peak in the production rate, which is probably cansed by the very high mean shear downstrean of the separation point. is well captured. The production rate is somewhat ovepredicted in the backflow

Figere 12. LM Productic . atr profiles. ---- experiments. - modei version (1). - - model versizin (2).

Ficinf 13. L.If $T d+P d$ profiles. Symbols as in Fig. 12
region. but this overprediction seems to fade away as the reattachment point is reached. The same agreement was found in the high-Re case.

Before comparing the turbuient and pressure diffusion terms, one should recall that the gradient diffusion hypothesis. done in the $k-\&$ model, does not distinguish between $P d$ and $T d$. which are just lumped together. Still. it is possible to compare the sum of $T d$ and $P d$ fron: the DNS calculations with the computed turbulent diffusion of turbulent kinetic energy, which should be the sum of the two. Observe that the comparison is done for the diffusive terms (second order derivative of k for the k - $є$ model and first order derivative of $T d$ and $P d$ for the DNS data). Figure 13 compares the computed diffusion of k with the sum of the turbulent diffusion and pressure diffusion from the DNS. The agreement between computations and DNS is quite good. The up-down shape of the profile from the DNS is rlosely reproduced by the calculations. The agreement remains good in the entire computational domain and does not detcriorate when making the same comparison for the $\boldsymbol{K} \mathbf{M}$ data set.

Figicre 14. DS Td profiles. Symbols as in Fig. 12.

When making the same comparison by using the DS data base at a higher Reymolds number, wome problems arise due to the scatter of the measured data. Figure 14 compares the turbulent diffusion of turbulent kinetic energy for the DS rase. Although there are not as many data as 7 the DNS case, the figure clearly suggests that the turbulent diffusion is largely underestimated in the shear layer from the separation point till far downstream. The underestimation is quite severe and clearly limited to the flow region where the mean shear is bigh. However. the experimental data are probably not accurate enough to differentate, as in Fig. 14.

Figures 10 and 14 indicate that as long as the Reynolds number is small, the gradient diffusion hypothesis gives the correct estimate of the turbulent plus the pressure diffusion eqperially in the high shear layer. The two figures also show that the same clevure hypothesis fails when the Reynolds number is large. Apparently at large R_{r} there is a large scatter of turbulence time and length scales. This scatter is probably not modeled when using a linear eddy viscosity model. The scat er is reluced at smaller Reynolds number, and the turbulence mode! then agrees nuch Futter with the experiments and DNS.

In conclusion, the computations show that the slow recovery downstream of the reattachment point oceurs only in high Reynolds number flows and is probably cansed by the gradient diffusion hypothesis, which is not able to model the large imrbulent diffusion typical of the high shear layer. In the backflow region the com putations and the comparison with the experiments and the DNS do not allow identification of my sperific deficieney of the model. Still, the plots indirate that in the barkflow region the models predirt too high a tarbulence level and toon much velocity gradient. which are interrelated deficiencies.

Acknowledgements

The first anthor wombl like to express his gratitude to CTR, and the Energetios Department of the Cuiversity of Genova. Italy, for their financial suppott.

REFERENCES

Driver. D.. \& Seegmiller. H. L. 1985 Features of Reattaching Turbulent Shear Layer in Divergent Channel Flow. A/AA J. 23, 162-171.
Dirbin. P. A. 1995 Separated flow computations with the $k-E-\overline{r^{2}}$ model. AIAA J. 33, 659-664.

Dcrain, P. A. \& Laírence, D. 1996 Non-local effects in single point closure. Advances in Turbulence Reseerch, Seoul, Korea, May 17. 1996. 109-120.

Kasagi. N.. \& Matstinaga, A. 1995 Three-dimensional particle-tracking velocimetry measurements of turbulence statistics and energy budget in a backwardfacing step flow. Int. J. Heat and Fluad Flow. 16, 477-485
Le. H.. \& Moin. P. 1994 Direct numerical simulation of turbulent flow over a backward facing step. Report TF-58, Thermosciences Division. Department of Mechanical Engineering, Stanford University.
Michelassi. V. 1993 Adverse pressure gradient flow computation by two-equation turbulence models. Engincering Turbuleace Madeling end Experiments. 2, W. Rodi \& F. Marteili (ed.) 123-132.
Michelassi, V.. Rodi. W., \& Giess, P.-A. 1997 Experimental and numerical investigation of boundary-layer and wake development in a transonic turbine cascade. IGTI Conference, Orlando, FL.
Michelassi. V.. \& Shih. T. H. 1991 Low Reynolds Number Two-Equation Modcling of Turbulen: Flows. NASA TM-104968.
Michelassi. V.. Thfodoridis, G., \& Papanicolaol. E. 1995 A Comparison of Time Marching and Pressure Correction Algorithms for Transonic Turbine blades. ASME AD. 49, 115-126.
RGDI. W. 1991 Experience with two-layer models combining the $k-\epsilon$ model with a one-equation model near the wall. AIAA-91-0216.
Rodi. W.. Bonnin, J.-C.. \& Buchal, T. (Ed.) 1995 Proceedings of the ERCOFTAC Workshop on data bases and testing of calculation methods for turbulent flows University of Karlsruhe, Germany.
Rodi, W.. \& Mansota, N. N. 1990 Low Reynolds number $k-\epsilon$ modeling with the aid of direct simulation data. Proceedings of the Summer Progrem. Center for Turbulence Research. NASA Ames/Stanford Univ. 85-106.
Rodi. W., Mansour, N. N., \& Michelassi, V. 1993 One-equation near-wall modelling with the aid of direct simulation data. ASME Journal of Fluids Engineering. 115, 196-295.
Zht, J.. \& Shiн, T. H. 1993 Calculations of Turbulent Separated Flows. NASA TM-106154.

NEXT DOCUMENT

A-priori testing of sub-grid models for chemically reacting nonpremixed turbulent shear flows

By J. Jiménez ${ }^{1}$, A. Liñáńn ${ }^{\mathbf{2}}$, M. M. Rogers ${ }^{\mathbf{3}}$ and F. J. Higuera ${ }^{\mathbf{2}}$

The 3 -assumed-pdf approximation of (Cook \& Riley 1994) is tested as a subgrid model for the LES computation of nonpremixed turbulent reacting flows, in the limit of cold infinitely fast chemistry, for two plane turbulent mixing layers with different degrees of intermittency. Excellent results are obtained for the computation of integrals properties such as product mass fraction, and the model is applied to other quantities such as powers of the temperature and the pdf of the scalar itself. Even in these cases the errors are small enough to be useful in practical applications. The analysis is extended to slightly out of equilibrium problems such as the generation of radicals, and formulated in terms of the pdf of the scalar gradients. It is shown that the conditional gradient distribution is universal in a wide range of cases whose limits are established. Within those limits, engineering approximations to the radical concentration are also possible. It is argued that the experiments in this paper are essentially in the limit of infinite Reynolds number.

1. Introduction

The computation of turbulent reacting flows is an open challenge even after having bee, the focus of intensive work for several decades. The subject of the present note, nonpremixed flames with fast chemistry, was one of the first to be tackled, and it is somewhat simpler than others, but it still represents a large number of cases of theoretical and practical importance. Recent reviews can be found in (Bilger 1989, Libby \& Williams 1994).

Our analysis is subject to several simplifications. The diffusion coefficients of all the species and of heat are assumed to be identical, $\kappa_{i}=\kappa$ and, although not explicitly needed for most of the theoretical arguments, all of our numerical experiments are done at Schmidt number $S c=0.7$. Our flows are incompressible, and we assume that any heat released by the reaction is weak enough for the fluid density to be unchanged, $\rho=1$. The role of the chemistry is thus passive with respect to the flow, although it is modified by it.

In most cases we assume an irreversible binary reaction

$$
\begin{equation*}
\nu_{4} A+\nu_{B} B \rightarrow \nu_{P} P \tag{1}
\end{equation*}
$$

in a shear flow between two streams, each of which initially contains either pure A or B reactant.

[^2]Under those circumstances the mass fractions Y; of the different species can be linearly combined to form a set of conserved scalars which are transported by the flow with the common diffusion coefficient κ. If in addition the Damköhler number, which measures the ratio of the characteristic diffusion and chemical times, is large enough, the reaction occurs in a thin flame that can be treated as a surface, and the problem reduces to the mixing of a single conserved scalar

$$
\begin{equation*}
\xi=\frac{Y_{A 0}-Y_{A}+r Y_{B}}{Y_{A 0}+r Y_{B 0}} \tag{2}
\end{equation*}
$$

called the mixture fraction. which takes values $\xi=0$ and $\xi=1$ at the free streams (see Williams 1985). Here $Y_{t 0}$ is the mass fraction of the i-th species at the appropriate free stream, and

$$
\begin{equation*}
r=\nu_{A} W_{A} / \nu_{B} W_{B} \tag{3}
\end{equation*}
$$

where ν_{1} and W_{1} are stoichiometric coefficients and molecular weights. The flame is located at the stoichiometric mixture fraction

$$
\begin{equation*}
\xi_{0}=\frac{Y_{A 0}}{Y_{A 0}+r Y_{B 0}} \tag{4}
\end{equation*}
$$

and most quantities of interest can be computed as algebraic functions of ℓ, which are continuous but have discontinuous derivatives ξ_{0}. Thus the mass fraction of the product Y_{P} is proportional to the triangular function

$$
\begin{equation*}
f(\xi)=\xi / \xi, \quad \text { if } \xi \leq \xi_{0}, \quad(1-\xi) /\left(1-\xi_{0}\right) \text { otherwise. } \tag{5}
\end{equation*}
$$

In modeling turbulent flows we can usually estimate averaged or locally filtered values of ξ, and we would like to have similarly filtered values of mass fractions or other quantities, but we are prevented from doing so by the nonlinear nature of (5).

It was realized soon that what is needed is an approximation to the probability density function (pdf) of ε. and that the mean value of any quantity which can be expressed as a function of ξ is (Lin \& O'Brien 1974. Bilger 1976)

$$
\begin{equation*}
\langle f\rangle=\int f(\xi) p(\xi) \mathrm{d} \xi \tag{6}
\end{equation*}
$$

where $p(\xi)$ is the pdf. Numerous experimental (LaRue \& Libby 1974, Anselmet \& Antonia 1978, Breidenthal 1981. Mungal \& Dimotakis 1984, Koochesfahani \& Dimotakis 1986), theoretical or numerical (Eswaran \& Pope 1988. Pumir 1994, Holzer \& Siggia 1994), and modeling (Kollman \& Janicka 1982, Broadwell \& Breidenthal 1982) efforts have been undertaken to understand the properties of the pdf of passively mixed scalars.
Of particular interest in this report is the β 3-pdf model of (Cook \& Riley 1994), in which the form of the scalar pdf is modeled as a function of its mean value and standard deviation and, especially. its use as a sub-grid model for large eddy simulations (LES). Large eddy simulation has proven to be a powerful technique for
the computation of complex flows and good results have been obtained in the computation of filtered scalar mean values (Lesicur \& Rogallo 1989. Moin et al. 1991). We will show below that the subgrid fluctuation intensity can also be estimated with good accuracy. In this report we will assume that exact filtered mean scalar values can be computed by some LES scheme. but we will obtain them by filtering direct numerical simulation fields. The β-pdf model has been tested in this way for isotropic turbuient flow at relatively low Reynolds numbers in (Cook \& Riley 1994. Révellon $\$$ Vervisch 1996). We will test it here in the more realistic case of a mixing layer at medium Reynolds numbers (Rogers \& Moser 1994).
At issue is the question of large-scale turbulent intermittency. which is the presence of essentially laminar pockets in an otherwise turbulent flow, and whether the same subgrid mixing model can be used in homogeneous turbulence and in the presumed interface between turbulent and laminar regions. A lot of effort has gone into modeling surh intermittency effects (Libby 1975, Dopazo 1977. Kollman 1984. Pope 1985. Pope \& Correa 1988) but. if it is really a large scale effect. LES should be able to resolve it without resorting to modeling. The main difference between homogeneous flows and the mixing layer is that. while large-scale intermittency is rare in the former. it is prevalent in the latter.
The simulation experiments are described in the next section. The results of applying the 3 -pdf model to the prediction of different quantitics in infinitely fast chemistry are presented in $\S 3$. We then extend the model to finite rate chemistry in the flamele: limit, and introduce some results on the joint pdf of the scalar and the scalar gradients. followed by discussion and conclusions.

2. Numerical experiments

The two flow fields used in this report are taken from the simulations in (Rogers \& Moser 1994), where they are described in detail. Briefly, they are direct simulations of three-dimensional, temporally growing mixing layers, spatially periodic in the streamwise and spanwise directions, with initial conditions which represent turbulent boundary layers. The flow fields chosen are those in Figs. 18.a and 18.c of that paper, at which time the momentum thickness, θ, of the layers has grown by factors of 2.47 and 2.94 respectively from the initial conditions, and the streamwise integral scale has increased by a factor of about four. The energy spectra have a short power-law range with an exponent close to $-5 / 3$, and the layers are growing self-similarly. Both layers appear to be slightly beyond the "mixing transition" identified in (Konrad 1976, Breidenthal 1981). The Reynolds numbers based on the instantaneons momentum thickness are 1980 and 2350. and correspond to longitudinal mirroscale Reynolds numbers $R \epsilon_{\lambda}=127$ and 214 at the central plane of the layer. Xote that both flows are quite intermittent, especially the second one, and that these values would probably change if they were conditioned only to the turbulent fuid. The ratio between vorticity and momentum thickness is about 4.85 in looth cases.
The computational boxes arc. in both cases. 125×31.25 initial momentum thickness and contain five or six large spanwise structures at the times rhosen for our

Figure 1. Scalar intermittency across the two mixing layers used in the text, defined as the fraction of fluid for which $\xi \in(0.02,0.98)$. --_ : unforced case. ---- : forced.
experiments. A passive scalar is introduced at the initial condition with a laminar profile of thickness similar to that of the vorticity layer and a range $\xi \in(0,1)$. Although the original simulations were spectral, using a mesh that was neither uniform nor isotropic, they were spectrally interpolated to physical variables on a uniform isotropic mesh for the purpose of our experiments. This implies some reduction in the resolution, which is dictated by the least resolved direction. Thus while the original computations were carried using $5!2 \times 180 \times 128$ and $384 \times 96 \times 96$ spectral modes, the interpolated fields contain $512 \times 128 \times 128$ and $384 \times 120 \times 128$ points. The pitch of the interpolated grids is $\Delta x / \theta \approx 0.1$ in both cases, although the original grids are finer by about a factor of two, especially at the central plane and in the trar. verse, y, direction. All lengths in this report are normalized with the instantaneous momentum thickness of the layers. In terms of the Kolmogorov scale at the certer of ihe iayer, $\theta / \eta=67$ and 72 respectively, and the resolution of our interpolatel grid is about 7η in both cases.

It was found in (Rogers \& Moser 1994) that the structure of the layer depends during the whole simulation on the initial conditions, corresponding to similar long term effects during the initial development of experimental layers. Different amounts of initial perturbations were introduced in the simulations to mimic this effect. Our two flow fields correspond to two extreme cases in the amount of two-dimensional perturbations applied to the initial conditions. In the first one, which will be referred from now on as the "unforced" case, the initial conditions were synthesized from two turbulent boundary layers without modification. At the time of our experiment, both the vorticity and the scalar field are fairly disorganised with weak spanwise coherent structures, end there is very little fresh fluid at the center of the layer. In contrast. the second case was initialized by amplifying the spanwisecoherent modes of the initial boundary layers by a factor of 20 , and the resulting
two-dimensional forcing gives rise to clear spanwise rollers with fresh fluid from one or the other stream present across the layer. This is clear in Fig. 1. which presents the fraction of mixed thud in both cases, arbitrarily defined as $\xi \in(0.02,0.98)$. Not only is the mixed fraction higher in the unforced case, but the presence of a few larger structures in the forced one results in insufficient statistics which are not symmetric with respect to the central plare. The statistics for the unforced case are symmetric.

Of the two cases. the forced one is the hardest to compute because of the larger intermittency. Most of the results given below are for this case. The corresponding ones for the unforced case are at least as good, and usually better.

We will generally compare mean quantities, denoted by $\langle\cdot\rangle$, which are averaged over whole $x-z$ planes. Occasionally the averages will be extended to slabs of the mixing layer, in which case the limits of the transverse coordinate y will be given explicitly. In our simulations of LES we define our basic filtering operation as a box filter in physical space. Quantities are averaged over a cubical box of contiguous grid points of side $h=n \Delta r$. and assigned to the center of the box. This operation will be denoted by an overbar. Other filtering kernels have been used by other investigators, and it is not clear which is the best choice to mimic the projection operation implicit in a discrete grid, but our choice secms natural for finite differences or finite volumes codes, and has the advantage of providing a simple definition for subgrid statistics.

Equation (6) extends trivially to filtered quantities, but the pdf has then to be taken to refer only to the interior of the filter box. Thus for a filter of width h we can define a subgrid mean

$$
\begin{equation*}
\bar{\xi}(x)=h^{-3} \int_{h^{3}} \xi\left(x-x^{\prime}\right) d^{3} x^{\prime}=\int \xi p_{h}(\xi ; x) d \xi \tag{7}
\end{equation*}
$$

and a variance as

$$
\begin{equation*}
\xi_{h}^{\prime 2}=\overline{\xi^{2}}-\bar{\xi}^{2} \tag{8}
\end{equation*}
$$

All quantities are functions of y and, in addition, filtered quantities are also functions of the homogeneous coordinates r and z. To increase the number of data points available for the statistics. filtered quantities are computed at all grid points, even if they are only strictly independent over a coarser grid of pitch h. Plane averages are then romputed for these filtered quantities and used to generate filtered profiles. which satisf:

$$
\begin{equation*}
\langle\bar{f}\rangle=h^{-1} \int_{-h / 2}^{h / 2}\langle f\rangle \mathrm{d} y=\overline{(f\rangle} \tag{9}
\end{equation*}
$$

Note that we can combine (6) and (9) to generate a "filtered" pdf for ξ,

$$
\begin{equation*}
\bar{p}(\xi, y)=h^{-1} \int_{h / 2}^{h / 2} p\left(\xi, y-y^{\prime}\right) d y^{\prime} . \tag{10}
\end{equation*}
$$

Ficiure 2. Mixture fraction pdfs from LES without subgrid modeling. Forced layer. (a) $y / G=0$. (b) $y / \theta=3$. - no filter. $-\ldots: h / \theta=0.44 .-$ - $: 0.66$. -.-- : 0.88. Vertical arrows mark the mean value of ξ for each plane.
such that (6) generalizes to

$$
\begin{equation*}
\overline{\langle f\rangle}=\int f(\xi) \bar{p}(\xi) \mathrm{d} \xi \tag{11}
\end{equation*}
$$

The error of any approximation to the mean profiles depends on our success in approximating \bar{p} from our local models for p_{A}. In most of our experiments the filter width will be small enough with respect to the width of the layer that we will be able to neglect the difference between laterally filtered and unfilte.ed pdfs.

3. Fast chemistry

9.1 No subgrid model

It should be clear from the discussion in the last section that the aim of any approximation should be to reproduce $\bar{p}(\xi)$ as closely as possible. In RANS computations, all the available information is the mean value of the mixture fraction over a plane and perhaps some of its statistical moments. Unless some model is applied for the form of the pdf, the implied representation is a delta function $\bar{p}=\delta(\xi-\langle\xi\rangle)$. and is known to be poor.

In LES we have some hope of avoiding subgrid modeling. since the grid elements are small parts of the flow in which the fluid may be assumed to be mixed and well represented by its mean. Large intermittent unmixed regions are hopefully contained in individual grid elements. In this approximation

$$
\begin{equation*}
p_{h}(\xi)=\delta(\xi-\bar{\xi}), \quad \overline{f(\xi)}=f(\bar{\xi}) . \tag{12}
\end{equation*}
$$

In practice the filtered grid values are treated like real points and used to compile statistics.

Figure 3. (a) Sketch of the two filters for the estimation of the subgrid variance. (b) Joint pdf of the band-passed mixture fracion fluctuation L and its true subgrid value ξ_{k}^{\prime}. The dashed line is (15) with spectral slope $-5 / 3$. Isolines are logarithmically spaced by half an order of magnitude. Forced layer. $y / \theta=(-2,2)$.

The approximation (12) is tested directly in Fig. 2 for the pdfs of the mixture fraction in two planes of the forced mixing layer. Each figure contains the pdfs resulting from several different filters, compared to the real one. The widths of the filters are of the order of the momentum thickness ($30-50$ Kolmogorov lengths). and correspond to grids of $\mathbf{1 0 - 2 0}$ points across the layer (Fig. 1). Even with these relatively coarse grids it is interesting that the approximation of the pdf is already a large improvement over the delta function of the global mean, and that the general shape of the pdf is recovered. Product mass fraction profiles obtained from using these pdfs in (11) have errors of the order of 20%.

Nevertheless there are clear differences between the true and the approximate pdfs. A sizable percentage of the pure flicid that should be associated to the delta functions at $\xi=0$ and $\xi=1$ has been aliased as mixed fluid into the central peak. This is especially evident deep into the layer (Fig. 2.a) where the unmixed regions are presumably of small size and are almost completely obliterated by the filter.

9.2 The Beta subgrid model

To improve the approximation in the previous section it was noted in (Cook \& Riley 1994) that, if the subgrid variance (8) were known at each grid point, it should be possible to make a reasonable guess as to the form of the subgrid pdf, $p_{A}\left(\xi ; \bar{\xi}, \xi_{h}^{\prime}\right)$, and to obtain a better estimate of the true pdf in terms of the joint pdf of those two subgrid variables

$$
\begin{equation*}
\bar{p}(\xi)=\int p\left(\bar{\xi}, \xi_{h}^{\prime}\right) p_{h}\left(\xi ; \bar{\xi}, \xi_{h}^{\prime}\right) \mathrm{d} \bar{\xi} \mathrm{~d} \xi_{h}^{\prime} \tag{13}
\end{equation*}
$$

In the particular model proposed in that paper, the subgrid pdf is represented as a Beta distribution, $p_{h} \sim \xi^{a-1}(1-\xi)^{b-1}$, and the two exponents a and \dot{b} are computed at each point from the values of $\bar{\xi}$ and ξ_{h}^{\prime}.

Figere 4. (a) Proportionality constant between band passed and subgrid fluctuations, versus spectral slope. (b) Compensated scalar longitudinal spectra at the central planes (arbitrary units). -_: unforced layer. --- : forced. Vertical dotted lines are $k h=\pi$ for the two filters used in Fig. 3.b.

This correction needs the subgrid scalar variance, ξ_{h}^{\prime}, which is generally not given by the LES equations, but the same paper suggests that it may be obtained by a similarity argument from the behavior of the scalar at scales close to grid filter. Consider in our implementation two filter levels (Fig. 3.a). The first one is the grid filter of width h, which is represented by the dashed squares. The test filter $\bar{\xi}$ is formed by averaging a 2^{3} cubic box of contiguous, non-overlapping, grid values. In this implementation

$$
\begin{equation*}
\overline{\bar{\xi}}=\hat{\xi} \tag{14}
\end{equation*}
$$

and we can define the subgrid variance at the test level

$$
\begin{equation*}
\xi_{2 h}^{\prime 2}=\overline{\xi^{2}}-\bar{\xi}^{2} \tag{15}
\end{equation*}
$$

Neither (15) nor (8) are known, but they can be combined to give a band-passed "Leonard" term which, using (14), can be written as

$$
\begin{equation*}
L^{2}=\xi_{2 h}^{\prime 2}-\widehat{\xi_{h}^{\prime 2}}=\widehat{\bar{\xi}^{2}}-\overline{\bar{\xi}} \tag{16}
\end{equation*}
$$

The right-hand side involves only filtered quantities, and can be compted as the standard deviation of $\bar{\xi}$ within the box defining the test filter. The similarity assumption is that

$$
\begin{equation*}
\xi_{h}^{\prime}=c_{L} L \tag{17}
\end{equation*}
$$

and is seen to be reasonable in Fig. 3.b, where it is tested for the central part of the forced layer.

The proportionality constant can be estimated by assuming a form for the scalar spectrum, $S(k) \sim k^{-3}$. The subgrid variance is obtained by filtering the spectrum
through the transfer function of the filter, which has the form $F(k h)$. The result is that $\xi_{h}^{\prime 2} \sim h^{3-1}$ and. from (17)

$$
\begin{equation*}
c_{L}=\left(2^{3-1}-1\right)^{-1 / 2} \tag{18}
\end{equation*}
$$

This quantity, which assumes an infinite Reynolds rumber in that it integrates the spectruni to $k \rightarrow \infty$. is plotted as a function of the spectral slope in Fig. 4.a. For the Folmogorov slope $\beta=5 / 3$ it has a value $c_{L}=1.305$, which is the one used for the dashed line in Fig. 3.b, and represents the data well. In reality it is known that scalar spectra have slopes which are somewhat lower than $5 / 3$ for Reynolds numbers in the range of our experiments (Sreenivasan 1996). This would imply proportionality constants somewhat higher than our value, but this effect is partly compensated by the presence of a Kolmogorov cutoff in the spectrum, which would lead to a lower value of c_{L}. Figure $4 . b$ shows our scalar spectra and the position of our filters with respect to them. The fact that both effects compensate at our Reynolds number, and that they should vanish as $\operatorname{Re} \rightarrow \infty$, suggests that the asymptotic value of c_{L} is a ressonable approximation for most of the Reynolds number; of interest in LES.

In the two previous tests of the $;$-pdf model, the proportionality constant c_{L} was fitted to the data and found to be smaller than ours. Reveillon and Vervisch (1996) found $c_{L}=0.5$ for a filter ratio of two, while Cook and Riley (1994) found $c_{L} \approx 1$ for $\hat{h} / \bar{h}=1.8$, which would correspond to $\beta \approx 2.15$ according to (18), and to $c_{L} \approx 0.9$ for $\hat{h} / \bar{h}=2$. Both simulations, however, were carried at Reynolds numbers substantially lower than ours. Réveillon and Vervisch worked at $R e_{\lambda}=17$, for which there is no inertial range and no self-similar spectrum, and where turbulence is still barely developed. Cook and Riley do not give their Reynolds number, but their filters are only 6 times larger than the Batchelor scale, which would be near the right-most points in the spectra in Fig. 4, and within the dissipative range. Neither experiment can therefore be expected to agree with an inertial range prediction. It is probably a general rule that, if LES models are to behave independently of the type of flow, they should only be used in well-developed turbulence with filters in the inertial range.

The results of applying the β correction to the pdf in the previous section are shown in Fig. 5 , where it is seen that error has decreased considerably with respect to Fig. 2 and, especially, that it is now rela ively insensitive to the filter width. Note that the good behavior of the model is not only at the level of integral quantities, but at the detailed level of the pdf, implying that it should give good results for the average of any function of ξ and not only for the mass fraction (5). This includes the approximation of the pdf at a particular value of ξ, which is useful, for example, in ev. 'ating source terms located at the flame. The figure includes the Beta distributions corresponding to the global averages and (true) standiard deviations at each plane, as would be used in RANS.

Althorgh they are not included in the figure, there is no appreciable difference between the LES results obtained using the true value of ξ_{h}^{\prime} and those obtained using the estimation (17).

Figere 5. Mixture fraction pol's from LES using the similarity \boldsymbol{B} subgrid model. Forced layer. (x) $y_{i}^{\prime} \theta=0$. (b) $y / \theta=3$. —— no filter. $-\cdots: h / \theta=0.35$. —.- : 0.7. - - $: 0.99 .-0-:$ Beta distributions using the global mean and standard deviation for each plane.

It is curious that, when she RANS pdifs are used to compute the mean value of the mass fraction (5), the result is within a few percent of the actual one. but it is chear from Fig. 5 that this is due to compencating errors and that it carnot be extrapolated to other quantities.

3.3 Mean profiles

The results of using the approximate pdfs of the previous section to compute mean profiles of various quentities are presented in Fig. 6, in which the degree of diffinity increases from top to bottom and from the left to the right. Piots on the left of the page are computed for a stoichiometric mass fraction $\xi_{0}=1 / 2$. for which the flame is roughly in the middle of the mixing layer. There the fluid is relatively well mixed, and the results should be comparable to those obtained in homogeneous turbulence. Those on the left of the page are for $\xi_{0}=1 / 9$. which corresponds to global models of the $\mathrm{H}_{2}-\mathrm{O}_{2}$ reaction. For this stoichiometry the flame is near the edge of the mixing layer, in the interface between mixed and unmixed fluid, and LES may be expected to have more problems. The first two plots are mass fraction profiles obtained from the relatively smooth function (5). Those in the middle are profiles of Y_{p}^{4}. which is proportional to the fourth power of the temperature, and would therefore be a rough model for radiative heat in a flow with a real, hot, flame. This function (see Fig. $7 . a$) is much sharper than Y_{p} and is therefore sensitive to the local values of the pdf. in spite of which the errors in the mean profile are still small. The last two plots are the values of the pdf at a given ξ, and are the most sensitive lest of the three. They are also the ones for which the errors are larger. but it is remarkable that the general form of the profile is still captured and that the errors stay, at worse, of the order of 25%.

 (c) and (e) are for $\xi_{0}=1 / 2$. The other three are for, $\xi_{0}=1 / 9$.

 Relative variation of the profile thickness with filter width. Forred layer. Lines, with symbuls are for $\xi_{3}=1 / 9$. Other lines are for $\xi_{0}=1 / 2 \ldots: Y_{0}-1$. --- : Delta function with $\Delta \mathcal{S}=\mathbf{0 . 0 2}$.

For any profile winch vanisbes at $y= \pm \infty$ we can define e-thiciness"

$$
\begin{equation*}
\delta_{y}=\int_{-\infty}^{\infty} f(y) d y \tag{19}
\end{equation*}
$$

winch is proportional to the total amount of the particular jumatity cont inet in the hayer and which ran be ujed to quantify the glehal errot of the typroximation. how that thristhinness is unchanged by the tiliering. ${ }^{t} j=\phi_{j}$. The results for the different prodles of Fig 5 are presented in Fig. T.h, Ehert ther: hsve bern normalized
 product mass fraction to about 15 年 for the pif. They are, as expected. generally larger for llames mear the interface than for those at the rantry of the mixed repion.

4. Pimite rate efects

If the spend of the chemical restion is large but not infinite. it is acid possible to treat the combustion problem as a perturbation of tik- Burive Schuman limeit that ww have used up to now. In this "flamele" regime the devinciuas frominfinitely fast chemistry are confined te othin region around the location of the stomhionsetrir mixture fraction, whose width is function of the Damkohkr nunubet.

Although the rezeion zone is typically thin. thete are cascs in whind the nonequilibrium effects are ghobally insportant. Gse such example js ithe $\mathrm{H}_{2}-\mathrm{O}_{2}$ rearimes. in which an interinediate sjecies is the H radical which. eren in small aronunts. controds the globai exoibermuc prepmeties. A simplifiet srlorme

$$
\begin{gather*}
3 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{H} \tag{20.a}\\
2 \mathrm{H}+\mathrm{H} \rightarrow \mathrm{H}_{2}+\mathrm{H} \tag{30.6}
\end{gather*}
$$

Figune 8. Pdis of the masure fraction gradients couditioned on the mixture fraction and compiled at diferent locations across the foreed layer. - $: \boldsymbol{\xi}=0.2$. $---: 0.5$. - - : 0.8. $-\cdots: 0.2$. $-0-0.5$. The first three curves are for $y / \theta \in(-1,1),(\xi)=0.46$. The last two are for $y / \theta \in(1,3) .(\xi)=0.72$.
was analyzed in (Sinchez et ai. 1995). The first reaction is ve: ${ }^{\text {fasi }}$ and can be described by a conserved mixture fraction f and by an infinitely thin fame located at its staichionvetric isolevel $\xi_{0 .}$. While the second ane is slower and leads to finite reaction rate corrections. The Damköler number is defined as $D=\left(\kappa x^{2} t_{r}\right)^{-1}$, where κ is the diffurion coeficient of the scalars, $\boldsymbol{\lambda}=\nabla \xi$ is the mixture fraction gradient at the stoichionetric level. and t_{r} is a chemical time which is only a weak function of temperature. The combination κX^{2} is usually called the scalar dissipation. In our approximaticn the only variable is x, which therefore controls the structure of the flame. Other rebctions involving radicals are technologically important. For example, the NO_{n} production in air is controked by the temperature and by the roncentration of the O redical.

It turas out that twoth tive thickness and the maximum concemeration in the radical cosutaining region are proportional to $D^{-1 / 3}$, so that the total mass of H radical per onit deme area is proportional to

$$
\begin{equation*}
m \sim D^{-2 / 3} \sim \kappa^{2 / 3} \lambda^{4 / 3} \tag{21}
\end{equation*}
$$

Timere is a chemical energy associated to this mass which leads to a lowcring of the fame temperature. The dependence on a power of the gradients is crmmon in many other examples of alighely out-di-equilibrium reactions (Williams 1985). although the expooents change from oae case to another. Assume in general that $m=\kappa^{n} \lambda^{2 n}$. We can estimate the average mass fraction of radical by a procedure similar to that used to derive (6). If S is the area per unit volume we write

$$
\begin{equation*}
\left\langle Y_{H}\right\rangle=\int_{S} m \mathrm{~d} S \tag{2?}
\end{equation*}
$$

which we wish to transform into a probability integral. Introduce the joint pdf of λ and ξ and define $d n$ as the element of length normal to the fame, located at $\xi=\xi_{0}$. We can define the volume element both in terms of the geometry and of the pdf

$$
\begin{equation*}
d V=d n d S=p_{2}(x, \xi) d x d \xi \tag{23}
\end{equation*}
$$

from where, using that $x=d \xi / d n$, it follows that $d S=v p(x, \xi) d x$, and

$$
\begin{equation*}
\left\langle Y_{H}\right\rangle=\int_{\xi=\xi_{0}} x m(x) p_{2}(x, \xi) d x=p\left(\xi_{\theta}\right) \int_{0}^{\infty} \backslash m\left(x \mid p\left(x \mid \xi_{0}\right) d x .\right. \tag{24}
\end{equation*}
$$

The new pdf which appears in the second part of this cquation is the poff of gradients conditioned to $\xi=\xi_{3}$. Note that (24) has the same fono as (6) for a function

$$
\begin{equation*}
\left.f(\xi)=C_{x} d\left(\xi-\xi_{0}\right), \quad C_{x}=\int_{0}^{\infty} x m(\lambda) \mu v \mid \xi_{1}\right) d x \tag{25}
\end{equation*}
$$

which is a delte runction at the location of the flame, with a prefactor which depends on a moment of the conditional gradient pdf.

Formulas of this type bive been known for a long time in the context of nonequilibrium chemistry (Biger 1976), and the joint pdf of the gradients and of a mixing scalar has been the subject of intensive study. There is general consensus that the enconditionel gradient pdf is approximately log-normal (Kerstein \& Ashurst 1984, Anselmet \& Amonia 1985. Eswaran \& Pope 1987, Pumir 1994, Holver \& Siggia 1994). a form for which there is incomplete theoretical support (Gurvich \mathbf{t} Yaglon 1967, Meyers \& O'Brien 1981) but which seems to be only an approximation to the real one. There is less consensus on the conditional pdif and, in particular, on whether the conditional variance of the gradients is correlated to the value of ξ_{0} or to the local turbulent dissipation e.

We have checked conditional gradient pdis for our two shear layers and the results are shown in Figs. 8 to 10. It is seen in the first figure that the form of the pdf is fairly independent of both ξ_{0} and of the locntion in the fow . when each pdf is referred to its own standard deviation x^{\prime}. It also has a gemeral bog-normal shape, but is not really lognormal. Note that the figure iachudes pdis conditioned on values of $\mathcal{E}_{\text {, }}$ close to zero, but compiled at locations at which the mean value of \boldsymbol{f} is close to cene.

Figure 9 presents a two-dimensional map of the conditional $\gamma^{\prime}(\xi)$, as a function of ξ and of the bocation across the layer. It was foumd that the map was more uniform if the conditional y^{\prime} was normalized with l', $^{\prime}$, the unconditional standard deviariond at the center of the layer, than when the normalization was done with the uncumitional x^{\prime} at the particular y location. The first choice is used in the figure. It is seen that the dissipation has a central plateau. in which $x^{\prime} / x_{0}^{\prime} \approx 1$, but becomes larger near the edges of the layer, and vanishes at $\varepsilon=0$ and $\xi=1$. The latter is an obvious property of laminar unmixed fluid and will be discussed below. The decline is, on the other hand, quite local and only happens when $\boldsymbol{\xi}$ is

Fici wi 9. Stwhet devatimi of the ealat gradient ung mituke as a finction of y, . conditimed on $\{$ and monmalized with the ancondifional lo at the rentrat

 wal but it comtypuhl to conlinations of mixture fraction ant leation which ate
 dis Menten luve luty orrlat on a two dimenional may of the mixtme fraction
 10 : and which wil wot lawe a lare weight in |24).

 meluhel we eive onie quatintive information on the magnitude of the sheiationof the saliat Insipation from its muconditional value, and to presert data from the nuforced hayer. At min the presious figure it is seen that the scalar dissipation in the contial pert of the layer, where the fluid is well mixed, is more or les constant and syual t" its umconditmed maximum value. but that the gradients conditioned on mixther fractmes dose to the fres strean alues and all the gradients near the eviges of the laver line stendard teriations that may differ from the global maximum by almost if ferto of wo. They also have a clatacteristre paraloblic slape: Most of thes high devations occur at plares at which the absolute probabihty of \& is suall, at wer on the figues on the cigh hant side of 10 . Which are conditioned on $\mu<1>0.1$. and they will only have a small eftect on (24). but the effect is real and lexs, at lent, for some theortical explanmtion

It is ihs interetimg to wer that the getwral mugntude of the gratient is low
 The path of the ilveribmene in Fig. S is for gendient of the omfer of these of the:

Flitre 10. Variation of the conditional standard deviation of the gradients across the layer. as a function of ξ ——: $\boldsymbol{\xi}=\mathbf{0 . 1}$.---: 0.3. - - : 0.5. -..-: 0.7. $0: 0.9$. (a) and (b) are for the unforced layer: (c) and (d) for the forced one. (a) and (c) present full profiles. but (b) and (d) are only for those points in which $\mu(\xi)>0.1$.
mean \& profie. Since high gradients lower the Damköhler number and may lead to extinction of the flame, the probability of local extiuction for a given flow can lue read from these distributions.

In LES computations it might be barder to extimate the value of ${ }_{10}^{\prime}$ than that of the subgrid scalar fluctuation. The problem is that while the spectrum of ξ decreases with wavenumber approximately like $S(k) \sim h^{-5 / 3}$, that for the gradient increases as $k^{2} S(k) \sim k^{1 / 3}$. Thus. while most of the contribution to ξ^{\prime} comes from the resolved large scales, y' comes mostly from the unresolved small ones. In terms of the standard LES or modeling equations, $f^{\prime 2}$ is equivalent to the subgrid energy. while $1^{\prime 2}$ is equivalent to the subgrid dissipation. Conservation equations and closures for the subgrid dissipation have been written among others by Newman. Launder \& Lumley (1981) and Elgobashi \& Launder (1983).

The "enginering" consequences of the errors due to the gradient pdfs are summarized in Fig. 11. Assume that we are interested in computing the total amount of

Figire 11. Computed scalar dissipation thickness as defined in text. compared to its DNS value. $h / \theta \approx 0.9$. - unforced layer. ---- : forced.
H radical in the example (20), and that we use as a subgrid model for the gradients an average pdf taken from Fig. 8. and a representative unconditional l'o estimated for the center of the layer. Using (24) and integrating as in (19), we obtain a "radical" thickness which is the integral across the layer of the $a+1$ moment of the conditional pdf of the gradients, weighted with the pdf of the stoichiometric mixture fraction. This can be cormpared with the result of using the true distributions, and gives a global error due to the simplified assumption on the gradients. The result depends on the exponent a. but it is especially simple in the case of $a=1$ since the $a+1$ moment is then proportional to the scalar dissipation, aid the integral can be obtained directly from the data in Fig. 9. In this case the approximation is equivalent to taking everywhere x_{0}^{\prime} as an approximation to $\chi^{\prime}\left(\xi_{g}\right)$. This normalized thickness is not very different from the results for $\alpha=4 / 3$, and is presented in Fig. 11. It is seen that, because the deviations from a universal distribution are mostly associated with places in which $p\left(\xi_{3}\right)$ is small, the final errors are still reasonable, especially for the unforced case, although they become $O(1)$ when the stoichimetric ratio approaches 0 or 1 .

The reason for this failure is clearly that we have not taken into account that gradients have to vanish when the scalar is very near its maximum or minimum value. Simple engineering models should be able to alleviate this problem, but they are beyond the purpose of this paper. It is, however, interesting to estimate the width of the region for which a correction needs to be applied. which cither from Fig. 9 or 11 is in this case about $\Delta \xi \approx 0.1$. but which can be related to the Reynolds nuraber of the simulation. It follows from the form of the scalar spectrum that. for $S c=O(1)$, most of x^{\prime} is associated with scales of the order of the Kolmogorov length η. and that the sralar fluctuations at length ℓ are $\Delta \xi_{\ell} \approx \xi^{\prime}\left(/ / L_{\ell}\right)^{1 / 3}$. where

Figere 12. Jo • - df for $\bar{\xi}$ and the subgrid fluctuation $\xi_{\mathrm{a}}^{\prime}$. Forced layer. $h / \theta=$ $0.88 . y / \theta \in\left(-2\right.$. iolines are $p_{2}\left(\bar{\xi}, \xi_{h}^{\prime}\right)=1(2) 21$. Dashed semicircle is the limit of possible $\left(\bar{\xi} . \xi_{h}^{\prime}, \quad\right.$ inations. Lower dashed lines are the limits below which the Beta distribution looks like a single broadened spike.
L_{c} is an integral length. Since $L_{c} / \eta \approx \boldsymbol{R C}_{\boldsymbol{\lambda}}^{\mathbf{3 / 2}}$ (Trnnekes \& Lumley 1972), it follows that the scalar fluctuations which carry the gradients are of order

$$
\begin{equation*}
\Delta \xi \approx \xi^{\prime} \mathrm{Re}_{\lambda}^{-1 / 2} . \tag{26}
\end{equation*}
$$

which in our case 0.03 . As long as ξ, and $1-\xi$, remain large with respect to this value, the small eddies should not be affected by the proximity to the level of the unmixed fluid. but if they are of the same order as (26), large gradients become impossible. This suggests that the width of the lateral bands in Fig. 11 should decrease as the Reynolds number increases, but it would be interesting to get experimental confirmation of that estimate.

5. Conclusions

We have shown that relatively simple subgrid models for the pdf of a conserved scalar can be used to obtain useful engineering approximations to global quantities in LES simulations of reacting nonpremixed turbulent shear flows in the fast chemistry limit. This is true even when the flow, in our case two different mixing layers, contains substantial intermittency.

The magnitude of the approximation error varies from less than 5% for the total amount of generated products, to about 15% for the pdf of the scalar itself. When finite reaction rate corrections are introdured in the flamelet limit, the model has to be extended to the pdf of the scalar gradients, conditioned on the value of the scalar. We have shown that those pdfs have an approximately universal form and that they can be expressed in terms of a single parameter. the conditional scalar
dissipation. which varies little except at places in which the probability of finding mixed thaid is low. It is possible in those cases to obtain the global consentration of intermediate products (e.g. radicals) with errors which stay in the $20-30 \%$ range. except for reactions with stoichiometric mixture fractions very near these of the free streams. We have argued that the range of stoichometric tatios for which the approximation fails should decrease with increasing Reynolds numbers. It should be clear. however. that even within this range the integrated quantities such as product concentration or radiation thickness are well predicted (Fig. 7).

The particular approximation used in our experiments is the 3 model of (Cook d Riley 19041. but it is clear from the lack of correspondence between actual and assumed pdfs that other models might work as well. This also follow: from similat olmervat: ins of Cooh d. Rile: in their paper, and is in contrast with the situation in RANS. in which it is known that good subgrid models hate to be uned for the as sumed pdf if any but the simplest quantities are to be computed accurately (Fig. i). It is important to understand the reason for this difference, which is essentially comtained in Fig. 2. where the scalar pelfs are reasonably well approximated even in the absence of a subgrid model. This means that most of the scalar fluctuations are associated to scales which are resolved by the LES, even for coarse grids like the ones used here. All that is left for the model is to correct situations in which the subgrid thuctuation is strong enough that the use of the average as a representation of the pelf is no longer appropriate.

The situation would still be hopeless if those fluctuations were large enough to allow for a considerable latitude in the choice of subgrid pedfs. but this is fortumately not the case. Consider the $\left(\bar{\xi}, \xi_{h}^{\prime}\right)$ plane in Fig. 12. It can be shown that there can Ie no points above the dashed semicircle, and that pdis that fall on the semicirche must be formed exclusively by unmixed fluid with $\xi=0$ and $\xi=1$. In the seme way. plfs on the horizontal axis are single delta functions of uniform fluid with $\xi=\bar{\xi}$. Pdfs near that axis are roughly spread deltas, and those near the semicircle. spread bimodals. The border between the two cases varies for different models. but it is always near the two intermediate dashed lines in the figure. which correspond to the 1 -model. Below those lines, the pelf are bells, and almost any model should be equivalent. Pdfs within the two crescents correspond to spread deltas near one or the other free stream. and are also easy to model. Pdfs in the high-fluctuation central part of the diagram are harder. and are likely to depend on more than two parameters.

We hate overlaid on the diagram a typical joint pdf for $\bar{\xi}$ and c_{h}^{\prime}. for a relatively wide filter in the intermittent "hard" flow but, even in this case, most of the mass of the distribution is associated with pdis within the easily modeled part of the diagram. The Beta distributions form a flexible set of pdfs which interpolate smoothly between the different cases, and they provide a simple numerical tool to evaluate the necessary integrals. This explains their practical success. but the reason why the approximation works lies in the small value of the subgrid standard deviations in Fig. 12. Since we have secn in Fig. 3 that these deviations can be estimated from large-scale quatities using an infinite Revolds assumption on the upper liznit of
the spectrum, it is unlikely that much higher values might be found in other flows.
The small values of the fluctuations are also the reason why our relatively crude estimation of ξ_{k}^{\prime} woiks so well. Even large errors in this estimation have relatively small effects on the final results, and some experiments in which the estimated subgrid fluctuations where systematically increased or decreased by 20% did not show any appreciable differences with the results shown here.

The convergence of the gradients also needs some discussion. It appears at first sight that, since the dominant contribution to $x^{\prime 2}$ comes from the high end of the spectrum, the estimates for this quantity would depend of the value of the Batchelor scale, and would diverge at high Peynolds numbers. What is needed in (21). however, is not $\chi^{\prime 2}$ but the scalar dissipation $\kappa^{\prime 2}$, and it is easy to see that, for a $k^{-5 / 3}$ spectrum, this quantity is independent of Reynolds number.

REFERENCES

Anselmet, F. \& Antonia, R. A. 1985 Joint statistics between temperature and its dissipation in a turbulent jet. Phys. Fluids. 28, 1048-1054.
Bilger. R. W. 1976 The structure of diffusion flames. Combust. Sci. Tech. 13, 155-170.
Bilger. R. W. 1989 Turbulent diffusion flames. Ann. Rev. Fluid Mech. 21, 101-135.
Brfidenthal, R. E. 1981 Structure in chemically mixing layers and wakes using a chemical reaction. J. Fluid Mech. 109, 1-24
Broadwell, J. E. \& Breidenthal,R.E. 1982 A simple model of mixing and chemical reaction in a turbulent shear flow. J. Fluid Mech. 125, 397-410.
Cook. A. W. \& Riley, J. J. 1994 A subgrid model for equilibrium chemistry in turbulent flows. Phys. Fiuids. 6, 2868-2870.
Dopazo, C. 1977 On conditional averages for intermittent turbulent flows. J. Fluid Mech. 81, 433-438.
El.;obashi, S. E. \& Launder, B. E. 1983 Turbulent time scales and the dissipation rate of temperature variance in the thermal mixing layer. Phys. Fluids. 26, 2415-2419.
Eswaran, V. \& Pope, S. B. 1988 Direct numerical simulations of the turbulent mixing of a passive scalar. Phys. Fluids. 31, 506-520.
Glemich, A. S. \& Yaglom, A. M. 1967 Breakdown of eddies and probability distributions for small-scale turbulenc?, boundary layers and turbulence. Phys. Fluids Suppl. 10, S 59-65.
Holzer. M. \& Siggia, E. D. 1994 Turbulent mixing of a passive scalar. Phys. Fluids. 6, 1820-1837.
Kerstein. A. R. \& Ashurst. W. T. 1984 Lognormality of gradients of diffusive scalars in homogeneous, two-dimensional mixing systems. Phys. Fluids. 27, 2819-2827.

Koliman. W. 1984 Prediction of intermittency factors for turbulent shear flows. AIAA J. 22, 486-492.
Kolman. W. \& Janicka. J. 1982 The probability density function of a passive scalar in turbulent shear flows. Phys. Fluids. 25, 1755-1769.
Koxhad. J. H 1976 An experimental investigation of mixing in two-dimensional turbulent shear flows with applications to diffusion-limited chemical reactions. PhD ihesis. Caltech (CIT-8-PC).
Koochesfahavi. M. M. \& Dimotakis, P. E. 1986 Mixing and chemical rear tions in a turbulent liquid mixiag layer. J. Fluid Mech. 170, 83-112.
LaRte. I. C. © Libby, P. A. 1974 Temperature fluctuations in the plane turbalent wake. Phys. Fluids. 17, 1956-1967.
Lesifth. M. d Rogatio. R. S. 1989 Large-eddy simulation of passive scalar diffusion in isotropic turbulence. Phys. Fluids. A 1, 718-72?.
Libry. P. A. 1975 On the prediction of intermittent terbulent flows. J. Flaid Mech. 68, 273.295.
Libiv. P. A. \& Whilams, F. A. (editors) 1994 Turbinent reacting flow. Academic Press.
Lis. C. H. di O'Briex, E. E. 1974 Turbulent shear flow mixing and rapid cheinical reaction: an analogy. J. Fluid Mech. 64, 195-206.
Meyers. R. E. \& O'Briex, E. E. 1981 The joint pdf of a scalar and its gradient at a point in a turbulent fluid. Combust. Sci. Tech. 26, 123-134.
Mons. P., Squires. K.. Cabot. W. \& Lee, S. 1991 a dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids. 3, ${ }^{2} \mathbf{7 4}$ 2757.

Mugal, MI. G. \& Dimotakis, P. E. 1984 Mixing and combustion with low heat release in a turbulent shear layer. J. Fluid Mech. 148, 349-382.
Newman, G. R., Lat nder, B. E. \& Lumley, , I. L. 1981 Modeling the behavior of homogeneons scalar turbulence. J. Fluid Mech. 111, 217-232.
Pope. S. B. 1985 PDF methods for turbulent reacting flows. Prog. Energy Combust. Sci. 11, 119-192.
Pope, S. B \& Correa, S. M. 1988 Joint pdf calculation of a non-equilibrium turbulent diffusion flame. 21st. Symp. (Int.) Combust., 1341-1348. Pittsburg. Combust. Inst.
Plimir. A. 1994 A numerical study of the mixing of a passive scalar in three dimensions in the presence of a mean gradient. Phys. Fluids. 6, 2118-2132.
Revfiliox. J. S Vehvisch, L. 1996 Dynamic large eddy simulation and subgrid pdif for nonpremixed turbulent flame modeling. Preprint.
Rogers. M. M. \& Moser. R. D. 1994 Direct simulation of a self-similar turbulent mixing layer. Phys. Fluids. 6, 903-923.

Sánchez. A. L., Liñín. A., Williams, F. A. \& Balakrishnan. G. 1995 Combust. Sci. Tech. 110, 277-301.
Sheevivasan. K. R. 1996 The passive scalar spectrum and the Obukhov-Corrsin constant. Phys. Fluids. 6, 189-196.
Tennekes, H. \& Limlty. J. L. 1972 A first course in turbulence. MIT Press.
Williams, F. A. 1985 Combustion Th., \quad y. 2nd. ed. Benjamin-Cummings. Menlo Park. Ca.

NEXT DOCUMENT

Turbulent flame propagation in partially premixed flames

1. Introduction

Turbulont promixed thame propagation is esemtal in many pactucai devien In the past, fundamental and boodeling studies of propagating flames have everally

 This sithation correomeds to the ideal case of porfer: oremixing between fuel and oxidizer. In practical situations. fawover, deviations from thas ideal rave them frequently. In siratifed reviprecating engines. fuel ingection and latse wale thon

 Hame -

promixed rombustion has resulted in an absence of mondel- whirh accurarely capture the complex sature of the Hanses.

Previnus work on partially premixed combistion has fornsed primarily on laminar triple tanms. Triple flanes corres ond to an extreme cave where fuel and oxidizer ase initially totally wparated (lieyuaite et al. 1934 and Ruersch et al. 1993 . These flames have a nontrivial propagation speed arid are lelieved to be a bey elenent in the stabilizativi proress of jet difusion flames. Different theories have aloo Invin proposed in the litezature to describe a turbulent fiame propagzting in a mixture with variable equivalence ratio (Müller et at. 1994). but few validations are available. The abjective of the present study is to provese basic information on the effects of partial premixing in :urbukent combention. In the following. We
 with tarialul rquiaintore situs.

2. Framework for amalyzing and moodeling partially premixed mames

Poffirty premixeri coulustion is usually desriberl using a progress variabie
 timns. and the superwripts 0 and 1 refer to the values in the ubburnt reactants ard burnt products respertively. Csing the assumption of single-step chemistry and unity Lewis numbers. the progress variable provides a complete desrription of the fransition from unburnt tu bernat states and iv the single relmant quantity uned H: model drielopmeni and t? postprocessing of simulation results. In parially prenixed combustion. a new theoretiral framework is required which will allew statiable equiralence tation along with simultanerons premixed and diffision modes of combusion. This framkent must use at least two srater varables: one variable to descrite the sprics compmition, and a second tariable to describe the progress of the premixed raction We use the mixture fraction Z as a deorription of the sperier compesition, and a uodified form of the progrems variabler which accommodate: the tariable spries comperition in the fresh ractants.

We assume irreversible single step chemistry and mity Lewis nunbers:

$$
\begin{equation*}
F+r_{s}\left(O+b . V_{2}!\rightarrow P\right. \tag{1}
\end{equation*}
$$

where r, is the stochiomet ric oxidizer-fume mass ritio and b is the $\mathrm{N}_{2} \mathrm{O}$ mass ratio. where V_{2} is a diluet: in the fresh reactants. The mixture fraction Z is then defined as:

$$
\begin{equation*}
Z=\frac{1 r_{r}-I_{n} / r_{3}+1 /\left(r_{n} 11+b!\right)}{1+1 /\left(r_{n}!1+b!\right)} \tag{2}
\end{equation*}
$$

For sochometric mixtures. Z is equal on Z. $=1 / 4,11+b)+11$.* The fuel
 munty Howesir Q and Z are smply related (Muller et al. 1994) through $0=2(1-$ $Z_{\text {: }, i} Z_{\text {at }} / 1-Z$) We use Z rather than o for the following rea-ots o is a comeditional quanlity that is only defined in the unburnt reactants whereas Z is not only detined everywhere in the
 fractom and leath to atraightiorward exprestocio when aceraging in employed

Fkit uf 1. Fu-l and oxidizet mass fractions as a function of the mixture fraction

 hise-i. Tife arrow- indicate the transition from uaburn to burnt states in the cavof perfectly premixeri cosabmstion, at a given equivalence ratio.
consumption rate, -if, and the heat releaser rate, -ir, are writen as:
where A. f. ". :" are nexhe coustants. f is the mass deresity, and q is the berat of reaction per unit raass of fuel. The activaion iemperature T_{4} is sperified via

 uniform in the toresent study: and the adiabatic flame temperatur. $T_{b}, Z_{\text {at }}$. in cal-niated under vericimometric conditions.

The mixture conemmitions upstram of the flame zone is only a function of Z and

$$
\begin{equation*}
\frac{y_{F}^{\theta}}{I_{F}}=Z \text { and } \frac{y_{0}^{0}}{1_{0}^{x}}=1-Z \tag{11}
\end{equation*}
$$

If the chemistr: i- sutficutly fast, the mixture composition dowenstram of the premixed flame comresonds to the classical Burke-Schumann hamit where fuel and oxidizer casino comexict. This limit is a fumetion of Z alone, and i- sheteber? in Fig. i and siven by

Promixed combuction changes the mixture composition from at untornt stats. as
 a wmption, this rhange orcurs in a thin flame zone. Note that in penfertly promerd combintion. the mixture fraction Z is constant and the transition from mbunt on
burnt states orrurs sha wrtical hine in Fig. 1. In partially premixed combustion, the transizion may swar with sinmiltaneous variations in \mathbf{Z}.

Equations 41 arat 51 ifad ic : le following grmeralized acfinition of the premixed startion proe:cos vatre! bie.

$$
\begin{equation*}
r=\frac{21_{F}^{x}-Y_{F}}{21_{F}^{x}-\operatorname{Max}\left(0 . \frac{z-Z_{a x}}{1-Y_{x}}\right) Y_{F}^{x}} \tag{6}
\end{equation*}
$$

For iran mixtures. where $Z \leq Z_{\text {o }}$ everywhere, we have

$$
c=1-\frac{\ddot{i}{ }_{F}}{\overline{Z Y_{F}}}
$$

and for rich mixtures, with $Z \geq Z_{\text {at }}$ everywhere, the following bolds:

$$
\begin{equation*}
c=\frac{2 y_{r}^{x}-i_{y}}{2 y_{F}^{x}-\left(\frac{z-Z_{a x}}{1-Z_{a}}\right) y_{z}^{x}}=1-\frac{Y_{0}}{\left(1-2 Y_{o}^{x}\right.} \tag{8}
\end{equation*}
$$

If Z is ronzitatt. Eq. (6) reduces to the standard defiuition of ε used in perfectly pronixfl combustion:

For the sake of sinipticity; we now linit our discussion :o the rase of a bean mixture. A inalance equation for c may be derived from basic conservation equations for the fuct mass fraction ly and for the mixture fraction 2 :

$$
\begin{equation*}
\frac{\partial r}{\partial r}+u_{i} \frac{\partial}{\partial r_{z}}=\frac{1}{\rho} \frac{\partial}{\partial r_{k}}\left(\rho D \frac{\partial c}{\partial r_{k}}\right)-\frac{\dot{\dot{\prime}}}{\rho Z Y_{f}^{x}}+\frac{2 D}{Z} \frac{\partial c}{\partial r_{i}} \frac{\partial Z}{\partial r_{i}} \tag{9}
\end{equation*}
$$

risere u_{a} in the iluid weiocity and D is the mass diffusivity. This equation is similar to the one olstankei in perfertiy premixed rombustion, exrept for the last term on the right tianel side. The sign of this additional term can be either positive or negative. suggesting fanke propagation ran oither accelerate or derelerate as a resuit of partial premicing. Followitig Trouve and Poinsot (1994). the conservation equation for : unay ine uned to define the displacement speed of isoc surface contours:
wheto all quantition are e:aluated at $r=r^{*}$. An altertative form of this equation ㄴ:

$$
\begin{equation*}
G=\frac{1}{\operatorname{Tr}}\left[\frac{1}{\rho} \nabla \cdot(\rho D \Gamma r)-\frac{\dot{-}}{\rho Z I_{f}^{x}}\right]-\frac{2 D}{Z} n \cdot \nabla Z \tag{11}
\end{equation*}
$$

where n is the local unit vertor normal to the iso-c surface, $\equiv=-\nabla c / \Gamma c \mid$. Adopting a filanmet jeniut of view. we identify the thin flame surface as an iso-r surface with $r^{*}=0.8$. Equation illiran then be interpreted as an expression for the flame
propagation speed. The tams within brackets on the right-hand side of Eq. (11) show the drjendence of the flane propagation sperd on the local mixure fraction! Z. The last term on the right-hand side shous the dependence of the flame propagation speed on the local Z-gradient normal to the flame. Hence, one basic erfect of incomplete reactant mixing is the modification of the local flame sperd.

We now discuss the implications of partial premixing in the framework of flamelet eombustion. In the finmet piciure the mean reaction rate may be writen as the product of a mean mass burning rate times the Hame surface density:

$$
\begin{equation*}
(\dot{\omega} \boldsymbol{F})=\{\dot{m}\} \leq \Sigma \tag{12}
\end{equation*}
$$

Where in is the heal thass burning rate per unit flame surface ares. in $=f_{n}$ cifdr. and Σ is the meral, Hans surface-to-volume ratio (the flame surface density). The operator s denotes a flame surface average (Pope 1988).

Partial premiximg rati induce modifications of the mean reaction rate through several mfelanism: a modification of the local flame structure and corresponding monifications to the mean mass burning rate $\left\{\left({ }^{m}\right)_{S}\right.$. and contributions to the flame wrinkling resulting in a modifiration to the flame surfare density S. Fhe effert of pariai premixing on flame winkling may be analyzed by concidering the panct balance mitaton for 5 (Pope 1989. Candel 4 . Poinsot 1990. Trouvé \& Poinsot isy 1):

Where a is : in flame stretch. which is deromposeri in Eq. (13) into a produrtion tarm due io hydrodynamic stramiag and a production or dissipation term due to flame propagation. The propagation term is the mean product of the local flame propagationt speed, \boldsymbol{i}. times the local fiame surface curvature, $\Gamma \cdot n$. Hence, the effort of partial premixing on the loral fiame speed, $w(Z, n \cdot \Gamma Z$), as seen in Ea. (11). can be interpreted as an effert of partiai premixing on flame stretch. $\kappa(Z, n \cdot \Gamma Z$). and thereby an effect on Σ. One objective of the present study is to determine the relative weight of efferts induced by partial premixing on Σ and $\langle\dot{m}\rangle_{S}$ relative to the efferts of turbulence on these quantities.

3. Numerical configurations and diagnostics

In the prewnt study, one- two and threedunensional direct numerical simuintion ar performed with sariable density and simple chemistry. The simulations use a morlified Padé scheme for spatial differentiation that is sixth order accurate (Lele 1902), a third order Runge-Kutta method for temporal differentiation, and innumar: conditions-jerified with the Natier Soles characteristic Bommdary condition prowidure (Poinsot A Lele 1922; We refer the reader to the Procerdings of : he 1990. 1992. and 1904 CTR Summer Programs for further detaik roncorning the swent of equation whend and the numerical methods

CONFIGLRATION	FLOW	\mathbf{Z} disuribution (Lemn=L Rich=R)
I/x-inhomogeneous iD unsieady flame	LAMINAR	${ }^{2} \underbrace{\text { R }}_{L} \overbrace{}^{R}$
$2 / y$-inhwangereviss 30 skialy tlame	Laminar	
3/xy-intomuzeneous 2D unstexdy flame	Laminar	
4ixy, 3D name	TURBULETT	

Ficithe 2. Configurations ifir D:S of partially premixed flames

The numerical configuration correspoads to a premixed fame propagating into a mixture v ith sariable equivaience ratio. The mixture consposition upstream of the flame is sprified accordies to the probability dersity function. an integral length srale of the scalar field and the selevent directions of inhomogeneity. Thprobability dersity funct:an of Z is denoted as pi Z) and can be characterized by its, mean and rms values. (Z) ans: Z^{\prime}. The mupliende of the fluctuations, ΔZ. ana ln used in place of the rnss tluctuation for laminar cases. The characteristic integral length scaid of the Z firld is dewoted as I_{Z}. The directions of inhonogeneity in the Z firld are compared to the mean fisum front orientation. We choose the dirertion of mean flame propagation as the z-direction. A nunerical configuration is callont s inhonugenevis if gradients of Z exist in the x-direction, the direction norvini to the mean Hame front. Likewisc. a y-inhomogenems configuration correspons to a case wiere speries gradients exist tangent to the mean flame foont. A fully morbulent three-dimensional configuration is called $x y=$ inhomorementas.

Four different configurations are pursued in this study, an depicted in Fig. 2: Cow 1 is a one dimensional, s-inhomogeneons, unsteady. laminar thame. with a doublepeak Z pif: Cane ? is a two dimensional. y-inhomogeneons, steady. laminar flame.
with a double-peak Z-pif: Case 3 is a two-dimensional, ry-inhomogeneous, unsteady, laminar flame, with a triple-peak Z-pdf; and Case 4 is a three-dimensional. $x y$-inhomogeneous, non-stationary, turbulent flame, with a Guassian Z-pdf. These configurations each bave a slightly diferent simple chemistry scheme, as summarized in Table 1. Case 4 corresponds to a single step reaction mechanism proposed by Westbrook \& Dryer (1981) for $\mathrm{C}_{3} \mathrm{H}_{8}$-air combustion.

Table I. Parameters for the four simulation configurations.

Casir	Dim	b	r,	$Z_{s t}$	p	n	m	3	a
1	ID	0	1	0.5	1	1	1	8	0.75
$\mathbf{2}$	2D	0	1	0.5	2	1	1	8	0.75
3	2D	0	1	0.5	1	1	1	8	0.75
4	3D	3.29	3.04	0.06	1.75	0.1	1.65	8	0.75

In all cases we characterize the effects of partial premixing by comparing the results to those obtained with perfect premixing in the same configuration. The effects of partial premixing on the local flame structure are characteized by the mass burning rates:

$$
\begin{equation*}
r \equiv \frac{\dot{m}}{:(Z, t)} \quad \text { and } \quad r^{\prime} \equiv \frac{\dot{m}}{\dot{m}((Z))} \tag{14}
\end{equation*}
$$

where the unprimed quantity uses the stoichiometric homogeneous laminar flame as a reference. whereas the primed quantity uses the homegencous iaminar flemewith $Z=(Z)$. The global effects of partial premixing are characterized by the total reaction rate ratios:

$$
\begin{equation*}
R \equiv \frac{\Omega}{\Omega_{0}\left(Z_{s t}\right)} \quad \text { and } \quad R^{\prime} \equiv \frac{\Omega}{\Omega_{0}(\langle Z\rangle)} \tag{15}
\end{equation*}
$$

where $\Omega \equiv \int_{V}\left(\sum_{f}\right) d \boldsymbol{d}$, with Ω_{0} corresponding to 2 homogencous, planar. laminar flame. These total reaction rate ratios can be rewritten as:

$$
\begin{equation*}
R=\frac{\int\langle r\rangle_{s} \Sigma d V}{\int \Sigma d V} \frac{\left\langle S_{v}\right\rangle}{S_{0}} \quad \text { and } \quad R^{\prime}=\frac{\int\left\langle r^{\prime}\right\rangle_{S} \Sigma d I^{\prime}}{\int \Sigma d S^{\prime}} \frac{\left(S_{v}\right)}{S_{0}} \tag{16}
\end{equation*}
$$

where S_{i} is the total flame surface area within V, and S_{0} is the projected area of the flame on a surface perpendicular to the direction of mean propagation. The first ratio in these expressions for R and R^{\prime} accounts for modifications of the mean nass burning rate due to partial premixing. and the second ratio accounts for flame surface wrinkling due to turbulence and partial premixing. We write $\mathbb{I V}^{\circ} \equiv$ S_{v} / S_{0} and $\hat{r^{\prime}} \equiv \int\left(r^{\prime}\right\rangle_{S} \Sigma d / \int \Sigma d V$. The effects of partial premixing on flame temperatures are characterized by the following temperature ratios:

$$
\begin{equation*}
\theta \equiv \frac{T_{\max }-T_{0}}{T_{\max .0}\left(Z_{.1}\right)-T_{0}} \quad \text { and } \quad \theta^{\prime} \equiv \frac{T_{\max }-T_{0}}{T_{\max .0}(\langle Z\rangle)-T_{0}} \tag{17}
\end{equation*}
$$

where $T_{\text {:nat }}$, corresponds to the case of a homogenenus, planar, laminar flame.

Figitre 3. Case 1: Onc-dimensional. r-inhomogeneons. unsteady, laminar flames

4. Case 1: One-dimensional, x-inhomogeneous, unsteady, laminar flames

In this case. the inhomogeneity of reactant species is longitudinal with respect to the flow. and thus the flame response to temporal fluctuations in the mixture composition is studied. The mixture composition is forced at the inlet of the computational domain in order to generate harmonic perturbations in the Z-field upstream of the flame. These perturbations in Z are characterized by their mean value, $\langle Z\rangle$. their amplitude. ΔZ. and their wavelength I_{Z} (see Fig. 3). This case is well-suited to bring basic information on both flame structure modification and quenching by partial premixing.
In order to study the flammability limits of partially premixed flames, it is important to determine whether the simplified kinetic scheme used in the simulation is capable of reproducing realistic variations of the laminar flame speed, S_{L}, when variations occur in the mixture composition or equivalence ratio. o. In particular, the lean and rich Hammability limits must be correctly predicted. The single-step chemistry model presented in Section 2 does not have this capability unless heat losses are added to the energy equation. The choice of a nonadiabatic Hame may be viewed as a simple fix to produce realistic variations $S_{L}(0)$, which is presented in Fig. 4. Following Williams (1985), we use a volumetric heat loss term \mathcal{L} that is linear in $\left(T-T_{0}\right)$ (ser also Poinsot $\epsilon \boldsymbol{t}$ al. 1991):

$$
\begin{equation*}
\mathcal{L}=\frac{h}{3} \tau \rho_{0} \frac{S_{l}\left(Z_{\mathrm{tt}}\right)^{2}}{D_{\mathrm{th}}} C_{p} T_{0} \frac{\sigma}{1-n} \tag{18}
\end{equation*}
$$

where h is a model constant. chosen as $h=0.031$, and $\tau \equiv\left(T-T_{0}\right) /\left(T_{b}\left(Z_{3 t}\right)-T_{0}\right)$.
As seen in Fig. 4. no abrupt transition to extinction is observed for the adiabatic singlestep chemistry model. where very lean and very rich mixtures continue to burn. As a result, flame speeds are unrealistically high in these lean and rich regions. However. a domain of flammability is obtained using nonadiabatic singlestep chemistry. This domain compares reasonably well to computations performed with a detailed mechanism proposed by Westbrook \& Dryer (1981). for $\mathrm{C}_{4} \mathrm{H}_{4}$-air flames. While the prediction of the rich Hammability limit is overestimated, the overall level of accuracy is dermed acceptable at the present stage.

Figure 4. Variations of normalized flame speed with equivalence ratio, s(o). for a one-dimensional, homogeneous, laminar flame. o: Adiabatic one-step chemistry: - : Non-adiabatic one-step chemistry; o : Detailed mechanism.

Figite 5. Case 1 with $(Z)=Z_{s t}=0.5, \Delta Z=0.2$ (at inlet), and $I_{Z} / \delta_{L}^{0}=14$, where δ_{L}^{0} is the thermal thickness of the perfectly premixed flame with $Z=\langle Z\rangle$. $+:$ Reduced $Y_{f} ;-:$ Reduced $Y_{O} ;-:$ Reduced temperature τ.

Figure 5 presents a typical snapshot of Y_{F}, Y_{O}, and temperature profiles across the flame zone. Species mass fractions are normalized in this figure by their stoichiometric values. One difficulty in these low Reynolds number simulations is that the perturbations in Z imposed at the inlet are strongly affected by molecular diffusion and are significantly damped before they reach the flame. In this situation. the flame response has the undesirable feature of depending on the flame location inside the computational domain. Nevertheless, we feel that the present simulations

Figlef 6. Case 1 with $(Z)=0.4, \Delta Z=0.2$ (at inlet), and $I_{Z} / \delta_{L}^{0}=11$, where Δ_{L}^{0} is the thermal thickness of the perfectly premixed flame with $Z=\langle Z\rangle$. - : reduced flame thickness : —— reduced maximum temperature $\boldsymbol{\theta}^{\prime} ;+$: reduced flame speed $r^{\prime} ; \Delta$: flame distance to inlet.
can still be used to describe the basic features of partially premixed flames.
The \cdots nmple presented in Fig. 5 corresponds to a perturbation in Z with alternative fuel nct: $\left(Z \geq Z_{s t}\right)$ and fuel lean ($Z \leq Z_{s t}$) pockets. The excess fuel and excess oxidizer that are not consumed by the premixed flame will burn in a diffusion flame. The intensity of this post-diffusion flame is rather low and in the case of Fig. 5, some unburnt fuel is found at the outlet of the computational domain. In a similar simulation, but with $\langle Z\rangle=0.45$. there is no leakage of fuel.

Figure 5 presents typical time variations of the different diagnostics used to characterize the flame response. When the flame meets a pocket with a mixture composition close to stoichiometry, the flame speed and temperature increase, the flame thickness decreases, and the flame moves upstream in the computational domain. The converse is true when a pocket of mixture composition further from stoichiometry reaches the flame. Variations in flame speeds are large, with $0.5<r^{\prime}<1.5$. and show deviations from a sinusoidal evolution: the time required for the flame to cross a given constant- Z pocket increases as Z noves away from stoichiometric conditions. This bias accounts for a reduced overall mean combustion rate compared to the perfectly premixed case, thus $R^{\prime}<1$.

Depending on the values of $\langle Z\rangle, \Delta Z$, and l_{Z}, the effect of partial premixing on the mean reaction rate can either be positive, with $R^{\prime}>1$, or negative, with $R^{\prime}<1$. Figures 7 and 8 show that this effect remains weak, however, except for conditions close to the flammability limit. In Fig. 7 , mixtures with $\Delta Z=0.2$. and $\langle Z\rangle$ below 0.38 are quenched, while they would burn if perfectly premixed $(\Delta Z=0.0)$. Similarly, in Fig. 8 mixtures with $\Delta Z=0.2,\langle Z\rangle=0.4$, and $l_{Z} / \delta_{L}^{0}>14$ are quenched while they would burn if perfectly premixed. Fig. 8 also shows a comparison between the adiabatic and nonadiabatic simulations. Differences are

Figtre 7. Case 1 with variable $\langle Z\rangle$. o: R^{\prime} (reduced overall mean combustion rate) in partially premixed flames ($\Delta Z=0.2$ at inlet) ; a: R^{\prime} in perfectly premixed flames ($\Delta Z=0$.).

Figure 8. Case 1 with variable $l_{Z},\langle Z\rangle=0.4$, and $\Delta Z=0.2$ (at inlet). a: R (reduced overall mean combustion rate) in adiabatic flames; $\Delta: R$ in non-adiabatic flames; \times : asymptotic value S_{a} for adiabatic flames; 0 : asymptotic value S_{a} for non-adiabatic flames.
small until transition to extinction is observed in the non-adiabatic case. In both cases, as l_{Z} becomes very large, the mean flame speed tends to an asymptotic value S_{n} given by the following expression:

$$
\begin{equation*}
S_{\mathrm{a}}=\frac{2}{\frac{1}{S_{L}^{-}}+\frac{1}{S_{L}^{+}}} \tag{19}
\end{equation*}
$$

where $S_{L}^{-}=S_{L}(\langle Z\rangle-\Delta Z / 2)$ and $S_{L}^{+}=S_{L}(\langle Z\rangle+\Delta Z / 2)$. In Fig. 8, w'thout heat
loss, $S_{a} / S_{L}\left(Z_{s t}\right)=0.51 ;$ with heat loss, $S_{a}=0$.
In summary, partial premixing in the one-dimensional case leads to strong temporal variations of the laminar flame structure, and in particular to strong fluctuations in the instantaneous values of the flame speed S_{L} and the mass burning rate \dot{m}. In the absence of quenching, these variations tend to cancel in the mean, and $\left\langle S_{L}\right\rangle$ and $\langle\dot{m}\rangle$ remain close to the values of S_{L} and \dot{m} obtained in perfectly premixed ystems. However, quencining induced by partial premixing has been observed in the case of strong variations in mixture composition, characterized by large amplitudes of $\Delta Z>0.2$, or large length scales of $l_{Z} / \delta_{L}^{0}>10$.

5. Case 2: Two-dimensional, y-inhomogeneous, steady, laminar flames

In this configuration, inhonogeneities in the reactant species exist in the direction tangent to the flame. allowing the solution to converge to a steady state. This configuration is depicted in Figure 2, where the mixture fraction at the inlet is given by:

$$
Z=(Z)-\frac{\Delta Z}{2} \cos \left(\frac{2 \pi y}{l_{Z}}\right)
$$

For two dimensional flows, the parameter space beromes larger than the onedimensional flows discussed previously, and we restrict ourselves to varying (Z) and ΔZ while maintaining l_{Z} constant. As these parameters are varied, we expect both the flame structure and propagation speed to change. As a result, the flame can advance or recede out of the computational domain. To avoid this probiem. the inlet velocity, which remains uniform, is adjusted to accommodate changes in the flame speed. This procedure has been used in partially premixed combustion (Ruetsch et al. 1995 and Ruetsch and Broadwell 1995) and results in a steady-state configuration. This allows a well defined flame speed to be assessed in each run. Note that by defining the flame speed as the inlet velocity required to reach a steady state, we are considering a displacement speed.

As in the one-dimensional case, the mixture fraction is greatly modified from the time it is specified at the inlet to the time it reaches the flame. The range in mixture fraction at the flame surface is affected by several phenomena, including diffusion and the strain induced by the flame. Strain does not directly affect the mixture fraction, but does so implicitly by modifying the mixture fraction gradient in the lat•ral direction. which alters mass diffusion. The range of mixture fraction on the flame surface for all cascs is shown in Fig. 9 as a function of the average mixture fraction. In addition to the reduction in mixture fraction range, the minimum and maximum values are no longer centered arouad the average value of the mixture fraction. The reason for this asymmetry becomes clear when we exanine the structure of the flames when exposed to gradients in the mixture fraction.

5.1 Flame structure

The reaction rates and streamlines for flames subjected to different levels of $\langle Z\rangle$ are displayed in Fig. 10. For $\left.{ }^{\prime} Z\right\rangle=Z_{S T}=0.5$, we observe two leading edge flames within the domain. Since $\langle Z\rangle$ is at the stoichiometric value, we expect two equidistant leading edge flames and two equidistant troughs. As we decrease $\langle Z\rangle$ from the

Figtre 9. Range in mixture fraction on flame surface as a function of (Z). The differen symbols correspond to different values of ΔZ at the inlet according to the following: - represents the homogeneous case ($\Delta Z=0$ at inlet), + represents $\Delta Z=0.2$, o represents $\Delta Z=0.4$, and Δ represents $\Delta Z=0.8$. For the chemical scheme used in this case, $Z_{S T}=0.5$.
stoichiometric value, this symmetry no longer exists. For the case with $\langle Z\rangle=0.45$, we still have two stoichiometric points on the flame surface, although they have moved closer together. For the other cases of $(Z)=0.4$ and 0.35 . stoichiometric points no longer exist on the flame surface. In these cases, the leading edge is located where the mixture fraction is closest to the stoichiometric value.
The reason for the asymmetric nature of the minimum and maximum values of Z on the flame surface, as observed in Fig. 9, can be easily understood from the flame shapes in Fig. 10. Diffusion of species has a longer time to act before reaching the flame surface the farther the flame is from the inlet. Therefore, the difference in mixture fraction along a horizontal line between the flame's leading edge and inlet is smaller than this difference along a line passing through the flame trough. For the rase of $(Z)=0.5$. the maximum and minimum values of Z are both located in the troughs which occur at the same horizontal location, and we have symmetry in minimum and maximum values. As we depart from average stoichiometry, with $\langle Z\rangle<Z_{S T}$, the trough with rich composition moves forward and the lean trough barkwards, so that diffusion has less time to act in the rich branch as compared to the lean branch. Therefore, the mixture fraction in the lean branch moves closer to stoichiometry.
Another factor that affects Z on the flame surface concerns the role strain plays on species diffusion. The divergence of streamlines in front of the leading edge reduces the mixture fraction gradient along the flame surface at that location, thus inhibiting diffusion. The opposite orcurs in the flame trough, where the gradient in mixture fraction steepens due to the convergence of streamlines, accentuating the

Figitre 10. Contour plots or streamlines and reaction rater for simulations with $\Delta Z=0.4$ and: $\langle Z\rangle=0.5$ top left. $\langle Z\rangle=0.45$ top right $\langle Z\rangle=0.4$ bottonaleft. and $(Z)=0.35$ bottom right

Figere 11. Propagation speed as a fuaction of mixture fraction. The speeds are normalized by the bomogeneons case at stoichionetric conditions, $S_{l}^{0}\left(Z_{S T}\right)$, on the left. and by the homogeneots case at the average mixture fraction, $S_{L}^{0}(\langle Z\rangle$; on the right. In addition to displaying the average mivture fraction of the rum with the symbels, the range of mixture fraction on the flawe surface is shown by the lines through each symbol. The legend for the symbols is provided in Fig. 9.

Figitaf 12. Flame wrinkling for the simulations. See Fig. 9 for a description of the symbols.
difusion process.
As we progress towa di lean mixture fractions to the point xhere stoichometric conditions do not exist on the flame surfact, the flame shape changes to the print where the spatial extent doubles, as the trough cor respondirg to rich mixture fracions disappears. This, in effect, alters the parameter l_{Z} without changing thecomputational domain. This doubling in lateral dimension has an effect on the Hame sperd as well as the flame shape, as is discussed in the next section.

5.2 Fleme spr:d

When discussing the change in flame sped due to the inhomogenems medium. it is useful to relate this displacement speed to that of the homogeneous case at both the average and stoichometric mixture fractions, as shown in Fig. 11. In these figures, both the average mixture fraction at the inlet and the range of mixture fraction on the flame surface are shown by the symbols and lines, respectively. He begin discussion of the flame speed examining what occurs when the average composition is stoichiometric. Independent of the range in mixture fraction at theflame surface. the propagation speed remains that of the homogeneous case. This behavior was previously observed (Ruetsch and Broadwell 1935) when studying confined flames. For this value of l_{z}, the lateral divergence of streamlines due to heat release is greatly inhibited by the confinement, and therefore the heat release merhanism responsible for enianced tlame speeds, as in the case of triple Hames (Ruetsch and Broadwell 1995). is absent. As we depart from stoichionetry in the moas. the flame shape changes. effertively doubling $l \%$, and we quich: meve in:o a regime where streambine divergence is much stronger in front of the leading eder. An increase in flame speed is observed relative to $S_{L}((Z))$. and in some cases, en relative to $S_{l}^{\prime \prime}\left(Z_{5 r}\right)$. It is interesting to note that Hames with lear rompositions

Figine 13. Average local reaction rate along flame surface mormalized by the homogereous case at $Z_{>T}$ (left) and $\langle Z$) (right), as a finction of the avirage mixture fraction.
along the entire length of the flame designated in Fig. 11 by lines that do not rross $Z=Z_{S T}=0.3$. can achieve flame speed- greater that the homogenems stoichionetric case.

As (Z) further derreases. the reduction in renction rate along the flame intensifies. and in spite of the streamline divergence the Hame sperd drops. As the flame sperd drons. and along with it the inlet velocty in orcher to stabilize the flane in the compurational domain. the mixture has a buget tinu to lateraliy diffuse as it approaches the flame. It is for this reason that the small range in mixture fraction at the flame surface is olserted for very lean mixtures. apparent from Fig 9. and is why the flame sperd collapers to the honugenermin cine.

Thus far we have concentrated on variations of Hane speryl with the arrage mixture fraction. We now turn our atrention to how the fluctuation in mixture fraction about the me-an afferts the flame spervl. As we have already mentioned, at mean stoichometry the degrer of inkonogeneity plays uo role in flame sped. As the average mixture beromes lean. the flame spery incteasex as long as the composition at the leading edge stays near the stoichometric talue. For flames where the componition aloug the surface is alvays lean. the greater sperds in aboplute terms ocrur when the tange in mixture fration is the larges. This feature can be explained if we re-examine the flame structure. The streamline divergence de , ends on the flame rumature, which itself is deternined by the local burning rate hence speries composition. Therefore. the greatest range in mixture fraction along the surface would gencra'e the greatest streamline divergener and increase in Hamesperd. This does not hold when the composition along the flane surface crosses storhometric values.

5.9 Fuel consumptzon

Having discussed the Hame structure and propagation. we now turn our attention
to fuel consumption. Due to mass ronservation, the glohal consumption rate- eiven by R and R are equivant to the flame speed ratios shown in Fig 11. There are sighe discrepanci- letween the global reaction rate and flame speed ration renthing fron excr-s fuel laving the doman in cases which have stoichionetric values on the Bank sufface. However. He donain is lage enough. with a grid of $\mathrm{N}_{\text {, }}=361$ and $X_{s}=121$, that almost all of the fael is burned in either the premixed or diffuson mode before the fiow exists the domain We therefore use the flame sped ration in Fig 11 as R and R^{\prime} in the following discussion.
For laninar thanes we decompoee the global buruing rate in ternis of the flanewrinking. II. and the average burning rate along the Eatwe surfarr, $(\mathrm{r}) \mathrm{b}$ or $\left(r^{\prime}\right)$.). arcordine to the fillowing relations:

$$
\begin{equation*}
R=r), W: \quad R=\left(r^{\prime}\right), W \tag{20}
\end{equation*}
$$

Th. frame wrinkling is given in Fis. 12, and the nean reacton rates along the flame surface in Fie 13 lit is clear from Figs, 12 and 13 that fame wrukling is the predoninant factor in the glohal reection rate modification.
The prodominance of flame wrinkling over reaction zone modification is apparent for this steady state confguration. We must sow turn our attention to assesing whether this trend prevails when we consider flows with unsteadiness in both the sralar and flow field. We address this issue for unsteady scalar fields in the following case. followed ty a fully turbulent configuration.

6. Case 3: 2D, xy-inhomogeneous, unsteady, laminar Alames

Case 3 meludes two slighty different configurations, shown in Fig. 14 In Cave 3a, the pettuthation in Z correpond to an isolated pair of foel lean and fwel rech prikets. whresar in Case 3b, the perturbations in 2 correspond to an infinte attay of such perket. Cioe 3 a provides basic infortation on the impulse response of a laninar fane subjected both to normal sad tangential Z gradients, while Caxe 31 , provides mformation on the response of a flame to periodic Z forcing. Table 11 give the cun parameters for the different simulations

Table II Simulation parameters for Case 3

Run	Case	(Z)	Δz	Iz/fit(Z)	h	
A	3a	6.4	02	3.0	0.	127×127
B	3a	0.35	0.2	3.5	0	127×127
C	36	0.4	02	5.	0.	127×127
D	31.	0.35	02	3.5	0.	127×127
E	31.	0.3	02	1.9	0.	127 x 127
F	3n	0.4	0.2	5.0	0031	127×127
G	3 n	0.1	0.2	62	0031	127×127

Figtar 14. Cas 3. Two dimensmal. ay intomogeneons, unstead, lammar
 pockets, of sise $1 /$, Be an mfinte array of swh porke.

Figur. 15 presat. a tywal staphbot of isorontone of -1. Z. . and Yr. as Stained \mathbf{n} ron A Sote that the generalizel reartion progre-- variable defined in (7) is a gool narkes of the prenixel tlank front. Berate it is afferted by mixime within the hurnt gate. Yis i, wot a good choicc to trark the flane fromt. At the top of the figure, the flane is sen to interact kith a furl leat proket ($Z=0.3$). during which it decelerate and is convected downstram. At the lwotor of the figure. the flame croses a fuel rich pocket $1 Z=Z$, $=031$, archliates, and is converted upotream. Thene wriation in the loral Gatie dipherrient yurd ur cortespond to strong variations in the heal flame structure, as oboerved in Case 1 They also correspond to flame ouffare production

As done in the straty siate situation of Cas- 2 . ow now compare the relative
 nodification of the flame trueture through (r^{\prime} 's, and the seneration of flame sur face due to wrinkling. U. Figure 16 compares tive temporal evolution of the relative contributions of thes two tetme to the global reaction tate from data obtained in

 fieyre. isocontmiss of rearimite $-T, \square$ and mixture fraction Z, \square,
 mas fraction I_{r}, \longrightarrow ?

 time $\ddot{i}_{i}((Z)) / S_{1}(Z)$

Figthe 17. Case 3h, run C Time evolution of the relincel giobal reaction rate \boldsymbol{R}^{\prime}

 time $\left.\mathscr{C}_{2}\|(Z)\| S_{c} \| Z\right)$

Figize 18. Case 3n, rim A. Time ewolution of the suffac-averaged fiame stretel (N): (-I, and its two components: the sufface averaged strain rate (an)s
 made ondimensonal by the laninat flame time $\left.t_{i}^{\prime}|(Z)| / S_{i} /(Z)\right)$.
rui A. Data from run A indicate belarior that is simint to the steady state sithation in Case 2. Partial premixing mereases the giobal reaction rate. $r>1$, and the magnitude of the incriase is typically 30.40%. The doninant effer of partial premixing is a prodiction of tlame surface area. $\left(r^{\prime}\right)_{s} \approx 1$ and $R^{\prime} \approx 11$.
Figure 17 presents sumilat results for run C. After an mithal transient phase. the flane tesponse teaches a limit eycle with periodie time vatiations. tt the limit cyck. the giobal reaction rate is increated compaied io the perfertly promixed configuration. $R>1$. the magnithie of that inervase is small typirally 10% and this increase is related to tane suface prochection resulting from partial prouxing. $R^{\prime}=\|$

As indicated by Eq. 13), the production of thame suffact area is ueasured by Ahme stretch, and the sufface averaged tame streth (k), can be decompowel into

Figcre 19. Test of Eq. (21): $K_{a}^{-P P}$ vs $\left(\Delta w / l_{Z}\right) \phi_{L}^{0} / S_{L}(\langle Z\rangle)$). o Case 3 a (runs A . B) : - Case 3 b (runs C-E); © Case 3 a with heat losses (runs F-G); \circ A case with a single lean pocket.
a strain rate term. $\left(a_{T}\right\rangle_{S}=\langle\nabla \cdot u-n n: \nabla \boldsymbol{u})_{S}$, and a propagation term, $\langle u \nabla \cdot n\rangle_{S}$. Figure 18 presents the temporal evolution of these two components of flame stretch and shows that partially premixed effects on stretch are not limited to the propagation term. A strong positive contribution of $(a \gamma)_{S}$ is also observed. This contribution corresponds to a modification of the flow streamlines upstream of the curved flame, as observed in Fig. 10 for the steady configuration of Case 2.
It remains, however, that while the details of the temporal variations of $\langle\kappa\rangle_{S}$ depend on the effects of both hydrodynamic straining and flame propagation, the basic driving mechanisn for flame surface production is the variation of the flame propagation speed w with mixture composition. A simple estimate of the global flame stretch induced by partial premixing may then be expressed as follows:

$$
\begin{equation*}
\alpha P P \approx \frac{\Delta u}{l_{Z}} \tag{21}
\end{equation*}
$$

where Δw is the amplitude of the variations of w measured at the flame location (due to molecular diffusion and unsteady effects, $\Delta \boldsymbol{w}$ is somewhat smaller than $\left.\left.S_{L}\left(Z^{\prime}\right\rangle+\Delta Z / 2\right)-S_{L}(\langle Z\rangle-\Delta Z / 2)\right)$, and I_{Z} is the size of the pocket. We use the peak value of $\langle\kappa\rangle_{s}$ observed in the flame's response to perturbations in Z to estimate the global flame stretch. In nondimensional form, we get the following estimate for a Karlovitz number induced by partial premixing:

$$
\begin{equation*}
K_{a}^{P P} \approx \frac{\Delta w}{l_{Z}} \frac{\delta_{L}^{0}((Z\rangle)}{S_{L}(\langle Z\rangle)} \tag{22}
\end{equation*}
$$

This relation is tested in Fig. 19 and is found to be satisfactory. Note, however. that the values of this Karlovitz number remain small. $K_{a}^{P P} \leq 0.2$.

In summary, partial premixing in Case 3 leads to both modification of the flame structure and production of flame surface area. In the absence of quenching, the dominant effect on the mean reaction rate is flame surface wrinkling. $R^{\prime} \approx \boldsymbol{W}$. It

Mixture fraction 2
Ficum: 20. Cas- 4. Jonit probabhity density function of the reduced nasburning rate, r^{\prime}, and the flume mixture fraction. Z. Tme $=4 t_{/} / \mu^{\prime}$.
is always positive. $R^{\prime}>1$. lut the magnt ude of that tfiet as measured by an

Talke III Intial condition for Case 4 sinulations

Case	(0)	(Z)	0^{\prime}	z		$u^{\prime}{ }^{\prime} S^{\prime}$	$\iota_{1} \overbrace{i}^{0}\left(Z_{0}\right)$	$R_{\text {frt }}$
4.	0.8	0.049	03	0.018	2	7.3	2	3
48	0.8	0.049	0.3	0.018	2	2.9	2	25

7. Case 4: 3D, zyz-inhomogeneous, unsteady, turbulent flame

In this case. partial premixing effects are compared to those due to the turbulent notious. The numerical configuration coreeponds to a pe mixed thame propagating into three dimensional, decaying, isotropic turbulent flow, with variable equivalence ratic. We refer the reader to Trouve \&- Poinsot 1094 for more information on the configuation. as well as the initial and boundary conlitions. The urv feature in the present simulations lies in the initialization of the cralar field in the flow of fresh wactants. Y_{f}. Yo, an. Yy, are specified accorling to a model energe spectrum. as propesed by Eswaran \& Pope (1988). The intial probability distribution of equivalcuer ratio is a pdf whi two peaks at o $=0.5$ and $o=1.1$. Becatse of turbulent mixing, this distrilution quichly evolven to a Gias ian pif. Two lifferent

Figure 21. Case 4A. Time evolution of the reduced total reaction rate, R^{\prime} (-) , the reduced mean mass burning rate, \hat{r} (0), and the reduced total flame surface area. $(W)(-)$). Time is made non-dimensional by the initial, turbulent eddy turnover time, l_{1} / u^{\prime}.

Figure 22. Case 4B. Time evolution of the rediced total reaction rate, \boldsymbol{R}^{\prime} (-), the reduced mean mass burning rate, $\widehat{r^{\prime}}(0)$, and the reduced total flame surface area, $(W)(-)$. Time is made non-dimensional by the initial, turbulent eddy turnover time. l_{t} / u^{\prime}.
simulations were performed. The run parameters are given in Table III. In this table l_{z} designates the integral length scale of the scalar field, u ' the turbulent rms velocity, l_{t} the integral length scale of the velocity field, and $R \epsilon_{i}$ the turbulent Reynolds number (based on u^{\prime} and l_{t}). Cases 4 A and 4 B correspond to strongly and moderately turbulent flames, respectively. Also, the present simulations use the single step reaction mechanism proposed by Westbrook \& Dryen (1981).

In the simulations, partial premixing results in strong spatial variations of the

Figure 23. Case 4A. Probability density function of flame stretch, κ. Stretch is made non-dimensional by the laminar flame time $\delta_{L}^{0}((Z)) / S_{L}(\langle Z))$. Time $=4 l_{t} / u^{\prime}$.
local combustion intensity along the turbulent flame front, consistent with the findings from the previous cases. In Fig. 20, this intensity is quantified by the reduced mass burning rate per unit flame surface area, r^{\prime}. where r^{\prime} is scen to vary between 0.5 and 1.5. r^{\prime} is also seen to correlate strongly with the local mixture composition. as measured by the flame mixture fraction. Interestingly, the correlation is approximately linear, so that departures of the mass burning rate in from the reference value $\dot{m}(\langle Z)$) (obtained from a homogeneous, planar, laminar flame) tend to cancel in the mean when averaged over the whole flame. This tendency is confirmed in Figs. 2i and 22. which present the temporal evolution of the two components of the total reaction rate, written for the turbulent case as:

$$
\boldsymbol{R}^{\prime}=\hat{r^{\prime}}(W)
$$

In Cases 4A and 4B, tir: mean mass hurning rate remains within 10% of unity, so $\bar{r}^{\prime} \approx 1$, and the total reaction rate is approximately proportional to the flame surface area, $\boldsymbol{R}^{\prime} \approx(\boldsymbol{W})$.

There are two mechanisms responsible for the production of flame area in these turbulent simulations: the interaction of the turbulent velocity field with the flame surface, and the partial premixing mechanism described in Cases 2 and 3. Eq. (21) can be used to determine the relative weight of these two nechanisms. The following nondimensional number gives an estimate of the ratio of stretch resulting from partially premixing to stretch due to the turbulent motion:

$$
\begin{equation*}
N_{T} \equiv \frac{\Delta u}{l_{Z}} \frac{l_{t}}{u^{\prime}}=\frac{\Delta w}{S_{L}((Z))} \frac{\delta_{L}^{0}((Z))}{l_{Z}} \frac{l_{t}}{\delta_{L}^{0}((Z\rangle)} \frac{S_{L}((Z))}{u^{\prime}} \tag{23}
\end{equation*}
$$

where the turbulent stretch is estimated using the integral time scale of the turbulence. If $l_{1} \approx l_{Z}, N_{T}$ may be further estimated as $\left(Z^{\prime} /\langle Z)\right)\left(S_{L} / u^{\prime}\right)$. Hence, N_{T}
scales as the inverse of the ratio of a characteristic turbulent flow velocity divided by a laminar flame velocity. N_{T} is likely to remain small in most practical situations. At the initial time, $N_{T} \approx 0.03$ ia Case 4 A ; and $N_{T} \approx 0.1$ in Case 4 B .

This last point is illustrated in Fig. 23. Figure 23 presents a typical probability distribution for flame stretch, as obtained in Case 4A. Stretch is norn:s) in Fig. 23 by a laminar flame time so that stretch values can be directly interpreted as values of the flame Karlovitz number. \boldsymbol{K}_{a}. The simulation values of \boldsymbol{K}_{a} range from -8 to 4 . These values are quite large and the simulated flame is beyond the domain of possible stretch resulting from partial premixing, ($\boldsymbol{K}_{a}^{-P P} \leq 0.2$). Similar results are obtained in Case 4B.

In summary. partial premixing in the turbulent case leads to strong variations in the local flame mass burning rate, but these variations tend to average out. $\widehat{r^{\prime}} \approx 1$. Due to the much larger values of turbulent stretch compared to partial premixing induced stretch. the production of flame surface area by partial premixing remains negligible. $V_{T}<0.1$.

8. Conclusions

Direct numerical simulations of premixed flames propagating into laminar or turbulent flow, with variable equivalence ratio. are used in this paper to study the effects of partial premixing on the mean reaction rate. The flamelet theory is shown to provide a convenient framework to describe partially premixed flames.

Partial premixing leads to strong variations of the local flamelet structure. and in particular to strong variations of the mass burning rate per unit flame surface area. \dot{m}. in the absence of quenching, these variations tend to average out and the effect of partial premixing on the mean flamelet structure remains limited, $\langle\dot{i n}\rangle_{S} \approx i_{L}(\langle Z\rangle)$. Yote, however, that quenching induced by partial premixing has been observed in the present simulations, in the case of strong variations in mixture composition. characterized by large amplitudes ($\Delta Z>0.2$) or large length scales ($l_{Z} / \mathrm{t}_{L}^{0}>10$).

Partial premixing induces flame stretch and, in the absence of quenching this effect, is dominant for laminar flames. It is always positive and will result, in the laminar case, in a partially premixed flame burning faster than the corresponding perfectly premixed flame. The magnitude of the effect of partial premixing on flame surface production is measured by Eq. (22). Typical values of the flame Karlovitz number are below 50.2 , and this effect will be negligible in highly turbulent flames. This has been observed in the turbulent flames of this study, where wrinkling effects from partial premixing are small compared to wrinkling created by the fluid motion for the given initial conditions.

REFERENCES

Blonsidge. G.. Dowling. A., Hoopit. N. \& Langhorne, P. 1987 Active control of reheat buzz. 25th Aerospr . J.unces Mecting.
Candel. S. M. \& Poinsot, T. 1990 Flame stretch and the balance cquation for the flame surface area. Combust. Sci. Tech. 70, 1-15.

Eswaran, V. \& Pope. S. B. 1988 Direct numerical simulations of the turbulent mixing of a passive scalar. Phys. Fluids 31 (3), 506-520.
Haworth. D. C. \& Poinsot, T. J. 1992 Numerical simulations of Lewis number effects in turbulent premixed flames. J. Fluid Mech. 244, 405-436.
Lele. S. 1992 Compact finite difference schemes with spectral like resolution. J. Comput. Phys. 103, 16-42.
Müller. C., Breitbach. H. \& Peters, N. 1994 Partially premixed turbulent flame propagation in jet flames. 25th Symp. (Int.) Comb., The Combustion Institute.
Ponsot, T.. Veynante. D. \& Candel, S. 1991 Quenching processes and premixed turbulent combustion diagrams. J. Fluid Mech. 228, 501-605.
Poinsot, T. \& Lele. S. 1992 Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104-129.
Pope. S. 1988 The evolution of surfaces in turbulence. Int. J. Engr. Sci. 26, 445-469.
Ruetsch. G. R., Vehisch, L. \& Liñán. A. 1995 Effects of heat release on triple flames. Phys. Fluids. 7, 1447.
Ruetsch. G. R. \& Bhoadwell. J. E. 1095 Effects of confinement on partially premixed flames. Annual Research Briefs 1995. Center for Turbulence Rescarch. NASA Ames/Stanford Cniversity. 323-333.
Trocit., A. \& Poinsot, T. 1994 The evolution equation for the flame surface density. J. Fluid Mech. 278, 1-31.
Veynante. D., Vervisch, L.. Poinsot, T.. Liñán. A., d Rletscin. G. R. 1994 Triple flame structure and diffusion flame stabilization. Proceedings of the 1994 Summer Program. Center for Turbulence Research. NASA Ames/Stanford University. 55-73.
Westbrook, C. \& Dryeh. F. 1981 Simplified Reaction Mechanism for the Oxidation of Hydrocarbon Fuels in Flames. Combust. Sci. Terk. 27, 31-43.
Willams. F. A. Combustion Theory. Addison-Wessley. NY. 1986.

NEXT DOCUMENT

A dynamic subgrid-scale model for LES of the G-equation

By A. Bourlioux ${ }^{\mathbf{1}}$, H. G. Im $^{\mathbf{2}}$ and J. H. Ferziger ${ }^{\mathbf{3}}$

1. Introduction

Turbulent combustion is a difficult subject as it must deal with all of the issues; found in both turbulence and combustion. (We consider only premixed flames in this paper, but some of the ideas can be applied to the non-premixed case.) As in many other fields, there are two limiting cases that are easier to deal with than the general case. These are the situations in which the chemical time scale is either much shorter or much longer than the time scale associated with the turbulence. We deal with the former case. In this limit, the flame is thin compared to the turbulence length scales and can be idealized as ar: infinitely thin sheet. This is commonly called the flamelet regime; it has been the subject of many papers and the basis for many models (see, e.g., Liñan \& Williams 1993).

In the flamelet model, the local flame structure is assumed to be identical to the laminar flame structure; thus the flame propagates normal to itself at the laminar flame speed, S_{L}. This allows the use of simple approximations. For example, one expects the rate of consumption of fuel to be proportional to the area of the flame surface. This idea allowed Damköhler (1940) to propose that the wrinkled flame could be replaced by a smooth one which travels at the turbulent flame speed, S_{T}. defined by

$$
\begin{equation*}
S_{T} / S_{L}=A_{L} / A_{p} \tag{1}
\end{equation*}
$$

where A_{L} is the total flame surface area and A_{p} is the area projected onto the mean direction of propagation. This relation can be expected to be valid when the flame structure is modified only slightly by the turbulence. A measure of the degree of modification is the Karlovitz number, Ka; Eq. (1) should hold when this parameter is not too large.

More recent approaches have attempted to relate the turbulent flame ε eed to turbulence intensity, u^{\prime}, which. presumably, characterizes the wrinkling of the flame. These result in relationships that typically take the form:

$$
\begin{equation*}
s_{T} / S_{L}=1+C\left(u^{\prime} / S_{L}\right)^{\alpha} \tag{2}
\end{equation*}
$$

For the turbulent flow dominated by an inertial range, Pocheau (1992) derived a linear relation (Eq. (2) with $\alpha=1$). Earlier work (Clavin \& Williams 1979) also

[^3]predicted linear thehavior in the limit of high tur'sulence intensity: other authors have produced theories that give different expments (Yakhot 1988. Kerstein \& Ashurst 1992). In §3. we shall use DNS to demonstrate tiat the linear relation is :alid. at least in the limit appropriate to LES: we shall use the database of Trouve \& Poinsot (1994) and the zero heat-release data of Im (1996).

2. Large eddy simulation based on the G-equation

The above idcas can be applied to nodeling the small sraten of the wrinkling and thus produce the basis for large eddy simulation. It can be shown that a surface that meves at speed S_{t} urnnal to iself in a moving fluid caia be represented as a invel sarface of the (-rquation (Kerstein et al 1988):

$$
\begin{equation*}
\left.\left.\frac{\partial G}{\partial t}+\frac{\partial}{\partial r_{1}}(u, G)=S_{L} \right\rvert\, \Gamma G\right\} \tag{3}
\end{equation*}
$$

To perform large -ddy simulation the Gerguation is filtered to produce an equatun for \bar{G}. a quantity that is smonther than G. This quation contaiss, of conirse. terms representing efferts of the seales that have brent filtered out: these are the subgrid scale terms that must be represented by a mordel (Im 1995). In a simulation based on the filtered G.equ...non. the propagating flaur is considered a contoni of G. which must propagate at a speed. S. greater than the laminar flame speed: the increased sped plays the role of a subgeid scale i.orthl: alternative approastos to nokeling will be distused later. The filtered G-equation can then be written:

$$
\begin{equation*}
\left.\frac{\partial G}{\partial t}+\frac{\partial}{\partial r_{j}}(u, G)=S \right\rvert\, \Gamma G \tag{4}
\end{equation*}
$$

winere

$$
\begin{equation*}
S / S_{L}=1+C\left(u^{\prime} / S_{L}\right) \tag{j}
\end{equation*}
$$

and u^{\prime} is tise velocity mistuation characterizing the umevelod scales and C is a conziant that can be pressribed or calculated be the dyitatur procedure. In an LES. u ' anust be modeled as weil. ilowever, as she present study is an iantial investigation of modeliag the G-eviation. we shail ralculate a' dirertly from the DNS velocity field. Likewise, the fiitered velocity fieid. u, is obtained direetly from the DNS field. For later reference, we iote that when the flame stretrit and the Karloritz nu:uber are not negligible, a diffusion-like term that represents the effert of stretch (Mataien) \& Mathowsky 1082) on Hame propagation shouid io inchioderl on the RHS of Eq. (3) or (4).

3. A priori test of the fiame area scaling law

We now present an a priori test of a dynamir suigrid-scale nemel for the turbulent flame sperd: it is basell on the model introduced by Bourlionx et ai. (1996). Combining Eq. (1) and Eq. (5!. wr obtais the following cquation:

$$
\begin{equation*}
S ; S_{l}=A_{l} / A=1+C\left(n^{\prime} / S_{l}\right) \tag{0}
\end{equation*}
$$

where $A_{\mathcal{L}}$ is the flanie area computed in a DNS. \bar{A} is the filtered flame area to be computed in an LES. and S is the flame speed used in the LES. The latter was disetised above and shonid be srlected to guarantee the correct overall burning rate. i. $\quad S . A=S_{i} A_{i}$. Eq. (6 is a useful subgrid-scale modet if one can sperify the moxtel parameters appropriately. In this section. We first validate the linear relation. Eq. (6). and determine the constant C by using the resolved flame area t_{i} compinted from the DNS results.

3.1 Test procedure

To cherk the velidity of Eq. (6), we proness the DNS databases in the Eilliming way

1. 1.?- tify fanme surface in the DNS G-feld and compute its area A_{L} by triangu baticis
2. Filtes : 6 gaid a obtained from the DNS database at rarious filter sizes 123 4.3. ... $=\mathrm{r}$ used. where 5 is the DNS mesh size).
3. For ear: Gliter erompute a' as the square root of the suigrid kiontic merge it itwe L_{2} aonmi if the difference between the resoived DSS welocity feld and the altered fird!.
4. Given the Gifered G-field. identify the filtered flarse surfare and comapute its arez A.
 of filter slese.

1.2 Detibuse:

 variable. c. from 0 (freh mixture to i iburnt gas). We begin by definity a fanusurfarr. Fribuing Frouver $\$$ Ponnset \{1994) we chonse the level surfare with $\mathrm{f}=0.5$ as th. flase fros: mad defin $G=r-6.5$. Heat release effecte are included in tiaDNS. Siare tibe siseraity dependis strongly on temperature, the turbubencr intensity raries signitaranth asross the flame sa; one must be carcfa: when computing the turbubener intenaty $s^{\prime \prime}$; the value on the unburci side of the flame-should be usent In prartior, we obtain u^{*} by taking a 2. Fourier transform of the veiority field on cross-sertions ahead of the flame. averaging over the unburnt side of the cionain. Our tests show that the choice of averaging volunce is not important as lonig as it is suffiriently far froin the boundary.

The smord data set is the result of DNS of the passive G equation in forcet isoimpir turbukeact (Im 1996). There is wo heat release in this simulation. Severai simplifications are used in the test proredure:
i. The if sariable is avalaibe from the DNS and ran be filtered for a prori tons.
2. In thri abrence of heat release. any contour of G can be considered a fianic sum face. Th- average front area can be computed from the volume ave age of $\boldsymbol{T}_{\mathrm{I}} \mathrm{G}$ (Kerstein Ct al. 1988).

FiguaE 1. Ratio of the resolved DNS flame area to the filtered flame area as a fuaction of the subgrid kinetic energy u^{\prime}. DXS data by Trouve d: Poinsot (1994).
3. The entire flow firld can be used to estimate u^{\prime} - one does not nerd to distinguish tine 'burnt aus' 'unhurn'' regions.

9. 1 Resutts of the a priori rest

Results of a prore tests applied to the database of Trouve ef el. (1994) are shown in Fig. 1. The ratio of the DNS flame area A_{l} to the filtered liame area \bar{A} is ploted is. the subgrid kinetic intensity u^{\prime} at various times: the times shown are nornalized hy the largredly turnower time. The DNS data were obtained on a 128^{3} grid; each circle is a data point: the field was filtered to grids of $64^{3}, 32^{3} .16^{3}$ (F-16 on the figure $)^{3}(\mathrm{~F}-8)$ and $4^{3}(\mathrm{~F}-4)$.
Figure 1 clearly shows that, if Eq. (6) is valid. its coefficient is strongly time dependeut. There are two reasons for this. Firstly, the flame is initially planar and a few eddy innover times are required to reach an 'equilibrium' state. Secondly, the turbulence is not forced; its clecay can be sern from the decrease of the turbulence intensity at the roarsest filier size ($\mathbf{F}-4$) with time. Devertheless, the results do seem to indicate the existence of a universal relatiouship after the flame is sufficiently wrinkled: the change bet ween times $t=2.4$ and $t=4$ is small compared to the change from $t=0.4$ to $t=2$.4. Even at large tines, a distinction must be made between the brehavior at small scales (the $64^{3}, 32^{3}$, and 16^{3} filters) and the large scales. The linear fit (6) appears reasonable for the small seales hut not the large ones. This is an argument in favor of LES; modeling may be more univerval for the small scales than for the large scales.

Ir the passive database (lm 1996), the flame front is again initially planar but,
after several turnover tines. the lame area levels out. Plots of the invere of the filtered flame area w. :he turbulent intensity are very similar to those fonme from the Trouve; Poinsot database, with linear behavior for small values and quadratic behavior at larget srales.
We next test the dyuamic procrdure: it is based on the dynamic nod.t for monreartive flows. The parameter is adjusted using the smallest resolved wales of an LES. We shall uot address the question of estimating u^{\prime} but forus instoad on etimating the subgrid fiame wrinkling Given A_{1} and \bar{A}_{2}, the flame area at filter sizes Δ_{1} and Δ_{2}, and the corresponding suligrid turbulence intensities. ul, and u_{2}^{\prime}. we use Eq_{q}, 6) to chtain:

$$
\begin{aligned}
& A_{L} / A_{1}=1+C u_{1}^{\prime} . \\
& A_{L} / A_{2}=1+C u_{2}^{\prime} .
\end{aligned}
$$

This systrm can be solved to produce the resolved flame area A_{L} and/or the model con: tant C dyamically. Tabie 1 gives the results for the flame speed icharactorized of $1 / A_{L}$) obtained by applying the procedure described above to lim's data. The DNS field was filtered to $32^{3}\left(F_{1}\right)$ and $16^{3}\left(F_{2}\right)$ grids. The modeled turbuknt siped is conepared to the exart value obtained fron the DNS. The agreement is excellent. There is little wrimkling on the small scalos and the enhancement of the flane- survt (the difference betweva turbulent and laminar speeds) is very small. The table also gives the error in the enhancement. which is acceptable. In the next section. we will descrile attempts to incorporate this procedure into a dynamic LES.

Time	7.71	8.06	8.37	8.68	8.99	9.31
$S_{\text {dy }}$	1.0881	1.0598	1.0825	1.0887	1.1246	1.0700
$\bar{S}_{\text {esa, }}$	1.0906	1.0633	1.0804	1.0801	1.1069	1.067%
\mathbf{E}_{1} (turbutknt speed)	0.7\%	-0.3\%	0.2\%	0.8\%	1.6%	0.33%
E_{2} (enhanced sperd)	-8\%	-6\%	3\%	11\%	167	5\%

Table 1. A priori test of a dynamical model for \bar{S}.

4. LES modeling test with spectral method

In this section. the SGS model presented in $\boldsymbol{\$ 1}$ is tested by applying it to flames, in forced threr-dimensiona! incompressible homogentous isotropic turbulene: the simulations are carried out using a spectral method. Heat release is neglerted in this test so the G-field behaves essentially as a passive scalar.

The calculation procedure is as follows. The flow field is fully resolved on a 64^{3} grid using a pseudo-spectral metherd and second-order Runge-Kutta time-strpping (Rogallo 1081). The Reynolds number based on Taykor mirroscale is alwnt it. The turbulence is fored at the lowest wavenumber to maintain the kinetic onergy constant. At every time step, the flow field is filterel onto a 32^{3} grid: the resultiag velocity field is then used in solving the filtererl G-equation (4)

Figure 2. Spectra of turbuient kinetic energy and scalar fuctuations in the 64^{3} DNS calculation with $\mathbf{i}^{\prime} / S_{L}=0.5$.

When the code was nun with the model described abowe, numerical instability resulted. Investigation showed that the instabiity is due 10 an increase in the high wavenumber G-fiedd. i.e., to rusp and strong gradient formation. It is necessary to do something to stabilize the calculation; one possibility is to add a second order diffusive term. $\mathcal{D} \Gamma^{2}$ G. to the RHS of Eq. (4). As mentioned earler, similar terms are used to represent the effects of flame stretch and curvatire on the flame speed. In the present DNS. $v / v=4$ is used where $\nu=0.015$ is the molecular diffusivity.

Figure 2 shows the spectrum of turbulence kinetic energy and the scalar fluctuaions, $\left(g^{2}\right\rangle=\left\langle(G-\bar{G})^{2}\right\rangle$ for $u^{\prime} / S_{L}=0.5$ obtained from the DNS. The turbulence was forced to allow attainment of steady state spectra in a few eddy-furnover times. We shall use this DNS field to construct the initial condition for the LES.

Specifically, the following subgrid-scale nodels are tested:
A. $\dot{S}=S_{L}$, i.e. no subgrid-scale model is used.
B. $S=1.08 S_{L}$, where the constant 1.08 was obtained from the a priori test.
C. $\tilde{S} / S_{L}=1+0.411\left(u^{\prime} / S_{L}\right)$. a curve fit obtained from the a priori test similar to Fig. $1 ; u^{\prime}$ is computed from the DNS flow field.
D. $\dot{S} / S_{L}=1+C\left(u^{\prime} / S_{L}\right)$ with the parameter C computed dyuamically by filtering the G-feid to 16^{3} resolution and assuming that the model $\dot{S} / S_{L}=1+C\left(u^{\prime} / S_{L}\right)$ applies at that level. The ratio $\overline{\bar{S}} / \bar{S}$ can be computed as the area of the constant G surface at the appropriate level of filtering.
The predictions produced by all these models are compared with results obtained by filtering the 64^{3} DNS G-field. The Markstein diffusivity D used in ail of the above LES was increased to twice the value used in the DNS to achieve stability. This can be interpreted as an extra subgrid-scale scalar transport required to represen: the effects of the filtering. A more rigorous treatment of this term is necessary

Figure 3. The contours of \mathcal{G} obtained with various LES mociels after one eddyturnover time; (a) $\bar{G}=1.45$ which is the average vaiue and (b) $\bar{G}=1.95$. A single slice in 3-D is shown. In each figure, DNS result: -- ; model A: ---- : model B: …... ; mordel D: ——. Fianse propagates from right to left.
in the future; for example, a dynamic computation of \mathcal{D} can be appended to the computation of C.
Figure 3 shows two \dot{G} contours $(1.45,1.95)$ after one eddy turnover tinue for the various LES modeling strategies. Although the four fronts approximattly reproduce the smoothed DNS contour, the various models give different average flanie locations. It appears that model B overpredicts the turbulent Harre speed. while model A underpredicts it, as expected.
The volume-averaged front localion predicted by each LES model is crmparei to the D.VS result in Fig. 4. All three LES nodels (B,C.D) overpredict thr avetage flame speed. However, gradual improvenent is owtained as the level of cromplexity of the model changes from the simple a priori procedure to the more sophisticated

Figere 4. The volume averaged front location according to DNS and various LES models: model A: ---- : model B: - model C: : mordel D: —. .
dywamic model. It is interesting to observe that. although nodel A underpredicts the fanie speed. it gives the best agreement with the DAS.
It shouid be noted that the models used here are not complete. The supplementary subgiciseale transport in the LES simulation was imposed by ed hoc adjastment of the diffusion coefficient. and was chosen mainly to achieve numerical stability of the pectral methorl. Impowement might le obtained by introducing a Smagorinsky type model for the subgrd transport with model constant deternined dynamially. This is currently being investigated.

5. Dynamic LES using a bigh order upwind scheme

The mumerical stability issue acherosed in $\$ 4$ is easily understood by examination of Fig. 5 which gives several contiurs G at $t=0.25$. The major cause of instability is the formation of cusp:. whirliare present even at this early stage of the computation. Another difficulty is ?!e sequeraing together of contomrs. resulting in high gradients that are difficuit to capture numericaily. To addrens those difficulties. we repeated some of the experiments of $\xi 5$ using a different wiver for the G-equation, while retaining the spectral velowity field computation. The G-mquation is now solved using a numerical strategr based on level-set technology (Osher \& Sethian 1988. Sussman et al. 1994: for combustion applications Zhu d. Sethian 1992, Kleiu 1995). For the advection terma, we use a higher order upwind code developed by Leleque (1993). The source term on the right hand side of Ey. (1) is solved with the procedure of Zhu \& Sethian (1994). A reinitialization procrdure is performed at every time step; the G fanction is remitialized to be the signed distance function with respert to the flame, nsing the procedure of Sussman ef el. (1994). This means that only the $G=0$ contomer is consideted to be a flame. Figure 6 displays contonurs obtained with this methoul: accurary is maintained even when the flame becomes very distorted and to additional numerical viscosity uerds to be added when the

 prowagater from right to wht

Fioter 6. Contouts of the G function computel with hughe ortet wowd method. Flame propagater from night to left
mesh is coarsened. This method is roughly equivalent to introducing a viscosity of diffesivity selertively at those points at which the nethod of the urrwhur vertion hat trouble. i.e at cusps and in rexious of large gradient of C.

In Fig. 7, we compare the results of a 32^{3} ronyutation with the promedure with the fully reobved 64^{\prime} case temults. The twr bulent tame area is plotwd as a fumetion of time for different resolut is. The solid line is the 32^{3} LES reutt. the dot dasl curve is the flame area in the 16^{\prime} G fell obtaned by fitering the $32^{\prime \prime}$ C-tiew, Csing those lata and the dyntuif prowedure of \$3.3. the wrinkied Anme area os extrapulated to the 64^{\prime} grid (---- | This result is compared to the wrinkind fane aren computed directy on a 64^{3} grill (s) It is cleat thet the suggested jnerecture

 The diserepatey bet weon the LFS ant DXS rewits can be tractl wo two effert:

Figere 7. Turbulent flame speed as a function of time from vanious DNS/LES calculations obtained with higher order upwind scheme. D.NS results: $64^{3} .0 ; 32^{3}$. $\mathrm{c}: 16^{3}$. r . LES results: $64^{3}, \ldots-\left(32^{3},-\ldots: 16^{3} . \ldots\right.$.

- Cnderestimation of the flame area on the 32^{3} grid: by comparing the 32^{3} LES $\left(-\right.$) and 32^{3} filtered DNS (0) flame areas. it is clear that the upwind/reinitialization scheme smoxths the wrinkled front slightly. This is to be expected from an upwind method - this effect is relatively small and could be controlled with a higher order method or a solution-adaptive integration proredure.
- Poor extrapolation of the subgrid wrinkling: extrapolation from the 32^{3} and the 16^{3} grids to the 64^{3} grid magnifies the error which is relatively small on coarser grids: this is the major sumre of error.
This error can be better understood by looking at Fig. 8. In the computations. the linear fit (6) was used for dynamic extrapolation-the plot in Fig. 8 indicates that. in the early stages of flame wrinkling, the linear fit is inappropriate: a square root fit would be more suitable. This is consistent with the e priori test results reported in $\$ 3$. Longer computations are being performed to assess whether this effect will disappear as the flame becomes sufficiently wrinkled.

6. Conclusions

Large eddy simulation will be necessary if reacting flows in complex geometries are to be simulated. This paper is a first attempt at evaluating models of subgrid scale effects that could be used in those flows. The laminar flamelet regime is considered in this paper such that the G-equation can be used as the basis for the modeling.

Since the effect of filtering is to smooth a wrinkled flame, a natural model is one in which the smoothed flame has a higher speed than that of the laminar flame. Simple morlels of this kind were constructed and tested using the a priori approach

Figure 8. Ratio of the resolved DNS flame area to the filtered flame area as a function of the subgrid kinetic energy u^{\prime} at various filter levels. Results for passive G-field with higher order upwind method.
and large eddy simulations. A priori tests show that a linear relationship between the flame speed and the subgrid scale turbulent velocity is reasonable.

The models were then tested in two types of LES. In the first, the passive G equation is solved along with the Navier-Stokes equations using a pseudo-spectral metnod. This approach is incapable of allowing heat release. Several versions of the model for the G-field were used including ones with a fixed constant and others with the parameter computed dynamically. These computations are numerically unstable, a problem that can be traced to the creation of cusps and high gradient regions. This problem can be eliminated through the addition of a diffusive term to the subgrid scale model. This can be justified in the same way that the Smagorinsky model is justified but, in this paper, the addition of the diffusive term was done in an ad hoc manner.

In the other type of LES, the G-equation is solved using a high order upwind method and the G-field is reinitialized at each time step. This approach essentially introduces diffusion where required to prevent the formation of cusps and highgradient regions and requires no explicit diffusive terms.

The results show that the models are reasonable, but it appears that the LES models either overestimate (with a spectral method) or underestimate (with an upwind method) the turbulent flame speed. The reasons for this behavior are under investigation.

REFERENCES

Bothliort, A., Klein, R. \& Moser, V. 1996 A dynamic subgrid s. "omodel
for turbulent premixed flames. CERCA technical report.
Clavin, P. \& Williams. F. A. 1979 Theory of premixed-flame propagation in large-scale turbulence. J. Fluid Mech. $90,589$.
Daмкӧнler, G. 1940 Z. Elektrochem. 46, 601.
Im. H. G. 1995 Study of turbulent premixed flame propagation using a laninar flamelet model. Annual Research Briefs-1995, Center for Turbulence Research, NASA Ames/Stanford Univ.
IM. H. G. 1996 Large eddy simulation of turbulent premixed combustion using the G-equation model. In preperetion.
herstein, A. R. \& Asherst, WM. T. 1992 Propagation rate of growing interfaces in stirred fluids. Phys. Rev. Lett. 68, 934.
Kerstein. A. R.. Ashlrist, Wm. T., \& Whliams, F. A. 1988 Field equation for interface propagation in an unsteady homogeneous fow feld. Phys. Rev. A. 37, 2728.
Kilin. R. 1995 The level set approach to premixed turbulent combustion in the flamelet regime: theory and numerical implementation. Lecture Notes, Euroconference on Premixed Combustion, Aachen.
LeVeque, R. J. 1993 High-resolution conservative algorithms for advection in incompre ssible flow. SIAM J. Num. An. 33, 627.
LiÑáx. A. \& Willams, F. A. 1993 Fundamental aspects of combustion, Oxford Cniversity Press.
Matalon, M. \& Mathowshy, B. J. 1982 Flames as gasdynamic discontinuities. J. Fluid Mech. 124, 239.

Osher. S. \& Sethian. J. A. 1988 Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comp. Phys. 79, 12.

Pocheat, A. 1992 Front propagation in a turbulent medium. Europhysics Letters. 20, 401.
Rogallo. R. 1981 Numerical experiments in homogeneons turbulence. NASA TM81915.
Trouvé. A. \& Poinsot. T. 1994 The evolution equation for the flame surface density in turbulent premixed combustion. J. Fluid Mech. 278, 1.
Sussman, M., Smereka. P. \& Osher, S. 1994 A level set approach for computing solutions to incompressible two-phase flow. J. Comp. Phys. 114, 146.
Yakhot. V. 1988 Propagation velocity of premixed turbulent flames. Comb. Sci. Tech. 60, 191.
Zhv, J. \& Sethian, J. A. 1992 Projection methods coupled to level set interface techniques. J. Comp. Phys. 102, 128.

NEXT DOCUMENT

A new methodology to determine kinetic parameters for one- and two-step chemical models

By T. Mantel ${ }^{1}$, F. N. Egolfopoulos ${ }^{2}$ \& C. T. Bowman ${ }^{3}$

In this paper, a new methodology to determine kinetic parameters for simple chemical models and simple transport properties classically used in DNS of premixed combustion is presented. First, a one-dimensional code is utilized to performed steady unstrained laminar methane-air flame in order to verify intrinsic features of laminar flames such as burning velocity and tempe- \boldsymbol{F} and concentration profiles. Second, the flame response to steady and unsu. y strain in the opposed jet configuration is numerically investigated. It appears that for a well determined set of parameters, one- and two-step mechanisms reproduce the extinction limit of a laminar flame submitted to a steady strain. Computations with the GRI-mech mechanism (177 reactions, 32 species) and multicomponent transport properties are used to validate these simplified models. A sensitivity analysis of the preferential diffusion of heat and reactants when the Lewis number is close to unity indicates that the response of the flame to an oscillating strain is very semsitive to this number. As an application of this methodology, the interaction between a twodimensional vortex pair and a premixed laminar flame is performed by DNS using the one- and two-step mechanisms. Comparison with the experimental results of Samaniego et al. (1994) shows a significant improvement in the description of the interation when the two-step model is used.

1. Introduction

During the past ten years, direct numerical simulation (DNS) of turbulent reacting flows has been widely utilized to obtain physical understanding and precious information for modeling purposes. The recent articles of Poinsot (1996) and Poinsot et al. (1996) can be consulted for a review concerning DNS of turbulent reacting flows. Although any kind of model is needed to solve the Navier-Stokes equations for a non-reacting system, closures have to te provided in order to model transport propertics of the different species and chemical reactions as well. These two aspects can rapidly lead to tremendous needs of storage capacity and CPU time even for the combustion of simple hydrocarbons such as methane. As an example, the recent detailed mechanism proposed by the Gas Research Institute (GRI) for methane combustion requires 177 reactions of 32 species. This kind of chemical scheme can only be used in the computations of one-dimensional problems such as the study

[^4]of strained laminat premixed flames (Egolfopoul s 1994a-b). We can, however, cite the two-dimensional numerical study of vortex-premixed laminar flame interactions performed by Hilka et al. (1994) using a detailed mechanism (17 species and 55 reactions). Thus, in order to investigate turbulent flames propagating in the combustion regime of existing devices, the chemistry and transport properties have to be drastically simplified. Currently, a one-step irreversible chemical model is used to performed parametric studies of complex flows such as flame-vortex interactions (Poirsot et al. 1991), three-dimensional decaying turbulence interacting with a premixed flame (Trouvé \& Poinsot 1994), or a diffusion flame (Vervisch 1992). In order to take into account the highly diffusive behavior of some radicals, two-step mechanisms have been used in numerical studies of turbulent diffusion flames (Vervisch 1992) and tlame-vortex interactions (Mantel 1994). The difficulty of these simple models is to find realistic transport properties and kinetic parameters which correspond to the studied medium. In the DNS code used by these various authors, the transport properties are modeled using a temperature dependence for the dynamic viscosity and constant Prandtl, Schmidt numbers, and calorific capacity. For the chemical models, the activation energy E_{a} and frequency factor B for each reaction have to be estimated. Usually, a high activation energy in the range of 30 to $60 \mathrm{kcal} / \mathrm{mol}$ is considered. For premixed systems, the kinetic parameter of these simple chemical models are chosen to match the laminar burning velocity S_{L} alone. An a priori global activation energy must be taken high enough to be realistic h." low enough to reduce the number of grid points required to resolve the flame (ge. . . ally the lowet limit of the range 30 to $60 \mathrm{kcal} / \mathrm{mol}$). In fact. the asymptotic ans \cdot, of Williams (1985) shows that $\delta_{f} \sim \beta^{-1}$ where of is the thickness of the rea ion zone and 3 the Zeldovich number defined by $\beta=E_{a}\left(T_{b}-T_{a}\right) / R^{0} T_{b}^{2}$. Herc R^{t}
and T_{5} represent respectively the universal gas constant and the temperature of the fresh and burnt gases. Once the activation energy is imposed, the frequency factor is tuned to find the chosen laminar flame velocity. However, since an infinity of conple $\left(B, E_{a}\right)$ exists for a given value of S_{l}, additional features of the laminar flame have to be verified. Thus, this technique has to be improved in order to predict other intrinsic characteristics of the flame such as concentration of reactants and temperature profiles, especially in the downstream end of the flame where reactions take place.

The motivation of this study is to provide realistic kinetic parameters for one- and two-step mechanisms rlassically used in DNS of premixed turbulent combustion. To do so, a new methodology allowing the determination of kinetic parameters is proposed. This methodology allows to verify the following quantities: (1) the laminar burning velocity, (2) the temperature and concentration of reactant (and intermediate species for the two-step mechanism) profiles, nd (3) the strain rate imposed to the flame in the opposed jet flame configuration leading to extinction .

Points 1 and 2 are performed using the PREMIX code (Fee et al. 1904), which has been modified to accept artificial species, constant molecular weight, constant calorific capacities for all the species, and modified heat of formation to predict the adiabatic flame temperature. Point 3 is numerically investigated by studying

Figire 1. Comierflow flane configuration

the rounterfiow oppened jet hame configuration : Egolfopoulos 1904 . For these 3 points, conyutations usiue the GRI mech 2.) rechanisun (Frothiach et ci. 1505) are perfome 1 and milized as referner cases or comparison with one and two-step merhanisms.

In order to validate this methudology on real configurations, the response of a premixed laminar fixme to unsteady stram is numerically investigateci in two dificsent confgurations using one- and two-step chemiral anodels and simple transerer: propertios:

- the opposed jet fame sibbmitted t an oscillating strain rate
the vortex-prenixed laminar flame interaction experimentally studied by Samanicgo et al. 1906)
In the first uasteady configuration, the effect of thermo-diffusive propertiss of the mixture is inves ated. It appears that this effect seems to have a strong influence on tlee zasteady behavior of the heat release rate. On this configuration. both one- and two-step models allow a good description of the behavinr of the flame. In the case of the vortex-premixed laminar bame interaction. a significant effect of the diffusivity of the intermediate species on the beat release is observed when the two-step mechanism is employed. Comparison with the experimenta! results of Samaniego et al. (1996) shows an improvement in the deerription of the interaction usine the two-step model and simplified transport model.

2. Lean premixed laminar flames submitted to steady strain

2.1 Presentation of the counterfiov fleme confisuration

To study the ability of one- and two-step models to describe the response of a lamian flame to stretch. the counterflow flame interaction configuration is chosen.

Figt Re. Evolution of the laminar burning velocity and extinction strein rate versus the equivalence ratio $\vartheta:$ GRI-mech: - : menid: $\cdots: E_{\mathbf{a}}=35 \mathrm{kcal} / \mathrm{mol}$: $\cdots \cdots \cdot E_{a}=60 \mathrm{kcal} / \mathrm{mol}$.

Figtre: 3. Evolaticn of the activation emergy in baci/mod ami froquency factor in cm.mol. sfor reartion (1) versus the equivalence ratio. -- : PREMIX code: ---- : asymptotic analysis

Such a configuration (ser Fig. 1) has beren widely studieri both experimentally (Chung et al. 1986. Law et al. 1986) and numerically (Fgolfopouks 1994a.b). The main goal of these studies was to determine the extinction and flammability limits of laminar premixed flames. Extinction strain rates and laminar flame velocity have been determined for a wide range of equivalence ratio for various air/fue! mixtures for premixed laminar.

Here, this problem is treated using a coxde solving the equations of mass. momen tun, energy and speries aiong the stagnation streamline of the counterfow opposed jet flame configuration. Details concerning the equations and boundary conditions are given in Egolfopoulos (1994a)

The conditions of our simulations are those retainot by Egolfoponles (1994). The temperature of the unburnt mixture imethane-airy is $300 \ddot{\mathrm{n}}$. and the distance separating the nozzles is 0.7 cm .

2.2 A one-step model for the combustion of lean methene-orygen fiames

A new model for the com'bustion of lean methane-air flame is proposed following the methodology presented in the introduction. The global one-step reartion for lean nuethane-air combustion is:

$$
\begin{equation*}
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \tag{1}
\end{equation*}
$$

and the reaction rate for this reaction is expressed by

$$
\begin{equation*}
R R=B\left[\mathrm{CH}_{4}\right]\left[\mathrm{O}_{2}\right]^{2} \exp \left(-E_{a} / R^{\circ} T\right) \tag{2}
\end{equation*}
$$

Computations are performed using the PREMIX code including reaction (1) and multi-component properties. The parameters B and E_{a} are thus determined for each value of the equivalence ratio φ. Figure (2) shows the evolution of S_{L} and $\boldsymbol{K}_{\text {ert }}$ for the global mechanism and for the solution obtained from the GRI-mech inechanism. The values for B and $E_{\text {a }}$ are presented in Table (1) as a function of o varying from 0.55 to 1 .

Two additional cases are presented in Fig. (2) by keeping constant kinetic parameters: (i) $E_{a}=35 \mathrm{kral} / \mathrm{mol} ; B=4.110^{21}$ (ii) $E_{a}=60 \mathrm{kcal} / \mathrm{mol} ; B=610^{24}$. These sets of parameters are deternined for $\phi=1.0$ and are kept constant for the other values of $\$$. For these two cases, both S_{L} and $K_{\text {ere }}$ are not correctly predicted. For some values of δ. $K_{\text {est }}$ is even over-predicted by a factor of two (see Fig 2).

σ	$E_{\text {a }}$ kcal/mol	Λ $\mathrm{cm} /(\mathrm{mol} \mathrm{s})$
0.55	55	2.110^{24}
0.6	54	1.110^{24}
0.7	50	3.110^{23}
0.8	40	1110^{22}
0.9	25	9.110^{19}
1.0	15	1.110^{18}

Table 1. Kinetics parameters for global reaction defined by Eq. (1) used in Fig. (1)
The evolution of B as a function of ϕ obtained in the present study can be compared with the asymptotic analys:s of Clavin (1985), who proposes an expression for the laminar burning velocity S_{L} as a function of B and 3:

$$
\begin{equation*}
S_{L}=\frac{\rho_{\mathrm{a}}}{\rho_{\mathrm{v}}}\left[2 \Gamma_{n+1} L \epsilon^{n} \frac{D_{\mathrm{ta}}\left(\mathrm{Y}_{\mathrm{t}}\right)}{\beta^{n+1} r_{\mathrm{r}}}\right]^{1 / 2} \tag{3}
\end{equation*}
$$

where

$$
\begin{align*}
\Gamma_{n+1} & =\int_{0}^{\infty} X^{m} e^{-X_{d}} d X \tag{4}\\
\frac{1}{T_{\xi}} & =\nu \frac{W}{Y_{0}} B C_{\bullet, n}^{n_{i}} C_{f, \Delta}^{m /} \exp (-j / a) \tag{5}
\end{align*}
$$

Here, ν, Y_{0}, W are the stoichiometric coefficient, the initial mass fraction, and the molecular mass of the deficient species. The molar concentration of the oxidant and the fuel in the fresh mixture are denoted by $C_{0,0}^{n}$ and $C_{f,}^{2 j}$. In Eq. (4), n is the order of the reaction and \mathcal{N} a variable of integration defined by $\boldsymbol{K}=s(1-\theta)$ where $\theta=\left(T-T_{0}\right) /\left(T_{b}-T_{a}\right)$ represents the reduced temperature.

In the case of the global reaction (1), Eqs. (4) and (5) become:

$$
\begin{align*}
& \Gamma=2 \tag{6}\\
& \frac{1}{T_{r}}=v_{C H_{4}} \frac{W_{C H_{4}}}{Y_{C H_{1}, E}} B C_{O_{2}, 凶}^{2} C_{C H_{4}, 2} \exp (-3 / a) \tag{i}
\end{align*}
$$

To estimate the thermal diffusivity in the burnt gases. we use the classical relation:

$$
\begin{equation*}
\frac{\mu}{\mu_{\bullet}}=\left(\frac{T}{T_{\bullet}}\right)^{b} \tag{8}
\end{equation*}
$$

with $b=0.76$.
Reporting Eqs. (6-8) into Eq. (3), we obtain:

$$
\begin{equation*}
B=\frac{1}{4} S_{l}^{2} \frac{P_{r} H_{O_{2}}^{-2}}{\rho_{\#}^{2} Y_{O_{2}, \Delta}^{2} \nu_{C} H_{4}}(1-\alpha)^{b-1} s^{3} \exp (i j \alpha) \tag{9}
\end{equation*}
$$

Due to the assumptions used in the asymptotic analysis (constant calorific caparities, thermal, and species diffusivities). Eq. (9) coastitutes a first approximation for B. The values for B given by Eq (9) are compared with the result obtained using PREMIX. Asymptotic analysis exhibits higher values for B compared to PREMIX. This is also noticed by Rutland (1989). who studied the propagation of a one-dimensional premixed laminar flame using a one-step chemical model and by considering constant transport properties.

2.9 Kinetics parameters of one- 6 two-ste models for lean premixed laminer flame

In this section, the kinetic parameters for onc- and two-step models are determined for the combustion of a methane-air premixed laminar flame with an equivalence ratio of 0.55 using the PREMIX code. Particular conditions for the transport properties are considered. The dynamic viscosity is expressed according Eq. (8) and constant Prandtl and Schmidt numbers are assumed. Calorific capacity is also assumed constant and the molecular weights of all the speries are equal. To do so, the PREMIX code had to be modified to accept artificial species and modified transdort properties.

The motivations of these choices are directly related to the DNS code applied to complex flows such as vortex-premixed flame or turbulince-premixed flame interactions.

2.1.1 The orie.step madel chemical madel

In this model. the chemistry is described by a single step irreversible reaction:

$$
\begin{equation*}
A \text { (reactants) } \rightarrow P(\text { products }) \tag{10}
\end{equation*}
$$

The reaction rate of this reaction is expressed using a classical Arrbenius law

$$
\begin{equation*}
\dot{\dot{\epsilon}_{A}}=B C_{A} \exp \left(-E_{a} / R_{0} T\right) \tag{11}
\end{equation*}
$$

For this simplest chemical model, 4 parameters appear: $B . E_{z} .(\Delta H)$, and $L_{\text {e }}$ (ΔH) being the hea! seleased by the reaction). Since Le, and (ΔH) can easily be determined (by using binary diffusion coefficient for the Lewis number and by matching the fully burnt gas temperature for (ΔH)), we have to determine B and $\boldsymbol{E}_{\mathbf{a}}$.

2.9.2 The two-step chewical modei

The two-step mechanism initially proposed by Zeldovich (1948) consists of a first order civis branching reaction and a second-order termination reaction:

$$
\begin{align*}
& \mathbf{A}+X \rightarrow 2 X \tag{12}\\
& X+X \rightarrow P \tag{13}
\end{align*}
$$

The use of a two-step mechanism significantly increases the number of unknowns. Vow. δ parameters have to be determined: $B_{1}, B_{2}, E_{\theta_{1}} . E_{a_{3}} \cdot\left(\Delta H H_{1} \cdot(\Delta H)_{2} . L_{A}\right.$. and Le X where $(\Delta H)_{1}$ and $(\Delta H)_{2}$ represent the heat reteased by the first and by the second reaction. To reduce the number of unknowns, some realistic assumptions can be proposed:

- the first reaction has a high activation energy and as thermo-neutral (Linain 1974)
- the second reaction has a zero activation energy and liberates all the heat (Linán 1974) cuefficients

These assumptions lead to simplified expression for the reaction rates of the reactions (12) and (13).

$$
\begin{align*}
& R R_{1}=B_{1} C_{\mathrm{A}} C_{\mathrm{x}} \exp \left(-E_{e_{1}} / R_{0} T\right) \tag{14}\\
& R R_{2}=B_{2} C_{\mathrm{X}}^{2} \tag{15}
\end{align*}
$$

Moreover. since the H atom provides a crucial source of radicals and plays a determining role in the submechanism $\mathrm{H}_{2}-\mathrm{O}_{2}$ (Glassman 1987), we relate the intermediate species of the two-step mechanism to the H atom. Thus, from binary diffusion coefficients, the Lewis numbers for A and X are: $L e_{A}=1.0, L \epsilon_{X}=0.15$. From these considerations, 3 parameters still have to be determined: B_{1}, B_{2}, and $E_{a_{1}}$.

To determine the remaining unknowns of the one- and two-step mechanisms, the methodology previously described is applied.

Ficter 4. Tenperatare and A mass fraction obtained with the ouc-stop noxkel (reduced by its value in :le- fresh gasi at the trailing erlge of the: flame. 0 : GRI-

Figeke 5. Reduced methane and H concentration and mmperature profiles actess the laminar thame front. -- : GRI-merh:--. : wo stry merhanism.

2.9.9 Results

First, the influence of kinetic parameters of one- and two-step models on the fiame structure is analyzed. The Hame structure is very suntive to the couple (B, E_{a}) especially in the traling oxge of the flame (ser Fig. 4 . Sium both B and E_{a} vaty it is difficult to know which of these two parameters inflionces the gradiez: of of temperatare and concentration. The profiles of $\Psi_{\mathrm{CH}_{4}}=\mathrm{I}_{\mathrm{C}} \mathrm{H}_{4} / \mathrm{Y}_{\mathrm{C}} \mathrm{H}_{4}$. in the burnt gas side seems to be very critical in the oppond jet configuation. Whan the flames interact between them. incomplete combustion by leakage of the fuel can lead to sudden extinction. This is particularly true for the case $E_{a}=30 \mathrm{kral} / \mathrm{mol}$. $B=$ $1.8210^{5} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ for whelh the spreathig of the CH_{4} profile is nore pronounced. For these values. the one step model predirts an extinction strain rate of $50 h^{-1}$. whereas the experinemal results give $K_{\text {e.p }}=200 s^{-1}$ (Egolfopoulos 1994a).

This ran be explained ty moticing that for high activation energy, the thin reaction

Figlaf. 6. Evolution of the heat release integrated across the flame front (reduced by the unstrained value) in function of the strain. -- : GRI-rnech: ---- : onestep mechanism: : two-step merhanism.

Flicre: 7. Evolution of the strain rate in function of time for different frequencies. : 1 Hz : ---- : $40 \mathrm{~Hz} ; \cdots \cdots: 80 \mathrm{~Hz}$.
zone is located at the downstream end of the temperature and concentration profiles (since the reaction zone is proportional to β^{-1}). Thus, for larger values of E_{a}. low strain rates only affect the preheat zone. As the strain rate increases. the temperature and concentration profiles are steeper, and the reaction zone starts to be affected by the strain. This effect is emphasized in the twin flame configuration where the distance separating the two reaction zones is a key parameter in the processes leading to extinction. The determination of the extinction strain rate (in the opposed jet configuration) depends directly on the good prediction of the position of the reaction zone in function of the inlet mass flow rate and, consequently. the strain rate.

Figure (5) represents the flame structure using the two-step mechanism. Here. the concentration of the intermediate species is aiso of interest because of the quadratic dependence on Y_{X} on the heat release rate (see Eq. 15). The maximum value of X is chosen by matching the maximum value of the H atom concentration given by the GRI mechanism. Once B_{1} and $E_{a_{1}}$ are chosen to match the θ and Ψ_{A} profiles. the
maximm of Ψ_{X} is directly related to the frequency factor of the second reaction B_{2}. We also observe a space shift of the Ψ_{X} compared to the Ψ_{H} profile. This could be overcome by decreasing B_{1} in order to change the production of X . However. the decrease of B_{1} directly leads to a thickening of the fiame in the burnt gas side of the flame and, consequently, to a different response of the flame to strain. Thus. a compromise between the profiles of θ, Ψ_{A}, and Ψ_{A} has to be found in order to obtain the right extinction strain rate in the oppened jet flame configuration. Finally. Fig. (6) shows the Hame response to a steady strain sate obtained for the one- and two-stan " onlels and the comparison with the solution given by the GRI mechanism. Here. the heat release rate integrated across the flame (normalize: by the unstrained value) is presented. Both the one- and two-step mechanisms allow us to find the correct extinction strain rate (within 10% of errori. We also notice that the Lewis mmbise effert is also observed by using the simple transport properties described in sertion (2.3). Since the Lewis mmber based on the limiting specie's (here CH_{4}) is less than unity ($L_{6}:=0.95$). a positive stretch applied to the flame increases the heat release. As the streth increasen, the reaction zones are pushed toward the stagnation plane, and reaction cannot be sustained due to shorter residence time (Law 1088).

3. Lean premixed laminar flames submitted to an oscillating strain

9. 1 Analysis of the flame resporese:

The response of a laminar premixed methane-air flame to unsteady strain is numerically studied using one and two step chemical mondels. The unsteadiness of the flow is obtained by imposing a simusoidal velocity field at the inlet boundaries. The amplitude of the velocity variations is 20% of the mean value inlet velocity. Three different frequencies for the velocity fluctuations are studied (1. 40. and 80 Hz). The strain rate applied to the flame varios from 70 to $160 \mathrm{~s}^{-1}$. corresponding to Karlovitz number varying from 0.33 to 0.75 . Here. the Karlovitz number is defined by $K^{\prime}=\tau_{r} K$ where K is the strain rate and τ_{r} a chemical time scale defined by $T_{e}=a_{n} / S_{L}^{2}$. a_{z} being the thermal diffusivity in the fresh gases. The order of magnitude of the Karlovitz number is typically representative of the fiamelet regime defined by the Klimov-Williams criteria ($\mathcal{F} \boldsymbol{a}<1$).

The time evolution of the heat release rate integrated across the flame (nondimensionalized by the unstrained value) is presented Fig. (8). As a first observation. no phase shift is observed between the one- and two-step chemical models and the solution given by the GIII mechanism. The slight asymmetry between the slopes corresponding to the extension and relaxation observed by the GRI mechanism is also described by the two-step model. Figure (9) represents the heat release amplitude (normalized by its stearly strained value) for different frequencies. The amplitudes of the fluctuations are underestimated by the simple models even if the tendency is well reproduced. As previonsly observed by Egelfopoulos (1994a). at low frequencies the flame behaves like in the steady case whereas at higher frequencies. the amplitude of the fluctuations decreases. The attemnation of the heat release amplitude at higher frequencies is explained by the fact that the disturbances are

Figure 8. Evolution of the heat release integrated across the flame front (reduced $b y$ the unstrained value) in function of time ($L \epsilon_{A}=0.95$). : GRI-mech: --- : one-step mechanism; : two-step mechanism.

Figline 9. Evolution of the heat release amplitude (normalized by its unstrained value) in function of the frequency. σ : GRI-mech; + : one-step mechanism: 0 : two-step inechanism.
rapidly attenuated by diffusion effects (Egolfopoulos 1994a).

9.2 Response of a flame with unity Levis number to an oscillating strain

We also notice that the heat release rate given by the two-step mechanism is always lower than the results given by the one-step mechanism. This can be explained using the asymptotic analysis of Seshadri \& Peters (1983) who studied the structure of a planar premixed laminar flame submitted to stretch. Considering a high activation energy for the first reaction, the authors derived an asymptotic expansion for the temperature. They found that the first order temperature can be expressed as a function of stretch and Lewis numbers for the reactant and the intermediate species:

$$
\begin{equation*}
T_{0}^{1}=-K^{\cdot}\left\{\frac{L e_{A}-1}{L e_{A}}+\left(-\Delta H_{2}^{*}\right)\left[\frac{1-L e_{X}}{L e_{X}} I_{0}\right]+\frac{Y X_{0}^{1}}{L e_{X}}\right\} \tag{16}
\end{equation*}
$$

The subscript 0 refers to the axial coordinate where Y_{X} is maximum, I_{0} is a function always positive, $K^{* *}$ is a non-dimensionalized stretch, and $\left(-\Delta H_{2}^{*}\right)$ is the non-dimensionalized heat of reaction of the recombination step. The relation (16) points out the respective roles of the diffusivities of the reactant and of the intermediate species. Considering only the first term on the RHS of Eq. (16), for positive stretch the temperature increases for $L e_{A}<1$. For $L e_{A}=1$, the temperature remains constant equal to the zero order temperature regardless the value of the stretch. This recovers the classical conclusions of the role played by the Lewis number of the reactant on the dynamic of stretched flames (Clavin 1985, Law 1988). The second term on the RHS of (16) enhances the effects of diffusivity of the intermediate species on the dynamic of stretched flames. Since radicals are mostly very light species, they have high diffusivities leading to Lewis numbers significantly less than unity (here $L \epsilon_{X}:=0.15$). Thus, in the case of positive stretch, the diffusivity of the intermediate sp cies tends to decrease the temperature and, consequently, the local laminar flame speed. This result points out that even for $L \epsilon_{A}=1$ the flame can be sensitive to stretch effect and exhibits local variations of the laminar flame speed not on'y due to compression of the reaction zone.

Moreover, under some circumstances, a positive stretch can produce a decrease of the heat relcase rate when the Lewis number of the reactant is slightly less than unity. This is observed in Fig. (8) for the frequency 1 Hz and $L e_{A}=0.95$ where the normalized heat release rate goes under unity.

In order to characterize the effect of a slight variation of the Lewis number, the response of the fiame to unsteady strain is analyzed by imposing the Lewis number for the reactant equal to unity. This slight variation of $L e_{A}$ has a strong consequence on the flame response. Figure 10 shows the evolution of the heat release integrated across the flame front for $L e_{A}=1.0$ and for 1,40 , and 80 Hz . The results issued from the onc- and two-step calculations are in opposition of phase compared to the solution given by the GRI mechanism. Due to the compression of the reaction zone, the integrated heat release is less than unity for both one- and two stepmodels. Moreover, for the two-step mechanism, the diffusion of the intermediate species also contributes to the decrease of the heat release as previously explained.

Figure: 10. Evolution of the heat release integrated across the flame front (reduced by the unstrained value) in function of time ($L \epsilon_{A}=1.0$). -_: GRI-mech; ---- : one-step mechanism; --.... : two-step mechanism.

This behavior is well summarized on Fig. 11, in which the scatter plot of the heat release rate versus the strain rate is represented for all the frequencies (1,40 , and 80 Hz). Very clear correlations are observed, and different signs for the slopes are found between the cases $L c_{A}=0.95$ and $L \epsilon_{A}=1.0$.

This seems to indicate that the thermo-diffusive properties of the mixture is a first order parameter in the behavior of strained laminar flames.

4. Vortex-premixed laminar flame interaction

The configuration investigated here concerns the interaction between a two-dimensional vortex pair generated by acoustic excitation and a V-shaped air-methane premixed laminar flame stabilized on a heated wire. A counter-rotating vortex pair propagating itself by mutual induction interacts with an initially planar premixed flame. Figure 12 shows the vorticity and heat release fields during the interaction ($t=5 \mathrm{~ms}$). Here, the Lewis number based on the reactants is taken equal to unity. This problem has been extensively studied both experimentally (Samaniego et al. 1996) and numerically (Mantel 1994). Here, a lean methane-air flame is investigated (equivalence ratio $=0.55$). The initial conditions for the simulations are obtained from the

Figure 11. Scatter plot of the integrated heat release across the flame front (reduced by the unstrained value) vs strain rate.
experiment. The characteristics of the interaction are $V_{D} / S_{L}=66.8, s / \delta_{f}=25.7$. and $D / \delta_{j}=104.8$, where V_{D}, S_{L} represent respectively the displacement velocity of the vortex pair and the laminar burning velocity; and s. δ_{f}, and D are the distance between the center of the vortices, the laminar flame thickness. and the distance separating the vortex pair from the laminar flame.

Details concerning the geometry ani' liagnostic techniques can be found in Samaniego et al. $\left(19^{\circ} \mathrm{J}\right)$. Information concerning the equations solved in the DNS code and

Figure 12. Vorticity (top) and heat release rate (bottom) felds at $t=5 \mathrm{~ms}$ of the interaction (from Mantel et al. 1996).
the computational configuration are presented in Mantel (1994).
Since radiative heat losses effects have been found negligible during this interaction (Samaniego 1996, Mantel 1994), adiabatic conditions for the flame are taken for the simulations. Figure 13 shows the time evolution of the flame length (nondimensionalized by its initial length). Comparison with the experimental results of Samaniego (1996) points out that the dynamic of the interaction is well reproduced by the simulations. The time evolution of the minimum heat release rate integrated aiong a normal to the flame and encountered along the flame is also shown Fig. 13. As long as the interaction goes on, the vortex pair increases the flame length and leads to a decrease of the heat release rate at a location in front of the vortex nair. This is qualitatively well described both by one- and two-step mechanism. In this configuration, the two-step model allows a significant improvement in the de:cription of the decrease of the heat release rate.

5. Conclusions

This paper presents a new methodology to determine kinetic parameters of oneand two-step chemical models classically used in DNS of premixed combustion. By using a one-dimensional code in which simple chemical models and simple transport properties are implemented, the kinetic parameters are determined in order to verify (1) the laminar burning velocity, (2) the temperature and concentration profiles, and (3) the extinction strain rate of \imath laminar flame in the opposed jet configuration (counterflow flarnes). To do so, the results issued from these simple models are

Figure 13. Time evolu ion of the flame length (top) and minimum heat release rate integrated across the flame. -- : one-step mechanism; ---- : two-step mechanism.
compared in detail with results obt + ned from the GRI-mech 2.1 mechanism and multi-component transport prope ties.
Applications of these simple mechanisms and transport models on two unsteady configurations show good behavior of these models. In the case of a flame suimittec to an unsteady strain, both one- and two-step models descrile qualitatively weil the dynamic of the flame and the heat release amplitude for different frequencies. In this configuration, no obvious improvement is obtained with the two-step modei. However, the Lewis number based on the reactant seems to be a determining parameter for laminar strained flames. A slight variation of the Lewis number from 0.95 to 1.0 leads to a completely different behavior of the $f:$.

The interaction between a two-dimensional vortex pair wish an initialiy planar premixed flame is also analyzed by DNS using the one- and two-step chemical modeis. In this case, comparisons with the experimental resuits of Samanicgo et al. (1996) shows that the two-step chemical model allows a better description of the interaction. However, further work is needed to investigate the effects of a slight variation of the Lewis number on the behavior of the flame during the vortex-flame interaction.

This methodology can be improved by studying a configuration of laminar strained
flame nore represmative of turbulent premuxed flames. This concerns the conat tertow flame contiguration, but with hot prodects on one side and reactant. ont the orther side. Further work is in progress to examine the i. arior of simple and tranciport mendels.

Acknowledgments

The author: wish to thank Dr. Jean-Michel Samaniego for his encouraging and fraitful support

PERERENCES

Cinex. J. H.. Mahalincam. S.. Pert. I K. © Vervisch, L. 1992 Stracture of turbulent non-jremixed flames modeted with two-step chenastry. In Pror. 1992 Summer Program.Center for Turbulence Research. . .ASA Anse/'Stanford Cris. 389-402.
Cheve. S. H. Kin. I S. \& Law. C. K. 1986 Extinction of interacting premixed flanus: Theory and experimental comparisons. 21st Symp.int l.) on Combutt. The Combuntion Institute 1845-1851.
Clavin. P. 1985 Dynamic behavior of premixed flame fronts in laminar and turbulent flows. Progress in Energy and Combustion Scrence. 11, 1-59.
Eciolfopoclos. F. .i. 1994a Dynamiss and structure of unsteady. strained. laminar promixed flames 25th Symp. (Int Z.) on Combust The Combustion Instithe: 136.j.1373.
Ewinoporios F. N. 1994b, Geonetric and radiation efferts on steady and unstrady strained laminar flanes. 25th Symp. (Int 7.) on Combuet. The Combus. timinstitute. 1375-1351.
 M.. Bowma: C. T. Hangon. R. K.. Gardiner. W. C. dissianshi. 1. 1995 GKi-Mert An optimized d \cdot ailed chemical reartios: zeerbanism for methane ronetustion. Gas Reccarch Institute report GRI 95 ionis
G assunv. I. 1987 Comburtabe Academic Dress 3ud Ed.
 vortex interactions using detailed and reduced chemistry. 10th Sympotium on Turbulent Shear Flows.
 program for mexdeling steady laminar one-dimensional premixed flames. 53ndu Naticnal Laboretorres - SAND85-880 0 .
Kit. If J. ! P! Pley. F. M. di Miller, J. A. 1989 Chemkin il: A fortran die maral kinetiec parkage for the analysis of gas phase chemiral kinetirs. Sandn Nutional iabrratoret: - SAND89.8009B

LaN, C.K., Zhi. D L. at Yi, G 1956 Propagation and extirction of stretited premixed flames. 21st Symp. (Inil.) on Combust. The Combustion Institute.14191426.

Lisix. A 19:4 A Theoretical anainsis of prencixerl Hanc propagation with an inothermal chais reartion. Instituto Nacional De Ternira Aerospacial. Esteban Terradas, Madrid. Spain
Mantel. T. 1994 Findamental Merbanisms in Premixed Flame Propagation Via Vortex Flame Interactions-Numerical Simulations. Arnuel Reseerch Briefs. Center for Turimbence Research. NASA Ames/Stanford Cniv 45-7̃.
Mantel. T. Sasavitgo. J.-M.. de Bowman. C. T. 1996 Fundanental mechanisms in promixed thane propagation via vortex flame interactions-Part II: Numerical Sinulations. In preperetion.

Pon rot. T. 1995 "asiog direct numerical simulations io understand premixed turbuicht conshanis ‥ 26:h Symp. (Int 7.jon Combuat The Combustinn Institute.
Ponssot. T. Candel. S.. \& Thotve. A. 1996 Applications of dirert numerical simulation to premuxed rurbulent combustions Progress in Energy end Combus. tion Sciener. 21, 331 -36.
Ponsor. T.. Viviante. D. d Candfi. S. M. 1991 Qurnching processen and premixed turbulent combusticu diagrams. J. Fluad Mech. 228, $561-605$.

Ritiano. C. J.. 1989 Efferts of strain, vorticity and turiothace on premixed flames. Ph.D Thess.Stanford Linversity:
Ritiand. C. I A. Trot vf. A 1993 Dirert simulations of premixed turbulent flanes with non-unity Lewis numbers. Combust Fleme. 94, 41-5̄̆.
Sananitco. J.-M.. Mantel. T. \& Bowmin. C. T 1596 Fundamental mertia misins ia premineal thane propagation via vortex flame interactions-Part I: Exjeriment. Submitted to J. Flud Mech.
Seshadmi. K. \& Petzhs. ․ 1983 The influedre of stretch on a premixed flature with two-step kinetics. Combast. Scz. Tech 22, 119129

Trotif. A. (. Ponvs 1. T. 1001 The evolution cyuation for the flame surface density in turbule:! premixed combustion. J. Fiuld Merh. 278, 1-31.
Vravisch. L. 1992 Study and Modeling of finite rate chemistry effects in turlinFnt non-promixed thass. In Annuel Research Brorfs Center for Turbulencr Research. N.ASA Ames/Stanfond Cniv. 111-429.
Willavs. F. A. 1985 Combustion theory sud ed. Benjamin Cummings.
Zti nowlia. 1. B. 1948 Thery of flame propagation. Zhir. Fizt. Khi. (USSR, :2, 2:-49

NEXT DOCUMENT

Evaluation of joint probability density function models for turbulent nonpremixed combustion with complex chemistry

By N. S. A. Smith', S. M. Frolov' and C. T. Bowman ${ }^{3}$

Abstract

 probability demity furtion method for turinalont nomprenixed combustion. Miskl calculation are made and conpared to simetation result: for homogrevendy distributed methameair reaction zour-. minime and reacting in derayimg turbikne. within a two-dimensional encheed domain. The comparixon is arrangel to ensure. that both the simulation and model calculations a) make use of exactly the same chemical merhanism. b) do not involve not-unity Lewis mumber transpont of speries. and c) are froe from radiation loss. The uodifeel Curl mixing sub-nowlel was found to provide superior predictive acrurary over the simple relaxation-to-man sub. model in the a ase studied. Acrurary to within $10-30 \mathrm{~K}$ was foumd for ghobal means of major spries and temprature: however. nits.: "side prediction accuracy was hower and highly depment on the choice of mixit, wh-mendel. Both mixing submockles were found to produce non-physica! mixing Inhavior for mixture fractions renoved from the inmediate reaction zone. A suggestion for a further mondifed Curl mixing sul)-model in made in comertion with carlier work done in the field.

1. Introduction

A large number of practical combustion swisems can be said to operate in a nonpremixed turbulent regime. Cuder these conditions. fuel and oxidizer react concurrently as they are mixed together through the cascade of seales from turbulent stiring down to molecular diffusion. The nonpremixed mock of combustion is distinct from the premixed mode in that the propagation of reartion fronts through a flammable mixture is uot encountered. This is by virtue of the concarrence of mixing of reactants to a flammable state, and reartion.

When pat in the context of the partially premixed flane studion discuserl elise. where in this volume, nonpremixed combustion refers to all the phenomena that occurs after the passage of any initial igniting flame fromts. The bulk of chemical activity in gas turbine combustors. compression iguition internal combustion en gines. and a great many other clases of devices, occurs downstream of stabilizing flow structures in a purely nonpremixed morle.

```
Center for Turbulence Research
```



```
Staford Finuervity
```

The critical desigu issur-- facing gas turbine combustor and diesel engine designers at prosent center on rofluring pollutant formation in order to meet present and future emusson regularions. In order to understand and is able to predict the weurrence of numatard byproducts, such as oxides of nitrogen (NO.) and soot. it is esomtial that allowances be made fon the interartions which orcur between finite rate chemical reactions and turbulent mixing procrsses. Nitric oxide ($\mathrm{N} O$) is a specios whose formation in finues is limited by chemiral kimetic rates which are Shew in comparisen: to typical mixing rates, and thus ramot le adequately predirterl usibeg a model assumption of miximg-limiterl chomistry.

Many unthods hate lard proposed wiach serk io accurately predict the interaction of finte rite demitry and turbulent mixing. One of the most promising grexus is the Joiat Probability Density Function (JPDF) methods as employed by Pope (1981. 1985. 1000) and others (see Chen \& Khlmann 1988. 1992. 1994). The bariants of the JPDF method have levolused to succes fully predict nitric oxide formation in turbulen jet diffusion Hames of hydremen (Chen \& Kollmann 1992. Chen et al. 1995. Shirh rt al. 1993). The effectiveness of the JPDF model in these experimental companion: for hydrogen and otiact test , involving hydrocarbon fuels (Clen 1996) make it a prime candidate for incorporation in design tools for use with more practical combastion systems.

Correa and Pope (10)2, have already begun to takr step: towards implementing JPDF methods in a computational francwork more suited to practical calculations. They showeri wemmable agrovment betwon the prexlictions of a hybrid JPDF method in an ellip:ti- flow volver. with experimental data gathered behind a bluff leoly stabinzerl thane. One difficulty with the axpriumental conparison of Correa and Pope (1992) ant those of the jet flame experimetts deseriberl above is that there are a number of other mondels and approximation that must be incorporated in order to proxluce ia-ful prexictions. but them other moxdels make it difficult io ascertain the inherem acolaty of the JPDF metheni.

Where only a sralar JPDF methox is employed (as in the studies cited), a turbulence mond inust be unerl to solver for the turbulent fow field. In the jet flame spudios, radiation merleline can be problematic (Smith at al. 1993. 1996) and thus make it difficult to evalitite the performance of the JPDF model directly. Further. since the JPDF monlel canmot be edsay enployed with large chemical reaction mechanisms. due to romputational ronstrants. it is often urcessary to employ reduced chemical descriptions of the full reationi set. This monderi abbreviation of a chem ical system also introdice murertainty when comparing with physical experiments.

Extrancons mobleling isones can be swept aside if dirct mumerical simulation (DNS) is used as all evaluation tool. With DNS it is persible to construct an idealized numerical experiment where unwanted physical effects can be excluded by design. For the case of mixing and reaction of fuel and oxidizer pockets in derating isotropie turbulence. the flew field is at its simplest. radiation losises can be dropperl from consideration, and commonality letwern the modeled and simulaterl chemiral reaction seheme ean in ansured.

The parpone of thi- . idy was to compare JPDF mordel predictions with DNS
observations for the nompremixerl combustion of methane and air in decaying turbukence. The chemicai nerhanism employed in both the D.SS and in the JPDF model calculations included prompt and thermal WO formation pathways and wo allowed an evaluation of the nordel's NO prediction capabilitien to le made.

2. Joint scalar PDF equations

Given a chemical system of X speres it in possible t, construct a chemiral compe. sition vertor. where cach comedinate corresponds to a possible speries mass fraction. It is then posibibe to defiue the probability F that the instantamens compenition vector at a time f at a sample point is in the imbediate virinity of t

$$
\begin{equation*}
F\left\{c_{1} \ldots \ldots, e_{n}\right) \equiv \operatorname{Prob}\left\{c_{1}<o_{1} \leq c_{1}+d_{1} \ldots \ldots c x<o_{1} \leq e_{x}+d_{0}\right\} \tag{1}
\end{equation*}
$$

The density wrighted joint scabar probability density function. \dot{f}. in componition spare in thea definel as the partial derinatiow with respect to the speries dinensions.

$$
\begin{equation*}
f\left(\omega_{1} \ldots \ldots(v) \equiv \frac{\rho(1, \ldots \ldots v)}{\langle\mu\rangle} \frac{\partial{ }^{n} F}{\partial O_{1} \ldots \partial O_{v}}\right. \tag{2}
\end{equation*}
$$

For homegracous flows. the evolution of the joint sealar PDF is then given by the folkwing (are C.". is and hollmann 1994). wher \dot{Q}_{1} is the instantanems reaction rate of the kith speries at time t, and yat in the joint salar dissipation tate for the lith and the speri.

$$
\begin{equation*}
\frac{\partial \dot{f}}{\partial \partial_{1}}+\frac{\partial}{\partial c_{2}}\left(\dot{o}_{4} \dot{f}\right)=-\frac{\partial^{2}}{\partial c_{1} \partial o_{l}}\left(\lambda_{i}, \dot{f}\right) \tag{3}
\end{equation*}
$$

The influence of chemiral reations on the temporal evolution of the joint calar PDF . . similar to a convective velocisy field in compenition spacr. Dissipation of scalar fluctuations through mixing, as represented by the second right hand side tertia. lead to reductions in ? !e tariances and cotariancen of the specirs and a sharpenin.ty of the joint PDF a: the mean compositi, n.

As chemical systen of practical interest can have an extremely large nimber of impertant speres, the dimemonality of the joint PDF ran abo he latge. Stochantio ne: Nls rerommend thenselves as :er solution metiod of choise in these cases (Pope 1981 !.
In a Monte Carlo approach, a large number of stochastic particles ate eprated upon lo mondel processes in a Lagraugian frame of reference. The moxiel processos are desgened in surh a way as to cause the joint PDF of all the particles to behave according to the evolution equation alseve.

Earh stochantic partich has a defime loc:, fion in componition space at any given time. The ewohtion of the the chemieal component of the gth stechastic partiche.
 mixing term. m^{\prime}, as given brlow.

$$
\begin{equation*}
\frac{\partial O_{2}^{\prime}}{\partial t}=\dot{Q}_{1}^{\prime}+\dot{m}_{1}^{\prime} \tag{4}
\end{equation*}
$$

A signita cut an ematage of the JPDF netlod ower orther models is that the chemical soutce :erms Q_{1}^{\prime} can be evaluated exartly withour nerd for a model. The difficulty with the Lagrangian formulations liess with the treatarnt of the molecular mixing terns m^{2},

2. 1 Molecular mixing models

A wide variety of moterular mixing uodels have been prommend for mind $_{3}^{3}$ in the past (see Pope 1981. Chen and Kellmann 1994). The simplest useful model is a deterministic relaxation-to the-mean (RTM) expression as given below, wherr adenotes a turbulent mixing frequency.

$$
\begin{equation*}
\dot{m}_{1}^{\prime} \approx د\left(<0_{1}>-c_{1}^{\prime}\right) \tag{b}
\end{equation*}
$$

The deterninistic RTM medrl has the advantage of being simple to implement within a complex prattical calculation and allows the mixing and reaction term, of the stochastic eqcatons to 'e solveri simultangusly. Ail partiches are operated on IN loth the moiecular mixing and reaction moxdels at all stagec of the computation. A disacivantage of the RTM model is that it dues not predict the correct mixing bediacior of tan : inids in an isotropically decaying turbulent field. Instead of rausing a mixture fraction PDF to tend towards a Gaussiat distribution with increasing t:me. the RTM mosk! alkws the fatness of the PDF so increase without bomad.
 dipersion models for dropiet mixing. Whereas the origital Cirl mixitg monel gives
 al. (1979). and Dengizo (1979). gields the desiret contimom joint PDFs. Mixiag
 calculation. Particle pairs are chosen at randons font the conuphere particke ensem W. andiate caused to mix with one amother to a satiomiy varying degree a. The
 ing tix following.

$$
\begin{align*}
& o_{1}^{j^{*}}=\alpha 0_{1}^{\prime}+\frac{1}{2}(1-\cdots)\left(i_{1}^{k}+o_{1}^{\prime}\right) \tag{0}\\
& \sigma_{2}^{4 *}=\alpha o_{1}^{k}+\frac{1}{2}(1-a)\left(o_{1}^{k}+o_{1}^{\prime}\right) \tag{i}
\end{align*}
$$

The number of random particie pair selections that mint be mede per timestep of the calculation is given by the foilowing (see Pope 1982!. where B is a constath munier that depends on the pair selection sothemes. adi whe is the timester mondime-usion:alize by the mixiug frequency.

$$
\begin{equation*}
\lambda_{\text {pair }}=B_{\text {artal }} V_{\text {partoles }} \tag{8}
\end{equation*}
$$

The use of ramdon particle interaction (RPI) moxdels provides a framework for the implenentation of schemes that reflet more of the physical nature of mining. An exampie of the trenefit that ran be derived from RPI models can be foumd in the "paticia age" morlification suggested loy Pope (1982). This mondel can le tuned to enforce asymptotic Ganssianity on conserved scalar PDFs in deraying isotropic turbulence.

One porntial dantrack incurred in using particke interaction models is that the mixing process an 'hen no longer be solved simultaneonsly with the chemical reactien process. The two processes must be deconpled. and this can canse problems where the rates of mixing and reaction are both very large relative to the inverse of the timentep. Such problems are likely to occur when combustion occurs in the flamelet regime (se Anand A Pope-1955).

Both the RPI moxlel and the simple RTM mond were emploved in JPDF calculations agains the DNS data. The rewults of this romparison are presented in Strinnt.

3. Simulation conditions

Due te bewnire and tian constraints. the direct mumerical simulation was limiterd to a two-dimensonal calculation of nompremiserl combustion in a decaying eurbulent filll
A. the IPDF method is inherenty statistical in nature. it was desirable to maximije the mumer of DSS data po.uts in the demain that combld be inchuter in a singie statistical wet. Te ilis end, tise simulation was performevl with an initially isot rop: thablont velority field and distribution of fuel and oxidizer perkets. The initial distabation ot chenical speries was detemined from a phase scrambled E^{-1} spertum for a conoctrerl scalar. Known as mixture fraction © (ver Fig. 1).

Blixture fration is a normatized sealar that is equal to mity where all of the local has mass originated from the nominal fuel semrce. irrespective of its reacted state. whe zere where all the local maw has originated from the exidizer somere.

Given the distribution of the conserved scalar, mixture fraction (5). reactive scalar profile were mapped onto the domain according to adiabatic equilibrium profiles in mixtur fravtion space (see Fig. 21.
Zones oh the domain with a soidhomettic mixture fraction is $=0.055$ were thus assigned a species and temperature composition corresponding to adiatatic equilibrimm conditions at sieichiometric. Domain regions with higher or lower mixture fraction values were given corre smondingly richer or leaner blends of equilibrated Hhad

Siote that the riches mixture fraction allowed in the initialization of the simulation domain was < $\leqslant>=0.15$. This mixture fraction is beyond the rich flammability limit of methitue air mixtures at standard emperature and pressure. Of all the sperjo prome in the simmation only nitre oxide (.NO) was intialized as being aro al all mixture fractions.
 wete afedively ignited mmatamomsly, albeit atificially, pror to rum time. This

Frivne 1. Inital distribution of the conserved sealar Dark regions denote fuel rich zones $\}=1$ while light regions denote fuel lean zones $\{=0$

Ficint 2. Aliabat quhlinum species nas fraction profiles in mixture fraction space. Symbol key $?_{2} * . \mathrm{CO.O} \mathrm{CO}_{2} \mathrm{~A} \mathrm{H}_{2} \mathrm{O}$.
was done th avoid a polemtially long transient period where fpresunably triple flames would propagate aleng the whurnt fammable rilbons between the fuel and oxidizer pockets away from the ignition points.

In onder to avoid the establishenent of intense pres enn waves as a result of map ping fane zone temperatures onto an mitial cold fow hild, the local densities were adjested every where to maintain a unform inital piessure field. The existence of lange density gradients after imtialination cansed a slont period whete the fion field reorgamzed to preserve routimity. It is difficult to irats a paralle: in beh wior between the decay of twbulent motone in the renting case and the wel known trends "uret grid meblemes. The former case is subject of Whatwon. vanable

Figure: 3. Variation in simulated global mean quantities with calculation time.
viscosity, and baroclinic torque effects that are absent in the latter.
Unfortunately. it was further found that it was unt possible to perform simulations with a combination of periodir boundary conditions and the initialization technique described aloov. So satisfactory explanation for this restriction has been found. It was found. however, that the calculation could proceed without hindrance if the domain was instead bounded by adiabatic slip walls encompassing a smail filter zone with initially damped wall-normal velocity.

Ender the simulation conditions described above, the flow and mixing fields on a cential portion of the grid (210^{2}) were found to be statistically homogeneons. All of these points were then used in each of the statistical samples taken periodically throughout the temporal crolution of the simulation. With the passage of time, turbulent motions caused parcels of fuel and oxidizer to be convected into close proximity while molecular diffusion fed the reaction zones present at the fuel/oxidizer interfaces.

Unmixedness, \boldsymbol{C}^{*}. is defined here as the global variance of mixture fraction normalized by the maximum possible variance. Which is given by the product of the differences between the global mean and the maximum and minimum possible values of conserved scalar. Cnmixedness is thus equal to unity when no mixed fluid is present, and zero when all fluid has been mixed to a uniform state. The gradual decay in the unmixedness of the conserved scalar is plotted along with nondimusional scalar dissipation rate and mean pressure in Fig. 3.

It is evident that the molecular mixing processes promoted by turbulent stirring rapidly mixed the conserved scalar towards uniformity, but that at the end of the simulation the unmixedness was still substantial at approximately $\boldsymbol{U}=0.3$. As a result of the increase in the characteristic turbulent time seale and the derrease in local conserved scalar gradients, the scalar dissipation rate can be seen to derrease with time.

The simulation was carried out using a Fickian assumption for the molerular
transport of the species, as traces. in a backgromed gas $\left(X_{2}\right)$. All speries were assigned uniform Lewis numbers of unity in order to allow at fair comparison with the JPDF model predictions. The JPDF moklel is not strictly vatid where siguificant differential molecular diffusion between the species is present.

As the reactions proceeded, more and more fuel and oxidizer were consumed and progressively more sensible enthalpy was relcased into the system. The release of heat in the confined system caused the mean pressure in the domain to double over the course of the simulation (see Fig. 3). The change in global mean specics mass fractions during the cours of the simulation can be sem in Fig. 4.

Figiret 4. Variation in simulated global mean specion mass frartions with caliculation time.

The turbulent Reynolds number determined nse of the mean molecular viseosity (recall that the local temperature variations give rine to a serenfold watiation in local dynamic visconity) dowly from approximately 30 down to 20 ower the duration of the simulation.

The simulation conditions correspond physically to a small anca of intensely mixed fluid of the order of 3 millimeters on each side. In some ways the simmiation conditions may be analogons to the kind of conditions experimeed inside high powerdensity combustion deviese of practical interest. The D.VS domain might be thought of as representing a single computational cell in a muth larget grid used in a practical model calculation. In this sense it is of some interest to observe how well the JPDF model performs in this single cell. as it could well hate implications for use of the model in a large multi-cellular calculation.

With the assumption of isotropy, the JPDF model reduens to a dimensionaliy degenerate case devoid of mean gradients. The rase is similar to those studied Is Correa (1993) and Chen (1993). exeept that it is motoady. whereas the carlier studies were for steady combistion.

9.1 Chemicel reection mechanism

An eight step reduced chemical mechanism for methane combustion was provided by Frolov (1996) for use in both the DNS and JPDF calculations. The mechanism consists of global steps which do not make explicit use of any radical specjes, such as hydroxyl (OH), methyl (CH_{3}), and so on, but instead employs tuning factors for the fuel oxidation and prompt NO_{z} steps. These tuning factors are incorporated into the pre-exponential coefficients in the Arrhenius expressions and make allowance for variations in local equivalence ratio. fuel species, and pressure. The tuning constants were derived by Frolov (1996) from comparison of the reduced mechanism with full mechanism calculations in counterflow laminar premixed flames.

$$
\begin{gather*}
\mathrm{CH}_{4}+1.5 \mathrm{O}_{2} \rightarrow \mathrm{CO}+2 \mathrm{H}_{2} \mathrm{O} \tag{I}\\
\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \tag{IIf}\\
\mathrm{CO}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \tag{IIb}\\
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \tag{III}\\
2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2} \tag{IV}\\
\mathrm{CH}_{4}+\mathrm{O}_{2}+\mathrm{N}_{2} \rightarrow \mathrm{CH}_{4}+2 \mathrm{NO} \tag{V}\\
\mathrm{~N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO} \tag{VIf}\\
\mathrm{NO}+\mathrm{NO} \rightarrow \mathrm{~N}_{2}+\mathrm{O}_{2} \tag{VIb}
\end{gather*}
$$

The Arrhenius rate constants corresponding to the above reaction steps are given below where A_{i}, n_{i} and E_{i} denote the pre-exponential factor, temperature index, and activation energy for reaction number i, and p is the local pressure in bar.

No.	$A_{i}(\mathrm{~mol}, L, s)$	n_{i}	$E_{i}(\mathrm{kcal} / \mathrm{mol})$
I	A_{1} / p	0.0	50.0
IIf	$1.0 \times 10^{12} / p$	0.0	41.5
IIb	$3.1 \times 10^{13} / p$	0.0	49.1
III	$7.0 \times 10^{13} / p^{2}$	0.0	21.0
IV	$8.5 \times 10^{12} / p^{2}$	0.0	21.0
V	A_{5} / p^{2}	0.0	50.0
VIf	1.7×10^{17}	-0.5	136.0
VIb	4.1×10^{15}	-0.5	93.3

The pre-exponential factors for reactions I and V are functions of the local equivalence ratio 3 . Frolov (1996) determined the appropriate values of A_{1} and A_{5} at a range of equivalence ratios from $\beta=0.67$ up to $\beta=1.54$. The pre-exponential factors vary nonlinearly over the range such that the lean limit values are orders of magnitude greater than the rich limit values. The values under stoichiometric conditions for each is $A_{1}=2.57 \times 10^{15} \mathrm{~L} /(\mathrm{mol} \cdot \mathrm{s})$ and $A_{5}=7.03 \times 10^{13} \mathrm{~L}^{2} /\left(\mathrm{mol}^{2} \mathrm{~s}\right)$.

At the suggestion of Frolow (1996). linear interpolation betwern the known values for A_{1} and A_{5} was used to determine values for intermediate mixing states.

At this stage there are some questions as to the accurary of the chemical merlansm dexcribed above, since it appears to gien quantatively inaccurate values for unstrained lan inar flame speed and extinction strain rate. However, as both the D.SS and JPDF computations employed the same chemical mechanism, the quantitative accuracy of the mechanism is not an issur in comparing one with the other.

4. Comparison of predictions and simulation data

The JPDF model calculations were in cach case initialized directly from the domain of the DNS data base. Each of the 2.000 stombastic patticles used in the model were assigned compositions seleeted at randonn from the domain. Special care was taken to ensure that the initial particle distribution in composition space gave rise to the same statistics as was found in the simulation. As the particles used in the model were of equal mass, this required that the number of potential particle assigments for cach domain cell be proportional to the howal fluid density.

An assignment table was constructed for the purpowe of particle initialization. where there was an equal probability of a partide being assigned the composition of any entry in the table. The number and componition of the table entrics was determined from the simulation domain. such that a :wry low density cell would only provide a single entry whereas a high density cell would provide a number of repeated entries, each with the same composition as the originating cell. As the central portion of the simulation domain consisted of approximately 45.000 cells and the ratio of the mean cell density to the minimm cell density was of order $2-3$ 3. this gave rise to a table containing around 100.000 contries. Of that mumber. 2.000 were selected at random. withont replacement for particle assignment.

Mortel calculations were then allowed to procerd according to Eq. 3. with a revised mean pressure ralculated after every time step. Mixing time wales were drawn from the DAS for nse in the model ratculation.

4.1 Global mean behavior

Gilobal mean speries yields and pressure wore predicted using RTM and RPI mixing sub-models (see Section 2.1) within the IPDF mondel.

Typical model predietions for mean pressure. initialized from the initial DNS data. are ploted in comparison with the DNS prosure recond in Fig. 5. The RTM prediction displays too slow an initial pressure rive. indicating a too modest sensible mergy release rate. Towards the end of the simulation period. the RTM-modeled mean pressure rises at a rate greater than that sem in the DNS.

The random particle intorartion model predietion tends to lie substantially clomer to the DNS curve than do the predictions of the RTM model. At its worst the RTM model exhinits an appoximate 20% diserepancy below the DNS curve, while the RPI model exhibits a maximum underpredic ion on the order of 10%.

The model predictions for mean carlon dioxide ($\mathrm{C}^{(} \mathrm{O}_{2}$) mass fraction formation rethert the predicted mean pressure behavion (see Fig. G). Curben dioxide is one of

$t(s)$
Figure 5. Comparison of simulated and predicted mean pressure rise. chemical description of $\mathrm{H}_{2} / \mathrm{N}_{2}$-air combustion. Symbol key : +- JPDF-RTM, $\times-$ JPDFRPI, o-DNS.

Figure 6. Comparison of simulated and piedicted overall mean CO_{2} production. Symbol key : + JPDF-RTM, x - JPDF-RPI, o - DNS.
the principal exotnermic products of hydrocurbon combustion, with the release of sensible energy being closely linked to its oxidation from carbon monoxide (CO).

The carbon dioxide mass fraction curve predicted by the RTM mixing mode. displays the same tendency as the corresponding mean pressure curve. The initial formation of CO_{2} proceeds at a slow rate before sharply increasing towards the end of the simulation.

As was the case for the mean pressure, the RPI prediction for CO_{2} formation does not display this kind of sharp increase. Instead the curve has the same kind of gradual decrease in slope that can be seen in the simulation data.

Carbon monoxide ($C O$) is in greit abundance at the brginning of the simulation. having been intialized using adinbatic equilibrium values at e arh value of mixture fraction. These equilibrium values are not normally encountered in fle nes since any substantial level of molecular transport tends to move CO into reaction zones at leaner mixture fractions, where it is consumed.

As a result of the initially high levels of $C O$, it acts primarily as a fuel speries in the simulation. It is oxidized to form CO_{2}. releasing heat in the proness. Typical predicted mean mass fraction curves for carbon monoxide are compared with the smulation in Fig. 7. it is again evident that the JPDF model usiug the RTM mixing sub-modet tends to underpredict the initial reartion rate. but displays a sharp increase in reartant consumption towards the end of the simulation.

Figtre 7. Comparison of simulated and predicted global mean CO O numption. Symbol key : + JPDF-RTM. x - JPDF-RPI, o - DNS.

The prediction of nitric oxide (NO) formation is particularly difficult given its high sensitivity to loral temperature and oxygen concentration. The equilibrium concentration for NO under hot combusting conditions is orders of magnitude greater than what is usually observed in practice. Unlike the major species, the iormation of NO is limited rot by the rate of mixing but by the chemical kinetic rate at which mixed speries will react.

Typical JPDF model predictions for mean nitric oxide mass fraction. derived using RTM and RPI mixing submodels. are compared with simulation data in Fig. $\mathbf{8}$. The profiles from all three sources exhibit increases with time. which indicates the level of NO is far Lelow its equilibrium conditio: The second derivative with respect to time of all three profiles is positive over the course of the simulation.

The significance of small differences in model as smptions ut NO prediction is highlighted by the iact that ise RTM and RPI curves straddle the observed DNS curve. The nitric oxide formation rate predicted by the RTM submodel is substantially less than the simulated rate, whereas the RPI predicted rate is somewhat greater.

0000 :

Figtee 8. Comparison of sizulated and predicted global mean NO fonmation. Symbol key : + JPDF-REM. \& JPDF-RPI o-DNS.

4.2 Behatuor in mixture fraction space

The comparison of global mean statistics presented above indicates that substantial differences in model predictions arise from the choice of mixing submodel.

The characteristic differences that arise due to the choice of mixing model can tre seen in Fig. 9. which depicts a typical comparison of the instantanemas sratter of stochastic particles in mixture fraction and CO_{2} mass fraction space. The comparison of particle scatter is made at the end of the calculation ($f=2.80 \mathrm{~m} . \mathrm{s}$) bearing in mind that the partick scatter was identical at $t=0$.

Figire. 9. Comparison of predicted CO_{2}-mixture fraction distribution of stochastic particles at time $t=2.80 \mathrm{~ms}$. The RTM (upper) profile has been uniformly shifterl by an ofset in CO_{2} mass fraction of 1.0 for the sake of rlarity. The RPI (l, ver) profile is unshifted.

Despite the fact that both distributions have the same overall mixture fraction mean and variancr. the range in particle values is much great: : in the case of the RPI-modeled distribution. This is berause. in contrast to RTM where all particles mix at every step. the RPI uodel only mixes a relatively small random selection to a potentially large degree. Ther randon nature of the-RPI mixing mondel alhows unseterted particles to remain far from the mean of the distribution. As a result. the kurtesis of the RPI-predicted mixture fraction divrihution tends to ber higher than that prodicted by the RTM undel. and for that matter the DNS data (nor shown).

In addition. the qualitation forms of the trod distributions ate quite different. The RTM-predieted distribution exhibits far less satter than its RPI-predirted conuterpart at any given mixture fraction. This is levause in the RTM model. all partickes relax toward the mean position in compesition space at a rate which depends only on the mixing frequency (same for all particles) and the distance between the particle and the mean position. Thus two particles thas are initially very chose together will henh proceed towards the ghohal urau composition though they will never intcract. In the abseure of cbemical reactions. the RTM mixing model causes the initial profile to contract with time in a self-similar fachion towards the mean pesition. Thus the distribution plotted in Fig. 9 is vir!ually a contracted image of the initial particle distribution. alleit sonuewhat perturbed by chemical reactions.

1 tis self-similar behavior is in contrast to the RPI ucolel where particle-topartiche interactions are what drive the overall distributien towards the mean position ir compmition space. Unlike with the RTM provess. :wo partickes which are initially wery clowe in composition spare may diverer substantially during the course of a single mixing step. as a result of randon: intraction with ether particles. Conversely. two partictes which are in rhow proxinity in mixture fraction spacr may have widely different reartive sperios compmitions as a monult of their different individual time hiverories.

This is not ponsible under the RTM mixing medel where nearly particles automatically have very similar time histories. The trajotorien of all particles through compesition spare are constrained to approach the owrall mean.

Cider RPI. differtuce in particular reactive :prei- conmonitions will be mont pronouned in zonow where the reartion rates pertaning to the particular spectes are slow , mopared to mixing rates. In the case of rarion dioxide (Fig. 9). scatter :s greatest at mixture fractions rorresponding to very rich, and wery bean stoichionetries where the CO_{2} influzaing reartions are comperatively wrak.

The degree of freedom of movement of partickes throngh composition space has implications for the accurate prediction of reaction sprive gields. Due to the nomlincar nature of non ixothermal chemiral reartions, small flurtuations in hecal temperature and sperion concentrations can lead to large rhanges in the proluction rates of species and sensibie etergy. These changes in kinetic rates then hate an impart on the mean behavior of the system through mixing.

Figure 10. Comparison of predicted conditional mean normalized $C O$ mass fraction profiles at time $t=2.80 \mathrm{~ms}$. Symbol key : + - JPDF-RTM, \times - JPDF-RPI. o - DNS.

4.2.1 Conditionally evereged stetistics

Conditional statistics were determined from both the predicted and simulated data by subdividing mixture fraction space into one hundred bins of equal width. Conditional means and root mean square deviations were computed within each bin for each data set at various calculation times.

The general behavior of the conditional mean profiles drawn from the simulation is one of a slow relaxation towards chemical equilibrium at an elevated pressure. after a rapid perturbation from the initial condition. The initial perturbation of the system resulted from the relatively strong mixing processes at the beginning of simulation which served to transport reactive scalars rapidly through mixture fraction space. As the level of turbulent mixing decayed with time, the degree of scalar traniport decreased, thereby allowing the chemical system to return towards chemical equilibrium.

Characteristic trends in a return towards chemical equilibrium, (see Barlow et al. 1989. 1990) include upward relaxation in the conditional mean profiles for major product speries $\left(\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}\right)$ and temperature around stoichiometric. There is also a corresponding downward relaxation in fuel and oxidizer levels. Nitric oxide levels at stoichiometric increase rapidly, having been orders of magnitude below chemical equilibrium at the time of initialization.

Shortcomings in the current particle mixing models are apparent when predicted conditional mean profiles are compared with the simulation. The profiles for $C O$ (normalized by the initial adiabatic equilibrium value at stoichiometric) at time $t=$ 2.80 ms are plotted in Fig. 10. The elevated levels of $C O$ at lean mixture fractions on the part of the models arr anomalous and are not present in the simulation. The degree of this lean profile elevation decreases with increasing computation time, as the intensity of the turbulent mixing decreases.

Figure 11. Comparison of predicted conditional mean mormalized temperature profiles at time $t=2.80 \mathrm{~m}$ s. Symbol key : + -JPDF-RTM, \times-JPDF-RPI. o DNS.

The equations for the diffusive transport of reactive sealar mass fractions in mixture fraction space (see Klimenko 1990) indicate that the negative curvature of the conditio.al mean $C O$ profile in mixture fraction space must result in a local decrease in the $C O$ mass fraction profle. Similarly, chemiral reactions should drive conditional mean $C O$ levels downward. There is no obvious physical explanation as to how the observed elevated profiles could have been produced from the initial condition.

A similar anomalous effect can be seen in the normalized ronditional mean temperature profiles in Fig. 11, where the modeled mixing processes have caused the lean portion of the temperature profile to be depressed below the expected equilibrium line. The temperature depression is more substantial at earlier times and seems to be responsible for the eariy underprediction of mean pressure rise seen in Fig. $\overline{\text { i }}$.

It is evident that the profile deviations are due to shortcomings in both the RPI and RTM mixing models. In effect. the models allow particles to mix towards a mean position that can be very far from their lural region of composition space. Thus, in the case of the RPI model. particles at very lean mixture fractions are just as likely to mix with other particles at very rich mixture fractions as those immediately adjacent to themseives. The RTM model effectively allows the saine interaction by constraining particles to mix along trajectories towards the overall mean position.

In reality, a fluid parcel is not free to mix with any other tluid parcel; it is instead bound to interact with those in its immediate vicinity in compersition space. Parcels in a fluid continuum cannot jump between separated locations in composition space. given a certain time step. without having an impact upon the intervening compositions. In the case of the conditional mean $C O$ profile of Fig. 10. the elevated levels on the lean side of the reartion zone can only exist if the CO values at stoichiometric

Figure 12. Comparison of predicted conditional mean NO mass fraction [ppu] profiles at time $t=2.80 \mathrm{~ms}$. Symbol key $:+-$ JPDF-RTM, $\times-$ JPDF-RPI. \circ DNS.
are more elevated still. There is no possibility of counter-gradient transport in the simulation given the assumptions employed.

Turning to the prediction of nitric oxide (NO) formation, a comparison of conditional mean profiles from the models and the simulation can be made from Fig. 12. It is clear that in all cases the formation of NO is strongly centered on the high temperature reaction zones around stoichiometric. Of the two predictions, those of the KPI model seem to best match the simulation profile at lean and rich mixture fractions in capturing the transport of NO to inert zones in mixture fraction space.

An explanation for the significant discrepancy betwern the two neodel predictions for $N O$ can be found in the difference between the conditional mean and variance profiles of temperature. Throughout the calculations, the particles in the vicinity of the reartion zone have a slightly higher conditional mean temperature under the RPI :nodel than the RTM model. Further, the level of conditional variance in the temperature under the RPI model is many times greater than what is observed under the RTM model.

The RPI model predicts a slightly higher conditional temperature variance than the simulation, around stoichiometric, while having conditional mean temperature values similar to the prediction. Given the high nonlinear sensitivity of NO formation to temperature, it is reasonable to speculate that this difference in conditional variance may be the cause of the observed $N O$ discrepancy.

5. Discussion

It is reasonable to assert that the RPI mixing model as described above seems to perform better than the RTM mixing model under the conditions examined. The overall prediction of mean species yields by the RPI-JPDF combination is superior to that seen for the RTM-JPDF combination in the tests conducted.

The RPI model seems to incorporate significant conditional root mean square deviations in reactive species levels in mixture fraction space. This in turn may allow better prediction the formation of thernochemically seusitive speries such as TO. Indeed. in cases where highly nonlinear phenomena such as extinction behavior is to be predicted. the RTM approach would be unable to capture the significant contributions made by particles that are far from the conditional mean profiles.

Both models, however, seem to suffer from a "long range mixing" problem. That is to say that particles are allowed to freely mix with other particles that are far removed in mixture fraction space. without having any offect at all on particles that lie in the intervening space.

The Kolmogorov scalar scale (η_{k}). defined below (where r_{k} is the Kolmogorov time scale, and \backslash is the mean scalar dissipation rate), deseriles the chararteristic fluctuations in a conserved scalar which are present at the smallest eddy sizes. i.e. the level of sealar fluctuations which are diminished bey molecular diffusion alone.

$$
\begin{equation*}
\eta_{k} \equiv\left(\lambda T_{k}\right)^{1 / 2} \tag{9}
\end{equation*}
$$

After making an assumption about the relationship le bereen the scalar dissipation rate. the scalar variance. and the turbulent time scalc. it is possible to express $\%$ approximately as given lolow.

$$
\begin{equation*}
\eta_{k} x<\xi^{12}>^{1 / 2} / R_{f^{1 / 4}}^{1 / 4} \tag{10}
\end{equation*}
$$

As the turbulent Reynolds number ($R f_{1}$) in the simulation performed in this study was rather low, the Kolmogorov scalar scale was on the order of one fifth of the entire range of mixture fraction space. In practical turbulent reactors, one might expect this value to be substantially lower.

Using the Kolmogorov scalar scale as a guide for the case studied here, it seems unlikely that any particle would be able to mix on a molecular level with any other particle that is any further than $\Delta \eta=0.03$ distant.

It may be appropriate to attempt to modify the RPI mixing model presented here so as to limit the range in mixture fraction space over which particles are allowed to interact. In so doing, a greater number of particke interactions would be required in each time step so as to correctly model the overall dray rate in mixture fraction variance.

Chen and Kollmann (1994) suggest a modified RPI model which better represents molecular diffusion by limiting the range over which particles can interact. No mention of a criteria for this critical range was mentioned, but perhaps the Kolmogorov scalar scale could be used in this caparity. To the best of the authors knowledge. this scheme has yet to be implemented for testing.

6. Comments

This preliminary work has served to illustrate the effective differences between different mixing sul-models employed in a scaiar JPDF mondel for nonpremixed turbulent combustion.

The simulation conditions were admittedly difficult to model, given that the nonpremixed reaction zones were initially quite thin compared to both the physical and mixture fraction scales of the domain. Nevertheless, practical multi-cellular calculations using JPDF methods will likely involve discretizations with cell Reynolds and Damköler numbers of the same order as that encountered in the simulation. In that regard, the insight obtained here could be of some use in selecting a mixing sub-model for practical usage.

It would seem that of the two mixing sub-models tested, the Random-ParticleInteraction (RPI) model proved both to be more accurate in prediction. and also to exhibit more of the qualitative characteristics of the mixing processes ohserved in the simulation. Both mixing sub-models were found to exhibit non-physical behavior in the sense that particles were free to interact over too wide a range in mixture fraction space.

The RPI model seems to be best suited for modification to include some limitation on mixing interaction distances in mixture fraction space. The implementation and testing of this modification as described in the discussion and by Chen and Kollmann (1994) is a project for future work in this area.

Further, as computational resources becone available it would be valuable to simulate a three dimensional case of the conditions studied here. This would be done to determine if important effects have been neglected in the current simulation and would have the advantage of carrying a much larger number of statistical sample points in the analysis.

REFERENCES

Anavd. M. S.. \& Pope. S. B. 1987 Calculations of promixed turbulent flames by pdi methods. Combust. Flame. 67, 127-142.

Barlow, R. S.. Dibhle R. W., \& Fourgette D. C. 1989 Departure from chemical equilibrium in a lifted hydrogen flame. Sandia Report SAND89-8627.
Barlow. R. S., Dibble, R. W., Chen, J.-Y., \& Lucht, R. P. 1990 Effect of Damköhler number on super-equilibrium OH concentration in turbulent nonpremixed jet flames.. Combust. Flame. 82, 235.
Chen. J.- Y. 1993 Stochastic Modeling of Partially Stirred Reactors. Presented at the Fall Meeting of the Western States Section of the Combustion Institute. Menlo Park. California.

Chen, J.-Y. 1996 Private communication.
Chf.N, J.-Y.. Chang; W.C., \& Koszykowski, M. L. 1995 Numerical Simulation and Scaling of NOx Emissions from Turbulent Hydrogen Jet Flames with Various Amounts of Helium Dilution. Combust. Sci. Tech. 110, 505.

Chen, J. Y. \& Kollmans, W. 1988 PDF Modeling of Chemical Nonequilibrium Effects in Turbulent Nonpremixed Hydrocarbon Flames. Proceedings of the Twenty-Second Symposium (International) on Combustion. The Combustion Institute. 645-653.

Chen, J.-Y. \& Kollmann, W. 1992 PDF Modeling and Analysis of Thermal NO Formation in Turbulent Nonpremixed Hydrogen-Air Jet Flames. Combust. Flame. 88, 397-412.
Chen, J.-Y. \& Kollmann, W. 1994 Comparison of prediction and measurement in nonpremired turbulent flames. in Turbulent Rearting Flows, F. A. Williams \& P. A. Libby (eds), Academic Press Lid. 211-308
Conrea. S. M. 1993 Turbulence-Chemistry Interactions in the Intermediate Regime of Premixed Combustion. Combust. Flame. 93, 41-60.
Correa. S. M.. \& Pope. S. B. 1992 Comparison of a Monte Carlo PDF/Finite Volume Mean Flow Model with Bluff-Body Raman Data. Proceedings of the Tuenty-Fourth Symposium (International) on Combu*tion. The Combustion Institute. 279-285.
Dopazo. C. 1975 Probability function approach for a turbulent axisymmetric heated jet: centerline evolution. Phys. Fluids. 18, 397.
Dopazo. C. 1979 On conditioned averages for internittent turbulent flows. J. Fluid Mech. 81, 433.
Frolov, S. M. 1996 Private communication.
Janicka. J., Kolbe W.. \& Kollmann W. 1979 Cloniure of the transport equation for the probability density of function of scalar fields. J. Nonequalib. Thermodyn. 4, 27.
Jancha. J., \& Kollmann, W. 1978 A Two-Variables Formalism for the Treatment of Chemical Reactions in Turbulent \boldsymbol{H}_{2}-Air Diffusion Flames. Proceeding: of the Seventeenth Symposium (International) on Combustion. The Combustion Institute. 421-490.
Klimenko, A. Yt. 1990 Multicomponent diffusion of various admixtures in turbulent flow. Fluid Dynamics. 25, 327-334.
Pope. S. B. 1981 A Monte Carlo Method for the PDF Equations of Turbulent Reactive Flow. Combust. Sci. Tech. 25, 159-174.
Pope. S. B. 1982 An improved turbulent mixing modd. Comb. Sci. Tech. 28, 131.
Pope. S. B. 1985 PDF Methods for Turbulent Flows. Prog. Energy Sci. Comb. 11, 119-192.

Pope, S. B. 1990 Computations of Turbulent Combustion: Progress and Challenges. Proceedings of the Twenty-Third Symposium (International) on Combustion. The Combustion Institute. 591-612.
Smith, N. S. A.. Bilger, R. W.. Carter, C. D.. Barlow. R. S.. \& Chen. J.-Y. 1993 A Comparison of CMC and PDF Modelling Predictions with Experimental Nitric Oxide LIF/Raman Measurcments in a Turbulent H_{2} Jet Flame. Combust. Sci. Tech. 105, 357-375.
Smith, N. S. A., Bllger, R. W.. Carter, C. D., Bahlow. R. S., \& Chen J.Y. 1096 Radiation Effects on Nitric Oxide Formation in Turbulent Hydrogen Jet Flames Diluted with Helium. Submitted to Combustion and Flame.

NEXT DOCUMENT

Effect of chemistry and turbulence on NO formation in oxygen－natural gas flames

By J．－M．Samaniego＇，F．N．Egolfopoulos ${ }^{2}$ AND C．T．Bowman ${ }^{3}$

The effects of chemistry and turbulence on $N O$ formation in oxygen－uatural tur－ bulent diffusion Hames gas flames have been investigated．The chemistry of aitric oxides has been studied numerically in the counterflow configuration．Systematic calculations with the GRI 2.11 mechanism for combustion of methane and NO chemistry were conducted to provide a base case．It was shown that the＇simple＇ Zeldovich mechanism accounts for more than 75% of N_{2} consumption in the flame in a range of strain－rates varying between 10 and $1000 \mathrm{~s}^{-1}$ ．The main shortcon－ ings of this mechanism are：1）overestimation（ 15% ）of the NO production rate at low strain－rates because it does not capture the reburn due to the hydrocarion chemistry，and 2）underestimation（ 25% ）of the NO production rate at high strain－ rates berause it ignores NO production through the prompt mechanism．Reburn through the Zeldovich mechanism alone proves to be significant at low strain－rates． A one－step model based on the Zeldovich mechanism and including reburn has been developed．It shows good agreement with the GRI mechanism at low strain－rates but underestimates significantly \boldsymbol{N}_{2} consumption（about 50% ）at high strain－rates． The role of turbulence has been assessed by using an existing 3－D DNS data base of a diffusion flame in decaying turbulence．Two PDF closure models used in practical industrial codes for turbulent $N O$ formation have been tested．A simpler version of the global one－step chemical scheme for NO compared to that developed in this study was used to test the closure assumptions of the PDF models，because the data base could not provide all the necessary ingredients．Despite this simplification，it was possible to demonstrate that the current PDF models for $\mathcal{N} O$ overestimate sig－ nificantly the $\mathcal{N} O$ production rate due to the fact that they neglect the correlations between the fluctuations in oxygen concentration and temperature．A single scalar PDF model for temperature that accounts for such correlations based on laminar flame considerations has been developed and showed excellent agreement with the values given by the DNS．

1．Introduction

This study is an investigation of the effects of chemistry and turbulence on nitric oxide formation in oxygen－natural gas flames．The choice of oxygen as the oxidizer is related to current interest in use of oxygen for high temperature combustion in

1 Air Liquide．Centre de Recherche Claude－Delorme，France
2 Iniversity of Southern California．Los Angeles．CA
3 Stanford University．Stanford，CA
industry. In terms of NO emissions, oxygen is advantagerus compared to preheated air in high-temperature processes such as those encountered in the glass and steel making industry due to the low nitrogen content. However, molecular nitrogen still is present in certain amounts in the natural gas (0.0% for Algerian gas to 11% for Groningue gas) and in the oxygen stream. In the latter case. the nitrogen content depends on the production method: from virtually 0% for cryogenic oxygen to 5% for vacuum swing absorption. Other sources of nitrogen for oxygen-natural gas combustion include air leaks into the furnace. Despite the relatively low levels of NO emissions from oxy combustion, ever more stringent emission standards require a better understanding of $N O$ formation in oxy-flames.

The chemical mechanisms controlling NO formation are well known (Fenimore 1971, De Soete 1974, Miller \& Bowman 1989, Drake \& Blint 1991, Bozelli et al. 1903. Bowman 1992). Nitric oxide is formed from twr sources: molecular nitrogen. N_{2}, and fuel-bonnd nitrogen. In the case of ox:gen-natural gas flames. the only source is molecular nitrogen since natural gas, whatever its origin, does not contain nitrogen-bound species. In this case, the three main pathways for NO formation are the Zeldovich. prompt, and $N_{2} O$ mechanisms, and the main pathway for $N O$ destruction is the reburn mechanism. The Zeld vich mechanism is based on O-atom attack of λ_{2} through $O+N_{2}=N O+N$. and is active both in the flame zone and the postflame zone. It is strongly dependent on temperature due to the high activation energy. $E_{\text {Zeldovich }}$, of the N_{2}-consuming step ($E_{\text {Zeldorich }}=$ $76.5 \mathrm{kcal} / \mathrm{molc})$. A particular case of the Zeldovich mechanism is the equilibrium Zeldovich mechanism, where O-atoms are in partial equilibrium with molecular O_{2}. In this case, a global one-step reaction for $N O$ formation ran be derived with an overall activation energy, $E_{\& q: a t: b r i m m}=138 \mathrm{kcal} / \mathrm{molt}$. The prompt mechanism is active only within the flame zone since it requires the presence of CH_{z} radicals for consumption of molecular nitrogen, mainly through $C H+N_{2}=H C N+N$. Subsequent elementary reactions lead to the formation of NO . This mechanism is weakly dependent on temperature due to the low activation energy of the main N_{2} consuming step ($E_{\text {prampt }} \cong 20 \mathrm{kcal} /$ mole). The $N_{2} O$ merhanism is due to reaction of O-atoms with \boldsymbol{N}_{2} in a three-body reaction, ie. $O+N_{2}+M=V_{2} O+M$, with the subsequent reaction of $\mathrm{N}_{2} 0$ to form mainly through $\mathrm{O}+\mathrm{N}_{2} \mathrm{O}=\mathrm{NO}+\mathrm{NO}$. The reburn mechanism is responsible for consumption of $\mathcal{N O}$ within the flame zone to produce N_{2}, and it is controlled by $\mathrm{CH}, \mathrm{CH}_{2}$, and CH_{3} radicals.

These various mechanisms are present in air flames and must be accounted for to predict accurately the level of nitric oxide emissions. The usual picture for NO production in air flames can be split in two parts: 1) production in the flame zone through a balance between the prompt, $N_{2} O$, and reburn mechanisms - in this zone, the Zeldovich merhanism can be neglected: 2) production of $N O$ in the postflame zone by the Zeldovich mechanism alone. The pirture is different in oxygen flames since in this case. the destruction rate of λ_{2} is controlled by the Zeldovich mechanism, with a small contribution of the prompt merhanism (Samaniego et al. 1996). The main reason is that the higher temperatures of the uxygen flame tend to increase the destruction rates of N_{2}, and this acceleration is more pronounced
for the Zeldovich mechanism due to its higher activation energy. As a result, the Zeldovich mechanism becomes faster than the prompt NO mechanism in the flame zone of an oxygen flame, while it is slower than the prompt NO mechanism in the flame zone of an unpreheated air flame. However, it is not clear whether the NO production rates can be derived from the Zeldovich mechanism alone since reburn may be taking place as indicated by the high $H C N$ concentration levels observed in the numerical study of Samaniego et al. (1996). Furthermore, it is necessary to clarify the role of non-equilibrium atomic oxygen since it is unclear whether the partial-equilibrium assumption holds (Samaniego et al. 1996).

The effect of turbulence on NO emissions in jet diffusion flames has been studied extensively (Peters \& Donnerhack 1981, Turns \& Myrh 1991, Chen \& Kollman 1992. Driscoll et al. 1992). The turbulent mixing process results in temporal fluctuations in temperature and species composition which influence the $\mathcal{N} O$ formation rates. Since the relationships between $N O$ formation rate, temperature, and specirs are highly non-linear. NO emissions cannot be preciicted from mean temperature and species concentrations alone. Therefore, accurate predictions of $N O$ formation rates require the knowledge of temperature and composition fluctuations. Modelers have derived PDF formulations that account for the effect of these fluctuations on the turbulent NO production rate (Janicka \& Kollmann 1982. Pope \& Correa 1986. Correa \& Pope 1992). The closure of the turbulent source term for $N O$ is made possible through the use of a joint PDF which, in the case of Zeldovich NO with the partial equilibrium assumption for atomic oxygen, can be expressed as:

$$
\begin{equation*}
\frac{d \overline{[\overline{N O}]}}{d t}=\int \mu\left[O_{2}\right]^{1 / 2}\left[N_{2}\right] \exp (-E / R T) P\left(\left[O_{2}\right],\left[N_{2}\right], T\right) d\left[O_{2}\right] d\left[N_{2}\right] d T \tag{1}
\end{equation*}
$$

where $P\left(\left[O_{2}\right] \cdot\left[N_{2}\right], T\right)$ is a joint PDF of oxygen concentration, $\left[O_{2}\right]$, nitrogen concentration. $\left[\mathrm{N}_{2}\right]$, and temperature, T. Usually, the nitrogen concentration is considered constant and $\left[\mathrm{N}_{2}\right]$ is taken out of the PDF. Furthermore, in practice, $\left[\mathrm{O}_{2}\right]$ and T are assumed to be independent variables and the joint PDF, P, can be expressed as the product of two single-variable PDF's, $P_{O_{2}}$ and P_{T}, such as:

$$
\begin{equation*}
P\left(\left[O_{2}\right], T\right)=P_{O_{2}}\left(\left[O_{2}\right]\right) P_{T}(T) \tag{2}
\end{equation*}
$$

In such a case, the turbulent NO production term becomes:

$$
\begin{equation*}
\frac{d \overline{[\mathrm{NO} O}}{d t}=k \overline{\left[\mathrm{~V}_{2}\right]}\left(\int\left[\mathrm{O}_{2}\right]^{1 / 2} P_{\mathrm{O}_{2}}\left(\left[O_{2} \mid\right) d\left[O_{2}\right]\right)\left(\int \exp (-E / R T) P_{T}(T) d T\right)\right. \tag{3a}
\end{equation*}
$$

In some cases, the same term is calculated from a single PDF by assuming that $\left[O_{2}\right]$ fluctuations can be neglected:

$$
\begin{equation*}
\frac{d[\overline{\mathrm{~V} O]}}{d t}=k \cdot\left[{\overline{\left[N_{2}\right]\left[O_{2}\right]}}^{1 / 2}\left(\int \exp (-E / R T) P_{T}(T) d T\right)\right. \tag{3b}
\end{equation*}
$$

In both cases, this final assumption has a limited domain of validity since it presumes that the oxygen concentration fluctuations are not correlated with the temperature fluctuations. This may be valid in the post-flame zone where the combustion process is completed, but it is highly questionable in the Hame zone where the temperature and oxygen concentration levels are obviously correlated. Since the amount of NO produced in the flame zone of oxygen flames can be very significant, it is expected that such PDF modeling approaches are inapplicable.
The goals of this study are to derive a simple chemical model for NO formation in oxygen diffusion flames and to propose a model for the closure of the turbulent $N O$ production term based on a PDF approach. For this purpose, two complementary numerical approaches are used, one addressing the effects of chemistry, and another addressing the effect of turbulence.

2. Effects of chemistry

2.1 Numerical approach

Concerning chemistry, NO formation mechanisms are investigated using the counterflow flame problem. The counterfiow configuration is often used to address chemistry-turbulence interactions with detailed chemistry. and it is well known that the strain-rate modifies the chemical pathways through redured flame temperature reduction and residence times (Hahn and Wendt 1981. Haworth et al. 1988, Drake and Blint 1989. Chelliah et al. 1990, Mauss et al. 1990. Vranos et al. 1992, Takeno et el. 1993, Egolfopoulos 1994a, 1994b, Nishioka et al. 1994, Samaniego et al. 1995. Egolfopoulos \& Campbell 1996). In such a geometry, the flow field is that of a strained flame where a jet of oxidizer impinges upon a jet of fuel. The oxidizer is a mixture of oxygen and nitrogen. Various mixtures are used: $100 \% \mathrm{O}_{2}$ and 0% $N_{2} ; 95 \% O_{2}$ and $5 \% N_{2} ; 21 \% O_{2}$ and $79 \% N_{2}$. The fuel is a mixture of methane and nitrogen. Two different mixtures are used: $100 \% \mathrm{CH}_{4}$ and $0 \% \mathrm{~N}_{2}: 95 \% \mathrm{CH}_{4}$ and $5 \% N_{2}$.

The numerical simulation is conducted by solving the steady and unsteady equations of mass, momentum, energy, and species concentrations along the streamline. Details on the set of equations and numerical method can befound in Egolfopoulos (1994a and 1994b), and in Egolfopoulow \& Camplell (1996). The chemical scheme that is used for combustion of methane is the latest GRI 2.11 mechanism. which accounts for 49 species and 277 reactirns. Calculations are performed without radiative losses as it has been demonstrated that radiative losses from $\mathrm{CO}_{2} . \mathrm{H}_{2} \mathrm{O}$, CO , and CH_{4} play a negligible role in counterflow oxygen flames (Samaniego et al. 1996).

2.2 Results

The objective of this study is to check whether the Zeldovich mechanism alone is capable of predicting with sufficient precision the rate of formation of NO in an oxyger flame. In order to do so, two sets of calculations have been carried out. one with the full mechanism which includes all NO formation routes. and one with the three reactions of the Zeldovich mechanism, namely:

Figine 1. Computed velocity profike along the stagnatmen streamline of a cou: terfiow $\mathrm{O}_{2} / \mathrm{CH}_{4}$ flame for a strain-rate of $2_{5}^{5} s^{-1}$.

 methane mass fraction (Δ) in a counterfow O_{2} / CH_{4} flame for a strain-rate of 2 ., s^{-1}.

$$
\begin{align*}
& O+N_{2}=N O+N \tag{R1}\\
& N+O_{2}=N O+O \tag{R2}\\
& N+O H=N O+H \tag{R3}
\end{align*}
$$

Fer boxth merhanisms. a series of about 400 steady strained flames is calculated for strain-rates tarying from 10 to $1000 \mathrm{~s}^{-1}$. The strain-rate is defiued as the maximum velocity gradimn in the oxidant stream. Figures: 1 and 2 depict the flame structure for a strain-rate of $25 s^{-1}$. Which is typical of all the strain-rates computed in this stury. This result is obtained with the full GRI 2.11 mechanism. and it is alunct identical for the Zeldonich calculations since the .NO chemistry does not significantly impact the furl chemistry The horizuntal axis is the co-ordinate akng the stagnation streandine, with oxidant being fed at $\boldsymbol{r}=0 \mathrm{~cm}$ and fuel being fed at $s=1.03 \mathrm{~cm}$. The ined velorities in this case are 1 velocity profile exhibits a stagnation point at $s=0.74 \mathrm{~cm}$ (Fig. 1). The velocity decreases from the oxygen uozzle ferd. then incieases due to thermal expansion and decteaws again until crossing the stagnatiou point. The vefority profile has a similar behavior ont the fuel side. and asymmetries are due to the different motecular weights of O_{2} and CH_{3} and to chemical effects. Figure $\underline{2}$ depicts the profiles of mass fractions of $\mathrm{O}_{\mathbf{2}}, \mathrm{CH}_{\mathbf{4}}$, and temperature. The maximum temperature is reached at $r=0.56 \mathrm{~cm}$ which corresponds to the flanue zone. The cossumption of oxyen and methane are almost cumpt'te at $x=0.65 \mathrm{~cm}$, a location slightly on the fuet sure relative to the maximum temperature. This can be attributed to the fart that some rerombination reartions. which are exothermic. orcur on the oxygen side. Figure 3 depicts the profile of NO mass fraction. Yio. in the cane of the full and Zeldorich merhanisus, and in this rase both urchanisms give smiar maximum values but slighely different profiles in the fuel side.

To alkw comparison with well known results, a series of strained unprebeated air flaures also has bern calculated. Figure 4 depicts the maximum . NO mass fractions. lio....s. as a function of strain-rate for the oxygen and air flames. and for the Zeldovirh and full merhanisms. In all caves. Yio.mar derreases with increasing strain-rate. and this can be attributed to reduced residence times. in the case of the oxygen flame. Fio mar is well prodicted by the Zrhbovirh mechanista alone. In conitrast, in the case of the air flane. Yiomar is unchepredicted by the Zeldorich urehanism by one to threw orders of magnitude. The differeure in behavion between the air and oxygen flames can be explaited on the hasis of the flame teuperature as indicated in Samaniego et el. (1996). Oxygen flamen are murh hotter than air flames and. as a ronsequence, the Zeldovich norchanism. whirh is highly sensitive to remperature. is predominant ower the prompt merhamisu: in rontrast, air flames are not as hot and the prompt merhanism is predominant ower the Zeldovich merhanisn: at all strain-rates (Drake \& Blint 1989. Nishioka et al. 1994 !.

A further comparisen bee ween full and Zeldowich mechanisms for the oxygen flame is performed by pletting the integral of the N_{2} comsumption rate. $\int\left(-d\left[V_{2}\right] / d\right) d x$. as a function of strain-rate for troth calrulations. The reason for losking at this

 full GRI 2.11 unchanism. Open symioh: Zeldovich mechanivm akone.

Figire: 4. Effert of strain-rate on maximum $N O$ mass fraction. ㄷ: Full GRI 2.11 merhanion for a $\mathrm{O}_{2} / \mathrm{CH}_{4}$ connterflow difinson flame with $5 \% \mathrm{~N}_{2}$ addition in louth streams. E: Zodowich morhanism alone for a $\mathrm{O}_{2} / \mathrm{CH}_{4}$ comutcrflow diffusion flame with 3 \% $\mathrm{N}_{\text {: }}$ addition in both streams. ©: Full GRI 2.11 merhamism for an umpreheaterl Aer/ CH_{4} rounterflow diffusion Hame. A: Zeldocich merhaniom alome for an umpronated . ir CH_{4} cominterflow viffusion flame.

Figune 5. Diert of strain-rete on integrated consumption rate of \mathcal{F}_{2}. D. Full GRI 2.11 mechanism for a $\mathrm{O}_{2} / \mathrm{CH}_{4}$ counterfiow difusion thme with $37 \mathrm{~N}_{2}$ addition in both streams. : Zeldotich mechanisua rlove for a $\mathrm{O}_{2} / \mathrm{CH}_{4}$ rovatertiow difusion flame with $\mathbf{3} \% \mathrm{I}_{\mathbf{z}}$ addition in both streams.

Figune 6. Profile of J_{2} consumption rate in a strained $\mathrm{O}_{2} / \mathrm{CH}_{4}$ counterflow diffusion tlame with $5 \% \mathrm{~N}_{2}$ addition in both streaus for a strain-rate of $25 \mathrm{~s}^{-1}$.
D: Full GRI 2.11 mechanism. E: Zeldovich mechanism alone.

Figtne -. Profile of N_{2} consumption rate in a strained $\mathrm{O}_{2} / \mathrm{CH}_{\mathbf{3}}$ counterflowdiffusion flame with $5 \% \mathrm{~V}_{2}$ addition in both streams for a strain-rate of $106 \mathrm{j} \mathrm{s}^{-1}$. D: Full GRI 9.11 mechanism. A. Zeldowich mechanism aione.
quantity rather than the flux of $N O$ is that reburn, i.e. production of N_{2} from VO and other nitrogen-containing species, can be clearly identified. Figure 5 de picts that. in both cases. the consumption rate of N_{2} is positive and derreases with strain-rate. Furthermore, the Zeldovich approach shows two weaknesses: 1) at bow strain-rates. it overpredicts the consumption of \boldsymbol{N}_{2}. and 2) at high strain-rates. it underprevicts it. Overprediction of N_{2} consumption at low strain-rates is evidence that reburn through the hydrocarbon chemistry is active in these cases. and underprediction at high strain-rates indicates that $\boldsymbol{\lambda}_{2}$ consumption through the prompt mechanism is significant.

The discrepancies between the full and Zeldovich mechanisms may be explained by antyzing the profile of $d\left[\mathcal{F}_{2} \mid / d t\right.$ at low and high strain-rates. Figure 6 depiets the profiles of $d i_{i} V_{2}^{1} / d t$ for both mechanisms and the profiles of temperature. oxygen mass frartion. and methane mass fraction for a strain-rate of $95 s^{-1}$. For both merhanisms, $d\left[X_{2}\right] / d t$ is negative on the oxygen side and positive on the fuel side. On the oxygen side, N_{2} is consumed to produce NO and other nitrogen-containing species and the two merhanisms give similar results. This indicates that N_{2} consumption is mainly due to the Zeldovich mechanism via the reaction $O+N_{2} \rightarrow N O+N$ and that the prompt and reburn mechanisms are not active. On the fuel side, \dot{V}_{2} is produced. which is evidence of reburn, and there is a significant discrepancy bef wern the full and Zeldovich mechanisms. In this case, the Zeldovich pathway predicts some reburn through the reverse reartion ($N+N O \rightarrow O+N_{2}$) but misses the reburu through hydrorarton chemistry which is aceounted for by the full GRI 2.11 reaction merhanism. The pieture is different at higher strain-rates. Figure $\overline{7}$ depiets the profiles of $\left.d / \mathcal{N}_{2}\right] / d f$ for both merhanisms and the profiles of temperature. oxygen
mass fraction and methane mass fraction for a strain-rate of $1065 \mathrm{~s}^{-1}$. In this case, d $\left[\mathrm{N}_{2}\right] /$ dh is always negative everywhere in the flame for both the Zeldovich and full mechanisms, indicating that there is no reburn. However, the full GRI 2.11 scheme predicts higher consumption rates of N_{2} everywhere in the flame zone both on the oxygen side and in the fuel side. On the oxygen side, most of the $N_{\mathbf{2}}$ is consumed via the Zeldovich mechanism, but additional reactions are also taking place. On the fuel side, the full mechanism exhibits a "bump" that is missed by the Zeldovich mechanism and which is due to the "prompt" reaction, $C H+N_{2} \rightarrow N+H C N$.

Therefore. the following picture can be drawn for oxygen flames: 1) the amount of $\boldsymbol{N}_{\boldsymbol{z}}$ consumption and, consequently, NO production decreases by about 50% for strain-rates varying between 10 and $1000 \mathrm{~s}^{-1}: 2$) in this range of strain-rates, the Zeldowich mechanism predicts λ_{2} consumption within $\pm 25 \%$ compared to the full GRI mechanism: 3) at low strait-rates, the Zeldovich mechanism overpredicts. \boldsymbol{N}_{2} ronsumption by about 15% because it does not account for reburn through the hydrocarbon chenistry; 4) at high strain-rates, the Zeldowich mechanism underpredicts the $\mathbf{N}_{\mathbf{2}}$ consumption by about $\mathbf{2 5 \%}$ because it does not account for $\boldsymbol{N}_{\mathbf{2}}$ consumption through the prompt mechanism.

2.5 An overall one-step model for λ_{2} consumption

The next step consists in deriving an overall one-step reaction mechanism for \boldsymbol{N}_{2} consumption based on the Zeldovich mechanism alone. The proposed model (model 1) includes reburn and considers the following reactions:

$$
\begin{gather*}
N O+N=N_{2}+O \tag{R1}\\
N+O_{2}=O+N O \tag{R2}\\
N+O H=H+N O \tag{R3}\\
H+O_{2}=O H+O \tag{R4}\\
H+O H+M=H_{2} O+M \tag{R5}\\
O+O+M=O_{2}+M \tag{R6}
\end{gather*}
$$

The model is based on the following: 1) reaction 2 plays a negligible role (its net reaction rate is $\mathbf{1}$ to 2 orders of magnitude less than those of reactions 1 and 3): 2) atomic nitrogen is in stcady-state $(d[\mathbf{N}] / d t=0)$; 3) reartions 4 to 6 are assumed in partial equilibrium. After some algebra and considering $\boldsymbol{\lambda}$-atom conservation, one finds:

$$
\begin{equation*}
\frac{d[\mathrm{NO}]}{d t}=-2 \frac{d\left[N_{2}\right]}{d t}=2 \frac{k_{1}^{+} k_{3}^{-}[H][N O]^{2}-k_{1}^{-} k_{3}^{+}\left[k_{2}\right][O H][O]}{k_{1}^{+}[N O]+k_{3}^{+}[O H]} \tag{4}
\end{equation*}
$$

with

$$
\begin{equation*}
[H]=\left[\frac{\left.\left[H_{2} O\right] \mid O\right]}{K_{4} K_{5}\left[O_{2}\right]}\right]^{1 / 2} \tag{5}
\end{equation*}
$$

Figire 8. Effert of strain-rate on integrated consumption rate of N_{2} in a $\mathrm{O}_{2} / \mathrm{CH}_{4}$ counterflow diffusion flame with $5 \% \mathrm{~N}_{2}$ addition in both streams. Solid line: Full GRI 2.11 mechanism. : Zeldovich mechanism alone. Δ : model with no rehurn. A: model with reburn.

$$
\begin{gather*}
{[O H]=\left[\frac{K_{4}\left[H_{2} \mathrm{O}\right]\left[\mathrm{O}_{2}\right]}{\left.\mathrm{K}_{3} \mid \mathrm{O}\right]}\right]^{1 / 2}} \tag{6}\\
{[O]=\left[\frac{\left[\mathrm{O}_{2}\right]}{\mathrm{K}_{6}}\right]^{1 / 2}} \tag{1}
\end{gather*}
$$

where bracketed quantities refer to concentrations, and where k is the specific reaction rate. K is the equilibrium constant. subscripts refer to reaction numbers. superscript ' + ' refers to forward rate of reaction, and superscript ${ }^{\prime}$ refers to backward rate of reaction.

An alternative model (model 2) with no reburn effects and with the partial equilibrium assumption for atomic oxygen can be derived by assuming $k_{1}^{+}=0$. One obtains:

$$
\begin{equation*}
\left.\frac{d[N O]}{d t}\right|_{\text {no rebura }}=-\left.2 \frac{d\left[N_{2}\right]}{d t}\right|_{\text {no reburn }}=2 \frac{k_{1}^{-}}{K_{6}^{-1 / 2}}\left[O_{2}\right]^{1 / 2}\left[N_{2}\right] \tag{8}
\end{equation*}
$$

These global one-step models are compared with the full GR1 2.11 and the Zeldovich mechanisms by focusing on the evolution of the spatially-integrated N_{2} consumption rate with strain-rate (Fig. 8). This figure also depicts the values of $\int\left(-d\left[N_{2}\right] / d t\right) d x$ of the full GRI 2.11 and Zeldovich mechanisms. As in Fig. 5. all models lead to a decrease of the integrated consumption rate of λ_{2} with strainrate. Model 1 has a behavior similar to the Zeldovich mechanism except that at strain-rates greater than $200 s^{-1}$ it underpredicts N_{2} consumption. This is due
to the fact that for the higher strain-rates the partial equilibrium assumption for atomic oxygen fails. Compared to the full GRI 2.11 scheme, model 1 overpredicts N_{2} consumption at low strain-rates by about 15% due to the aa: that it does not account for reburn through the hydrocarbon chemistry. At high strain-rates, it underpredicts N_{2} consumption by about 50% due to the fact that it does not account for the procmpt mechanism and for non-equilibrium effects of atomic oxygen. Model 2 overpredicts significantly N_{2} consumption at low strain-rates and behaves like model 1 at high strain-rates. The overprediction of N_{2} coasumption is due to the fact that no reburn mechanism is included, neither that of the Zeldovich mechanism alone, nor that of the full GRI 2.11 scheme. This shows that inclusion of the reverse step, $N+N O \rightarrow N_{2}+O$. is essential in getting correct estimates of N_{2} consumption at low strain-rates.

3. Effect of turbulence

9.1 Numerical approach

Concerning turbulence, the closure method is investigated by post-processing the 3D data base of a turbulent diffusion flame developed by Vervisch (1992). This data base was the result of a direct numerical simulation of a turbulent non-premixed flame in decaying turbulence. The flow field was resolved accurately by solving the full Navier-Stokes equations. The flame was modeled by a one-step irreversible reaction, $O+F \rightarrow P$, where O is the oxidizer, F is the fuel, and P is the product, and the reaction rate follows an Arrienius formulation:

$$
\begin{equation*}
\dot{u}=k \rho Y_{O} \rho Y_{F} \exp (-E / R T) \tag{9}
\end{equation*}
$$

where \dot{i} is the reactum rate, k is the pre-exponential factor. ρ is the density. Y_{O} is the oxidizer concentration, Y_{F} is the fuel concentration. E is the activation energy. R is the gas constant, and T is the temperature. The formalism that was used was that of Williams (1985): the quantities were non-dimensionalized in such a way that the heat of reaction was expressed in terms of a temperature jump, $\alpha=$ $\left(T_{0}-T_{4}\right) / T_{0}$ and the activation energy was expressed in terms of a Zeldovich number. $3=E\left(T_{0}-T_{n}\right) / R T_{6}^{2}$. The values of these parameters are: $a=0.8$ and $;=8$. The pre-exponential factor was selected such that the initial global Damköhler number was equal to one. This number is defined in Chen et al. (1992) as:

$$
\begin{equation*}
D a=\frac{l_{l}}{u_{0}}\left[\frac{1}{\delta_{f l}} \int_{\delta_{f i}} \dot{w} d x\right] \tag{10}
\end{equation*}
$$

where l_{1} is the integral scale of turbulence, u_{0} is the rms velocity, and $\delta_{f 1}$ is the flame thickness. The Damköler number expresses the ratio between the initial eddy turnover time and a characteristic chemical time. Furthermore, the molecular weights of the fuel and the oxidizer were taken to be equal.

At time $t=0$. the flow field was initialized with a given spectrum for turbulence and with a planar laminar diffusion flame located at the center of the computational
domain. The calculations were carried out on a $129 \times 65 \times 65$ grid. The resulting data base is composed of a series of eight different time intervals: th y correspond to times $0,2.1,4.4 .6 .8,9.2,10.0,14.7,17.2$, where time is non-dimensionalized by the acoustic time, $t_{e}=L / c$ (c is the speed of sound in the fresh reactants $a \cdot \mathcal{L} L$ is a reference length).

The approach for testing various modelirg formulations consists of computing at each time-step the volume-average of $d\left[N_{2}\right] / d t$ and comparing this value with that given by the various closure models. To compute $d\left[N_{2}\right] / d t$, a chemical model is needed. and we use model 2 in this section. The reason for not using model 1 is that it is necessary to have the NO concentration for this model. However, the data base does not provide this information, but provides the oxidizer mass fraction and the temperature field, and, therefore, only model 2 can be used. Consequently. reburn is not accounted for. Since the objective is to assess elosure formulations. if is expected that model 2 is sufficient. In this case, the cousumption rate of $N O$ is expressed from Eq. 8 as follows:

$$
\begin{equation*}
\frac{d[N O]}{d t} \sim \sqrt{\frac{Y_{O}}{T}} \frac{1}{T} \exp \left(-T_{a} / T\right) \tag{11}
\end{equation*}
$$

where $\% / T$ is assumed to be proportional to $\left[O_{2}\right], 1 / T$ is assumed to be proportional to $\left[\mathrm{N}_{2}\right]$, and T_{a} is the activation temperature. In this data base, T is non-dimensional and varies between 2.5 and 12.5 ; therefore, T_{a} is non-dimensional and is set equal to:

Here, we take $T_{6}=3000 \mathrm{~K}$ in order to reproduce the temperature sensitivity of N_{2} consumption occurring in an oxygen-methane flame, and this leads to $\boldsymbol{T}_{\mathrm{a}}=$ 287.3. Consequently, the exact turbulent production of $N O$ in the direct numerical simulation is taken to be:

$$
\begin{equation*}
\left.\frac{d[N O]}{d t}\right|_{\text {exact }}=\frac{1}{N_{x} N_{y} N_{z}} \Sigma_{N x, N y, N z} \frac{\sqrt{F_{O}}}{T^{3 / 2}} \exp \left(-T_{a} / T\right) \tag{13}
\end{equation*}
$$

where λ_{r}, N_{y} and N_{z} are the number of points in directions x, y and z, respectively.

9.2 Results

The PDF closure models of Eq. 3a, referred to as JPDF for joint PDF. and Eq. 3b, referred to as SPDF for single PDF, are assessed by comparing their predictions with the actual NO production rates as estimated from Eq. 13. The predictions by JPDF and SPDF are computed as follows:

$$
\left.\frac{d[N O]}{d t}\right|_{J P D F}=
$$

Figune 9. Time-evolution of turbulent NO production term. The terms are non-dimensionalized by the exact value at $t=0$. • : Exact term. A: Joint PDF. Δ : Single scalar PDF.

$$
\begin{gather*}
\frac{1}{N_{I}} \Sigma_{N_{z}}\left(\frac{1}{N_{y} N_{z}} \Sigma_{N_{y}, N_{z}} \frac{1}{T}\right)\left(\frac{1}{N_{p} N_{z}} \Sigma_{N_{y}, N_{z}} \sqrt{\frac{Y_{O}}{T}}\right)\left(\frac{1}{N_{y} N_{z}} \Sigma_{N_{y}, N_{z}} \exp \left(T_{a} / T\right)\right) \tag{14a}\\
\left.\frac{d(N O)}{d t}\right|_{S P D F}= \\
\frac{1}{N_{T}} \Sigma_{N_{x}}\left(\frac{1}{N_{y} N_{z}} \Sigma_{N_{y}, N_{z}} \frac{1}{T}\right)\left(\sqrt{\frac{1}{N_{y} N_{z}} \Sigma_{N_{y}, N_{a}} \frac{Y_{O}}{T}}\right)\left(\frac{1}{N_{y} N_{z}} \Sigma_{N_{y}, N_{z}} \exp \left(T_{a} / T\right)\right) \tag{146}
\end{gather*}
$$

Figure 9 shows a comparison between the predictions of JPDF, SPDF, and the exact $d(N O) / d t$. In all cases, the production rate of NO starts increasing and then decreases at later times. This can be explained as follows: at initial times, the flame surface is wrinkled by turbulence, leading to an increase of flame surface area and, therefore, to an increase in NO production; at later times, the flame is strained by the turbulent flow field and is locally quenched, as can be seen in Chen et al. (1992), thereby reducing the rate of production of NO. The JPDF and SPDF models overestimate significantly the amount of NO production rates, with JPDF being slightly better than SPDF. The reason for this overestimation is that $\left[\mathrm{O}_{2}\right]$ and T are assumed to be uncorrelated. This can be seen as follows (for simplicity, we consider [\boldsymbol{N}_{2}] as constant):

$$
\begin{equation*}
\frac{d \overline{N O} \mid}{d t} \sim \overline{\left[O_{2}\right]^{1 / 2} \exp \left(T_{a} / T\right)}=\left(\left(\left.O_{2}\right|^{1 / 2}\right)^{*} \overline{\exp \left(-T_{a} / T\right)}\right. \tag{15}
\end{equation*}
$$

where $\left(\left|O_{2}\right|^{1 / 2}\right)^{\bullet}$ is a weighted average of $\left[\left.O_{2}\right|^{1 / 2}\right.$ with:

$$
\begin{equation*}
\left(\left|O_{2}\right|^{1 / 2}\right)^{*}=\int_{V}\left|O_{2}\right|^{1 / 2}\left(\frac{\exp \left(-T_{n} / T\right)}{J_{V} \exp \left(-T_{a} / T\right) d V}\right) d V \tag{16}
\end{equation*}
$$

where V is the volume on which is conducted the averaging procedure, here, the compatational domain. Equation 16 is a weighted average which is strongly biased towards the high temperatures and, therefore, strongly biased to low values of $\left[\mathrm{O}_{2}\right]$, due to chemical reaction and dilatation. Consequently, we obtain:

$$
\begin{equation*}
\left.\left(\mid O_{2}\right]^{1 / 2}\right)^{*}<\overline{\left[O_{2}\right]^{1 / 2}} \tag{17}
\end{equation*}
$$

Furthermore, we have:

$$
\begin{equation*}
\overline{\left[O_{2}\right]^{1 / 2}}<{\left.\overline{\left[O_{2}\right.}\right]^{1 / 2}}^{1 / 2} \tag{18}
\end{equation*}
$$

By combining Eq. 15, 17, and 18 and assuming that [N_{2}] inhomogeneities do not modify the relationships, one finds:

$$
\begin{gather*}
\left.\int_{V}\left[N_{2}\right] \mid O_{2}\right]^{1 / 2} \exp \left(-T_{a} / T\right) d V<\overline{\left[N_{2}\right]}\left(\int_{V}\left[O_{2}\right]^{1 / 2} d V\right)\left(\int_{V} \exp \left(-T_{a} / T\right) d V\right) \\
<\overline{\left[N_{2}\right]}{\left.\overline{\left[O_{2}\right.}\right]^{1 / 2} \int_{V} \exp \left(-T_{a} / T\right) d V} . \tag{19}
\end{gather*}
$$

Therefore, not accounting for the correlation between $\left[\mathrm{O}_{2}\right]$ and T leads necessarily to an overestimation of the turbulent production term of $N O$. In addition, the error is dependent on the averaging volume as is apparent in Eq. 16. In the case of Fig. 9, the averaging volumes over which are computed mean quantities are $y z$ planes as indicated in Eq. 14a and 14b, and this corresponds to a case that minimizes the error. Additional computations have been carried where a single averaging volume corresponding to the whole computational domain has been used, and the corresponding estimates of $d[\overline{N O} / / d t$ by the SPDF and JPDF models are 20 times higher.

9.9 A model based on laminar fleme structure

To improve the predictive canabilities of PDF formulations for $N O$ formation, a correlation between $\left[O_{2}\right]$ and T is sought assuming a laminar flame structure. The goal is to express $\left[\mathrm{O}_{2}\right]$ as a function of temperature. Figure 10 shows the correiation between Y_{O} and the reduced temperature θ at time $t=0$ in the data base, where θ is defined by:

$$
\begin{equation*}
\theta=\frac{T-T_{u}}{T_{b}-T_{u}} \tag{20}
\end{equation*}
$$

The relationship has two branches, one with high values of Y_{O} corresponding to the oxidizer side, and one with low values of Y_{o} corresponding to the fuel side. Matching the oxidizer branch leads to the following fit:

$$
\begin{equation*}
Y_{o}=1 .-0.9 \times \theta \tag{21}
\end{equation*}
$$

and the fuel branch is fit by:

$$
\begin{equation*}
Y_{O}=0.05 \times \theta \tag{22}
\end{equation*}
$$

Figure 10. Relationship between and Yo across the planar laminar diffusion flame at time $t=0$ in the data base.

Figlife 11. Time-evolution of turbulent NO production term. The terms are non-dimensionalized by the exact value at $t=0$. : Exact term. 0 : proposed single scalar PDF model.

Combining Eq. 13, 21, and 22 leads to the following alternate single PDF model:

$$
\begin{equation*}
\left.\frac{d[N O]}{d t}\right|_{\text {model }}=\frac{1}{N_{r} N_{y} N_{z}} \Sigma_{N_{r}, N_{y}, N z} \frac{1}{2}\left(\frac{\sqrt{1-0.9 \theta}}{T^{3 / 2}}+\frac{\sqrt{0.05 \theta}}{T^{3 / 2}}\right) \exp \left(-T_{a} / T\right) \tag{23}
\end{equation*}
$$

Figure 11 shows the evolution of the turbulent production term of NO for the new single PDF model. The agreement is very good and the predictions of this new model are insensitive to the choice of the averaging volume.

This test shows that this new model is promising and can be applied in practical codes that use single PDF formulations for NO production. In the case of an oxygen-natural gas flame. reburn should be accounted for and concentrations of $\mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}$. and NO should be included. Therefore, correlations between $\left[\mathrm{O}_{2}\right]$ and
$T,\left[\mathrm{H}_{2} \mathrm{O}\right]$ and T and [NO O] and T should be derived from, for example, a library of laminar strained flames.

In practice, this PDF model would be able to predict the amount of $N O$ produced in the flame zone; however. it would not be appropriate in the post-flame zone since $\left[\mathrm{O}_{2}\right]$ and T are no longer correlated. Therefore, two models should be used, one for the reaction zone, similar to that developed in this paper, and one for the post-flame zone of the kind of the SPDF or JPDF models.

4. Conclusion

The effects of chemistry and turbulence on the rate of production of nitric oxide in oxygen-natural gas diffusion flames has been investigated.

It has been shown that, due to the high temperatures encountered in these flames, the Zeldovich mechanism is dominant and accounts for more than 75% of the rate of production of NO over a large range of strain-rates. The limitations of predictions based on the Zeldovich mechanism alone have been ide.tified. at low strain-rates, it overpredicts N_{2} onsumption, which is the source of $\boldsymbol{N O}$, due to the fact that it does not account for reburn, and at high strain-rates it underpredicts $\boldsymbol{N}_{\mathbf{2}}$ consumption due to the fact that it does not account for the prompt mechanism. Despite thrse shortcomings. the Zeldovich nechanism is satis . tory for predicting NO formation rates within 25% and an overall one-ster mecha.. im that accounts for reburn and which assumes partial equilibrium of atomic oxygers with O_{2} has been developed. This simple model gives the same results as the Zeldovich mechanism at low strainrates but leads to further underprediction of N_{2} consumption due to the fact that it cannor reproduce non-equilibrium effects.

The effect of turbulence is to generate fluctuations of temperature and species concentrations as well as straining effects. It has been shown by postprocessing the 3D DNS data base of Vervisch (1992) that usual closure models based on single scalar PDF's or joint PDF's lead to significant overpredictions of NO formation rates. The main reason is that these models do not account for the intrinsic correlation between oxygen concentration and temperature in the reaction zone of a diffusion flame. A new single scalar PDF model incorporating such a correlation has been developed. The model assumes that the relationship between oxygen and temperature is that of a laminar diffusion flame. The predictions of this model are in excellent agreement with the results from the DNS, and it is expected that it can be implemented in practical codes that use single scalar PDF's for $N O$ formation.

Acknowledgments

The first author would like to thank Prof. P. Moin for giving the opportunity to participate to this summer program. He would also like to thank Greg Ruetsch and Nigel Smith for their help. The second author would like to express his gratitude to Air Liquide and CTR for their partial financial support.

REFERENCES

Bowman, C. T. 1992 Control of combustion-generated nitrogen oxide , :assions:

Technology driven by regulation. 24th Symposium (Int'l.; on Combustion, The Combustion Institute, Pittsburah, 859-878.
Bowman, C. T., Hanson, R. K. Davidson, D. I., Gapiner, W. C., LisSianski, V., Frenklach, M., Goldenberg, M., Smith, G. P., Golden, G. M. and Seraiskar, R. V. Optimized Kinetics for Nettural Gas Combustion, NOs Production and Reburning (GRI Mech 2.11) Foster 047, 26th Int. Symposium on Combustion.

Bozelli. J. W., Karim, M. H. U. \& Dean, A. M. 1993 Reactions of CH2 and CH with N2 and CH with NO. In Twrbulence and Molecular Processes in Combustion, Elsevier Science Publishers B. V., Amsterdain, 101.

Chelliah, H. K., law, C. K., Leda, T., Syooke, M. D. \& Williams, F. A. 1990 An experimental and theoretical investigation of the dilution, pressure and flow-field effects on the extinction condition of methane-air-nitrogen diffusion fiames. 29rd Symposi:m (Int 7.) on Conbustion. The Combustion Institute, Pittsburgh, 503-511.

Chen, J. H., Mahalingam, S., Pum, i. K. \& Vervisch, L. 3992 Effect of finit e-rate chemistry and unequal Schmidt numbers on turbulent non-premixed flames modeled with single-step chemistry. Proceedirgs of the 1992 Summer Frogram, Center for Turbulence Risearch, Stanford Univ./NASA Ames, 367 387.

Chen, J.-Y. \& Kollmann, W. 1992 PDF modeïng and analysis of thermal NO formation in turbulent nonprer' ed hydrogen-air jet flames. Combust. Flame 88. 37-49.

Correa, S. M.\& Pope, S. B. 1992 Comparison of a Monte Carlo PDF/FiniteVolume Mean Flow Model with Bluff-Body Raman Data. Twenty-Fourth Symposium (Int l.) on Combustion, The Combustion Institute, 279-285.

De Soete, G. G. 1974 Overall reaction rates of NO and N2 formation from fuel dilution. 15:h Symposium (Int'l) an Combustion. The Combustion Institute, Pitisburgh, 1093-1102.

Drake, M. C. \& Blint 1989 Thermal NOx in stretched laminar opposed-flow diffusion flames with CO)/H2/N2 fucl. Combust. Flame 76, 151-167.

Drake, M. C. \& Bliny 199i Relative importance of nitric oxide formation mechanisms in laminar opposed-flow diffusion flames. Combust. Flame 83, 287-338.
Driscoll, J. F., Chen, R.-H. \& ? ? on, Y. 1992 Nitric oxide levels of turbuler* jet diffusion flames: Effects of residence time and Damköhler number. Combust. Flame 88, 37-49.

Egolfopoulos, F. N. 1994a Dynamics and Structure of Unsteady, Strained. Laminar, Premixed Flames. 25th Symposium (Int'l.) on Combustion. The Combustion Institute, Pittsburgh, 1365-1374.

Esiolfopotlos. F. N. 1994b Geometric and Radiation Effects on Steady and Unsteady Strained Laminar Flames. 25th Symposium (Int 7.) on Combustora. The Counbustion Institute, Pittsburgh, 1375-1381.

Egolfopotios. F. N. \& Campbell, C. S. 1996 Cnsteady. Counterflowing. Strained Diffusion Flames: Frequency Response and Scaling. J. of Fluid Meck. 318. 1-29.

Fivimone. C P. 1971 Formation of nitric oxide in premixed hydrocarbon flames. 19th Symposiem (Int l.) on Combustion The Combustion Institute. Pittsburgh. 373-380.

Hihx. W. A. de Wendt. J. O. L. 1981 VOx formation in flat. laminar. opposed jet methane diffusion flames. 18th Symposium (Int Z.) on Combustion. The Combustion Institute. Pittshurgh. 121-131.
Halorth. D. C.. Drake, M. C., Pope. S. B. \& Blint. R. J. 1988 The imporrance of time-dependent flame structures in stretcied laminar flamelet noodels for turbulent jet diffusion flames. 22nd Symposium (Int ?.) on Combusticn. The Combustion Institute. Pittsburgh, 589-597.
Jamicha. J. A Kollmasy. W. 1982 The Calculation of Mean Radical Comerntrations in Turbukent Diffusion Flames. Combust. Fleme. 44, 319-336.
Matss. F.. Killer. D. \& Petel.s, N. 1990 A lagrangian simulation of flameter extinction and re-ignition in turbulent jet diffusion flames. 29 rd Symposium (Int \%) on Combustion. The Combustion Institute, Pittsburgh. 693-698.
Milier. J. A. \& Bowman, C. T. 1989 Mechanism and modeling of nitrogerı chemistry in combustion. Prog. Energy Combust. Sci. 15, 28i-338.
Nishioka. M.. Sakagalia. S.. Ishikalia. Y. \& Takeno, T. 1994 NO emission chararteristics of methave-air double flame. Combuet. Fleme 98. 12i-138

Peters. N. \& Donnerhack. S. 1981 Structure and similarity of nitric oxide production ins turbulent diffusion flames. 18th Symposiam Int T. on Combustion. The Conhustimn Institute. Pittsburgh, 33-42.
Pofe. S. B. d. Correa. S. M. 1986 Joint PDF Calculations of an Nion-Equilibrium Turtuleut Diffusion Flame. 21st Symposium (Int l.) on Combasiton. The Combustion Institute, 1341-1348.

Samavigo. J.-M.. Egolfopotlos. F. N. \& Bowiman. C. T. $1935 \mathrm{CO}_{2}^{2}$ Chemi luminescence in Premixed Flames. Combustion Science and Technology 109. 153.203.

Samanifgo. J.-M.. Labégorme, B., Egolfopollos, F. N., Ditaranto. M.. Sattet. J.C. \& Charon, O. 1996 Mechanisms of Nitric Oxide Formation in Oxygen-Natural Gas Combustion. In preperation.
Tahfio. T.. Nishioha. M. \& Yamashita. H. 1993 Prediction of NOx emission index of turbulent diffusion flame. In Turbulenct and Molerular Processes in Combustum. Elswier Science Publishers B. V.. Amsterdam. 375-392.

Tunss. S. R. \& Myrm. F. H. 1991 Oxides of nitrogra emissions from turbuknt jet flawes: Fart I-fuct efiects and fame chenuistry Combat. Flame 87. 319-335.
Vemisccm, L. 1992 Study and modeling of finite rnte chemistry effects in turbulent non-premixed thanes. Annu. I Reseerch Briefa. Center for Turbulence Research. Stanford Ciniv./NaSA Ames. 411-429.
Vinanos. A.. Kxkimt. B. A., Proscia. W. M.. Cmiapetta. L. \&e Smooke. M. D. 1992 Nitric oxide formation and diffrential difusion in a turbulent methane-hydrogen diffusiou flame. Gith Symposium (Int 7.) on Combustion. The Comivistion Institute. Pittsburgh. 371-384.
Willians. F. A. 1985 Combustion Theory. Brajanin/Cummingr. Menlo Park.

NEXT DOCUMENT

Asymptotic solution of the turbulent mixing layer for velocity ratio close to unity

By F. J. Higuera', J. Jimémez² and A. Liâấa'

The equations describing the first two terms of an asymptotic expansion of the solution of the planar turbakent mixing layer for values of the velocity ratio close to one are obtained. The first term of this expansion is the solution of the wellknown time-evolving problern and the second, which includes the effects of the increase of the turbulence scales in the stream-wise direction, obeys a livear jystem of equations. Numerical solutions of these equations for a two-dinensional reacting nixiug layer shrw that the correction to the time-cvolving solution may explain the asymmetry of the entraiument and the diferences in product generation observed in fip experiments.

1. Introduction

Time evolving simulations of the mixing layer are believed to capture many in portant features of the dynamirs of this flow, and are widely used because they are simpler to implement. Kess expensive, and less subject to uncertainties comang from approximate boundary conditions than the alternative space-evolving simula tions. Some fratures of the real flow, however, are outside the framework of the time etolving simulations. In particular, it is known that an incompressible mixing layet does not entrain equal amounts of fluid from eact of the two free streams (Dimotakis. 1986 and references therein) and that, when the free streams carry passive scalars. the average composition in the molecularly mixed fluid in the mixing layer is nearer to the composition of the fast stream than to the composition of the slow stream. While it is not clear to what extent the second of these features is a consequence of the first or of some asymmetry of the process leading to molecular mixing inside the layer. none of the two can be captured by a time-evolving simulation. owing to the intrinsic symmetry of this artificial fow.
The amount of molecular mixing and the variation of the mixed fluid mean con centration across the layer depend on the Reynolds number, the degree of development of the layer. and the Prandtl or Schmidt number of the scalar: these factors determining in particular the extent to which free stream fluid is transported across the layer by the large scale motions before being molecularly mixed (Konrad 1976; Batt 197i: Mungal \& Dimotakis 1984; Koochesfahani \& Dimotakis 1986: Karasso \& Mungal 1996), but the asymmetries mentioned above occur in any case.

[^5]The effect of the scalar field asymmetry is specially obvious when the species carried by the two streams are reartive and lead to a diffusion flame iaside the mixing layer, in which a unit of mass of a stream (the fuel stream say) reacts with S units of mass of the other (the oxidizer stream). Then, fip experiments, consisting in exrhanging the reactive speries betwren the two streams and kreping constant their concentrations and all the other operating conditions (Mungal \& Dimotakis 1984; Koochesfahani \& Diunotakis 1966: Karasso \& Mungal 1996), clearly show that the amount of product generated by the chemical reaction is larger when the reactant that is more consumed (the oxidizer if $S>1$) is carried by the fast strcam.

To stady the effert of these asynumetries, a correction to the time-evolving mixing layer formulation is worked out here using an asymptotic expansion for small differences of the two stream velocities. The analysis follows the lines of Spalart (1986. 1988). The new formulation is applied to a constant density two-dimensional reactive mixing layer with an infinitely fast, diffusion controlled reaction. In this limit. and assuming in addition that the Lewis numbers of the two reactants are equal to one, the chemiral reaction rau be easily accounted for following the evolution of a linear combination of the mass fractions of the reactants (the mixture fraction Z) which rakes the values 0 and 1 in the oxidizer and fuel streams and is transported as a passive scalar. The mass fraction of the product (also with Lewis number equal to one) is a pierrwise lincar function of Z given by (6) below 'ser. e.g.. Williams 1985).

2. Formulation

Tur turbulent mixing layer is a statistically stationary low and, asymptotically. after an adjustusenc region. it is also statistically seff-similar. Our aim here is to try to take adrantage of these two properties to simplify the numerical computations.

The large length and time scales of the turbulence are proportional to the streamwis distance x in the sulf.similar state, and the variation of these scales is inextricably linked to the dyuamics of the layer. being brought about by the process responsible for its evolution (vortex pairings in the classical view). This feature makes the numerical simulation costly berause a long and wide stretch of the layer must be simulated in order to see the approsch to its self-similar state.

The opening angle of the mixing layer is often small. Formally this is true when the wekcities of the two streams are close to each other. but in fact the angle is fairly small in any rase. On one hand. this feature makes the numerical simulations even nore expensive, beranse a very long stretch is needed to see the initial size of a typical vortex grow by a given factor. On the other hand. this feature is the basis of a well known simplification of the numerical treatment. based on the fart that the changes of time and leugth scales are small. and can be taken into account as a perturbation, over distances of the order of the size of one or a few vortices.

This is so because for a layer growing by pairings of the large vortices, for which carl vortex unst vudergi, a number of these discrete events to approach the selfsimilar state, a small augle anounts to a small ratio of the size of a vortex to the distance it travels inetwern suceessive pairings. But then. since the spacing of the large sale vortices is not much larger than their size. there are many neighboring
vortices to the left and to the right of a given vortex with sizes not very different from its own size. and it seems reasonable to think that the evolution of a vortex and of its nearest neighbors between successive pairings depends on the details of the evolution of only a number of other neighbors, whereas the effect of the rest of the mixing layer can be taken into account using a kind of mean field approximation without regard for individual features of the far vortices.

Since the vortices move with a velocity intermediate between the velocities of the two streams. these conditions can be better put to use in a reference frame moving with that intermediate velocity. In this reference frame the evolution of a vortex can be described following the detailed dynamics of the flow over a span containing only a limited number of neighbor vortices. Here, using periodicity conditions in the stream-wise direction amounts, of course, to a temporal simulation of the flow. but the equations describing the smail perturbations due to the growth of the turbulent scales can be easily worked out and solved along with those of the temporal simulation. It is worth recalling, however, that a definite error of a different type is always associated to the use of periodic conditions because the self-similarity and stationarity of the flow are statistical properties not applicable to individual realizations. Hopefully, the importance of this error decreases as the number of vortices included in the sirulation increases.

Restricting the computations t, a finite span in the moving frame imposes a limitation on the time during which the evolution of the flow may be followed. owing to the growth of the vortices. In principle, a long span is required if the initial conditions are not close to the final self-similar state and a large number of pairings is necessary to approach that state. In practice, such a long span could perhaps be avoideri carrying out computations on a shorter one for a moderate lapse of time and then replicating the results one or a few times in new adjacent spans. introducing appropriate phase shifts and a slight decrease of resolution before ontinuing the computation.

Consider then a plane self-similar mixing layer between two incompressible streams with velorities U_{1} and $U_{2}<U_{1}$. Assume that $\epsilon=\left(U_{1}-U_{2}\right) /\left(U_{1}+U_{2}\right) \ll 1$ to ensure that the angle of the layer, defined in any convenient way, is small of $O(\epsilon)$, thoug!., ns was mentioned before, this angle is probably small for any ϵ. The aim is te follow the evolution of a few adjacent vortices, of initial characteristic size δ sa:; during a time of order $t_{c}=2 \delta /\left(U_{1}-U_{2}\right)$ corresponding to a few pairings. The growth of the mixing layer thickness is taken into account switching to the tariables $\left(r^{*}, \eta, z^{*}\right)$, where $\eta=y^{*} /\left(\epsilon x^{*}\right)$ and $\left(x^{*}, y^{*}, z^{*}\right)$ are the usual Cartesian coordinates. The statistical properties of the flow imply then that the x-averages coincide with the time averages and both are functions of η only. Next. introducing a reference frame moving with velocity $U_{m}=\left(U_{1}+U_{2}\right) / 2$, the solution is sought in the form

$$
\begin{equation*}
v^{*}=U_{m}(i+c v) . \quad p^{\bullet}=\rho U_{m}^{2} \epsilon^{2} p, \quad \text { with } \quad r^{*}=U_{m} t_{c}(t+\epsilon x) \tag{1}
\end{equation*}
$$

where the non-dimensional variables ($\mathbf{v}, \boldsymbol{p}$) are of order unity and the distances and time are sealed with of and t_{c}, respectively. In terms of these variables the

Navier-Stokes equations and the equation for the mixture fraction are

$$
\left.\begin{array}{r}
G_{i} v_{i}-\frac{\epsilon \eta}{t+\epsilon x} \partial_{\eta} u=0 \tag{2}\\
\partial_{t} v_{i}+\left(\tilde{v}_{t} G_{i}\right) v_{i}=-G_{i} P+\frac{1}{\operatorname{Re}} \nabla^{2} v_{i} \\
\partial_{t} Z+\left(\tilde{v}_{t} G_{i}\right) Z=\frac{1}{\operatorname{Re} P r} \nabla^{2} Z
\end{array}\right\}
$$

where $\mathbf{G}=\left(\partial_{z}, 1 /(t+\epsilon x) \partial_{q}, \partial_{z}\right)$ is a symbolic vector, $\bar{v}=\{u, v-\eta(1+\epsilon u), w)$, the Laplacian operator acting on each component of the velocity is $\nabla^{2}=\partial_{x r}+(1+$ $\left.\epsilon^{2} \eta^{2}\right) /(t+\epsilon x)^{2} \partial_{\eta \eta}+\partial_{2:}-2 \epsilon \eta /(t+\epsilon x) \partial_{2 \eta}+2 \epsilon^{2} \eta /(t+\epsilon r)^{2} \partial_{\eta} . R e=\left(U_{1}-U_{2}\right) \delta / 2 \nu$, and Pr is the $\operatorname{Prandtl}$ number. The solution of (2) can be sought as a power series in ϵ. of the form (v. p. $\boldsymbol{Z})=\left(\mathbf{v}_{0}, p_{0}, Z_{0}\right)+\epsilon\left(\mathbf{v}_{1}, p_{1}, Z_{1}\right)+\cdots$.

Carrying this expansion into (2) we find, at leading order,

$$
\left.\begin{array}{r}
G_{0_{i}} v_{0_{i}}=0 \tag{3}\\
\partial_{1} v_{0}+\left(i_{0,} G_{0,}\right) i_{0}=-G_{0_{i} P_{0}}+\frac{1}{\operatorname{Re}} \nabla_{0}^{2} v_{0_{i}} \\
\partial_{1} Z_{0}+\left(i_{0}, G_{0,}\right) Z_{0}=\frac{1}{\operatorname{RePr}} \nabla_{0}^{2} Z_{0}
\end{array}\right\},
$$

where $G_{0}=\left(\partial_{r}, 1 / t \partial_{\eta}, \partial_{z}\right) . \tilde{v}_{0}=\left(u_{0}, v_{0}-\eta, u_{0}\right)$, and $\nabla_{0}^{2}=\partial_{x I}+1 / t^{2} \partial_{q 7}+\partial_{z z}$.
At the next higher order linear equations are obtainel for (v_{1}, p_{1}, Z_{1}) having some forring terms proportional to x (arising from the expansion of the denominators in (2)) and other that do not contain x explicitly. The solution of these equations is of the form $\left(v_{1}, p_{1}, Z_{1}\right)=x\left(v_{10}, p_{10}, Z_{10}\right)+\left(v_{11}, p_{11}, Z_{11}\right)$, where, as can be easily verified, $\left(v_{10}, p_{10}, Z_{10}\right)=\partial_{1}\left(v_{0}, p_{0}, Z_{0}\right)$ in order for the time averages to be independent of r, and $\left(v_{11}, p_{11}, Z_{11}\right)$ satisfy

$$
\left.\begin{array}{r}
G_{0,} v_{11}+\partial_{1} u_{0}-\frac{\eta}{t} \partial_{\eta} u_{0}=0 \\
\partial_{1} v_{11 .}+\left(i_{0,} G_{0,}\right) v_{11,}+\left(\tilde{v}_{11}, G_{0,}\right) v_{0 .}=-G_{0, P_{11}}+\frac{1}{R t} \nabla_{0}^{2} v_{11}+F_{i} \\
\partial_{1} Z_{11}+\left(\dot{v}_{0}, G_{0,}\right) Z_{11}+\left(\dot{v}_{11}, G_{0,}\right) Z_{0}+u_{0} \partial_{1} Z_{0}-\frac{\eta u_{0}}{t} \partial_{\eta} Z_{0}= \tag{4}\\
\frac{1}{\operatorname{RePr}}\left(\nabla_{0}^{2} Z_{11}+2 \partial_{t t} Z_{0}-\frac{2 \eta}{t} \partial_{2 \eta} Z_{0}\right)
\end{array}\right\}
$$

where $\mathbf{F}=-u_{0} \partial_{1} v_{0}+\eta u_{0} / t \partial_{\eta} v_{0}+2 / \operatorname{Re}\left(\partial_{r i}, v_{0}-\eta / t \partial_{r \eta} v_{0}\right)+\left(-\partial_{t} p_{0}+\eta / t \partial_{\eta} p_{0}, \mathbf{0}, 0\right)$. The velocity at this ordet is therefore $v=v_{0}+\epsilon\left(s \partial_{1} v_{0}+v_{11}\right)$, which can be written as $v_{0}(x, \eta, t+\epsilon x)+\epsilon v_{11}$, and the pressure and mixture fraction are analogous. The first term admits a simple interpretation: as far as it is concerned the state of development of the flow is proportional to x, being slightly more evolved downstream of a point than it is upstream. Thus, even if periodic loundary conditions are used as an approximation for the leading order problem (3), as will be done in the
following section, this first term is not periodic. The effect of the second term will be discussed later.

Applying x - and t-averages in suitable order to Eqs. (3) and to the continuity equation in (4) yields

$$
\left.\begin{array}{r}
\frac{d \bar{v}_{0}}{d \eta}=0 \tag{5}\\
\frac{d}{d \eta}\left(\overline{u_{0} v_{0}}\right)-\eta \frac{d \bar{u}_{0}}{d \eta}=0 \\
\frac{d}{d \eta}\left(\overline{v_{0}^{2}}+\bar{p}_{0}\right)=0 \\
\frac{d}{d \eta}\left(\overline{u_{0} Z_{0}}\right)-\eta \frac{d \bar{Z}_{0}}{d \eta}=0 \\
\frac{d \bar{v}_{11}}{d \eta}-\eta \frac{d \bar{u}_{0}}{d \eta}=0
\end{array}\right\}
$$

where the bars denote averaged variables. The first of these equations gives $\vec{v}_{0}=0$ (a constant to has no effect on the dynamics; it can be set equal to zero by an $O(f)$ change in the orientation of the x axis). The last equation in (5) implies that the mean normal veiocity is of order e relntive to the variation of the streamwise velocity, as coulci have been expected for a region of $O(\epsilon)$ aspect ratio. Using the second equation to eliminate $\eta d \bar{u}_{0} / d \eta$ and integrating, this equation yields $\bar{r}_{11}-\overline{u_{0} r_{0}}=$ constant. Since $\overline{u_{0} v_{0}}=0$ for $\eta \rightarrow \pm \infty$, the normal velocity v_{11} tends to the same constant value on both sides of the mixing layer, and this constant can be set equal to zero as for v_{0}. Therefore the mixing layer does not introduce any perturbation in the free streams to this order and the ingestion of fluid by the layer is due only to the linear growth with x of its upper and lower apparent boundaries.

Since the orientation of the x-axis is well determined by the conditions $v_{0}=v_{1}=0$ outside the mixing layer, the upper and lower boundaries can be defined on the basis of the usual thicknesses. For example, using the scaled momentum thickness $\Delta_{m}=\int_{-\infty}^{\infty} \overline{\left(E_{1}-u^{*}\right)\left(u^{*}-U_{2}\right)} d y^{*} /\left[\epsilon x^{*}\left(U_{1}-U_{2}\right)^{2}\right]$ and the scaled product thickness $\Delta_{p}=\int_{-\infty}^{\infty} \overline{Y_{p}(Z)} d y^{*} /\left(\epsilon x^{*}\right)$, where $Y_{F}(Z)$ is the product mass fraction given by the piecewise linear function

$$
Y_{p}=\left\{\begin{array}{ccc}
Z / Z, & \text { for } & 0 \leq Z \leq Z \tag{6}\\
(1-Z) /(1-Z) & \text { for } & Z \leq Z \leq 1
\end{array}\right.
$$

with $Z_{s}=1 /(1+5)$, the scaled upper and lower boundaries are

$$
\begin{align*}
& \Delta_{m}^{ \pm}= \pm \frac{1}{4} \int_{0}^{ \pm \infty}\left(1-\overline{u^{2}}\right) d \eta= \pm \frac{1}{4} \int_{0}^{ \pm \infty}\left(1-\overline{u_{0}^{2}}\right) d \eta \mp \frac{\epsilon}{2} \int_{0}^{ \pm \infty} \overline{u_{0} u_{11}} d r_{i}+\cdots \\
& \Delta_{p}^{ \pm}= \pm \int_{0}^{ \pm \infty} \overline{Y_{p}(Z)} d \eta \tag{7}
\end{align*}
$$

and $\Delta_{m}=\Delta_{m}^{+}+\Delta_{m}^{-}, \Delta_{p}=\Delta_{p}^{+}+\Delta_{p}^{-}$.

Figine 1. Sketch of the apparent boundaries and entrainment process.

3. Results

The two-dimensional forms of Eqs. (3) and (4) were numerically solved to find the effect of the first order corrections on the growth rate and the asymmetry of the layer. For this purpose the variable $y=\eta t$, which is the non-dimensional normal distance divided by the factor $1+\epsilon x / t$, was used instead of η. The equations then take the form

$$
\left.\begin{array}{r}
\partial_{1} v_{0}+\nabla \cdot\left(v_{0} v_{0}\right)=-\nabla p_{0}+\frac{1}{R e} \nabla^{2} v_{0} \\
\partial_{1} Z_{0}+\nabla \cdot\left(v_{0} z_{0}\right)=\frac{1}{R e P r} \nabla^{2} Z_{0} \tag{9}
\end{array}\right\}
$$

with $R=-u_{0} v_{0}+2 / \operatorname{Re} \partial_{s} v_{0}-\left(p_{0}, 0\right)$, and were solved with the boundary conditions $v_{0} \mp i=v_{11}=Z_{11}=0$ and $Z_{0}=(1,0)$ for $y \rightarrow \pm \infty$. and periodicity conditions in the stream-wise direction. The use of periodicity conditions is an approximation for which the only possible justification seems to be that in the present variables they are compatible with the spatial growth of the turbulence scales, and that, hopefully. they do not distort the solution too much if the period is sufficiently larger than the size of the vortices during most of the simulation. The initial conditions for the leading order variables were the hyperbolic tangent profiles $u_{0}=\tanh 2 y$ and $Z_{0}=\frac{1}{2}(1+\tanh 2 y)$ plus perturbations proportional to the most unstable linear mode and one or two sub-harmonics with different amplitudes and phases. The variables \boldsymbol{v}_{11} and Z_{11} were initially zero. In the simulations $\operatorname{Pr}=1$ and $R e=500-1000$, based on the initial vorticity thichness.

With these conditions, $v_{0}, Z_{0}-1 / 2$ and p_{11} change sign under the transformation $(x, y, t) \rightarrow(-x,-y . t)$ while v_{11}, Z_{11}. and p_{0} are left invariant. The mixing layer grows symmetrically in first approximation, leading to $\Delta_{m_{0}}^{+}=\Delta_{m_{0}}^{-}=\Delta_{m_{0}} / 2$, whereas the correction to the growth rate is antisymmetric: $\Delta_{m_{1}}^{+}=-\Delta_{m_{1}}^{-}=\Delta_{m_{1}}$ say (the same relations hold for the product thickness when $S=1$). Here $\Delta_{m_{0}}$ and $\Delta_{m_{1}}$ are the slopes of straight lines fitted to $\delta_{m_{0}}=\frac{1}{4} \int_{-\infty}^{\infty}\left(1-\overline{u_{0}^{2}}\right) d y$ and $\delta_{m_{1}}=$ $-\frac{1}{2} \int_{0}^{\infty} \overline{u_{0} u_{11}} d y$. The fluxes crossing the upper and lower apparent boundaries of

Figure 2. Momentum thickness (-) and upper and lower boundaries (-.- and -- , respectively) for $\epsilon=0.45\left(r=U_{2} / U_{1}=0.38\right), \operatorname{Re}=500$ and $\operatorname{Pr}=1$.
the layer. scaled with $\epsilon U_{m} x^{0}$, are (see Fig. 1) $\phi^{ \pm}=(1 \pm \epsilon) \Delta_{m}^{ \pm}=\left[\Delta_{m_{g}} \pm \epsilon\left(\Delta_{m_{0}}+\right.\right.$ $\left.2 \Delta_{m_{1}}\right)+\cdots j_{1}$.. where the momentum thickness is used for definiteness, and the entrainment ratio, defined here as $E=\phi^{+} / \phi^{-}$, is

$$
\begin{equation*}
E=1+\epsilon\left[1+2 \frac{\Delta_{m_{1}}}{\Delta_{m 0}}\right]+O\left(\epsilon^{2}\right) . \tag{10}
\end{equation*}
$$

The total momentum thickness $\delta_{m}=\delta_{m,}$ and the upper and lower apparent boundaries, $\delta_{m}^{+}=\delta_{m_{0}} / 2+\epsilon \delta_{m_{1}}$ and $\delta_{m}^{-}=\delta_{m_{0}} / 2-\epsilon \delta_{m_{1}}$ respectively, are given in Fig. 2 for a representative case displaying a pairing. The numerical results show that the layer opens more toward the slow stream $\left(\Delta_{m i}<0\right)$, but this effect is overbalanced by the higher speed of the fast stream resulting in a \boldsymbol{E} slightly greater than one.
Figure 3 shows the product thickness for $S=1$ and for $S=8$ and $1 / 8$. The last two values correspond to a flip experiment in which the fuel and the oxidizer streams are exchanged. The results show that the generation of product is higher when the reactant that is more consumed is carried by the fast stream.
Both results are in qualitative agreement with the experimental data. Quantitative comparisons are meaningless given the two-dimensional character of the present simulations.
The explanation of these results can be traced, of course, to the form of the forcing terms on the right hand sides of Eqs. (9). These terms depend only on time derivatives of the leading order solution, and the signs of some of them can be casily guessed. Thus, since the antisymmetric profile of $\bar{u}_{0}(y)$ (the bar meaning here x-average) gets thicker with time, $-\partial_{1} u_{0}$ in the continuity equation is more

Figune 3. Product thickness for $S=1$ (- ; not affected by the asymmetry) and for $S=8(-\cdots)$ and $1 / 8(---)$, corresponding to a flip experiment, for $\epsilon=0.45 . \operatorname{Re}=500$ and $\operatorname{Pr}=1 . \cdots \cdots \cdots:$ common value for $S=8$ and $1 / 8$ when $e=0$.
often positive than negative in the upper part of the layer, which amounts to a distribution of sources, and vice versa in the lower part, which amounts to sinks.

For the same reason, $-\partial_{1} u_{0}^{2}$ should be positive, on average, everywhere in the layer, and the numerical results show that this is also true of the whole forcing term $-\partial_{1}\left(u_{0}^{2}+p_{0}\right)+2 / \operatorname{Re} \partial_{2 t} u_{0}$ in the x-momentum equation. This amounts to a force pushing the fluid in the stream-wise direction and leading to a u_{11} predominantly positive. Therefore the average velocity $\bar{u}_{0}+\epsilon \bar{u}_{11}$ approaches its asymptotic value +1 in the upper stream faster than its asymptotic value ${ }^{-1}$ in the lower stream, which explains the results in Fig. 2.

The forcing term in the equation for Z_{11} has a complicated structure with bands of alternate signs. On average, however, it is positive (as coild have been expected of the term $-\partial_{t}\left(\overline{u_{0} Z_{0}}\right)$, due to the increase of thickness of the profile of \bar{Z}_{0} with time). leading to a Z_{11} with a banded structure but predominantly positive. Hence the region of \bar{Z} near 1 in the upper part of the layer is wider than the region of \bar{Z} near 0 in the lower part. This provides an explanation for the results in Fig. 3 because the upper region is responsible for a larger fraction of the product than the lower region when S is small and the average position of the flame is shifted toward the upper side, while the lower region is responsible for a larger fraction of the product than the upper region when S is large and the average position of the flame is shifted toward the lower side.

Since the forcing terms depend only on the leading order solution, they could perhaps be evaluated from the results of a three-dimensional time-evolving simulation (as that of Roger \& Moser 1994), which would give indications O_{i}. whether the
above observed trends hold also for that more realistic case.
Finally it may be noted that the condition $\in<1$, used here as the basis of a formal expansion, may not be necessary for some of the results to hold. As was mentioned before, the angle of the layer is moderately small for any value of ϵ because the eddy turn over time is always shorter than the time between pairings, and this alone provides the required scale separation.

REFERENCES

Batt, R. G. 1977 Turbulent mixing of passive and chemically reacting species in a low-speed shear layer. J. Fluid Mech. 82, 53-95.
Dimotakis, P. E. 1986 Two dimensional shear-layer entrainment. A/AA J. 24, 1791-1796.

Karasso, P. S. \& Mungal, M. G. 1996 Scalar mixing and reaction in plane liquid shear layers. J. Fluid Mech. In press.
Konrad, J. H. 1976 An experimental investigation of mixing in two-dimensional turbulent shear flows with applications to diffusion-limited chemical reactions. Ph.D. Thesis, Caltech.
Koochesfahani, M. M. \& Dimotakis, P. E. 1986 Mixing and chemical reactions in a turbulent liquid mixing layer. J. Flvid Mech. 170, 83-112.
Mungal, M. G. \& Dimotakis, P. E. 1984 Mixing and combustion with low heat release in a turbulent shear layer. J. Fluid Mech. 148, 349-382.
Rogers, M. M. \& Moser, R. D. 1994 Direct simulation of a self-similar turbulent mixing layer. Phys. Fluids. 6, 903-923.
Spalart, P. R. 1986 Numerical study of sink-flow boundary layers. J. Fluid Mech. 172, 307-328.
Spaiart, P. R. 1988 Direct sir,ulation of a turbulent boundary layer up to Ree $=1410$. J. Fluid Mech. 187, 61-98.
Williams, F. A. 1985 Combustion Theory, 2nd ed. Benjamin/Cumming, Menlo Park, CA.

NEXT DOCUMENT

The effects of complex chemistry on triple flames

By T. Echekki' and J. H. Cbea'

Abstract

The structure. ignition. and stabilization mechanisms for a nethanol ($\left.\mathrm{CH}_{3} \mathrm{OH}\right)$-air triple flame are studied using Direct Numerical Simulations (DNS). The methanol ($\mathrm{CH}_{3} \mathrm{OH}$)-air triple flame is found to born with an asymmetric shape due to the different rhemical and transport processes characterizing the mixture. The excess fu-l. methanol ($\mathrm{CH}_{3} \mathrm{OH}$) , on the rich premixed flame branch is replaced by more stable fuel. CO and H_{2} which burn at the diffasion flanve. On the lean premixed flane side. a higher conceutration of O_{2} keaks through to the difusion flame. The general strurture of the triple point features the contribution of both differential diffusion of radicals and beat. A mixture fraction-temperature phase piane description of the triple flame structure is proposed to highlight some interesting features in partially premixed iombustion. The efferts of differential diffusion at the triple point add to the contribution of hydrodynamic effects in the stabilization of the triple flame. Differenti: 1 diffusion effects are measured using two methods: a direct compuiation using diffusion velocities and an indirect computation based on the difference betwen the normalized mixture fractions of \mathbf{C} and H . The mixture fraction approach does not clearly identify the effects of differential diffusion. in particular at the curved triple point. because of ambiguities in the contribution of carion and hydrogen atoms' carrying species.

1. Introductiou

Tripie flames arise in a number of practical configurations where the reacting mixtuir is partially premixed. The flame has three branches refiecting the extent of promixeriness of the fuel and oxidizer. On the fivel side, a rich premixed flame forms. while ou the oxidizer side. a lean premixed flame forms. Bethind the two branches. a diffusion flame forms where 'excess' fuel and oxidizer burn. The premixed flame branches prowide both a source of roartants (excess from the primary, remixed flames) for the diffusion: flame and a mechanism for its stabilization and ignition at the triple point (the location where the three branches meet).

During the la.t two decades a number of studies of triple flames have been carried out to understand the mechanisms of stabilization and their structure using simplified models of chemistry anu transport (Hartley \& Dold. 1991; Kioni et el., 1993: Lakkaraju. 1996: Ruetsch et al., 1995: Domingo \& Vervisch. 1950: and Wichman. 199:). Rerently, computations by Terhoeven \& Peters (1996) have shown

[^6]the significance of complex chemistry and realistic transport to the structure and sfabilization of triple methane-air flames.

In the context of complex chemistry and transpoct efficts. a number of questions pertaining to the flame structure, ignition at the tripie point and progagation remain unanswered. The structure of the premixed flame on the rich and lean branches is experted to be asymmetrical because of the inherent asymmetry in the flammability limits, reacting mixture composition. and burning rates of the flame. In the difusion branch. the primary fuel may not be the ariginal fued that luurns on the premixed side. In the computations of Terboeven \& Peters (1996), only a small fraction of the primary fuel. methane. survives near the triple point. Instead, more stable molecules surh as CO and $\mathrm{H}_{\mathbf{2}}$ provide the needed fuel to burn in the diffusion flame.

Morewer, the diffusion flame is anchored to the promixed branches at the triple point by both preheating and diffusion of radicals including H. O. and OH. These radicals diffuse at rates which are significantly difierent from difusion rates of beat and result in differential difiusion effects at the triple point. The coupling of curvature and differential diffusion effects at the triple point may also display itself in enhanced burning rates and. thereby: enhanced propagation of the triple point. The sanue diferential diffusion effects along with chemistry determine the structure and location of the diffusina bramet of the tripk flame.

The objert of this study is to determine the structure and mechanisms of ignition and stabilization of triple methnol ($\mathrm{CH}_{3} \mathrm{OH}$)-air fames in a laminar free shear layer configuration using detaikd chemistry and a realistic transport model. The choicr of methanol av a fuel presents some advantages with regard to the complexity of the chemical system and the numerical treatment. The full range of fammaibitity may be adequately described using C_{1} chemistry. It diyplays some of the interesting fratures in its itructure which are common annong hydrocartons (e.g. the twr-layer structure corresponding to fuel and radical consumption, and H_{2} and CO uxidation). In the following sections, the govrning rquations and numerical configuraticn are described. A discussion of the triple flame strurture and the contribution of chemistay and transport to its ignition and stabilization is presented

2. Governing equations and mumerical conigguration

The triple flane in a laminar ucixing layer betwern methand ($\mathrm{CH}_{3} \mathrm{OH}$) fucl and air as oxiduzer is computed using DNS with a C_{1} merhinisnif for chemistry (Warnatz et al. 1996). The numerical scheme is based on the solution of the Navier-Stolies. sprcies. and energy equations for a compressible gas mixture with temperature dependent properties. Thr equations are solved using an righth-order explicit finite difference scheme (Kennerly \&- Carpenter. 1994) for apprxximating spatial derivtive and a fourth-order kow storage Rumge. Kutta schome for time advancement (Kennedy \& Carpenter. 1936). A modified versien of the Navier-Stokes Chararterjstic Boundary Conditions (: SCBC) promedure originally developed by Poinsot d: Lele (1992) is uneyl to acroume for variable sperific hat- (Card et al. 1904). The

Figuee 1. Numerical configuration.
boundary conditions are pon-reflecting in all directions. The species mass difusion is modeled wi:h a Lewis number formulation and a prescription of the Lewis numbers for the different species (Smooke \& Gionangigdi, 1991). The values of the Lewis numbers for the species is given in Thble 1. The Prandtl number, $\operatorname{Pr}=\mu \bar{C}_{p} / \lambda$, is set to a constant of 0.708 .

For the C_{1} methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ mechanism. couservation equations for fifteen reacting speries are considered (see Table 1), and the mass fraction of N_{2} is obtained through the relationship $\sum_{0=1}^{N} Y_{0}=1$. where $N=16$. The computational configuration is strown in Fig. 1. The initial mixture is precheated to 800 K . The field is initialized with stoictiometric une-dimensional flame profiles which are modified spatially over a buffer domain of thickness I to reflect the desired inket composition. The inket conditions are maintained constant during the computations. The inket velocity is fixed at the stoichionetric elame speed, S_{L}; mo attempt to stabilize the flame is made. The methanol, oxygen. and its correspondiag proportion of nitrogen (in air) in the buffer domain are based on self-similar solution profiles of the mixture frartion, \&. They are prescribed as follows:

$$
\begin{align*}
\xi(x, y \cdot t=0)= & \left(1-\xi_{0}\right) \cdot\left\{1-\exp \left[-\left(\frac{x-L}{\Delta}\right)^{2}\right]\right\} / \\
& \left\{1-\exp \left[-\left(\frac{L}{\Delta}\right)^{2}\right]\right\} \cdot \operatorname{er}\left(\frac{y}{\delta}\right)+\xi_{o} \tag{1}
\end{align*}
$$

Herc. ξ is the mixture fraction expressed as follows:

$$
\epsilon \equiv \frac{z^{*}-z_{o}^{*}}{z_{F}^{*}-Z_{o}^{*}}
$$

where the subocripts F and \boldsymbol{O} denote the fued and oxidizer streams, respectively. Z^{*} is expressed in teruns of the demental mixture fraction (threc elenoents make up the reacting speries: C. H. and O). 2, as follows (Warnatz et al. 1986):

$$
\begin{equation*}
z^{*}=\sum_{i=1}^{\infty} s_{i} z_{i} \tag{2}
\end{equation*}
$$

 where μ_{10} is the mass proportion of the element i in the species a (e.g. for hydrogen atom in methane, it is $1 / 4$). In terms of the species mass fraction. Z° may be writtea as $Z^{\circ}=\sum_{\infty=1}^{N} \mu_{a}^{0} Y_{0}$. where $\mu_{a}^{*}=\sum_{i=1}^{+\infty} \quad 3_{1} \mu_{\text {mo }}$.

species	L
H_{2}	0.30
O_{2}	1.11
O	0.70
OH	0.73
$\mathrm{H}_{2} \mathrm{O}$	0.83
H	0.18
HO_{2}	1.10
$\mathrm{H}_{2} \mathrm{O}_{2}$	1.12
CO	1.10
CO_{2}	1.39
$\mathrm{CH}_{2} \mathrm{O}$	1.28
CHO	1.27
$\mathrm{CH}_{2} \mathrm{OH}$	1.30
$\mathrm{CH}_{3} \mathrm{OH}$	1.30
$\mathrm{CH}_{3} \mathrm{O}$	1.30

Table 1. Lewis Numbets of Reacting Species.

In Eq. 1. ξ_{0} denotes the stoichiometric mixture fraction; $\begin{gathered}\text { is } \\ \text { the characteristic }\end{gathered}$ thickness of the mixing region in the y direction; Δ is the bulfer region characteristic thickness. In the spatial and temporal unriations, the rate of variations of mixture fraction profiles in r are specified as Gaussian functions with characteristic thicknesses, Δ. For hydrocarbon fuels. Bilger et al. (1990) propose $2 / \mathrm{W}_{\mathrm{c}} \mathrm{c} .1 /\left(\mathbf{2} \mathrm{W}_{\mathrm{H}}\right)$ and $1 / H O$ as coefficients B_{1} (Eq. 2) for the carbon (C). hydrogen (H). and oxygen (O) elements. Here. $\mathrm{H}_{\mathrm{C}} . \mathrm{W}_{H}$ and W_{o} are the atomir weights of C . H . and O . The proposed coefficients have boen used in turbulent methanol diffusion flames by Masti et el. (1992). The stoichiometric mixture fraction for the methanol-air mixture based on these coefficients is $\xi_{t}=0.130$.

A single computation is carried out with a mixture fraction characteristic thickness of $\delta / \delta_{F}=$ 3.5. The flame thermal thickness, δ_{F}, corresponds to the stoichiometric premixed methanol-air finme and is defined as follows:

$$
\delta_{F}=\frac{T_{t}-T_{a}}{(d T / d x)_{\max }}
$$

where the subscripts u and b refer, respectively, to the unburat and burnt gases. The buffer domain size, L / δ_{F}, and its characteristic thickness, Δ / δ_{F}, are 5.4 and 0.7 , respectively. The computational domain is 501 by 351 grid points.

3. Numerical diagmortics

The DNS gields detailed information about the flow field and various scalars characterizing the structure of the triple flame. In this section, diagnostic approaches used to identify the pertinent features of the triple flame are described.

3.1 Reection flom andysis

The primary objective of reaction flow analysis (Warnatz et el., 1996) is to identify the primary reactions which contribute to the production or consumption of a particular species or to the rate of beat release.

3.2 Quantitetroc enalysis of differenticl diffusion effects

Differential diffusion represents a won-negligible phenomenon in hydrogen and hydrocarbon flames in regions of strong curvature. It contributes to the enhancement of the burning intensity due to the stroag chemical role played by hydrogen atoms and molecules in these flames and their fast rate of diffusion. To identify the strength of differential diffusion efferts, in particular at the triple point in the flame, two approaches are considered. The first is based on the computation of the diffusion velocities of the various reactive species in the mixture which represent a direct measure of differential diffusion effects. From the formulation described earlier, the diffusion velocity of species, a, may be written as follows:

$$
V_{a j}=-D_{a N} \frac{1}{Y_{\alpha}} \frac{\partial Y_{a}}{\partial x_{j}}, \quad a=1, \cdots, N-1 .
$$

An alternate and indirect method of identifying strong differential diffusion effects is to compute the difference between elemental mass fractions (Bilger, 1981: Bilger G Dibble. 1989: Drake © Blint, 1988; Smith et al., 1995). In the present work, the difference, zC,H , between elemental mass fractions of C atom and H atoms is computed:

$$
z_{C, H}=\xi_{C}-\xi_{H},
$$

where

$$
\xi_{C} \equiv \frac{Z_{C}-Z_{C, O}}{Z_{C . F}-Z_{C, O}}=\frac{Z_{C}}{\mu_{C . C H_{3} O H}}, \quad \xi_{H} \equiv \frac{Z_{H}-Z_{H . O}}{Z_{H . F}-Z_{H . O}}=\frac{Z_{H}}{\mu_{H, C H_{3} O H}} .
$$

A different formulation of the differential diffusion parameters is to compute correlations between ξ_{C} and $\boldsymbol{\xi}_{H}$.

It is important to note that there is a fundamental limitation in the interpretation of tho difference between ξ_{C} and ξ_{H} in terms of differential diffusion effects alone. The contribution to these quantities comes from carbon-carrying and hydrogencarrying species in which the particular \mathbf{C} and H may uot play a significant role in its transport properties.

3.3 Plame propagation

The propagation of the flame may be tracked by evaluating a displacement speed of the froat relative to the flow field. This quantity may be evaluated exactly from the numerical results when a flame surface is tracked with a particular scalar isorontour (such as hydrogen molecule mass fraction). An expression for the displacenent speed. S_{4}. based on tracking a constant mass fractiou contour may be obtained (Ruetsch et cl., 1995) by writing the Hamilton-Jacobi equation and substitution of the governing species equation:

$$
\begin{equation*}
\rho S_{d} \equiv \rho_{a} S_{i}=\frac{1}{\left|\nabla Y_{o}\right|}\left[\frac{\partial}{\partial x_{j}}\left(\rho D_{a} \frac{\partial Y_{o}}{\partial x_{j}}\right)+\dot{j}_{a}\right] . \tag{3}
\end{equation*}
$$

In this expression. $S_{i}^{;}$is the density-weighted displacement speed. In this general form, the displacement speed measures the velocity of a scalar iso-contour (i.e. the fiame-front) relative to the local gas. The value of S_{d} depends on the location in the flame where it is measured. The use of the product $\rho S_{\&}$ or $S_{\&}^{\beta}$ tends to reduce thermal expansion effects due to the choice of the location where $S_{\&}$ is measured. Under strictly one-dimensional planar flame condition, this quantity is constant. In the reaction zone, the value of the density-weighted displacement speed, S_{j}°, reflects primarily the chemical contribution. However, with the exception of perhaps a narrow region in the reaction zone, $p S_{d}$ is subject to additional effects resulting from the processes in the preheat zone.

A measure of the triple flame stabilization mechanisms is its speed relative to the cold gas. It may be evaluated using the same approach adopted by Ruetsch \& Broadwell (1995). This speed contains both the contributions from chemical and hydrodynamic-diffusive effects (Echekki, 1992 \& 1996; Poinsot et el. 1992). To evaluate the hydrodynamic-diffusion contribution, the velocity, V/, of the triple point relative to the unburnt gas is evaluated. F_{f}, at the leading edge of the flame, may be evaluated using the following relation:

$$
\begin{equation*}
V_{f}=\left(S_{d}-u_{f}\right)+u_{0} \tag{4}
\end{equation*}
$$

where $u f$ is the gas velocity at the flame location where the displacement speed is computed. The term $-S_{a}+u_{f}$ represents the Lagrangian speed of the triple point. The speed u_{0} is the unburnt gas velocity at the inlet of the computational domain prior to the onset of lateral flow expansion and cross-stream diffusion effects. Note that. although S_{d} and u_{f} vary along the flame. the combined speed. $-S_{d}+u_{f}$. is constant in the flame under steady flow conditious.

4. General structure of the triple fame

In what follows. a description of the general structure of the methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$. air triple flame is given in terms of reactant, radicals, and heat release rate profiles.

4.1. Reactents and products profiles

Figure 2 shows the isocontours of the major species (reactants and products) mass fractions in the triple flame. The figure shows no leakage of the fuel beyond the primary premixed flame (Fig. 2c). Beyond the premixed flame front, methanol ($\mathrm{CH}_{3} \mathrm{OH}$) is deromposed into more stable fuels which include $\mathrm{CO}, \mathrm{H}_{2}$, and H . On the lean side, O_{2} survives through the premixed flame and diffuses towards the stable reactants from the fuel side. A reduction in the fuel concentration across the premixed flame has also been observed by Terhoeven \& Peters (1996) in their methane-air flame, albeit to a lesser extent. In addition to its oxidation by radical species in the C_{1} chain, methanol pyrolyzes in the preheat zone (Seshadri et al., 1989).

The reaction rates governing the premixed flame chemistry exhibit additional asymmetries, as shown in Fig. 3. The oxidation of methanol proceeds down the C_{1} path: $\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{CH}_{2} \mathrm{O} \rightarrow \mathrm{HCO} \rightarrow \mathrm{CO} \rightarrow \mathrm{CO}_{2}$. The oxidation of methanol through HCO occurs in the premixed branches, whereas the remaining oxidation steps are present in all three branches. In addition to CO , the stable molecule H_{2}, which is produced on the rich premixed flame side, is also oxidized in the diffusion flame. All fuels in the premixed and diffusion flame are being oxidized primarily by radical species H, OH, and \mathbf{O}. While H and OH play a more important role in the oxidation process on the rich premixed branch. oxidation reactions involving O atom play a more significant role on the lean side.

The reaction rates governing the premixed flame chemistry exhibit additional asymmetries, as shown in Fig. 3. For example, the peak production rates of \mathbf{H}_{2} and CO occur on the fuel rich side due to the consumption of H atom and OH by hydrocarbon intermediates. A further asymmetry appears in the inclination of the diffusion flame towards the lean premixed flame. This inclination may be primarily attributed to the rates of diffusion of $\mathrm{H}_{\mathbf{2}}$ relative to $\mathrm{O}_{\mathbf{2}}$ such that the reaction zone of the diffusion flame is at the stoichiometric mixture. The consumption rate of CO, as shown in Fig. 3e, also exhibits some inclination towards the lean branch. CO is consumed primarily by OH in the water gas shift reaction, an important reaction contributing to the overall heat release; the asymmetry is due to the peak production of OH occurring on the lean side due to the elementary chain branching reaction. $\mathrm{O}_{2}+\mathrm{H} \neq \mathrm{OH}+\mathrm{O}$.

4.2. Redical profiles

Figure 4 shows the radical profiles for $\mathrm{H}, \mathrm{O}, \mathrm{OH}$, and $\mathrm{CH}_{2} \mathrm{O}$ in the flame. This figure shows that O and H atoms peak at the triple point. OH , on the other hand. peaks behind the primary reaction zones of the premixed flames and along

Figure 2. Major species mass fraction prufiles (a) H_{2}. (b) O_{2}. (c) $\mathrm{CH}_{3} \mathrm{OH}$, (d) CO_{2}, (e) CO , and (f) $\mathrm{H}_{2} \mathrm{O}$.
the mean reaction zone of the diffusion flame branch. The radical OH has a slow recombination rate compared to O and H atoms and, therefore, accumulates and peaks in the diffusion flame.

Figure 5 shows the the contribution of the different reactions to the production and consumption of $\mathrm{H}, \mathrm{O}, \mathrm{OH}$, and $\mathrm{CH}_{2} \mathrm{O}$. The radicals H, O, and OH are produced behind the fuel consumption layer near the burnt gas side of the flame, and diffuse upstream towards the unburnt gas to react in the fuel and radical consumption layer. The molecule H_{2}, on the other hand, is produced in the fuel and radical consumption layer and is consumed in the region of radical production in the $\mathbf{H}_{\mathbf{2}}$ oxidation layer. The convex shape of the triple point flame towards the burnt gas focuses H_{2} towards its oxidation layer. The peak production of H_{2} in the triple flame

Figthe 3. Major species reaction rate profiles (a) H_{2}. (b) O_{2}. (c) $\mathrm{CH}_{3} \mathrm{OH}$, (d) CO_{2}, (e) CO , and (f) $\mathrm{H}_{2} \mathrm{O}$. Production rates: -- ; consumption rates: ---- .
occurs at the triple point region on the rich side of the premixed flame. It results primarily from the break up of the fuel and its reactions with radicals, especially H. The primary mechanism for H_{2} consumption results from radical production (in the H_{2} oxidation layer) through the following reactions:

$$
\mathrm{H}_{2}+\mathrm{OH} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}+\mathrm{H},
$$

and

$$
\mathrm{H}_{2}+\mathrm{O} \rightleftharpoons \mathrm{OH}+\mathrm{H} .
$$

The latter reaction is a significant chain branching reaction which plays a major role in the rate of flame propagation and radical production. By the focusing of H_{2} towards its oxidation (consumption) zone, the rate of radical production is enhanced and the propagation speed is increased. An additional chain branching reaction which is responsible for the bulk of production of O and OH is the following reaction:

$$
\mathrm{O}_{2}+\mathrm{H} \rightleftharpoons \mathrm{O}+\mathrm{OH} .
$$

Figure 4. Minor species mass fraction profiles (a) \mathbf{H}. (b) \mathbf{O}, (c) $\mathbf{O H}$, and (d) $\mathrm{CH}_{2} \mathrm{O}$.

Figure 5. Minor species reaction rat: profiles (a) H . (b) O , (c) OH , and (d) $\mathrm{CH}_{2} \mathrm{O}$. Symbols as in Fig. 3.

While the \mathbf{H} atom in this reaction is defocused at the triple point by the same mechanism that focuses H_{2}, the net effect is the enhanced concentration of radical species at the triple point. The cinianced activity in this region also contributes to the ignition and anchoring of the trailing diffusion flame.

4.9. Parameterization of triple flame structure

The two-dimensional structure of the triple flame and the variation of the degree of premixedness in the reacting mixture suggest that at least two phase-space parameters may be required to fully describe the triple flame structure. Figure 6 shows overlays of the mixture fraction (Bilger et al., 1990) profiles with H_{2} reaction rate and temperature. The consumption rate of H_{2} is used to illustrate the alignment of reaction rates in the diffusion flame with isocontours of the mixture fraction. The mixture fraction changes monotonically across the diffusion flame. This suggests that the mixture fraction may be a useful progress variable in this branch. Temperature plays a similar role in the premixed branches. In this section, we choose temperature and mixture fraction to parameterize the flame structure. The two parameters, ξ and T, effectively span the entire range of reaction and mixedness. The mixture fraction is a measure of the degree of mixedness, while the temperature is a measure of the extent of reaction.

Figures 7 and 8 show the mass fractions and reactions rates for the major species in phase space. while the corresponding figures for the minor species are shown in Figs. 9 and 10. Overlayed on these figures is the maximum consumption rate of O_{2} in the premixed (thick solid lines) and the diffusion (thick dashed lines) brauches. The maximum consumption rate of O_{2}, the only reactant which is consumed in the premixed and diffusion flames, is used to demarcate the three branches of the flame. These figures highlight the different topologies of the flame which may not be apparent in physical coordinates, particularly if the flame is distorted significantly by the flow field. Shifts in concentration or reaction peaks on the lean and rich sides and the delineation between diffusion and premixed branches are made more pronounced using this parameterization. Similarly the delineation of reactions and species that are present in the premixed branches versus the diffusion flame is made more clear. For example,

1. the peak production rates for formaldehyde $\left(\mathrm{CH}_{2} \mathrm{O}\right), \mathrm{H}_{2}$ and CO occur on the rich side of the flame in the premixed branch, while the peak consumption of H_{2} and CO persists to very lean conditions;
2. the peak consumption of \mathbf{H} occurs on the rich side, whereas the peak consumption of O atoms occurs on the lean side of the flame;
3. the peak concentrations of $\mathrm{CH}_{2} \mathrm{O}, \mathrm{H}, \cdots$ xist well into the rich side:
4. the peak radical concentrations for O and H exist near the triple point and on the lean sides respectively, whereas OH peaks in the diffusion flame;

Figure: 6. Orerlay of mixture fraction profiles with H_{2} reaction rate (left) and temperature (right). The wide solid line denotes the stoichionetric mixture fraction isocontour. The mixture fraction isocontours are shown in dashed lines.

Figure 7. Major species mass fraction for $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{CO}_{2}, \mathrm{CO}$ and $\mathrm{H}_{2} \mathrm{O}$ in ξ-T phase space. The bold solid line demarcates the premixed branches. The bold dashed line demarcates the diffusion branch.
5. while O_{2} exists behind the premixed flame, there is no leakage of methanol or formaldehyde behind the premixed branches.

5. Propagation of the triple fame and its stabilization

In this section, the values of the propagation speeds are reported using the mass fraction of H_{2} to track the flame surface. Other scalars yield similar results. The ratio of density-weighted displacement speed, S_{d}^{*}, to the laminar stoichiometric flame value, S_{L}, at the leading edge of the triple flame is 1.13 . Since S_{d}^{*} is measured in the reaction zone. its enhancement relative to the laminar value is primarily attributed to an enhancement in the burning intensity of the flame (Sec. 3.3) due to the coupling of differential diffusion with curvature.

Another quantity of relevance to the stabilization mechanism of the triple flame is the flame speed relative to the unburnt gas, V_{f} (Sec. 3.3). The ratio, $V_{f} / S_{L, \phi=1}$, based on H_{2} mass fraction is 1.79 . The approximately 80% enhancement in V_{f} may be attributed primarily to hydrodynamic-diffusive effects associated with lateral flow expansion and cross-stream diffusion. Ruetsch et al. (1995) show that the ratio, $\dot{l}_{f} / S_{L . o=1}$, may be approximated by the square-root of the inverse density ratio across the flame, $\sqrt{\rho_{u} / \rho_{b}}$, or by the temperature ratio, $\sqrt{T_{b} / T_{u}}$. In the current computation. the quantity $\sqrt{T_{b} / T_{u}} \sim \sqrt{2300 / 800} \sim 1.7$ compares well with the computational values for $V_{f} / S_{L, \phi=1}$ after subtraction of the cherr cal contribution.

6. Differential diffusion effects

In the previous sections, we have identified some contributions to the triple flame structure which result from differential diffusion effects: (a) the inclination of the diffusion branch towards the lean premixed branch, (b) the enhancement of the displacement speed, and (c) the ignition at the tred point. There are a number of approaches in the literature which attempt to quantify these effects. In this section, two approaches to investigate differential diffusion effects are compared. Figure 11 shows correlations of the elemental mixture fractions based on C and H in the triple flame. Elemental mixture fractions may only be modified by transport since reaction does not modify the atomic composition of a mixture. The figure shows that on the unburnt gas side, the values of ξ_{C} and ξ_{H} are the same, and that both reflect the local unburnt gas composition of the methanol (the correlation is shown by the diagonal line of ξ_{C} vs. ξ_{H}). In the reaction zone of the premixed branches, ξ_{C} is smaller than ξ_{H}, although this difference is not significant and it reflects the production of relatively fast diffusive species such as H_{2}. The difference between the two quantities is reversed behind the rich branch. There, the greatest contribution to ξ_{C} comes from CO , while the main contribution to ξ_{H} is from $\mathrm{H}_{2} \mathrm{O}$ and H_{2}. In this region, the deficit in H may be a result of the diffusion of H_{2} and H towards the diffusion flame. On the oxidizer side of the diffusion flame, ξ_{C} is lower than ξ_{H}. In this region, the main contribution to ξ_{H} is from $\mathrm{H}_{2} \mathrm{O}$, and for ξ_{C} is CO_{2}. There is no distinct behavior at the triple point from ξ_{C} and ξ_{H} contours. The

Figure 8. Major species reaction rate for $\mathrm{H}_{2} . \mathrm{O}_{2}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{CO}_{2}, \mathrm{CO}$ and $\mathrm{H}_{2} \mathrm{O}$ in ε-T phase space. Symbols as in Fig. 7.

Figlre: 9. Minor species mass fraction for $\mathrm{H}, \mathrm{O}, \mathrm{OH}$ and $\mathrm{CH}_{2} \mathrm{O}$ in ξ-T phase space. Symbols as in Fig ?

Figure 10. Minor species reaction rate for $\mathrm{H}, \mathrm{O}, \mathrm{OH}$. and $\mathrm{CH}_{3} \mathrm{O}$ in $\{-\mathrm{T}$ phase space. Syniols as in Fig 7.

Figire 11. Correlation of \mathbf{C} and \mathbf{H} elemental mixture fractions. Left: $\varepsilon_{n}-\boldsymbol{s}_{\boldsymbol{H}}$: right: $\boldsymbol{f}_{\boldsymbol{C}}$ vs. $\boldsymbol{\xi}_{\boldsymbol{H}}$.
principal limitation of the mixture fraction approach as a measure of differential diffusion effects is now more apparent; the value of she elemental mixture fraction does not tell us whether the higher or lower element composition in a given region is a result of its transport by a speries which is fast or slow diffusing. Hydruen. for example. may be present in both $\mathrm{H}_{2} \mathrm{O}$ or H_{2}. but the two speries have imy different diffusivities. At the triple point. minor species such as H atom may now woniribute

:kitar 12. Difusion velocities of H and CO normalized by the stoichometric ome fisensional fiame :perd. Lef: V_{H} / S_{t}; right: $V_{C O} / S_{L}$.
signifiantly to the elenental mixture fraction despite their iuportant ade in the cherristry of the flame.

Another indication of the role phayed by difinsional transport and its coupling with conrature may be denonstiated by the magnitudes of the diffusion velocily of H and CO shown in Fig. 12. This figure shows that the maximaun difforion velocity is found near the triple point of the flame. This welocity corresponds to smore that. 2 two-fidd increase for \mathbf{H} relative to the remaining premixed branches. The increase is tie diffusioci velority of CO is ouly 30\%. The peak valur of the difinsive velority for H is approximately thirty times bigher than that of CO . The use of diffusion velocities to quantify differentian difusion efiects shows significantly differ-nt trends than the elomental mirture fraction apprnach.

7. Concluding remartus

The stricture, popagation and stabilization machanisms of a methaod-air triple flame is investigated using DNS. The competations strow :hit the primiary furl. methanol, is consuzieci entirely through the premixe? branches of the flame aind is craveried :o more stable ivels. H_{2} and CO. for the difision flame behind the itiphe point.

In the tript point Irgion. the coupling of earzseure and diferential diffusion of hydragen mokeule resulis in enhasced radicai production and. in turn, an enhencrtrent in the dinne pronagation speed. However. hỵdrodynamic effects (associated with beat release in the flame) are more important in the carrent computations. These ffferts are predirted adicquately by the mork! by Ruetsch et el. (1995).

A mixtiare fortioni-ienupryature paranpterization of the triple flanse structure is ;-monsed. Tine approach attemipts io separnte uixedoess at 1 reactivity, and bigblights mane of tim interesting features of partially-premixed rombustion.

A rominaison betwern two approaches to identify the effects of differential diffusinse is carrind out. The firs approech is boved on a direct computation of the magnitude of the diffusion velocity of the various specins. The second is based on the comparison of elemental mixture fructions bised on carbon and hydrogen atcus. The comparixon berween the ewo approaches siows that the second ap proarh is sirongly dependent on the sperios carryige the atoms and may now be a good indicztor of differentia! diffusion efferts.

Acknowledgments

This tesearrit was supported by the United States Department of Exergy. Office of Basir Energy Simenes. Chemical Sciences Division. We would bibe to thatak Pmf Amable Liōin and Forman Williams, and Drs. Gres Reutsch and Arnaud Trouvé for many fruirfui disruesions.

REFERENCES

Bulger. R. IV. 1981 Modecular Transport efferts in turbulent diffusion flames at nonderat- F.eyuetds numiver. AlAA I. 2017., 902-970.

Buger. R. IV. A Dibele. R. W. 1982 Diferential mokecular diffusion efferts in turbulent mixing Combust. Sci. © Teck. 28 161-17?
Bllgem. R. W.. Starner. S. H. \& Kee, R. J. 1990 On Reduced Mechanisus for Methane-Air Combustion. Combust.ef Flame. 80, 135-149

Card. J. M.. Chen, J. H.. Day. M. \& Maualingay, S. 1994 Dirert Numetical simulations of turbulent non-premixed methane-air flames nookeled with reduced kinotics. Proceelizgs of the 1994 Summer Pragram. Center for Turbu lonce Research. NASA-Ames/Stanford Tniversity, 41-54.
Dowingo. P. \& Verviscm. L. 1996 Triple Flaptes and partially premixed rombus. ticn in autoignition of mopremixed turbulent mixtures. To appear in TrerntySirth Symposimm (Intcrnational) on Combustion, The Combustion Institute. Pittshurgh.
Drake. M. C. de Blint. R. J. 1988 Structure of laminar opposed-flow diffusion flames with $\mathrm{CO} / \mathrm{H}_{2} / \mathrm{N}_{2}$ Fuel. Combunt. Sci. © Toch. 81, 187-2?4.

Echfnki. T. 1992 Studies of curvature, strain and unsteady efferts on lasinnar premixed flames. Ph.D. Thesis. Mechaniral Engineering Dept.. Stanford Unimesity.
Erиfiki. T. 1996 A quasi-one dimensiona! premixed flame model with crossstream diffusion. To appear in Combust. \boldsymbol{G} Flame.

Habtlet. L. J. A Dold. J. W. 1991 Flame propagation in a nonuniform mixture: analysis of a propagating triple-flame. Combust. Sci. \& Tech. 80, 23-46.
Kevnedy. C. J. at Carpenter. M. H. 1994 Several new numerical methonds for compres.sible shear-layer sinulations. Appl. Num. Math. 14, 39i-443.

Kennedy, C. J. \& Carpenten, M. H. 1996 Several New ultra-low-storage. lower-order Ruige-Kutte schemes. In preparation.
Kioni. P. N., Rogg, B., Bany. N. C. \& Lixí́n. A. 1993 Flame spread in laeninar mixing layees: the triple flame. Combust. C Flame. 95, 276 - 290.
Lakikarase. N. K. 1996 Studies of queached diffusion flames near cold, inert surfares. Master's Thesiz, Dept. of Merbanical Engineering. Michigan State University, Lansing. MI.
Maski, A. R. Dibble. R. W. \& Banlow, R.S. 1992 The structure of turbulent noppremixed flames of methanol ower a range of mixing rates. Combut. \boldsymbol{C} Fleme. 89, 167-185.
Ponsot T., Ecmenki, T. \& Muxgal, M. G. 1992 A study of the laminar flame tip and implications ior precrixed turbulent combustion. Combeta. Sci. 8 Teck. 81, 45-73.
Polvsot. T. \& Letk: S. 1991 Boundary Conditions for direct simulativas of compressible viscous flows. J. Comput. Phys. 101, 104-129.
Ruftscm, G. R. \& Broadwell, J. E. $19 ? 5$ Efferts of confinement on partially premixed flames. Annuel Reseench Briefs 199i. Cruter for Turbuience Research. MaSA-Ames/Sianford Uiniv.
Ruetsch. G. R.. Vemuisci. L. L- LiNín, A. 1995 Effects of beat release on triple flames. Phys. F7uids. 7(6), 144i-1454.
Seshadmi. K., Trevixo. C. \& Smoone, M. D. 1989 Analysis of the structure and urechanisms of extisction of a counterfow imethanol-air diffusion flame. Combust © Fleme. 78, 111-132.
Suith. L. l., Dibele, R. W., Talbot, L.. Bablow, R. S. \&e Cartfr. C. D. 1995 Laser Raman scattering measurements of differeatial ruolecular diffusion in turbukert nonpremixed jet flames of $\mathrm{H}_{\mathbf{2}} / \mathrm{CO}_{\mathbf{2}}$ Fuel. Combust 8 Flame. 100, :53-160.
Syoone, M. D. \&. Grovangigli, V. 1991 Reducad hinetic mecheaisms end esymptotic approzimetion for methene-air femes (M. D. Smooke, Ed.), Lecture Notes in Physics 384. Spriuger-Verlag, New York, 1-28.
Terhoeven, P. \& Peters, N. 1996 Basic flame structures of turbuient combustion for appicications in diesel eagines. To aippear in Combust. 6 Fleme.
Warnatz. J., Mars. U. \& Dibble, R. W. 1996 Combustion: physical end chemical fendamentals. modeling and simulation. experiments, pollatant formation. Springer-Verlag. Berlin Heidelberg, Germany.
Wichmas, I. S. 1995 Basic features of triple flames in combustion theory. To appear in Eighth International Synuposium on Transport Processes in Combustion (ISTP-8). San Francisco.

NEXT DOCUMENT

Ensemble averaged dynamic modeling

By D. Carati', A. Wray ${ }^{2}$ and W. Cabot ${ }^{3}$

The possibility of using the information from simultanorous equivalent large eddy simulations for improving the subgrid scale modeling is investigated. An ensemble average dynamic model is proposed as an alternative to the usual spatial average versions. It is shown to be sui:able independeatly of the existence of any honngeneity directions, and its form:lation is thus universal. The ensemble average dynamic model is shown to give very encouraging results for as few as 16 simultaneous LES;s.

1. Introduction

The equation for large eddy simulation (LES) is obtained by applying a spatiad filter to the Navier-Stokes equation. The LES equation thus describes the evolution of a filtered velocity field \bar{u}_{i} which explicitly depends on the small scales through the subgrid scale stress $T_{1 j}=\overline{u_{1} u_{j}}-\bar{u}_{1} \bar{u}_{j}$:

$$
\begin{equation*}
\partial_{1} \bar{u}_{1}+\partial_{j} \bar{u}_{j} \bar{u}_{1}=-\partial_{2} \bar{P}+\nu_{0} \nabla^{2} \bar{u}_{i}-\partial_{1} \tau_{13} . \tag{1.1}
\end{equation*}
$$

For simplicity, we only consider incompressible flows. The pressure p is then chosen to satisfy the incompressibility condition. Clearly, $T_{i j}$ is a large scale quantity depending mainly on the small scale velocity field. However, it is usually modeled as a function of the resolved velocity field as in the Smagorinsky eddy viscosity model (Smagorinsky. 1963):

$$
\begin{equation*}
\tau_{i j}-\frac{1}{3} \tau_{k t} \delta_{i j} \approx-2 C \bar{S}^{-2}!\bar{S}!\bar{\zeta}_{i j} \tag{1.2}
\end{equation*}
$$

where $\bar{S}_{1 j}=\frac{1}{2}\left(\partial_{1} \bar{u}_{j}+\bar{C}_{1} \bar{u}_{1}\right)$ and $|\bar{S}|=\left(2 \bar{S}_{1}, \bar{S}_{1 j}\right)^{1 / 2}$. In the original formulation of the Smagorinsky model, the parameter C must be obtained from some fitting proredure. Recently, this model has been nproved by the introduction of the dynamic procedure, which allows a self calibration of the parameter C and gives an explicit expression as a function of the resolved field $C=C\left(\bar{u}_{k}\right)$. However, any procedure that determines the subgrid scale stress in terms of the resolved field can only be an approximation. Indeed, the same resolved field may be compatible with many different small scale velocity fields. This is reflected in the e priori tests which show very poor correlations between the models $\tau_{i j} \approx \tau_{i j}{ }^{M}\left(\bar{u}_{k}\right)$ and the actual $\tau_{i j}$ obtained from direct numerical simulations (see Winckelmans et al. in this volume).

[^7]Clearly more information is needed to properly reconstruct the subgrid-scale stress. The introduction of stochastic model for r_{1}, is a first attempt to introduce models that are not fully determined by the resolved field (Carati et el, 1995; Chasnov, 1991; Leith. 1990; Mason \& Thumson, 1992' Here, we explore another approach which consists in running simultaneously several statistically equivalent LES's and constructing the model by using information from the set of resolved velocity fields:

$$
\begin{equation*}
\partial_{t} \bar{u}_{i}^{r}+\partial_{j} \bar{u}_{j}^{r} \bar{u}_{i}^{r}=-\partial_{i} \bar{p}^{r}+\nu_{0} \nabla^{2} \bar{u}_{i}^{r}-\partial_{j} r_{j j}^{r} \quad r=1, \ldots, R . \tag{1.3}
\end{equation*}
$$

Here, r is a new index corresponding to the realization and R is the total number of realizations. The concept of statistically equivelent LES's will be defined in Section 3. The model we propose to test should generalize the classical subgrid scale model ($r_{i}^{r}=r_{i,}^{r}\left(\vec{u}_{k}^{r}\right)$) by allowing an explicit dependence on the velocity field from other members in the set:

$$
\begin{equation*}
r_{i j}^{r}=r_{i, j}^{r}\left(\left\{\bar{u}_{i}^{s}\right\}\right) \tag{1.4}
\end{equation*}
$$

Clearly, in that case the subgrid scale model in the LES labeled r will not be a function of the resolved velocity field \bar{u}_{k}^{r} only.

In the following section, we will present the dynanic procedure and its generalization to several LES's. We also present an alternative formalism to the classical dynamic model. Some results for decaying and forced isotropic turbulence and for channel flow are discussed.

2. The dynamic procedure

The dynamic procedure is based on an exact relation between subgrid scale stresses for different filter widths (Germano. 1992; Ghosal et al 1995; Lilly, 1992). This relation is obtained by introducing a second filter G_{c}. usually referred to as the test filter, denoted by ${ }^{-}$; we will call the origina! filter G_{1}. The application of this new filter to Eq. (1.1) yields:

$$
\begin{equation*}
\partial_{t} \hat{\bar{u}}_{i}+\partial_{j} \hat{\bar{u}}_{j} \hat{\bar{u}}_{i}=-\partial_{i} \hat{\bar{p}}+\nu_{0} \nabla^{2} \hat{\bar{u}}_{1}-\partial_{,} \hat{\bar{F}}_{1 j}-\partial, L_{i j}, \tag{2.1}
\end{equation*}
$$

where $L_{i}={\widehat{\bar{u}}, \bar{u}_{i}}-\hat{\bar{u}}_{i}, \hat{\bar{u}}_{j}$ is the Leonard tensor. This equation governs the evolution of the field $\hat{\bar{u}}$ obtained by the application of the filter $G_{2} \equiv G_{1} \star G_{1}$ to the fully resolved velocity. Thus, an equivalent equation should be obtained by applying G_{2} directly to the Navier-Stokes equation:

$$
\begin{equation*}
\partial_{i} \hat{\bar{u}}_{i}+\partial_{j} \hat{\bar{u}}_{j} \hat{\bar{u}}_{i}=-\partial_{i} \hat{\bar{p}}+\nu_{0} \nabla^{2} \hat{\bar{u}}_{i}-\partial_{j} T_{i j} \tag{2.2}
\end{equation*}
$$

Here, the subgrid stress tensor is defined by $T_{i j}=\widehat{u_{i} u_{j}}-\hat{\bar{u}_{i}}, \hat{\bar{u}}_{j}$. The comparison between equations (2.1) and (2.2) readily leads to the Germano identity:

$$
\begin{equation*}
L_{i \jmath}+\hat{\tau}_{i j}-T_{i j}=0 \tag{2.3}
\end{equation*}
$$

When approximate models $\tau_{i j} \approx r_{i j}^{M}$ and $T_{i j} \approx T_{i j}^{M}$ are used, this identity is violated. However, the error $E_{i j} \equiv L_{i j}+\hat{\tau}_{i j}^{M}-T_{i j}^{M} \neq 0$ may be used to calibrate the models. When the Smagorinsky model is used at both grid and test levels. the error is a linear function of the Smagorinsky parameter:

$$
\begin{equation*}
E_{i j}=L_{i j}+\widehat{C \beta_{i j}}-C a_{i j} \tag{2.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{i j}=-2 \hat{\bar{\Delta}}^{2}|\hat{\bar{S}}| \hat{\bar{S}}_{i j} \\
& \beta_{i j}=-2 \bar{\Delta}^{-2}|\bar{S}| \bar{S}_{i j}
\end{aligned}
$$

The calibration of C is usually achieved by using a least square method for minimizing $E_{i j}$. The integral

$$
\begin{equation*}
I|C|=\int_{i} d y \sum_{i,} E_{i j}^{2}(y) \tag{2.5}
\end{equation*}
$$

is thus minimized with respect to C.
A first difficulty encountered when using the dynamic procedure for determining C has been pointed out by Ghosal et al (1993,1995), who showed that this procedure requires the solution of an integral equation for C unless both of the following conditions are satisfied:

1. There are one or more directions of homogeneity in the flow.
2. The flow is fully resolved in the other direction(s).

In that case. C is assumed to be constant along the direction of homogeneity and can be taken out of the test filter operation . Moreover, the flow being fully resolved in the other direction(s), the test filter must only act in the homogeneous direction. The error (2.4) then reduces to:

$$
\begin{equation*}
E_{i j}=L_{i j}+C M_{i j} \tag{2.6}
\end{equation*}
$$

where $M_{1 j}=a_{i j}-\widehat{y_{1}}$, and the dynamic prediction for C reads:

$$
C=\frac{\left\langle L_{i j} M_{i j}\right\rangle_{k}}{\left\langle M_{i j} M_{i j}\right\rangle_{k}}
$$

where the brackets (i) repres nt a spatial average in the bomogeneous direction(s). If the two aforementioned conditions for replacing expression (2.4) by (2.6) are not fulfilled, one could argue that C is slowly varying in space and that (2.6) should be a valid approximation independently of the existence of a direction of homogencity. The minimization of the global quantity $I[C]$ then leads to a local expression for C :

$$
C=\frac{L_{i j} M_{i j}}{M_{i j} M_{i j}}
$$

Cnfortunately, this approximation has proved to be very peror. and the resulting C depends strongly on space. Since in almost all LES's at least one of the aforementioned conditions is violated. a mathematically rlean implementation of the dyamic model always requires the sohtion of an integral equation (Ghosal et al. 1995).

A second difficulty with the dyamic morlel is that C° takes negative as well as positive values. Positive vahes correspond to the classical eddy dissipation picture for the subgrid scales. The negative values were first interpmed as the capability of the dyamic model to predict reverse onorgs transfor (hackscater). Cnfortunately, the modeling of backscatter by a negative Smagorinsky coctficient leads to mumerical instabilities. This problem is casily wolved be constraining a priori the minimization of $I C \mid$ so that only ponitive values of C are acrepted. The resulting C (obtained cither by solving an integral equation or by using a spatial average) is the same as before but clipped to positive value. Thus, C must then be replaced by $(C+|C|$ /2. Althongh this chipping proedure can be derived properly from a constraimed minmization procedure, it is usually ronsidered an umdesirable extension of the dynamic model. In particular. the clipping corresponds to turning off the model where the dynamic procedure "tries to build a model for backscatter." In some sense, the resulting model dows not ase all the information available from the dynamic procedure. Hence. it is desiratid- to have a dynamic model with as few clipped values as possible for C.

We will discuss in the following sections how the simultancons use of several statistically equivalent LES's may solve those two difficulties.

3 Statistical LES \& dynamic model

3.1 Definition of the ensemble

We first discuss the problem of defining the ensemble of rums needed for the statistical tests without considering the modeling problem. The equations (1.3) correspond to R different LES's. In order to have a "good" ensemble, these LES's should correpond to statistically equinalent and statistically independent roaliza tions of the same problem. Although the e requirements are intuitively clear. it is worthwhile to define them as properly as possible. The first step consists in defining precisely what is an "acceptable" simulation for a given problem. From the strict mathematical point of view. a flow describerl by the Navier Stokes cyuation or by an LES equation is completely defined les the knowlenter of

1. The domain \mathcal{D} in which the flow is considered.
2. The conditions on the boundary ∂D of this domain $r(\partial D, t)=f(t)$.
3. The initial conditions $r(x, 0)=r_{n}(x) \quad \forall x \in D$.

However. in a simulation of a turbulent flow only the domain and the bomudary conditons are rigoronsly fixerl. Indeed. beranse of the lack of sensitivity to initial conditions in a turbulent flow. different simulations with different initial ronditions sharing some properties are considered to characterize the same How. Thus. the
requirement that the initial conditions are known is usually replaced by some weaker constraints, and point (3) is replaced by
3. The initial conditions $v(x, 0)=v_{0}\left(x ; w_{1}\right)$ are generated using random numbers u_{\prime} and satisfy some constraints: $P_{s}\left[v_{0}\right]=p_{s}, \quad s=1 \ldots . S$.
For example. in homogeneous turbulence, the first constraint $s=1$ will be on the spectrum of v_{0}. For the channel flow, one could impose the profile of the velocity and of the fluctuation in each direction. We will not discuss in detail the minimal constraints that must be imposed on the initial conditions in order to have a reasonable simulation. We only suppose that these constraints do exist. Now, it is possible to give some precise definition of the ensemble of LES's:

Definition 1: Two LES's are statistically equivalent if the domain of the flow and the boundery conditions are exactly the same and if the initial conditions satasfy the same set of constraints.

Definition 2: Two LES's are statistically independent if the initial conditions. are generated with uncorrelated rendom numbers u_{1}.

For a stationary flow, such equivalent and iadependent initial conditions can be obtained by running a single LES and recording several velocity fields separated by at least one large eddy turnover time when turbulence is fully developed.

9.2 Ensemble average dynamic model

In what follows, we will focus on a simple generalization of the Smagorinsky model which reads:

$$
\begin{equation*}
T_{i j}^{r}-\frac{1}{3} T_{k k}^{r} \delta_{i j} \approx-2 C \bar{\Delta}^{2}\left|\overline{S^{r}}\right| \bar{S}_{i j}^{r} . \tag{3.2.1}
\end{equation*}
$$

Thus, we basically use the Smagorinsky model in every realization with the following additional assumption :

Hypothesis 1: The Smagorinaky coefficient is independent of the realization for statistically equivalent flows.

This assumption defines the model in such a way that the unknown parameter in the LES is "universal". The formulation thus mixes some aspects of both LES and Reynolds average simulations.
The dynamic procedure can also be used to determine C when several LES's are run in parallel. In that case, the model depends on the resolved flow from other rializations (1.3). Indeed, the quantity that needs to be minimized is a straightforward generalization of $I[C]$:

$$
\begin{equation*}
I[C]=\sum_{r} \int_{V} d y \sum_{i j}\left(E_{i j}^{r}(y)\right)^{2} \tag{3.2.2}
\end{equation*}
$$

where now $E_{i j}$ as well as $L_{i j} \cdot \beta_{i j}$, and $a_{i j}$ depend on the realization $\left(E_{i j}^{r}=L_{i j}^{r}+\right.$ $\widehat{C Q_{1 j}^{r}}-$ Co $_{1 j}^{r}$). We now make another assumption:

Hypothesis 2: For large ensembles, the Smagorinsky cuefficient is slowly dependent on space and can be taken out of the test filter.

The quantity $I[C]$ then reduces to

$$
I[C]=\sum_{r=1}^{R} \sum_{i j}\left(L_{i j}^{r}-C M M_{i j}^{r}\right)^{2} .
$$

which leads to the same expression for C as in the spatial average version of the dynamic procedure:

$$
C=\frac{\left\langle L_{i n}, M_{i j}\right\rangle}{\left\langle M_{i j} M_{i j}\right\rangle} .
$$

where now the brackets represent an ensemble average. Wir will see in the next section that hypothesis 2 is very well justified by the numerical results.

3.9 Alternative formalism for the dynamic model

The usual formulation of LES Eq. (1.1) is not fully satisfactory because the evolution of the filtered velocity is given in terms of gaantities that are not filtered, whereas all numerically computed quantities are filtored in some way. This is well known. but, to our knowledge. its effect on the dynamic model formulation has never been carefully considered. In this section, we propose an alternative dynamic model formulation which should be fully self-consistent with the filtered equation for the resolved field. First, we assume that all the quantites in the LES equation are filtered and Eq. (1.1) must then be replacerl ix.

$$
\begin{equation*}
\partial_{t} \bar{u}_{1}=\nu_{0} \nabla^{2} \bar{u}_{1}-\partial_{j} \overline{\bar{u}_{1} \bar{u}_{1}}-\partial_{j} \bar{r}_{13}-\partial_{t} \bar{p} . \tag{3.3.1}
\end{equation*}
$$

This redefines the subgrid scale stress as

$$
\bar{T}_{1}=\overline{u_{1} u_{1}}-\overline{\bar{u}_{1}} \overline{\bar{u}_{1}}
$$

The application of the test filter to the LES equation (3.3.1) yelds:

$$
\partial_{1} \hat{\bar{u}}_{1}+\partial_{j}\left(\widehat{\overline{\bar{u}_{i}}, \overline{\overline{\bar{u}}}_{1}}\right)=\nu_{0} \Gamma^{2} \hat{\bar{u}}_{i}-\partial_{1} \hat{\bar{p}}-\partial_{j} \hat{\bar{T}}_{1}-\partial_{j} \hat{\bar{L}}_{i j} .
$$

and the comparison with the "one-step" application of G_{2} to u_{1} leads to the following equality:

$$
\begin{equation*}
\hat{\bar{L}}_{i j}+\hat{\bar{T}}_{i j}-\hat{\bar{T}}_{i j}=0 . \tag{3.3.2}
\end{equation*}
$$

where now

$$
\begin{aligned}
& \hat{\bar{L}}_{i,}=\overline{\overline{\bar{u}_{i}}, \overline{\bar{u}},}-\overline{\hat{\bar{u}_{1}}, \hat{\bar{u}_{1}}} . \\
& \widehat{\widehat{T_{i j}}}=\widehat{\overline{u_{i} u_{j}}}-\widehat{\widehat{\bar{u}_{i}}} \hat{\overline{u_{j}}} .
\end{aligned}
$$

At this point it is important to ensure that the nodel for the subgrid scale is also expressed in terms of a filtered quantity. The simplest generalization of the Smagorinsky model would then be $\overline{T_{i j}}=\overline{C F_{i j}}$ and $\widehat{T_{i j}}=\widehat{C O_{i j}}$. The dynamic procedure is then easily implem 'ted and yields

$$
\begin{equation*}
C=\frac{\left\langle\overline{\bar{L}}_{i j} \hat{\bar{N}}_{i j}\right\rangle}{\left\langle\hat{\bar{N}}_{i j} \hat{\bar{N}}_{i j}\right\rangle} \tag{3.3.3}
\end{equation*}
$$

where $N_{1 j}=\beta_{1 j}-\alpha_{i j}$. Of course, the expression (3.3.3) also relies on the assumption that C can be taken out from the filtering operators. This assumption is very important here because. in the equality (3.3.2), the Smagorinsky coefficient only appears in filtered quantities. This means that the integral equation formulation of this alternative dynamic model would be much more complirated than the classical formalism. However, if hypothesis 2 is valid, the present formalism appears to be more consistent with the LES equation.

4. Test on isotropic turbulence

4.1 Decaying turbulence

The statistical average dynamic model described in section 3.1 has been tested in decaying turbulence for 32^{3} LES. A first series of numerical experiments have determined how large the ensemble of simultaneous LES's must be (i.e. how large R should be). The criteria used to determine the minimal size of the ensemble were focused on

1. The spatial variability of C.
2. The percentage of negative C.
3. Comparison with the volume average dynamic model.
4. Comparison with direct numerical simulations.

The first conclusion we have reached is quite encouraging. Indeed, it appears that with only 16 simultaneous LES's, the ensemble average dynamic model performs as well as the volume average model. The spatial variability of C decreases drastically when R increases (see Fig. 1). This is also reflected on the probability distribution function (PDF) of C (see Fig. 2).

The comparison between a 512^{3} DNS and dynamic model shows good agreement both for the total resolved energy (see Fig. 3) and for the spectra. The results for $R=16$ are indistinguishable for the volume average and for the ensemble average. Here the comparison with the dynamic model has been made by ruming an ensemble of unrelated volume average LES's. This allows comparison of the both the means and the standard deviations. The standard deviations are computed for the 3-d energy spectra at each k, and quantities such as total resolved energy and compensatod spectra are then computed from the mean and mean $t \sigma$ spectra.

Figure 1. Typical profile of C in decaying isotropic turbulence. $R=1:-\cdots$; $R=4: \cdots \cdots ; R=16:-\cdots$.

Figerf 2. PDF of C in decaying isotropir turbulence. Symbols as in Fig. 1.

4.2 Forced turbulence

We have run an ensemble of 32^{3} forced turbulence LES's with zero molecular viscosity. Fig. 4 shows that the mean resolved energy and the standard deviation poolve in a very similar way for both the volume and the ensomble average models.

Figite: 3. Energy decay: comparison with DNS and volume average. DNS:-_- : ensemble-averaged (mean): : ensemble-averaged (mean+sigma):--- : ensembleaveraged (mean-sigmat):-- : volume-averaged (mean): : volume-averaged (mean+sigma):-…. : volume-averaged (mean-sigma):----

Figiraf. 4. Resolved energy in fored isotropie turbulence: average we volume. Symhols as in Fig. 3, without DNS.

 vs volume. Symixil an in Fig. 3.

 Thew yeetra ate at time $\approx 2 \mathrm{i}$ in the nums of Fig. 4

5. Tests in chanmel flow

 testis presented here are very preliminary and haw hurn formed on the briatior of C a a fuaction of :he minemble size (R). The data riblerted fron the run
 inhomogeneity the PDF of C depends on the will menmal conordinate. However.

We aiso show the fraction of negative C (Fig. It. Sin \% the chanall tiow simala thone uned in these test have a non zero molerular voremity. the reforant stiblity

 one LES requirm atout 40% clipping.

Firitise 6. Piobability distribution function of C Eor diffrent ansemble sizes at $y=0.1 \quad R=1: 0: R=2 \times: R=1: R=8: 0: R=16 \times 0$

Figure: 7. Frartion of negative total viscosity as a function of y for different ensemble sizes. Symbols as in Fig. 6.

6. Conclusion

The statisiscal tests presented in this report have shown that the knowledge of statistically equivalent resolved velority fields mey be useful in deriving new subgrid srale noxdels. Wie have useri the additional information arailable from the differment LES's to create an ensemble average version of the dynamir model. This dyrimmir noctel hat: tim fillowing advantages:

1. A local version of the ensemble average dynamic model may be derived in the limit of large ensemitle sets.
2. The kocal formulation does uot rely on any honogeneity assumption. It can thus be adapted to any gevmetry, unlike to the elassical volume (or surface or line) average dynamic model.
3. The theorefical limit of large ensemble sets is closely approached for $R \approx 16$. This is indicated by the PDF of C, which is very peaked for $R=16$. Also. the spatial variations of C decrease drastically for iucruasing ensemble sizes and secm to be quite mild for $R=16$.
For the examples truated in this work (decaying and forced isotropic turbulence). the volume average. versixn of the dywamic uodel is justified. Remarkably, in those cases. the results from the ensemble average and the volume average versions are almost indistinguishable.

The next interesting step in the investigation of statistical LES is to apply this model to fully inhomogronous problems (for which the mathematically consistent classical dynamic model requires the solution of an integral equation!. The additional cost of multiple simultancous LES's may be ameliorated by a reduction in the time of simulation since the statistics should converge nore rapidly.

REFERENCES

Carati. D.. Grosal. S. \& Moi: , P. 1995 On the representation of backscater in dynamic locrlization model. Phys. Fluids. 7, 606-616.
Chassov. J. 1991 Simulation of the Kolnoggore inertial subrange using an improved subgrid model. Phys. Fluids A. 3, $188-200$.
Germano, M. 1992 Turbulence: the filtering approach. J. Fluid Meck. 238, 525-336.
Ghosal. S. Lixd. T. d Moan, P. 1993 a local dynamic model for LES. Annual Resectch Briefs 1992. Center for Turbulence Research. Stanford Univ./NASA Ames. 3-25.
Ghosal. S.. Lind. T.. Moin, P. d Afsflvoli. K. 1995 The Dynamic Localization Model for large eddy simulation of turbuknt flows. J. Fluri Merh. 286, 229-255.
Lf.ırh. C. 1990 Stochastic backscatter in a subgrid-scale model: Plene shear mixing layer. Phys. Fluids A. 2, 297-299.
Lilly. D. K. 1992 A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids 4, 633.635.
Mason. P. \& Thomson. D. 1992 Stochastic backscatter in large-eddy simulations of boundary layers. J. Fluid Mech. 242, 31 -78.
Suagorivski. J. S. 1963 General circulation expriments with the primitive equations: I. The hasic experiment. Mon. Weather Rer. 91, 99-164.

NEXT DOCUMENT

Anisotropic eddy viscosity models

By D. Carati ${ }^{1}$ AND W. Cabot ${ }^{2}$

A general discussion on the stricture of the eddy viscosity tensor in anisotropic flows is presented. The systematic use of tensor symmetries and flow symmetries is shown to reduce drastically the number of independent parameters needed to describe the rank 4 eddy viscosity tensor. The possibility of using Onsager symmetries for simplifying further the eddy viscosity is discussed explicitly for the axisymmetric geometry.

1. Intraduction

Contrary to most of the works presented in this voiume. this note does not resuit irom a plau:ued project for the summer program. It developed instead from discussions during the coutese of the workehop by many participants concerning the reprematation of anisotropy in the modeling of the subgrid-scale stress in Large Edth Simulation (LES). This study is thus an attempt to present a systematir discussion of the influence of anisotropy on the structure of the eddy viscosity tensor. Some of the results presented here are not really original since they have been derived in other contexts (viscoelastic media or magnetized plasmas). However. we found several motivations for reproducing the general study of tensor symmetries in the special case of the eddy viscosity tensor.

First, we remark that there is often evidence of anisotropy at che subgrid level. The most obvious case arises when the grid itself is anisotropic. In that case, even if the flow does satisfy the classical local isotropy assumpion, the subgrid velocity would be anisotropic by constzuction. Since most LES's use a non-unitorm grid with anisotropir stretching. the effects of anisotropy should be taken into account in a very wide class of problems.

Second, the discussions we had during the workshop showed that few attempts have been made to introduce the anisotropy at the tensor level in the relation between the subgrid scale stress and the resolved strain tensor. On the contrary. nowt of the studies on the influence of anisotropy have focused on possible modifications to the isotropic eddy viscosity amplitude (Deardorff, 1970, 1971: Scotti et al.. 1993).

Finally. the development of the dynamic procedure (Germano. 1992: Ghosal at al. 1995: Lilly. 1992) allows the introduction of multi-parameter models for the subgrid scale stress. Therefore, there is no practical reason for practitioners to limit their models to an isotropic eddy viscesity.

```
1 Eniversité libre de Brי,velles
2 NASA Center for Turbulence Research
```


2. Anisotropic eddy viscosity

In this work we only consider the subgrid scale modeling of an incompressible fluid: If the exact description of the large scale pressure is not required, the trace of the subgrid scale tensor may be added to the pressure, which is then calculated in order to ensure the incompressibility. The only tensor that needs to be modeled is

The usual modeling procedure consists in givisg an expression for $r_{i j}^{*}$ in terms of the spatial derivatives of the resolved velocity fold $\boldsymbol{a}_{\mathbf{2}} \bar{u}_{\boldsymbol{j}}$. These quantities are usually decomposed into a symmetric resolved strain tensor,

$$
\begin{equation*}
\bar{S}_{u j}=\frac{1}{2}\left(\partial_{i} \overline{\mathbb{X}}_{j}+\partial_{j} \bar{u}_{i}\right) \tag{2.2}
\end{equation*}
$$

and an antisymmetric resolved rotation tensor.

$$
\begin{equation*}
\bar{R}_{i j}=\frac{1}{2}\left(\partial_{i} \bar{u}_{2}-\partial_{j} \bar{u}_{i}\right)=\frac{1}{2} \epsilon_{i j k} \bar{u}_{k} \tag{2.3}
\end{equation*}
$$

where \bar{w} / k is the vorticity and $\epsilon_{k j}$ is the Levi-Civita fully antisymmetric tensor with $\epsilon_{123}=1$. The most genersi tensorial relation in an anisotropic system thus reads:

$$
\begin{equation*}
T_{i j}^{*}=\nu_{i j k l} \bar{S}_{t l}+\mu_{i j k l} \bar{R}_{t k} . \tag{2.4}
\end{equation*}
$$

For three dimensional turbulence, a naive anclysis of this relation would lead to the conclusion that both ν and μ are described by 81 independent parameters. However, very strong simplifications can be derived by using the tensor symmetry properties of $r_{i j}^{*}, \bar{S}_{i j}$ and $\overline{\boldsymbol{R}}_{1}$. as well as the aymmetries of the flow. These simplifications do not require any assumption (as far as the model (2.4) is accepted). A more debatable simplification might apply if the Onseger reciprocal symmetries (Onsager, 1931) are assumed to hold for the eddy viscosity tensors. This will be discussed at the end of this section.

2.1 Tenser symmetries

The tensors $\mathrm{T}_{i j}^{*}$ and $\bar{S}_{i j}$ are symmetric and traceless while the tensor $\overline{\boldsymbol{R}}_{\mathrm{i} j}$ is antisynmetric. This implies that the eddy viscosity tensor $\nu_{i j}{ }^{\prime}$ has the following properties:

$$
\begin{align*}
\nu_{i j k l} & =\nu_{j i k l} \\
\nu_{i j k l} & =\nu_{i j i k} \\
\nu_{i i k l} & =0 \tag{2.5}\\
\nu_{i j k i k} & =0
\end{align*}
$$

Thus. for a given value of $(k, l)=\left(k^{*}, l^{*}\right)$, the matrix $a_{i j}=\nu_{1 j k^{*}} r^{*}$ is traceless and symmetric. Consequently, it has 5 independent components. Similarly. for a given
value of $(i, j)=\left(i^{\bullet}, j^{\bullet}\right)$, the matrix $b_{k t}=\nu_{i}{ }^{\bullet} j^{\bullet k t}$ is also traceless and symmetric. The fall tensor $\nu_{i j k t}$ is thus described by $5 \times 5=25$ independent parameters. The same analysis can be performed for the tensor $\mu_{i j k t}$, which has the following symmetries:

$$
\begin{align*}
& \mu_{i j k t}=\mu_{j i k t}, \\
& \mu_{i j k t}=-\mu_{i j l t}, \tag{2.6}\\
& \mu_{i t k t}=0 .
\end{align*}
$$

Now, the tensor $\mu_{i j k l}$ is symmetric and traceless for its first two indices, while it is antisymmetric for its last two indices. Consequently, the full tensor $\mu_{1, t t}$ is described by $5 \times 3=15$ independent parameters.

2.2 Flow symmetrics

This $25+15$ parameter eddy viscosity tensor may be strongly simplified by using the symmetries of the flow. Let us consider some simple cases.

2.2.1 Isotropic turbulence

Any isotropic tensor can only be constructed with the unit tensor $\delta_{i j}$. Thus, the most general isotropic tensor of rank 4 can be written as follows:

$$
\begin{equation*}
T_{i j k t}=a_{1} \delta_{i j} \delta_{k l}+a_{2} \delta_{i k} \delta_{j l}+a_{3} \delta_{i l} \delta_{j l} . \tag{2.7}
\end{equation*}
$$

If we impose the symmetry relations (2.5), it turns out that the eddy viscosity tensor ν reduces to

$$
\begin{equation*}
\nu_{i j k t}=-a\left(\delta_{i k} \delta_{1 l}+\delta_{i l} \delta_{j k}-\frac{2}{3} \delta_{i j} \delta_{k l}\right) . \tag{2.8}
\end{equation*}
$$

while the symmetry relatiens (2.6) imply that the tensor μ vanishes. Consequently, the subgrid scale stress reads:

$$
\begin{equation*}
r_{i j}^{*}=-2 a \bar{S}_{i j}, \tag{2.9}
\end{equation*}
$$

where a is the usual isotropic eddy viscosity (Smagorinsky, 1963).
The simplest anisotropic situation arises when only one direction can be distinguished from the other. This axisymmetric geometry is thus characterized by a vector pointing to the anisotropy direction. We will show that the nature of this vector will strongly affect the structure of the eddy viscosity tensor. In particular. anisotropy induced by a pseudovector (like a magnetic field or a rotation) must be treated differently from the anisotropy induced by an axial vector (like a mean flow).

2.2.2 Axisymmetry induced by an axial vector

We first consider the case of an axisymmetry characterized by an axial vector n. An axisymmetric tensor of rank 4 can only be a function of this vector \mathbf{n} and of the unit tensor δ_{i}. Its most general form, compatible with the symmetry between the first two indices, reads:

$$
\begin{align*}
T_{i j k l}^{\prime} & =b_{1} \delta_{i j} \delta_{k 1}+b_{2}\left(\delta_{i k} \delta_{j 1}+\delta_{i 1} \delta_{j k}\right) \\
& +b_{3} \delta_{1 j} n_{k} n_{1}+b_{4} n_{i} n_{j} \delta_{k 1}+b_{5}\left(\delta_{i k} n_{j} n_{l}+\delta_{j k} n_{i} n_{l}\right) \tag{2.10}\\
& +b_{6}\left(\delta_{i 1} n_{j} n_{k}+\delta_{j 1} n_{i} n_{k}\right)+b_{7} n_{i} n_{j} n_{k} n_{l} .
\end{align*}
$$

Imposing the constraints (2.5) and defining $b_{2}=-c_{1}, b_{6}=-c_{2}$ and $b_{7}=-c_{3}$ lead to the following expressions:

$$
\begin{align*}
& b_{1}=\left(6 c_{1}-4 c_{2} n^{2}-c_{3} n^{4}\right) / 9 \\
& b_{3}=b_{4}=\left(4 c_{2}+c_{3} n^{2}\right) / 3 \tag{2.11}\\
& b_{3}=-c_{2}
\end{align*}
$$

If the constraints (2.6) are imposed on $\mu_{i j k t}$, only two parameters are different from zero and are opposite ($b_{3}=-b_{6}$). Thus, by introducing $b_{5}=c_{4}$ in μ, the subgrid-scale stress reads:

$$
\begin{align*}
\tau_{i j}^{*} & =-2 c_{1} \bar{S}_{i j}-2 c_{2}\left(n_{i} \bar{s}_{j}+\bar{s}_{i} n_{j}-\frac{2}{3} \delta_{i j} \bar{s}_{k} n_{k}\right) \tag{2.12}\\
& -c_{3}\left(n_{i} n_{j}-\frac{1}{3} \delta_{i j} n^{2}\right) \bar{s}_{k} n_{k}-2 c_{4}\left(\bar{r}_{i} n_{j}+n_{i} \bar{r}_{j}\right)
\end{align*}
$$

where $\bar{s}_{i}=\bar{S}_{\mathbf{i} k} n_{k}$ and $\bar{r}_{i}=\bar{R}_{i k} n_{k}$. The effect on the resolved energy balance of the first three terms is fully determined by the sign of the parameters c_{1}, c_{2}, and c_{3}. Indeed, these terms correspond to dissipation (resp. creation) of resolved energy if and only if c_{1}, c_{2}, and c_{3} are positive (resp. negative). On the contrary, the sign of the term proportional to c_{4} in the resolved energy balance depends simultaneously on the sign of c_{4} and on the flow through the factor $\bar{s}_{k} \bar{r}_{k}$:

$$
\begin{equation*}
r_{i j}^{*} \bar{S}_{1 j}=-c_{1}|S|^{2}-4 c_{2} \bar{s}^{2}-c_{3}\left(\bar{s}_{k} n_{k}\right)^{2}-4 c_{4} \bar{s}_{k} \bar{r}_{k} \tag{2.13}
\end{equation*}
$$

If the anisotropy is weak (n is relatively small), only terms up to n^{2} must be retained: since $\bar{s}_{2}, \bar{r}_{3}=O(n)$, the term proportional to c_{3} can be neglected in this case.

2.2.9 Axisymmetry induced by a pseudovector

We now consider that the anisotropy direction is represented by a pseudovector p. The most general axisymmetric tensor of rank 4 will be a function of the vector p_{i}, the unit tensor $\delta_{i j}$, and the Levi-Civita tensor $\epsilon_{i j k}$. The situation is thus more complicated and more parameters need to be introduced. The notations will be simplified by introducing the antisymmetric tensor $V_{i j}=\epsilon_{i j k} p_{k}$ so that the most general tensor compatible with the symmetry between the first two indices reads:

$$
\begin{align*}
& T_{i j k l}^{\prime \prime}=d_{1} \delta_{i j} \delta_{k 1}+d_{2}\left(\delta_{1 k} \delta_{j l}+\delta_{11} \delta_{j k}\right)+d_{3} \delta_{1} V_{k 1}+d_{4}\left(\delta_{i k} V_{j 1}+\delta_{j k} V_{11}\right) \\
& +d_{5}\left(\delta_{11} V_{j k}+\delta_{j 1} V_{i k}\right)+d_{6}\left(\epsilon _ { i k } \left(p_{j}+\epsilon_{j k}\left(p_{i}\right)+d_{7} \delta_{13} p_{k} p_{1}+d_{3} p_{i} p_{j} \delta_{k 1}\right.\right. \\
& +d_{9}\left(\delta_{1 k} p_{j} p_{t}+\delta_{j k} p_{t} p_{t}\right)+d_{10}\left(\delta_{i 1} p_{j} p_{k}+\delta_{j t} p_{t} p_{k}\right) \tag{2.14a}\\
& +d_{11}\left(V_{i k} V_{11}+V_{11} V_{j k}\right)+d_{12}\left(V_{i k} p_{j} p_{1}+V_{j k} p_{1} p_{l}\right) \\
& +d_{13}\left(V_{11} p_{j} p_{k}+V_{j 1} p_{1} p_{k}\right)+d_{14} p_{1} p_{j} V_{k t}+d_{15} p_{1} p_{j} p_{k} p_{t} .
\end{align*}
$$

We will not discuss the complete tensor $T^{\prime \prime}$ with 15 independent parameters. Let us assume that the anisotropy is weak enough to keep only terms proportional to the vector p_{i}. In this case, $T^{\prime \prime}$ reduces to

$$
\begin{align*}
T_{i j k l}^{\prime \prime} & \approx d_{1} \delta_{1 j} \delta_{k l}+d_{2}\left(\delta_{2 k} \delta_{11}+\delta_{11} \delta_{j k}\right) \\
& +d_{3} \delta_{i j} V_{k t}+d_{1}\left(\delta_{i k} V_{j 1}+\delta_{j k} V_{11}\right) \tag{2.14b}\\
& +d_{5}\left(\delta_{11} V_{j k}+\delta_{j 1} V_{i k}\right)+d_{6}\left(\epsilon_{1 k} P_{j}+\epsilon_{j k l} p_{i}\right)
\end{align*}
$$

Imposing the constraints (2.5) and defining $d_{2}=-\varepsilon_{1}, d_{5}=-\epsilon_{2}$ and $d_{6}=-\epsilon_{3}$ lead to the following expression:

$$
\begin{align*}
& d_{1}=2 e_{1} / 3 \\
& d_{3}=2 e_{3} \tag{2.15}\\
& d_{4}=-2 e_{3}-e_{2},
\end{align*}
$$

while imposing the constraints (2.6) with the new definition $d_{5}=-e_{4}$, and $d_{6}=-\epsilon_{5}$ leads to

$$
\begin{align*}
& d_{1}=d_{2}=0 . \\
& d_{3}=\left(2 e_{5}-4 e_{4}\right) / 3 . \tag{2.16}\\
& d_{4}=e_{4} .
\end{align*}
$$

The subgrid scale stress thus reads:

$$
\begin{align*}
\tau_{i j}^{*}=-2 \epsilon_{1} & \bar{S}_{2 j}-2\left(\epsilon_{2}+\epsilon_{3}\right)\left(\bar{S}_{i k} V_{j k}+\bar{S}_{j k} V_{i k}\right) \\
& +2\left(\epsilon_{4}+\epsilon_{5}\right)\left(\bar{R}_{i k} V_{j k}+\bar{R}_{j k} V_{i k}-\frac{2}{3} \delta_{i j} \bar{R}_{k t} V_{k l}\right) \tag{2.1in}
\end{align*}
$$

Although the total eddy viscosity contains 5 parameters, only three of them appear independently in the expression for $\tau_{i j}^{*}$. Let us note that the expression of $\tau_{i j}$ c can be simplified by using the resolved vorticity:

$$
\begin{align*}
\tau_{i j}^{*}=-2 \epsilon_{1} & \bar{S}_{i j} \\
& -2\left(e_{2}+e_{3}\right)\left(\bar{S}_{i k} V_{j k}+\bar{S}_{j k} V_{i k}\right) \tag{2.17b}\\
& +2\left(e_{i}+e_{5}\right)\left(\bar{w}_{i} p_{j}+\bar{w}_{j} p_{i}-\frac{2}{3} \delta_{i j} \bar{w}_{k} p_{k}\right) .
\end{align*}
$$

It is interesting to note that the anisotropic corrections appear at first order in the anisotropy direction p_{1}. Thus, we conclude that a pseudovector anisotropy ilike a rotation or a magnetic field) should affect the eddy viscosity more zapidly than an axial vector anisotropy (like a grid or a flow anisotropy).

2.9 Onsager reciprocal symmetries

Stric:iy speaking, the Onsager reciprocal symmetries do not apply to turbulence. Indeed, they have been derived for describing the irreversible return to equilibrium in macroscopic system, and they strongly rely on the microscopic reversibility of particle motions as well as on the linearity of the transport laws. However, in an
attempt to simplify the eddy viscosity picture as much as possible, it is tempting to assume the existence of such relations for the tensors ν and μ. We will not try to justify further the use of such relations and present the form of the eddy viscosity tensors fulfiling these relations as a approxima'e simplification. The Onsager reciprocal relation will imply the following additional relations:

$$
\begin{align*}
& \nu_{i j k t}(n)=\nu_{k l_{i j}}(n), \\
& \mu_{i j k t}(n)=\mu_{k l_{i j}}(n), \tag{2.18}\\
& \nu_{i j k t}(p)=\nu_{k t_{i j}}(-p) \\
& \mu_{i j k t}(p)=\mu_{k l_{i},}(-p) .
\end{align*}
$$

When applied to the previous results, these relations imply $c_{4}=0$ and $\varepsilon_{3}=-\varepsilon_{4}$. Thus. they strongly simplify the tensor $\mu_{1, k l}$ but they do not affect the tensur $\nu_{1,1 /}$ in the case presented here.

3. Anisotropic eddy viscosity and dynamic model

It has been mentioned in the introduction that the use of the dynamic procedure gives a direct access to a multiple-parameter eddy viscosity. In this section we present the dynamic derivation of the eddy viscosity tensor in the simplest anisotropic geometry: the weak axisymmetric anisotropy induced by an axial vector. Moreover, the problem is further simplified by assuming the existence of Onsager symmetries for the tensor $\nu_{i j k l}$ and $\mu_{i j k l}$. In that case, we have shown in the previous section that the subgrid stress tensor reduces to

$$
\begin{equation*}
\tau_{i j}^{*}=-2 c_{1} \bar{S}_{i j}-4 c_{2} n^{2} \bar{S}_{i j}, \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{S}_{i j}^{l}=\frac{1}{2 n^{2}}\left(n_{i} \bar{S}_{j i} n_{l}+n_{j} \bar{S}_{i 1} n_{l}\right)-\frac{1}{3 n^{2}} \bar{S}_{k i 1} n_{k} n_{i} \delta_{i j} \tag{3.2}
\end{equation*}
$$

With the new tensorf $\bar{S}_{i j}^{\perp}=\bar{S}_{1 j}-\bar{S}_{i j}^{i}$ and the parameters $\nu_{1}=c_{1}+2 n^{2} c_{2}$ and $\nu_{2}=c_{1}$, the subgrid stress tensor may be rewritten as

$$
\begin{equation*}
r_{i j}^{*}=-2 \nu_{1} \bar{S}_{i j}^{\prime \prime}-2 \nu_{2} \bar{S}_{i j}^{1} \tag{3.3}
\end{equation*}
$$

With this formulation, the resolved energy dissipation reads $\epsilon=-\tau_{i j}^{\bullet} \bar{S}_{i j}=\nu_{1} R_{i}+$ $v_{2} R_{2}$, whet-

$$
\begin{gather*}
R_{1}=\sum_{i j} \bar{S}_{i j} \hat{\bar{S}}_{i j}^{\prime \prime}=\frac{s^{2}}{n^{2}} \geq 0 \tag{3.4a}\\
R_{i}=\sum_{i j} \bar{S}_{i j} \hat{\bar{S}}_{i j}^{1}=\sum_{i j} \bar{S}_{i j}\left(\hat{\bar{S}}_{i j}-\hat{\bar{S}}_{i j}^{\|}\right)=\frac{1}{2}|\bar{S}|^{2}-\frac{s^{2}}{n^{2}} \geq 0 \tag{3.4b}
\end{gather*}
$$

\dagger This notation should not lend to the conclusion that $\bar{S}_{1,}^{\perp}$ and $\bar{S}_{i j}^{\prime \prime}$, are orthogonal. It is easy to show that $\sum_{i j} \bar{S}_{i j}^{\prime \prime} \bar{S}_{i j}^{\perp} \neq 0$ in general.

The last inequality is a direct consequence of the Cauchy-Schwartz inequality :

$$
\begin{equation*}
s^{2}=\sum_{i}\left(\sum_{k} \bar{S}_{i k} n_{k}\right)^{2} \leq \sum_{i} \sum_{k}\left(\bar{S}_{i k}^{2}\right)\left(\sum_{i} n_{l}^{2}\right)=n^{2}|\bar{S}|^{2} / 2 . \tag{3.5}
\end{equation*}
$$

Sufficient conditions for having a positive resolved energy dissipation are thus $\nu_{1} \geq 0$ and $\nu_{2} \geq 0$. In order to devise the simplest dynamic procedure, we suppose that both ν_{1} and ν_{2} scale following the Kolmogorov law:.

$$
\begin{align*}
& \iota_{1}=-C_{1} \Delta^{1 / 3} \tag{3.6a}\\
& \nu_{2}=-C_{2} \Delta^{4 / 3} \tag{3.6b}
\end{align*}
$$

The choire for the length scale Δ in C_{1} and C_{2} (which are not dimensionless) is unimportant because the dynamic model will take care of the amplitudes. Only the power $4 / 3$ is important. With these definitions, the model becomes

$$
\begin{equation*}
\tau_{i j}^{*}=C_{1} \rho_{1 j}+C_{2} \eta_{i j} . \tag{3.7}
\end{equation*}
$$

where

$$
\begin{align*}
& \rho_{i j}=-2 \Delta^{t / 3} \bar{S}_{i j}^{\#} \tag{3.8a}\\
& \eta_{i j}=-2 \Delta^{t / 3} \hat{\bar{S}}_{i j}^{\downarrow} \tag{3.8b}
\end{align*}
$$

Assuming a volume-averaged version of the dynamic model, the error with respect to the Germano identity is given by (Germano. 1992; Ghosal et al., 1995: Lilly, 1992):

$$
\begin{equation*}
E_{i j}\left(C_{1}, C_{2}\right) \equiv L_{i j}+C_{1} M_{i j}+C_{2} N_{i j}, \tag{3.9}
\end{equation*}
$$

where

$$
\begin{align*}
& M_{i j}=-2 \Delta^{4 / 3}\left(1-\alpha^{4 / 3}\right) \hat{\bar{S}}_{i j} \\
& N_{i j}=-2 \Delta^{4 / 3}\left(1-\alpha^{4 / 3}\right) \hat{\bar{S}}_{i j}^{\perp} \tag{3.10}
\end{align*}
$$

where α is the ratio between test and grid filters. By minimizing $E_{i j}^{2}$, we have the two coupled equations:

$$
\begin{align*}
\left\langle L_{i}, M_{1 j}\right\rangle+C_{1}\left\langle M_{i}, M_{i j}\right\rangle+C_{2}\left\langle N_{i}, M_{i j}\right\rangle & =0 \tag{3.11}\\
\left\langle L_{i}, N_{i j}\right\rangle+C_{1}\left\langle M_{i j} N_{i j}\right\rangle+C_{2}\left\langle N_{i j} N_{i j}\right\rangle & =0
\end{align*}
$$

Since $M_{1 j}$ is not aligned with $N_{1 j}$, these two equations are not linearly proportional and they may be used for determining both C_{1} and C_{2}.

Figure 1. Comparison of the grid anisotropy described in terms of the grid spacing in each direction vs. the flow anisotropy described in terms of the square root of the diagonal components of the Leonard tensor. Clearly, the flow anisotropy is only important close to the wall in the streamwise direction. The grid anisotropy is also more important close to the wall, but mainly in the wall-normal direction. a) $\operatorname{Dx+}:$ - ; Dy $:$:---; $D z+:----$. b) Square root of $L x x:-$ - ; square root of Lyy:---- ; square root of Lzz:--- .

4. Application to the channel flow

The dynamic formulation presented in the previous section has been implemented for channel flow with a friction Reynolds number of 1030 (ef. Cabot. 1994). The weak axisymmetric anisotropy is probably a very rough approximation for the cha: 4 nel geometry, so that the results presented here must be regarded as very prelimnary tests. Moreover, it is not clear in channel flow which direction is the dominant anisotropic one (see Fig. 1). Indeed, channel flow is characterized by two anisotropic directions: the streamwise and the wall-normal directions. Both choices for \mathbf{n} have been tested.

The rms values of streamwise velocity component (u^{\prime}) are presented in Fig. 2. The rms values of the wall-normal and spanwise velocity components (v^{\prime} and w^{\prime}) seem to be insensitive to the model and are not shown here. It appears that the results from the isotropic model and the anisotropic model based on the wall-normal direction are almost indistinguishable. The results for the anisotropic model based on the streanwise direction seem to be better close to the wall. This could indicate that the flow anisotropy has more influence than the grid anisotropy. However, no definitive conclusion can be made since the model based on the streamwise direction does not perform well in the core region. Also, preliminary results indicate a longtime lack of stability for this latter model.

Finally, we present the results for the two eddy viscosity coefficients (ν_{1} and ν_{2}) in Fig. 3. For both models, the condition of positive dissipation ($\nu_{1} \geq 0$ aad $\nu_{2} \geq 0$) are mostly well satisfied. It is not 3 : known if the weakly negative values of ν_{2} in the model based on the streamwise direction are responsible for its lack of stability.

Figure 2. Comparison of profiles for the rms of streamwise velocity (u^{\prime}) between experimental data. the isotropic dynamic model and two versions of the anisotropic dynamic model based on the streamwise and wall-normal anisotropy directions. Experimental data (Hussain \& Reynolds, 1970): $\boldsymbol{\bullet}$; isotropic LES: _ ; anisotropic LES ($\mathrm{n}=$ str.dir.):---- : anisotropic LES ($\mathrm{n}=$ wall norm. dir.):--- .

Figure 3. Comparison of eddy viscosity coefficients in three different models. Isotropic model: $\nu-t$ - ; anisotropic model (streamwise): $\nu_{1} \cdots, \nu_{2}$; anisotropic model (wall normal): $\nu_{1} \cdots, \nu_{2}$.

5. Discussion

The use of an anisotropic eddy viscosity model has been shown to complicate dramatically the relation between the subgrid stress tensor and the resolved velocity derivatives. In particular, in the fully anisotropic geometry, 40 independent effective transport coefficients must be introduced. However, when some approximations are used. it is possible to simplify the problem drastically. As an example, we have tested the weakly anisotropic axisymmetrical geometry. In that case. the eddy
viscosity tensor reduces to a two parameter quantity. A dyuamic procedure has been proposed for this problem and some tests have been mede in chamel flow.

These numerical tests have clearly shown that the det. . ination of the anisotropy direction remains an important issue in the simplificd. ... otropic model presented in §3. Indeed. even when the flow is fully anisotropic. \cdots wodel discussed in $\S 3$ may be regarded as the first tensorial invariant correction to the isotropic eddy viscosity. The use of this model could then be sern as the result of a "local axisymmetric assumption" which should be at least as robust as the local is:. "xic assumption. However, in that case it is probably crucial to chose the vector is an appropriate way. It is also possible that the vector n varies with space. An interesting extension to this work would be the derivation of a dynamic procedure giving explicit expressions not only for the eddy viscosity amplitudes but also for the vector \mathbf{n}.

At this point the simplest test for anisotropic models would be the homogeneous rotating turbulence. In that case, the anisotropy direction is civarly determined and is given in terms of the rotation pseudovector.

REFERENCES

Cabot. W. 1994 Local dynamic models in channel flow. In CT. Annual Resecrch Briefs 1994. CTR, NASA Ames/Stanford Cniv., 143-159.
DEARDORFF. J. W. 1970 A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41, 453-480.
Deardorff. J. W. 1971 On the magn: ude of the subgrid scale eddy coefficient. J. Comp. Phys. 7, 120-133.

Germano. M. 1992 Turbulence: the filtring approach. J. Fluid Mech. 238, 325 336.

Ghosal, S., Lund. T., Moin, ' \& Akseivobl. K. 1995 The dynamic localization model for large eddy simulation of turbulent flows. J. Fiuid Mech. 286, 299-255.
Hussain, A. K. M. F., \& Reynolds, W. C. 1970 The mechanics of a perturbation wave in turbulent shear flow. Dept. of Mech. Eng. Teck. Rep. FM-6, Stanford Univ.
LILly, D. K. 1992 A proposed modification of the Germano subgria-scale closure method. Phys. Fluids. 4, 633635.
Onsager, L. 1931 Reciprocal relations in irreversible proct. ees. I. Phys. Rev. 37, 405426.

OnsagFr, L. 1931 Reciprocal relations in irreversible rrocesses. II. Phys. Rev. 38, 2265-2279.
Siotti. A.. Meneveat C. . \& Liley D. K. 1993 Generalized Smagorinsky model for anisotropic grids. Phys. Fluids. 5, 23062308.
Smagorinsky. J. S. 1963 General circulation experiments with the primitive equations: 1. The basic experiment. Mon. Weather Rev. 91, 99-164.

NEXT DOCUMENT

Dynamic Smagorinsky model on anisotropic grids

By A. Scotti' C. Meneveau' ant M. Fatica ${ }^{\text { }}$

Large Eddy Sinumaion (LES) of complex-grometry flows often invoives highty anivertopir meshes. To examine the performance of the dynamir Smagorimky morlel in a controlled fashion on such grids, simulations of forced isotropir turbis. bence are performed using highly anisos ropic discretizations. The resulting nomed coeffirints are compared with a thencetical prediction (Srotti et el. 1993). Two extreame cases are cons: resolvel compared to ste third, and penci-like grids, where one direction is poorly resilved when comparod to the ot her two. For pancale-like grids the dynamic usdel gelds the results experted from the theory (increasing coefficient with increasing aspect ratio!, whe reas for pencil lite grids the dynamic model don, not agree with the therretical prediction (with detrimental effects only on smallest resolved scales 1. A ponible explanation of the departure is attempted. and it is shown that the problem maty be circummented by using an isotropic test-filter at larger scalos.

Overall. all models considered give good large-srate results, coni imine the gen cral rimentmess of the dynamic and eddy-riscosity models. But in all caves. the predietions were poor for scales smaller than that of the worst rewolved dirertion.

1. Introduction

Since its introdurtion in the 1990 : a goal of L.SS has been to simulate complex turbukut flows. A complex flow is, oy definition. characterized by regions were the physics of turbulence change. e.g. from hommgenens turbulence far from lenurdaries to near wall turbulen. -. etc. To capture the full gamut with a simple sulngrid mondel without having to adjust constants in an ed hoc manner every time was a serions problem until recentiy. The introduction of the dysamic mox 1 (Germano of al. 1991) to dynamically calruiate the parameter(s) of the modeled sub-grid stress was a significane step towards making LES of complex flows possible without ad hoc adjustments. This model is able to self-adiust to the large scale flow in the corrert fachion. for instance, shuting itself down near walls or in regions where the fow riaminarizes.

A, a iesult, it has berome possible to apply LES to study flow: of increasing comptexity te.g. Akstloll and Moin 1906 or see in this same volume Chan and Mittal. and Hawoth and Jansen). which in turn requires the nse of romplex grids. eithor structured or unstructured. Complirated grid gerometrim in conjumetion with


```
Conter for lurluifonce Revarch
```

the dynamic noodel raise weveral questions. Consider. as an "xamp! - ine flow past a 3-D blufficoly: near the shject, one needs tor refine the grid in the spanwise diree. tions. For a structured nosh, far downstream. the grid may ibe greatly expanded in the streamwise direction. Therefore. the grid can be tongly animotropic. with the rements of the grid looking like sheets or pencils. depurnding on the kind of refinement imposad upstrean. Hence, in the far-wake repinn oue may have a situation where the turbulence in nearly isotropic. whereas the computational grid is highly anisotropir.

In LES. the grid filter is dictated by the computational nesh used to solve the equations (although. for methorls other than spertral. it is difficult to give a precise definition of the filtering operator assoriated with a given discretization). Siuce classical eddy-viscusity models need as input a length-wale which is usually associated with the scale at which the filter operates. the problem arises in defining this knigth when, as a result of the anisotropy of the grid. the filter is defined by more than one length scale. For the Smagorinsky model. this problem vas considered first by Deardoff (1970) and later by Schumann (1973). Lilly (1988) and Scotti et d. (1993), although the last two papers were only theretical treatments.

On the other kand. other mondels such as the dynamic nodd do not in primeiple require a length scake to be specified. The question then arises whetier the dyuamic model is able to correctly simulate isorropic turbulence on anisotropic grids. The main goal of this woriz is ro examine this question.

This issue is also of thentetical interest since. from the point of view of interaction anotif nodes. locai triadic interactions at smail scaks are fully avanlable oniy to a cimited amount of incmes. Thus the small seates are experied to a dyuamic which is mot the one typica! of 3-D wrbulence. It is natural then to expert that the SGS stress tensor shonid incorporate a correction originating only from the anisotropy of the erid.

The paper is organizerl as follows: in section 2 we briefly summarizs the main result of Sroti et al. (1993) and set the notation that will be ased thronghout the paper: in Sertion 3 we discuss the simulations and how the zesults of different noxdels will be compared In showing the results. we have considered two categorion of grids: pancaike like. when one direrion is much berter resol:ed than the other two. and pencil like. When two directions are much berter rewolved than the third. Sortion 4 presents the ronlts. Finally. in Section. is a summary and discussion of the result is given

2. Smagorinsky model on anisotropic grids

In this sertion. the results of Scotti at al. (1993) are bitefly recalled. They are based on the assumption that the turbulence is isotopic and homogenerous. and that the largest and smallent scale at which the flltot oprotates still he within the inertial range. One begins by writing the Smagorinsky medel as

$$
\begin{equation*}
r_{i j}=-2\left[L (\Delta _ { 1 } \cdot \Delta _ { 2 } , \Delta _ { 1 }] ^ { 2 } \left[2 S_{i m}^{2}!^{1 ; \dot{S}_{1}}\right.\right. \tag{1}
\end{equation*}
$$

Here $\nu_{1} \cdot \Delta_{2}$ and $\Delta_{\text {s }}$ are the dimensions of elee compritational cell. For notationai convenience ami withon lark of generality, let ne ansmar $\Delta_{1} \leq \Delta_{2} \leq \Delta_{3}$. The
equivalent filter, via a collocation rule, is assumed to be a sharp cut-of filter in Fourier space, which corresponds to setting to zero all the modes outside the region $B=\left\{\left|k_{1}\right|<\pi / \Delta_{1} .\left|k_{2}\right|<\pi / \Delta_{2},\left|k_{3}\right|<\pi / \Delta_{3}\right\}$, leaving the others unmodified.
By invoking an argument used first by Lilly (1967) an expression for $L_{(}\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right)$ was derived by requiring that

$$
\varepsilon=-\left\langle\tau_{i j} \dot{S}_{\mathbf{i} j}\right\rangle
$$

replaring τ_{1}, with the model and computing moments of the strain-rate tensor, assuning that the vekocity field is characterized by a Kolmogorov isotropir spectrum on all resolved modes.
Introducing $\Delta_{\text {eq }}=\left(\Delta_{1} \Delta_{2} \Delta_{3}\right)^{1 / 3}, L\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right)$ can then be written as

$$
\begin{equation*}
L_{(}\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right)=C_{0} \Delta_{2} f\left(a_{1}, a_{2}\right) \tag{2}
\end{equation*}
$$

where $a_{1}=\Delta_{1} / \Delta_{3}$ and $a_{2}=\Delta_{2} j \Delta_{3}$ are the two aspect ration of the grid. and $f \geq 1$ is a function equal to one if both ratios are equal to unity. C, is the traditional Smagorinsky coefficient, which depends on the value of the Kolmogorov constant.

After evaluating the function f, a compact approcination for the result was given by Scoti et al. (1993)

$$
\begin{equation*}
\left.f\left(a_{1}, a_{2}\right) \simeq \cosh \sqrt{4 / 27\left(\left(\log a_{1}\right)^{2}\right.}-\log a_{1} \log a_{2}+\left(\log a_{2}\right)^{2}\right) . \tag{3}
\end{equation*}
$$

Incidentally, we remark that the fact that $f \simeq 1$ for aspect ratios close to unity justifies the practice introduced by Deardoff (1970) of using Δ_{eg} as length scale. at least for aspect ratios close to unity. In the dynamic version of this model, with grid filtering denoted by tilde and test filtering by an overbar, the length-scale $\boldsymbol{L}\left(\dot{\boldsymbol{X}}_{1}, \dot{\boldsymbol{\Delta}}_{2}, \dot{\Delta}_{3}\right)$ is computed according to

$$
\begin{equation*}
2\left[L\left(\dot{\Delta}_{1}, \dot{\Delta}_{2}, \dot{\Delta}_{3}\right)\right]^{2}=\frac{\left\langle L_{i}, M_{i j}\right\rangle}{\left\langle M_{i}, M_{i j}\right\rangle} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{u}=\overline{\bar{u}, \tilde{u}_{1}}-\overline{\tilde{u}}_{2} \bar{u}_{j}, \tag{4a}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{i j}=\left[\overline{\left[2 \dot{S}_{l m}^{2}\right]^{1 / 2} \bar{S}_{1 j}}-\left(\frac{\bar{\Delta}_{e q}}{\bar{\Delta}_{e q}} \frac{f\left(\bar{a}_{1}, \bar{a}_{2}\right)}{f\left(\bar{a}_{1}, \bar{a}_{2}\right)}\right)^{3}\left\{2{\overline{\dot{S}_{l m i}}}^{1 / 2} \bar{S}_{1}\right]\right. \tag{4b}
\end{equation*}
$$

whre we have made ise of Eq. (2). If both test and grid filter have the same aspect ratios then Eq. (4) is closed; otherwise we can use Eq. (3) to compute f and check a posteriori its consistency.

3. Approach and validation

W. run LES of isotropic turbulence in a box of side 2π with periodic boundary conditions. Turbulence is maintained by a forcing f that forces the largest modes ($k \leq 2$) with an intensity such that the energy injection rate $f \cdot u$ is fixed at a constant value $\varepsilon=1.0$. The numerical scheme is the same as in Vincent and Meneguzzi (1991) and Briscolini and Santangelo (1994). It uses Adam-Bashforth $\underline{2}$ fer time adrancing. with $\Delta t=0.001$. The uonlinear ternis, written in rotational form. are evaluated pseudospectrally. Appendix A examines dealiasing for the AB2 scheme. The grids have mesh sides $\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right)$ with $\Delta_{3}>\max \left\{\Delta_{1}, \Delta_{2}\right\}$ and aspect ratios $a_{1}=\Delta_{1} / \Delta_{3}, a_{2}=\Delta_{2} / \Delta_{3}$ ranging from 1 to $1 / 16$. Grid filtering was performed with a sharp spectral cut-off setting to zero the modes outside the ellipsoid $B=\left\{k \in R^{3}!\left(k_{1} \Delta_{1}\right)^{2}+\left(k_{2} \Delta_{2}\right)^{2}+\left(k_{3} \Delta_{3}\right)^{2} \leq 8 / 9 \pi^{2}\right\}$, which has the advantage of partially removing aliasing errors (see appendix A). Test filtering was done at a scale twice as large in all directions.

For comparison, computations were performed using the classical non-dynamic Smagorinsky model with the Deardoff length scale and $C_{9}^{\mathbf{2}}=0.026$, as well as with the Smagorinsky mociel corrected after Scotti at al. (1993) including $f\left(a_{1}, a_{2}\right)$ as evaluited from Eq. (3). In all cases the initial condition is assumed to be a randonn Gaussian field with $k^{-3 / 3}$ spectrum, random phase, and total kinetic energy equal to unity.

We wish to compare both large scale properties, such as total kinetic energy: derizative skewness in the worst resolved direction, and small scale properties, such as energy spectra near cut-off scale and the skewness in the best resolved direction (which is sensitive to the details of the small scrales).
For isotropic turbulence we know that the spectral tensor in the inertial range is given by

$$
\begin{equation*}
Q_{1}(k)=\left\langle u_{1}(k) u_{j}(-k)\right\rangle=(4 \pi)^{-1} C_{k} \varepsilon^{2 / 3} k^{-11 / 3} P_{1}(k) . \tag{5}
\end{equation*}
$$

where ε is the average dissipation, C_{k} is the Krlmogorov constant, and $P_{, j}(k)$ is the projector on the spare orthogonal to k. Also. we know that the skewness of the derivative is $O(-.5)$. although for LES the value attained is typically smaller due to the incomplete resolution of the small scales. Wi will compute the skewness in the a-direction. defined as $S_{a}=\left\langle\left(\hat{\partial}_{u_{a}} / \partial r_{a}\right)^{3}\right\rangle /\left\langle\left(\partial \grave{u}_{o} / \partial r_{a}\right)^{2}\right\rangle^{3 / 2}$.

Due to the anisor ropy of the grid, it is better to study 1-D premultiplied spectra. defined as

$$
C\left(k_{1}\right)=\frac{\int_{B} 2 \pi \varepsilon^{-2 / 3} k^{11 / 3} Q_{1}(k) d k_{2} d k_{3}}{\int_{B} d k_{2} d k_{3}} .
$$

For ideal Kolmogorov turbulence, where the spectral tensor is given by Eq. (5), $C\left(k_{1}\right)$ is a constant equal to the kolmogorov constant $C_{h} \simeq 1.6$.

4. Results

To obtain a self-consistent estimate for the Smagorinsky constant $C_{\text {, }}$, we first run LES with the dynamic model with isotropir spherical l-at and grid filter on a 32^{3} grid. After an initial t:ansient the value stabilizes at $C_{s}^{2}=0.023 \pm 5 \%$. Next. we

Figire 1. (a) Time traces of $f_{d y a}\left(a_{1}, a_{2}\right)$ as generated by the dynamic model during LES of forced turbulence on anisotropic grids. --- : aspect ratios $a_{1}=$ $a_{2}=1,5 ; \ldots: a_{1}=a_{2}=1 ; \cdots \cdots: a_{1}=1 / 16, a_{2}=1$. (b) values of time averages of $f_{\text {dya }}\left(a_{1}, a_{2}\right)$ computed between $400 \leq t \leq 800$, for pancake-like grids. $a_{2}=1$. (D) and pencil-like grids $a_{2}=a_{1}$, (0). The solid line represents the theoretically determined vaines, according to Eq . (3). Error bars are $\pm \sigma$, where σ is the standard deviation about the time average.

Figure 2. Eddy-viscosity models on pancake-like grids ($256 \times 16 \times 16$). (a) kinetic energy as a function of time for dynamic model (-). modified Smagorinsky (…...) and Smagorinsky-Deardoff (----). (b) skewness in the worst resolved direction. same symbols as in (a).
perform LES on anisotropir grids characterized by aspect ratios a_{1} and a_{2}. The iesults are cast in terms of $f\left(a_{1}, a_{2}\right)$, by writing

$$
f_{\mathrm{dyn}}\left(a_{1}, a_{2}\right)=\sqrt{\frac{\left\langle L_{i j} M_{i j}\right\rangle}{2\left\langle M_{i j} M_{i j}\right\rangle}} \frac{0.023^{-1 / 2}}{\Delta_{\mathrm{eq}}} .
$$

Figure la shows the time evolution of $f_{\text {dyn }}\left(a_{1}, a_{2}\right)$ for three cases: an isotropic grid
on 32^{3} modes. a pancake-like grid using a $256 \times 16 \times 16$ grid, and a pencil-like grid using $128 \times 128 \times 16$ modes.
In the same way we have computed the time averages of $f_{\text {dyn }}$ for aspect ratios varying from $1 / 2$ to $1 / 16$. They are ploted in Figure lb together with the value obtained from Eq. (3). We see that the dynamic model reproduces the correct trend for pancake-like grids. but fails with pencil-like grids. To examine the simulations more closely, we now focus on two extreme cases: $2 \mathbf{2 5 6} \times 16 \times 16$ grid (pancake) and a $128 \times 128 \times 16$ grid (pencil). For each case. we compare the dynamic model with predictions of the non-dynamic Smagorinsky model and with the non-dynamic model but including the correction of Eq. (3).

4.1 Pancake-like

Figure 2 shows the total kinetic energy versus time for the three models considered. We see that the three models agree quite well. Also, the skewness in the least resolved direction does not show marked differences. We conclude that at the largescale level. there is no impact on the model variations even at this high level of grid anisotropy. Next, we consider the behavior near the grid scale. The premultiplied 1-D spectrum is shown in Fig. 3. The traditional Smagorinsky-Deardoff case shows a strong peak at wavenumber $k_{1} \sim 10$. The modified Smagorinsky case remains constant at suall wavenumbers and dies out at high wavenumbers without showing any pile-up. The dynamic model falls somewhere in between, but the value is higher than the expected value of C_{h}. Al? models show a rapid decay at wavenumbers above 10 .

The fact that all three models decay for $k_{1}>10$ means that those modes that cannot have access to all the local triadic interactions experience a high drain of energy so that they do not display a Kolmogorov scaling. It appears unlikely that any modification of a scalar eddy-viscosity model could compensate for this behavior.

The analysis of the derivative skewness in the well-resolved direction shows no real difference.

4.2 Pencil-like

As already mentioned. the dynamic model gives a value for $f_{\text {dyn }}$ which is cmaller than one, in contrast with the theoretical expression, which implies that f must be bigger than one. If we look at the large-scale parameters of the flow, energy and skewness in the least resolved direction (Fig. 4) we see that the three models again give similar answers; note the sunall value of the skewness in the worst resolved direction. But if we consider parameters that are more sensitive to the small scale behavior, we notice marked differences. For the dynamic model the Kolmogorov constant is too large, about twice as much as expected (Fig. 5). Therefore, the "underestimation" of f brings consequences that cannot be ignored at the scales near the least resolved direction. Again, scales between the least and best resolved disertions art much less energetic than the Kolmogorov spertrum, as is clear from the rapid drop of the premultiplied spectrum above $k_{1}=16$. On the other hand. the modified Smagorinsky model gives too small a value, probably due to overdamped

Figure 3. Eddy-viscosity models on a pancake-like grid. (a) premultiplied 1-D spectrum: dynamic model (-). modified Smagorinsky (…....) and SmagorinskyDeardoff (----). (b) derivative skewness in the best resolved direction. same symbols as in (a).
modes near $k \sim \frac{\pi}{\Delta_{3}}$. Finally, the skewness in the best resolved direction is consistent with these differences: the smaller the skewness is in magnitude, the more the energy piles up.

4.3 Discussion

The strongest discrepancy between the theoretically and d: namically determined

Figure 4. Eddy-viscosity models on pencil-like grid ($128 \times 128 \times 16$). (a) energy as a function of time for dynamic model (——), modified Smagorinsky (…....) and Smagorinsky-Deardoff (---). (b) derivative skewness in the worst resolved direction, same symbols as above.
$f\left(a_{1}, a_{2}\right)$ was observed for the case of highly pencil-like grids. For this case, the premultiplied spectrum of the dynamic model case showed considerable pile-up. as evidenced by much higher values of $C\left(k_{1}\right)$. In order to understand the cause's of this behavior, we recall that the dynamic model computes L by sampling the turbulence between grid and test filter. It could be argued that for pencil-like grids these modes behave essentially as 2D turbulence, with the vorticity aligned in the r_{3} direction and a concomitant change in the dynamics. To focus on the relevant scales, we

Figure 5. Pencil-like grid. (a) compensated 1-D spectrum: dynamic model (———), modified Smagorinsky (…...) and Smagorinsky-Deardoff (----). (b) derivative skewness in the best resolved direction, same symbols as above.
have analyzed the vorticity band-pass filtered betwern test and grid filter (i.e. the statistics of $\left.\omega^{\prime}=\dot{j}-\bar{\omega}\right)$. We find that the variances are not isotropic, and that $\omega_{1}^{\prime 2} / \omega_{3}^{\prime 2} \sim \omega_{2}^{\prime 2} / \omega_{3}^{\prime 2} \sim 0.75$, i.e. the flow is not quite 3-D but not 2-D either. More directly related to the small value of L or $f_{\text {dyn }}$ obtained from the dynamic model, in Fig. 6 we show the PDF of $L_{i j} M_{i j}$ (solid line). The curve is almost symmetrically distributed around the origin, and the average value. while positive, is very small ($\left.<L_{i}, M_{i j}\right\rangle=4.80$) $L_{i}, M_{i j}$ can be regarded as a measure of energy transfor from
large to small seales, with negative values meaning energy backscatter. If we now compute the same PDF but using an isotropic test filter at a scale $2 \Delta_{3}$ in all three directions, we see that the shape of the PDF changes, being now skewed to the right (symbols in Fig. 6). The mean value is now $\left\langle L_{i j} M_{i j}\right\rangle=31.66$. Therefore, by sampling larger scales that are more isotropic, the dynamics of the energy transfer changes noticeably.

This observation suggests that in order to improve the performance of the dynamic model in such extreme cases of grid anisotropy, it may be advisable to use a test filter which is isotropic, with a length scale twice as large as the worst resolved scale. In this case, the grid and test anisotropies differ, and this must be taken into account explicitly in the dynamic model formulation. We now implement the dynamic model with Eq. (4b) for M_{2}, using the expression given in Eq. (3) for $f\left(\bar{a}_{1}, \bar{a}_{2}\right)$ and $f\left(\bar{a}_{1}, \bar{a}_{2}\right)$. Lising this formulation on a $128 \times 128 \times 16$ simulation yields the result shown in Fig. 6. The time trace of f (Fig. 6) shows that it oscillates around an average value of $1.44 \pm .067$, much closer to the expected value of 1.34 than the value of 0.8 obtained with pencil-like test filtering. At large scales the difference between this run and the previous one is small. On the other end. at small scales the situation changes as now the premultiplied spectrum (Fig. i) lies flat at 1.4 for $k_{1}<10$. very close to the expected value for C_{k}. The skewness in the best resolved direction agrees well with the one calculated from the mosified Smagorinsky model.

5. Conclusions

We have run several LES of forced isotropic turbulence on anisotropic grids, using three different Smagorinsky models. All three models are able to satisfactorily reproduce the very large scales of the flow. This result confirms the general robustiess of the dynamic model even for the extreme cases considered in this work (sce Jimenez (1995) for further observations on the dynamic model's robustness). However, none of the models considered is able to give a correct representation of the scales smaller than the worst resolved direction, where spectra are strongly damped below Kolmogorov values. This is probably due to the fact that the transfer of energy at very small scales is affected by the lack of similar modes in one or more directions. For a related study on the effect of grid anisotropy on velocity components and stress anisotropy, see Kaltenbach (1096).

For the model performance at scales near the cut-off in the worst resolved direction, we need to distinguish between pancake grids and pencil grids. For pancakelike grids, the non-dynamical Smagorinsky model modified after Scotti et al. (1993) and the dynamic model give reasonably good results, while the conventional Smagorinsky model using the Deardoff prescription for $\Delta_{\text {eq }}$ shows excessive pile up of energy at scales close to the largest mesh size. The anisotropy factor computed from the dynamic model shows an increasing trend with anisotropy in accord with the theoretical prediction, although the numerical value is somewhat smaller. For pencil-like grids. the Smagorinsky-Deardoff model as well as the modified version give good results. with the modified version yielding slightly better results. On the other

Figure 6. (a) PDF of $L_{i j}, M_{i j}$ computed with same grid but different test filters. Both statistics were performed on the same fields simulated on a $128 \times 128 \times 16$ grid and with test filter cutting off at $\bar{k}_{i}=1 / 2 \bar{k}_{i}$. The solid line refers to $L_{i j} M_{i j}$ computed as in the simulation, while the symbols refer to $L_{1}, M_{\text {, }}$ computed with a test filter cutting off at $\bar{k}_{1}=1 / 2 \bar{k}_{3}$. (b) anisotropy factor $f_{\text {dyn }}$ computed with an anisotropir test filter (——) and with an isotropic (larger scale) test filter (.......). The predicted value is 1.34 .
hand, the dynamic model exhibits insufficitat dissipation of energy, as shown by the fact that the anisotropy factor fon becomes smaller that one, and reflected in that small scales have excessive energy as compared to the Kolnogorov value.

Figure 7. (a) compensated 1-D spectrum of dynamic model on pencil-like grid wi.h isotropic test filter. (b) derivative skewness in the best resolved direction for dynamic model with isotropic test filter (-) and modified Smagorinsky-model ($\cdots \cdots$).

It would appear that in this particular case the strength of the dynamic moded becomes its weak point. The dynamic model computes the unksown factor from information derived from the smallest resolved scales. But in the case of highly anisotropic grids, these scales expersence a dynamic which is different from the usual one due to the missing modes at large wavenumbers. This in turn affects the resolved non-linear interactions embodied in the term L_{i}, M_{i}, which is what the dynamic mode! samples. Specifically, the number of events during which energy
is transferred forward is decieasec. which conid actually be explained b; a partial 2-dimensionalization of the flow at these scaks.

A proposed improvement is to move i... iest filter towards larger scales, where the combination of more energetic modes and more realistic triadic coupling allows a more faithiul representation of how energy is exchanged. Indeed, simulations done with an isotropic test filter at twice the worst resolved scale show improved results. Perhaps not surprisingly, this conclusion is similar to one reacher by others in the context of dynamic LES using non-spectral numerical methods. such as low-order ninite differences. There, it has been tound advisable to "prefilter" the results and shift the test filter to langer scales (Fergiger 1996. Lund 1996) so that the dynamie model is not strongly affected by mumericai errors occurring near the grid srale.

Acknowledgments

We thank Prof. J. Jimeriez. Prof. P. Moin, Dr. W. Cabot, and Dr. D. Carati for interesting discussions on this subject. The support of CTR and of NSF (CTS94083441 is gratefully acknowledged.

REFERENCES

Akselvoll. K. \& Moin. P. 1996 Large-eddy simulation of turbulent confined coannular jets. J. Flutd Mech. 315, 387.
Briscolini, M. \& Santangelo. P. 199; The non-Gaussian statistics of the velocity field in low-resolution large-eddy simulations of homogeneous turbulence. J. Fiuid Mech. 270, 199.

Caneto. C.. Hesshivi. M. Y.. Qlarteroni. A.. Zang. T.A. 1988 Spectral methods in fiuid dynamics. Springer-Verlag.
Deardoff. J. W. 1970 A numerical study of three-dimensionel turl ent channel flow at large Reynolds numbers. J. Flu:d Mech. 41, 4:5.

Ferziger J. 1996 Personal commumeation

Gehmano. M.. Picmelli. U., Moin, P. \& Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Flatd A. 48, 273-337.
Jiménez. J. 1995 On why dynamic subgrid-scate models work. Anaual Research Briefs. Center for Turbulence Research, NASA Ames/Stanford Univ., 25-34.
Kaltenbach. H-J 1996 Cell aspect ratio dependence of anisotropy measures for resolved and suiggrid scale stresses. Preprint.
Lilis. D. K. 1967 The representation of small-scale turbulence in numerical simulation experiments. Preceedings of the IBM Scientific Computing Sympostum on Environmertal Science. 320-1951, 195.
LILLY, D. K. 1989 The length scale for sub-gaid-scate parameterizaion with anisotropic resolution. Annual Reseerch Briefs. Center for Turbulence Research, NASA Ames/Stanford Univ., 3-9.

LuND, T. 1996 Personal communication.

Rogallo. R. S. 1974 An IlliaC Program for the Numerical Simulation of Homugeneous Incompressible Turbulence. NAS.i TM-81915.
Schumaxs. C. 1975 Subgrid scale model for finite difference simulations of turbulent flows in plane channets and annuli. J. Comp. Phys. 18, 386.
Scotti. A., Mfeneveal, C. \& Lilly, D. K. 1993 Generalized Smagorinsly model for anistropic grids. Phys. Fluid A. 5, 2306-2308.
Vincent A. \& Menegczzi M. 1991 The spatial structure and statistical proper ties of homogeneous turbulence. J. Fluid Mech. 225, 1.

Appendix A

We assume that the computat. nal domain is covered by $N_{1} \times N_{2} \times N_{3}$ points and i. j and 1 are unit vertors in the • and $=$ directions. It is well known (ser Canuto et al. (1987)) that the pieus pectral treatment of a 3-D convolution product $\sum_{m+n=k} a(m) b(n)$ intmaces $2 a$ error. If we denote with z_{k} the true convolution product and with H_{k} the ciar, ated one, the following relation holds:

$$
w_{k}=w_{k}+\sum_{j=1}^{j} w
$$

where the seven extra terms have the form

$$
w_{1}=\sum_{m+n=k+e_{1}} a(m) b(n)
$$

and

$$
\begin{gathered}
e_{1}= \pm N_{1} i, e_{2}= \pm N_{2} j, e_{3}= \pm N_{3} l . \\
e_{4}= \pm N_{1} i \pm N_{2} j . e_{5}= \pm N_{1} i \pm N_{3} l, e_{6}= \pm N_{3} I \pm N_{2} j . \\
e_{7}= \pm N_{1} i \pm N_{2} j \pm N_{3} l .
\end{gathered}
$$

The last four terms. (double and triple aliased) can be set to zero if we adopt an elliptical truncation, i.e. . if we set to zero all the modes such that

$$
\left(\frac{k_{1}}{N_{1}}\right)+\left(\frac{k_{2}}{N_{2}}\right)+\left(\frac{k_{3}}{N_{3}}\right) \geq \frac{2}{9} .
$$

The proof is by inspection.
To remove the single aliased terms we can resort to phase shift. If we premultiply all the modes by a factor $e^{* k \cdot}, \theta \in[0,2 \pi] \times[0,2 \pi] \times[0,2 \pi]$, compute the convolution sum and multiply the result by $\epsilon^{-i k \cdot \theta}$, the aliased terms now are $\epsilon^{ \pm \cdot \theta_{1}} N_{1} N_{j}, j=$ 1.2 .3 . i.e. we have shifted their phase by an amount $\pm \theta_{3} N_{3}$. If we do the same thing one more time. but this time $\theta \rightarrow \theta+\left(\pi / N_{1}, \pi / N_{2}, \pi / N_{3}\right)$ and take the avrrag. of the results. the aliased terms, being ont of phase. will cancel exactly. However. th:s requires doubling the number of FFT's required for each term to the dealiasert.

Rogsilo (1575) showed that for a multistep scheme surb as even-order Runge-Kiucta. it is paxsirie to contred the growth of aliasing esserstialiy at no extra cont. Indeed. let us consider the typicai step of a 2nd order Kunge-Kutha

$$
u^{r+2}=u^{n}+\frac{\lambda t}{2}\left(F_{1}+F_{i}\right)
$$

 possibly a contribution to first order. Therekure, the ghapi efiect af aliasing is pushed to second order. Choosing 0 randomly at each time step further ensures that the error does not accumulate over tinie. Nevertneless the RK-2 method requires doubling the FFT's for each timse step.

In our computation we have used an AB2 scheme, which schecuatically can be written as

$$
u^{m+1}=m^{n}+\frac{\Delta t}{2}\left(3 F^{m}-F^{m-1}\right)
$$

with obvious meaning of the symbols. Athough to Ohh order the alias terms are identical in F^{m} and F^{-1}, it is clear that 'here is no way in which: combination of phase shifts can cance! them exactly, since the equation

$$
3 e^{\cos N}-e^{0,3 N}=0
$$

does not have solutions for $a, 3 \in[0.2 \pi]$.
However, by successive phase-shifts it is still possible to ensure that the error does not accumulate. If n is even. the shift is chosen randomiy; if n is odd. the shift is chosen to be the shift of the previous time step plus $\left(\pi / N_{1}, \pi / N_{2}, \pi / N_{3}\right)$. After m time steps. the solution can be written as

$$
\begin{aligned}
u^{n+m}=u^{n}+\frac{\Delta t}{2}\left(3 \left(F^{n}+F^{n+1}\right.\right. & \left.+F^{n+2}+\cdots+F^{n+m}\right) \\
& \left.-\left(F^{n-1}+F^{m}+F^{n+1}+\cdots+F^{n+m-1}\right)\right] .
\end{aligned}
$$

In the two bracketed sums, to the lowest order, all but a few aliased terms (typically the first and/or the last) cancel out. This proves that the error does not accumulate, and that after m steps the aliasing is still $O(\Delta t)$, n) matter how big m is. Again. the randomness prevents accumulation at higher orders. We have compared results obtained with this dealiasing technique with results obtained by zero padding (2-rule in the worst resolved direction) without finding any noticeable difference.

NEXT DOCUMENT

Dynamic model with scale-dependent coefficients in the viscous range

By C. Meneveau' \& T. S. Lund ${ }^{2}$

The standard dynamic procedure is based on the scale-invariance assumption that the morlel coefficient C is the same at the grid and test-filter levels. In many applications this coudition is not met. e.g. when the filter-lengti., Δ. appronclues the Kolmogorov scale, and $C(\Delta \rightarrow \eta) \rightarrow 0$. Using a priori tests. se show that the standard dynamic model yields the coefficient corresponding to the test-fititer scale($a \Delta$) instead of the grid-scale (Δ). Several approaches to account for scale dependence are examined and/or tested in large eddy simulation of isotropic turbulence: (a) Take the limit $a \rightarrow 1:(b)$ Solve for two unknown corificients $C(\Delta)$ and $C(a \Delta)$ in the least-square-crror formulation; (c) The 'bi-dynamic model', in which two test-filters (e.g. at \leq ales 2Δ and 4Δ) are employed to gain additional information on possible scale-dependence of the coeficient, and an improved estimate for the grid-level coeffirient is obtained by extrapolation. (d) Use theoretical prodictions for the ratio $C(a \Delta) / C(\Delta)$ and dynamically solve for $C(\Delta)$. Done of these options is found to be entirely satisfactory, although the last approach appears applicable to the viscons range.

1. Introduction

One of the underlying ideas of the dynamic procedure (Germano et al., 1991) for large eddy simulation (LES) is scale-similarity, which allows information obtained from the resolved feld to be utilized for modeling the subgrid scales. Typically. this information consists of a dimensionless model coefficient (e.g. the Smagorinsky coefficient) which is assuined to have the same value at the grid-scale Δ and testfilter scale $a \Delta$. where $x=2$ in most applications. Concretely, within the context of the Smagorinsky raodel, the Germano identity leads to

$$
\begin{equation*}
L_{i j}=C(a \Delta) A_{i j}-\widehat{C(\Delta) B_{i j}^{*}} \tag{1}
\end{equation*}
$$

where $A_{1 j}=-2(\Omega \Delta)^{2}|\dot{\bar{S}}| \dot{\bar{S}}_{1,}, B_{i j}^{e}=-2 \Delta^{2}\left|\bar{S}^{\prime}\right| \bar{S}_{1,},|\bar{S}|=\sqrt{2 \bar{S}_{j j} \bar{S}_{1 j}}$, and $L_{i j}=\widehat{u_{i} u_{j}}-$ $\hat{\bar{u}}_{1} \overline{\bar{u}}$, is the resolved stress. The fundamentil scale-similarity assumption of the standard dynamic model is that the model roefficients $C(\Delta)=C(a \Delta)=C$. With this assumption. C is obtained by minimizing the error in Eq. 1 averaged over the independent tensor components (Lilly. 1992) and, if it exists, over a region

[^8]of statistical homogeneity (Germano et al. 1991: Ghosal et al., 1995). For fully inhoncgeneous flows. averaging can be performed over pathlines (Meneveau et al., 1996).

As in other applications, it will be assumed here that the averaging operations sufficiently diminish spatial variations of C, so that one can neglect the error incurred in extracting C from the vest-filter operation (set Ghosal et el., 1995). Thus. the second term in the rhs of $E q$. (1) is replaced with $C(\Delta) B_{i j}$. where $B_{i j}=\widehat{B^{*}}{ }_{i j}$. Also, in this work we will examine tre dynamic procedure in conjunction with the Smagorinsky model. While other base-models such as similarity models have been proposed (Bardina et al., 1960; Liu et al. 1994), they typically require an additional eddy-viscosity term (mixed model, Bardina 1983; Zang et el. 1993; Liu et cl., 1995). Thus, it is of interest to continue to examine the Smagorinsky model in parallel to other efforts on improved base models.

Under the assumption of scale-invariance, the dynamic Smagorinsky model yields

$$
\begin{equation*}
C=\frac{\left\langle M_{i}, L_{i j}\right\rangle}{\left\langle M_{i j}, M_{i j}\right\rangle} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{i j}=A_{i j}-B_{i j} \tag{2a}
\end{equation*}
$$

and where 〈〉 denotes an average over directions of statistical homogeneity or over pathlines.

When applied to the simple problem of either forced or decaying isotropie turbulence at large Reynolds number, the resulting coefficient is typically between $C \simeq 0.02$ and 0.03 , independent of Δ. This agrees with the classical result by Lilly (1967) which relates C to the universal holmogorov constant c_{A} according to

$$
\begin{equation*}
C=\left(\frac{2}{3 C_{k}}\right)^{3 / 2} \pi^{-2} \simeq 0.027 . \text { for } c_{k}=1.6 \tag{3}
\end{equation*}
$$

This result is obtained from balancing the rate of SGS dissipation with the total dissipation, and evaluating moments of the rescived strain-rate tensor by requiring the resolved portion of the flow to display an inertial-range Kolmogorov spectrum. When the filter-scale is within the inertial range, this argument indeed yields a Δ-independent result.

While the above analysis is useful as a guide, it is not generally applicable to LES of complex flows, where the filter (grid) scale Δ may not fall inside a pure inertial range. For instance, in certain parts of the domain. Δ may approach the flow's integral scale, or the flow may be undergoing rapid distortions so that the inertial range is perturbed. In other regions of the flow. the grid scale may approach the riscous scale. In such situations, the coefficient may dependent on Δ. and the assumption $C(\Delta)=C(a \Delta)$ used in the dynamic morlel is not strictly applicable.

The objective of this study is to examine the dynamic model when the cocffcient depends on scale. A convenient application in which to examine this issue
numerically is forced isotropic turbulence, when $\Delta \rightarrow \eta$, where η is the Kolnoggorov scale. We will study coefficient scale dependence using filtered DNS data (a priorz test) and perform LES at varying viscosity, so that Δ / η, or the mesh-Reynolds number (McMillan \& Ferziger. 1979), defined as $\operatorname{Re}_{\perp}=\Delta^{2}|S| / \nu$, decreases towards $R_{\epsilon_{1}} \simeq 1$.

First. a review of the expected behavior of $C(\Delta \rightarrow \eta)$ is given in \$2. In §3. we analyze highly-resolved DNS data at moderate Reynolds number and compare the real Smagorinsky coefficient to that obtained from the dynamic model under the assumption that $C(\Delta)=C(a \Delta)$. The effect of varying α is also examined. In section §4, we report on several attempts to generalize the dynamic model to explicitly take into account the scale-dependence of the coefficient. Conclusions are outlined in $\$ 5$.

2. Smagorinsky coefincient in the viscous range

Before considering the dynamic Smagorinsky model, it is useful to establish the expected behavior of the Smagorinsky cocfficient as the grid-scale approaches the viscous range. The analysis is based on a generalization of the argument by Lilly (1967) and was recently carried out by Voke (1996) who expressed the results in terms of the mesh-Reynolds number $R e_{\Delta}$. We shall also need results in terms of Δ / η. so the analysis is briefly repeated below. Examination of the equation for resolved linetic energy in isotropic, statistically steady, and forced (force f_{1}) turbulence yields

$$
\begin{equation*}
\left\langle f_{i} i_{i}\right\rangle=-\left\langle\tau_{i j} \bar{S}_{i j}\right\rangle+2 \nu\left\langle\bar{S}_{i j}^{2}\right\rangle \tag{4}
\end{equation*}
$$

where () denotes a volume average. The last term above is viscons dissipation of resolved motion, which was neglected in the traditional Lilly (1967) analysis as $\Delta \gg \eta$. Using the fact that in steady turbulence the injection rate (f, \bar{u}_{i}) equals the overall rate of dissipation ϵ, replacing the Smagorinsky model with a possibly scale-dependent coefficient $C(\Delta)$. and using the approximation $\left.\left.\left.\langle | \bar{S}\right|^{3}\right\rangle\left.\simeq\langle | S\right|^{2}\right\rangle^{\frac{2}{2}}$. one obtains

$$
\begin{equation*}
\epsilon=C(\Delta) 2^{3 / 2} \Delta^{2}\left\langle\bar{S}_{i j}^{2}\right\rangle^{3 / 2}+2 \nu\left\langle\bar{S}_{i j}^{2}\right\rangle \tag{5}
\end{equation*}
$$

The moment $\left\langle\bar{S}_{a j}^{2}\right\rangle \equiv\left\langle\bar{S}_{1}, \bar{S}_{1}\right\rangle$ can be evaluated from the energy spectrum of the resolved field, which is assumed here to follow the Pao spectrum up to a sharp cutoff wavenumber $k_{د}=\pi / \Delta$. The Pao spectrum, given by

$$
E(k)=c_{k} \epsilon^{2 / 3} k^{-5 / 3} \exp \left(-\frac{3}{2} c_{k} k^{-4 / 3}\right)
$$

is one of the cases considered by Voke (1996), and we use it here berause resulting expressions are simple. Solving for C, one obtains

$$
\begin{equation*}
C(\Delta / \eta)=\epsilon^{-\frac{3}{2}\left(n f(\pi \eta / \Delta)^{x / 9}\right.}\left(\frac{\eta}{\Delta}\right)^{2}\left(1-\epsilon^{-\frac{3}{2} \operatorname{cn}(\pi \eta / \Delta)^{1 / 3}}\right)^{-3 / 2} \tag{6}
\end{equation*}
$$

Figerat :. (a) Smagorinsky coefficient as calculated from the dissipation balance using the Pao spectrum (Eq. 6). (b) Same result but expressed in terms of mesh Reynolds number (solid line), obtained by solving Ey. 7 . (see also Voke (1996), who expresses the same result in terms of the ratio of eddy to molecular viscosity). The dotted line is a convenient ft , namely $C_{\mathrm{ft}}\left(\operatorname{Re}_{\mathrm{A}}\right)=0.02 \mathrm{i} \times 10^{-3.23 \mathrm{Re}_{\mathrm{s}}^{-92}}$.

The predicted variation in C is shown in Fig. la (for $c_{k}=1.6$). As expected. the above estimate shows a rapid decrease in C as the grid-scale approaches the Kolmogorov scale.
For future reference. it is also useful to express the coefficient in terms of the mesh-Reynolds number $R_{c_{\Delta}}=\Delta^{2}|\bar{S}| / \nu$ which (as opposised to Δ / η) is a variable that can be computed locally in LES. Lising $\eta=\left(\nu^{3} / \epsilon\right)^{1 / 4}$ and replacing ϵ with the
r.h.s. of Eq. 5. one obtains

$$
\begin{equation*}
C\left(\operatorname{Rc}_{\Delta}\right)=\frac{\sinh ^{-\frac{3}{2}} \gamma}{2^{\frac{2}{2}} \operatorname{Re}_{\Delta}^{\frac{3}{2}} \sqrt{C\left(R e_{د}\right)+\operatorname{Re}_{\Delta}^{-1}}} \epsilon^{-\gamma / 2} \tag{7}
\end{equation*}
$$

where

$$
\gamma=\frac{3}{4} c_{h^{-\frac{4}{3}}} R e_{\Delta}^{-1}\left(C\left(R t_{\Delta}\right)+R \epsilon_{\Delta}^{-1}\right)^{-\frac{1}{3}}
$$

In deriving this result it has been assumed that $\left.\langle | S\rangle \simeq\langle | \bar{S}|^{2}\right\rangle^{\frac{1}{2}}$. Solving for C ($\left.R_{t}\right)$ numerically ($c_{k}=1.6$) one obtains the curve shown in Fig. It. This curve is not too different from the empirically obtained result of McMillan \& Fersiger (1979).

While the precise nature of these curves depends strongly on the assunced Pao spectrum. which is not entirely realistic, the general trend is quite robust: The coefficient begins to drop from the asymptotic value starting from scales significantly greater than the Kolmogorov scale. Evidently, at the transition betwren inertial and viscous range, the assumption that C does not depend on scale is not accurate.

3. A priori tests

The aim of this section is to evaluate Smagorinsky coefficients computed with the dynamic model operating on filtered DNS data of forced isotropic turbulence. The dynamic coefficient is then compared with the 'real' coefficient obtained by requiring that the model dissipate the correct amount of energy. Velocity fields at microscale Reynolds number $R_{\lambda}=85$ were generated with the pseudo-spectral code of Rogallo (1981) on a 256^{3} mesh. This data base has a very well-resolved dissipation range and was used previously by Lund and Rogers (1994) in their study of the topology of dissipative motions. This feature is important for the present study since we are interested in the behavior near the holmogoro: scale. The naximum wavenumber scaled in Kolmogorov units is $k_{\text {mar }} \eta=3$, which corresponds to a mesh spacing of $\Delta_{m}=3 / \pi \eta \simeq 1 \eta$.

From the DNS, we evaluate the coefficient from the large-scale portion of the spectrum using the dynamic model (Eq. 1), assuming that $C(\Delta)=C(a \Delta)$. The analysis is repeated at various filtering scales Δ (cutoff wavenumbers π / Δ) and sereral values of a. For comparison, the coefficient can be obtained from the condition that the model dissipates the proper amount of energ:

$$
\begin{equation*}
C(\Delta)=-\frac{\left\langle\tau_{i j} \dot{S}_{i j}\right\rangle}{\Delta^{2} 2^{3 / 2}\left\langle\left(\bar{S}_{i j}^{2}\right)^{\frac{1}{2}}\right\rangle} . \tag{8}
\end{equation*}
$$

Results are shown in Fig. 2. As can be seen, the 'real' coefficient is near $C \simeq$ $0.02 \rightarrow 0.04$ when $\Delta>30 \eta$, i.e. for scales above the viscous range. At smaller Δ, the coefficient decreases rapidly; qualitatively in accord with the theretical predietion based on the Pao spectrum (Fig. 1a). We do not ascribe much significance to the discrepancies between Fig.la and 2 since we have verified that they are due to minor differences between the $P a o$ and the actual spectrum, and also due to

Figure 2. Coefficients obtained from a priori tests using well resolved DNS (256^{3} simulation at $R_{\lambda} \simeq 85$ and $k_{\text {mar }} \eta$) \simeq. . true rowficient' obtained from dissipation balance (Eq. 8). Other symbols: dynamic model coefficient (standard formulation) at various test-filters: $\mathrm{a}, a=2: \Delta . a=3: \circ, a=4$.

Figure 3. Same as Fig. 2. but plotted as function of $a \Delta / \eta$. The near collapse means that the dynamic model yields the coefficimt appropriate to the test-filter scale instead of the grid-scale.
residual unsteadiness in the simulations due to a limited sampling of velocity fields in time. At large scales a drop in coefficient can be seen, probably due to the effects of forcing.

The dynamic model prelictions yield a similar trend for the comfficient. only that
the scale range appears to be shifted. Since the dynamic model samples the scales at the test-filter level, it is reasonable to expect that the resulting coefficient is the one corresponding to the test-filter scale instead of that of the grid-scale. To verify this idea. in Fig. 3 we plot the results of the dynamic model as function of the respective test-filter scales instead of the grid-scale (except for the corfficient obtained from Eq. 8). The collapse is quite good, indeed verifying that in this case the dynamic model yields the coefficient corresponding to the test-filter scale.
S milar results were obtained when using the strain rate contraction (Germano) et al.. 1991) for the dynamic model (for which $\left.C=\left\langle L_{i j} \bar{S}_{i j}\right\rangle /\left\langle M_{i}, S_{i j}\right\rangle\right)$, or the least-square crror approach to determine the 'real' coefficient (for which
$C=-\left\{r_{1}| | \bar{S}_{\mid}\left|\bar{S}_{11}\right\rangle / 2 \Delta^{2}\left\langle\mid \bar{S}^{2} \bar{S}_{1,}^{2}\right\rangle\right)$. Therefore, the results are quite rohust with regard to how the coefficients are determined.

At this point we conclude that the dynamic model is capable of reproducing the important trend that the coefficient should decrease as the filter-jength approaches the Kolmogorov scale. Nevertheless, some discrepancy is observed betwien the 'real' and dynamic coefficient for scales at which the coefficient is strongly scaledependent. From a practical perspective, this discrepancy is quite benign in the current application, since the dominant mechanism of energy drain when the filter is near the Kolmogorov scale is the resolved viscous dissipation. Indeed. simulations with resolutions in the viscous range run with the dynamically obtained corfficient (which according to Fig. 2 may be too high) did not show any significant difference from one using a lower coefficient, essentially because the SGS dissipation is negligible in these cases.

In what follows. we examine several reformulations of the dynamic model that attempt io explicitly include the scale-dependence of the coefficient. Berause it affords relative case of implementation and interpretation, the analy is is still conducted within the context of the viscous range. even though the impact of using different values for the coefficients is rather small.

4. Alternative formulations

In this section. we consider several alternative formulations of the dynamic model. None of the options considered will be found to be completely satisfactory, but the observations made along the way provide useful insights into the workings of the dynamic model.

4.1 The limit $\alpha \rightarrow 1$

Since we have found that (for $a \geq 2$) the standard dynamic model yields the cocfficient $C(\alpha \Delta)$ instead of $C(\Delta)$, an obvious possible remedy would be to allow the test filter scale to approach the grid scale. This issue was briefly addressed theoretically by Gao \& O'Brien (1993), who noticed that while the resulting expressions would be indeterminate, the limit may be written in terms of higher-order gradients of the resolsed velocity, thus emphasizing the scales closest to the grid-scale. A possible disadvantage of this approach is that the scales closest to the cutoff are often strongly affected by numerical errors.

Figure 4. o, Coefficients obtained from the dynamic model at different testfiltering scales (from right to left, $a=4,3,2.5,2,1.5$ and 1.3). *, Coefficient value obtained from dissipation balance (Eq. 8) at the grid scale (a) Grid-scale is $\Delta=8 \eta$. (b) Grid-scale is $\Delta=12 \eta$.

Figine 5. Correlation coefficient between the model tensors $A_{1,}$ and $B_{1,}$ measured from filtered DNS as function of filter scale. The correlation coefficient is computed according to $\rho(A, B)=\left\langle A_{i j} B_{i j}\right\rangle / \sqrt{\left\langle A_{i j}^{2}\right\rangle\left\langle B_{i j}^{2}\right\rangle}$.

To see if the limit $a \rightarrow 1$ can be used to advantage in this case, we repeat the a priori test of the previous section and compute the dynamic model coefficient at the smaller filter-width ratios of $a=1.5$ and $a=1.3$. Figure 4a shows the results for a grid scale $\Delta=8 \eta$, and $4 b$ for $\Delta=12 \eta$. In both cases, it is apparent that for $a \geq 2$ there is a smooth trend of the dynamic coefficient tending towards the 'true" coefficient as obtained from the dissipation balance. However, for $\alpha<2$, there is a change in behavior and the coefficient increases again and does not tend towards the expected value as $a \rightarrow 1$. While such a result may be specific to present conditions of analysis, it suggests that as the width of the band between grid and test filter becomes small, the procedure can yield unphysical results. For this reason, we do not consider this approach further.

Before proceeding however, we notice from Fig. 4 that for $a>2$ the approach towards the 'true' coefficient appears to be exponential. This observation will be used in $\$ 4.3$.

4.2 Solving for two coefficients

Here we return to the case $a=2$. Instead of assuming that $C(\Delta)=C(2 \Delta)$. we investigate the proposal of Moin \& Jiménez, (1993) where the least-square-error approach is used to solve for the two coefficients. Upon solving the linear set of equations, one obtains (using, say. volume averaging)

$$
\begin{align*}
& C(\Delta)=\frac{\left\langle A_{i j} L_{i j}\right\rangle\left\langle B_{i j}^{2}\right\rangle-\left\langle B_{i j} L_{i j}\right\rangle\left\langle A_{i j} B_{i j}\right\rangle}{\left\langle A_{i j}^{2}\right\rangle\left\langle B_{i j}^{2}\right\rangle-\left\langle A_{i j} B_{i j}\right\rangle^{2}} \tag{9a}\\
& C(2 \Delta)=\frac{\left\langle A_{i j} L_{i j}\right\rangle\left\langle A_{i j} B_{i j}\right\rangle-\left\langle B_{i j} L_{i j}\right\rangle\left\langle A_{i j}^{2}\right\rangle}{\left\langle A_{i j}^{2}\right\rangle\left\langle B_{i j}^{2}\right\rangle-\left\langle A_{i j} B_{i j}\right\rangle^{2}} . \tag{9b}
\end{align*}
$$

The averages can be evaluated from the DNS (as in §3) at different scales, and the coefficients computed from the above expressions. However, the results appear to be unphysical: both $C(\Delta)$ and $C(2 \Delta)$ were found to be negative, with large scatter from one scale to another.

The cause for this problem can be traced to the fact that the two tensors A_{1}, and $B_{i j}$ (or $\alpha^{2}|\hat{\bar{S}}| \hat{\bar{S}}_{i j}$ and $\mid{\widehat{S} \mid \hat{S}_{i j}}$) are strongly correlated. The correlation coefficient between them is evaluated from the DNS and plotted in Fig. 5, for different scales. Due to the strong tensor-alignment, the system of equations is ill conditioned. It is interesting to point out that in the standard dynamic model, the coefficient is determined mainly by the fact that both tensors have significantly different magnitudes (due to the coefficient α^{2}). However, to use additional (directional) information from the Germano identity, at least in the context of the Smagorinsky model, appears not feasible.

4.3 The bi-dynamic model

This version of the dynamic model is motivated by our observation that the model provides the cofficient at the test-filter level $\alpha \Delta$. While this suggested taking the
limit $\alpha \rightarrow 1$, it was shown in $\$ 4.1$ that then the Germano identity relied on less and less modes between test and grid filter, modes that are often most affected by numerical errors. Another alternative formulation is to compute coefficients from two different test filters and use these to extrapolate to the grid scalc. Briefly, one assumes that the dynamic coefficient obtained by the traditional method (with $M_{i j}$ given by Eq. 2) is a smooth function of the test-to-grid filter ratio α. In fact, noting the exponential behavior in Figs. 4 for $\alpha>2$, it is more convenient to write that C is a smooth function of β, where $a \Delta=2^{3} \Delta$. The usual case $\alpha=2$ corresponds to $\beta=1$, while the limit $\alpha \rightarrow 1$ is obtained as $\beta \rightarrow 0$. Let us :herefore denote the coefficient obtained from the traditional method as $C(\beta)$. Next, we expand $C(\beta)$ in Taylor series around $3=1$,

$$
\begin{equation*}
C(\beta)=C(\beta=1)+\left.\frac{d C}{d \beta}\right|_{1}(\beta-1) \tag{10}
\end{equation*}
$$

To evaluate $d C / d 3$ we introduce a secondary test-filter at scale, say, $4 \Delta(\beta=2)$, evaluate the corresponding coefficient $C(\beta=2)$, and compute the coefficient derivative using one-sided finite-difference, $\left.(d C / d \beta)\right|_{1} \simeq C(2)-C(1)$. The information employed has been obtained at and above scale 2Δ. where according to the results of $\S 4.1$ robust results can be expected. Since we are interested in the linit $\dot{j} \rightarrow 0$, we now propose to simply evaluate Eq. 10 at $\beta=0$. The resulting coefficient can be written as follows:

$$
\begin{equation*}
C=2 \frac{\left\langle M_{i j} L_{i j}\right\rangle}{\left\langle M_{i}, M_{i j}\right\rangle}-\frac{\left\langle N_{i j} F_{i j}\right\rangle}{\left\langle N_{i}, N_{i j}\right\rangle} \tag{11}
\end{equation*}
$$

where the tensors $F_{i j}$ and $N_{i j}$ are defined exactly as the tensors $L_{i j}$ and $M_{i j}$ respectively, only using a test-filter scale equal to 4Δ instead of 2Δ.

This basic formulation is first tested a priori: The DNS data is filtered at an additional test-filter scale to compute $F_{i j}$ and $N_{i j}$. The ccefficient C is evaluated according to Eq. 11 using volume averaging, and the analysis is repeated e.t several grid-scales Δ. Figure 6 shows the results. As can be seen. the 'bi-dynamic' model is very noisy since it is based on extrapolation. Nevertheless, the procedure does improve the prediction of the standard dynamic model. Importantly, this approach preserves the basic foundation of the dynamic model which only uses information from the resolved scales, instead of relying on equilibrium arguments to calibrate the coefficient and its dependence sn scale.

The approach is implemented in LES of forced isotropic turbulence on 32^{3} modes. The code and methodology is the same as that described in Meneveau et al. (1996), but using volume averaging. The primary and sccondary test-filtering are performed using cutoff filters at scales 2Δ and 4Δ, and 14 simulations are run with various viscosities to vary the mean mesh Reynolds number. The results are shown in Fig. 7. where the volume averaged terms $C(1)=\langle L M\rangle /\langle M M\rangle, C(2)=\langle F N\rangle /\langle N N\rangle$ and the extrapolated result $C(0)=2(L M\rangle /(M M)-\langle F N\rangle /\langle N N\rangle$ are shown. The latter coefficient is used in the subgrid model. As can be seen, the results appear to display the correct trend, although some features are noteworthy: At

Figune 6. A priori test of extrapolation procedure. based on DNS results de. scribed in Fig. 2. - . 'Real coefficients from dissipation balance: \circ and 0 . Dynamic coefficients at $a=4$ and $a=2 ; *$, extrapolated values according t. Eq. 11.

Figitr: 7. Coefficients obtained in LES of forced isotropic turbulence at various Reynolds numbers, using the bi-dynamic model with volume averaging. - - . Value at scale $4 \Delta,\langle F N\rangle /\langle N N\rangle ; \cdots$, Value at scale $2 \Delta,(L M) /(M M)$: 0 . -Bi-dynamic' coefficient obtained by extrapolation to scale $\Delta, 2\langle L M\rangle /(M M\rangle-$ $\langle F N\rangle /\langle N V\rangle$. This corfficient is used in the LES. As reference, the Taylor-microscale Reynolds number $R_{\lambda}=\sqrt{15 n^{\prime 4} /(\nu \epsilon)}$ (where ϵ is the total dissipation) ranges from $R_{\lambda}=17$ to $R_{\lambda}=2.300$.
large Reynolds numbers. the coefficient value asymptotes to a slightly smalier value than the standard dynamic model. No simple explamation for this trend has been fround.
Qualitatively, one experts the model to be quite stable hecause if, say. $C(3=1)$ falls below its appropriate value while $C(B=2)$ remains fixed, the extrapolated cocfficient will drop signifrantly. This will cause more 'pile-up' of energy near the grid-scale. raising the value of $C(1)$ and raising ithe extrapolated coefficient. This in turn damps the smallest scales. The opposite ocrurs if $C(1)$ is initially increased. with excessive damping causing $C(1)$ to diminish. However, the cquilibrium point of this version of the model appears to establish itself at a slightly smaller value than thit of the traditional approach. even at very large Reynolds numbers where viscosity does mot affert the results. Another observation is that at very small Rf, , the extrapolation process yielded negative coefficients. This is essentially an extrapolation - reor. In this application, this error had no impact on the simulation due to the smaituess of the SGS term at such low mesh Reynolds numbers.

Finally. an attempt was made to replace the volume averaging with Lagrangia.t averaging (Menevean et al., 1996). The motivation is to enable applications of the dynamic model to LES of complex-geonetry flows. where no dirertions of statistical homogencity exist. but where some averaging must still be performed. In the 'Lagrangian bi-dynamic model', one wonld compute four variables $I_{\text {LSM }}$. $I_{\text {M.N. }}$. $I_{F} \ldots$ and $I_{N} \ldots$. which correspond to the pathline averages of the semare terins $L_{1}, M_{i}, M_{i j}^{2}, F_{i}, V_{i,}$ and $N_{1,}^{2}$, respectively. They are obtained by intes: \cdot ine relaxation transport equations with a prescribed relaration tinie-scale (Menereau et al. 1096). To In_{c} consintent with this refereace. we mast choose (wo relaxation :ime scales. $T_{1}=1.5 \Delta\left(I_{L, M} I_{M, M}\right)^{-1 / 8}$ and $T_{2}=1.5 \Delta\left(I_{F, N} I_{N, ~}\right)^{-1 / 8} . T_{1}$ is used in the equations for $I_{t, M}$ and $I_{M}, 1$. while T_{2} is used for $I_{F}, ~$ and $I_{n} N$. With these time-scales it is assured that the numerators $I_{L, M}$ and $I_{F, X}$ never become negative. Then the coefficient at the grid-scale is comprted by extrapolation at every point acrording to $C(0)=2 I_{L M} / I_{M M}-I_{F N} / I_{N N}$.

Overall. this approach resulted in several difficulies due to the spatial variability of the local corfficient conpled with the extrapolation procedure. Even though the methot guaratien the individual coefficients at dhe two test-filter levels to be positive. there were many instances in which $I_{F} / I_{N} \gg 2 I_{L} / \tilde{I}_{M M}$ and therefore the extrapolated coefficient was uegative cansing instability or unphysical results.

To stabilize the simulation it was necessary to perform an additional pathline averaging of the coceficient $\bar{C}(0)$ itself, with an appropriately selected relaxation time-scale so that it would not become negative. Denoting the Lagrangian average of the coefficient by $I_{C} \cdot$, the time-scale chosen was $T_{3}=1.5 \Delta\left[\left(I_{C} I_{M M}\right) I_{M M}\right]^{-1 / k}$. On average, this time-scale is of the same order as T_{1} and T_{2}. Results are shown in Fig. 8 . The average of the coefficient shows the appropriate trend. although the extrapolated ocoefficient is not much smaller than the ralue at seale 2Δ, and at low R_{f} is considerably higher than the expected values (compare with Fig. 5). Given the extra expense (carrying five relaxation tra.sport equations instead of two) and

Figune 8. Coefficients obtained during LES of forced isotropic turbulence at various Reynoids numbers, using the bi-dyamic moded with Lagrangian averaging of numerators and deciominators, and additional averaging of extrapolated coeficient. Shown is the volume average of the coefifient (which varies locally). 0 . Value at scale 4 $\Delta .\left(I_{F N} / I_{\mathrm{NA}}\right) ; \Delta$, Value at scale $2 \Delta,\left(I_{L M} / I_{M M}\right\rangle$. 0 , Mean bi-dynamic coefficient' obtained by extrapolation to scale Δ.
the small improrement, this approach does not seem to constitute a method of choice.

4.4 Using mon-dymamic estimates for scale-dependency

A more robust method is to explicitly build scale-dependence into the dynamic model. This is accomplished by rewriting Eq. 1 (for $a=2$) as follows

$$
\begin{equation*}
L_{i j}=C(\Delta)\left(\frac{C(2 \Delta)}{C(\Delta)} A_{i j}-\hat{B}_{i j}\right) \tag{12}
\end{equation*}
$$

and solve for $C\left(\Delta j\right.$ as in Eq. 2, but with $M_{i j}$ given by

$$
\begin{equation*}
M_{i j}=f(\Delta) A_{i j}-B_{i j} \tag{13}
\end{equation*}
$$

where

$$
f(\Delta)=\frac{C(2 \Delta)}{C(\Delta)}
$$

The idea is to solve for the coefficient $C(\Delta)$ but to use prior knowledge abont the possible scale dependence to evaluate the function $f(\Delta)$. In the present case of approaching the viscous range, this function depends on the dimensionless parameters Δ / η or $R_{\text {a }}$. As mentioned previously, the latter case is more convenient diring LES since it is based on the strain-rate magnitude. which may be evaluated locally.

Figtre 9. Coefficients obtained in LES of forced isotropic turbulence, using the Lagrargian fynamic model in which scale deprndence is incurporated nondynamically. Shown are the mean values of the coeficients. A verage mesh Reynolds number is varied systematically by changing ν. Δ. mean crefficient using standard formulation. Eq. 2 and 2a: o . modified dynamic model. in which M_{1} is given by Eq. 11:--- . prodiction baserd on Pao :ipectrum (Eq. 7).

Using Eq. $\overline{3}$. we evaluate the ratio $C(2 \Delta) / C(د)$. which can be fitted quite well by the following exprossion:

$$
\begin{equation*}
f\left(R_{\mathrm{e}}\right)=10^{\left.-3.23 \mathrm{Re}_{2}^{-3}{ }_{2}^{32}-R_{e_{2}}^{-32}\right]} \tag{14}
\end{equation*}
$$

where $R \epsilon_{2 د}=4 د^{2}|\dot{\bar{S}}| / 2$. When the mesh Reynolds number is evaluateci baved on the local strait-rate magnitude, it may locally approach zero. Then Eq. 14 diverges. which can cause numerical difficulties. Thus. the expression is clipped at $f\left(R_{c_{3}}\right)=\max \left[f: R_{1} ; 1,100\right]$. This approach was tested a priori and gave good results in the sense that the coefficient obtained by this modified method is indeed smaller than the value that would have been obtained by assuming $C(\Delta)=C(2 \Delta)$.

The approach was then implemented in LES of fored isotropir turbulence on 32^{3} modes using the Lagrangian method of averaging (Menevenu et al., 1996). accumulating two variables $I_{L M}$ and $I_{M M}$ instead of five as in $\$ 4.3$. The code and methudology was the same as that described in the above reference, except for the definition of M_{1}. The local values of M_{1}, were computed fronn Eq. 13. and the local mesti Revnolds number Rea was based on the local strain-rate magnitude. In order to span a significant ange of Rca. 14 simulations with different values of v were carried ont. For comparison, simulations were alsodone with the standard definition of V_{1}. ie. assuming that $C(\Delta)=C(2 \Delta)$. Results are shown in Fig 9 as function of the average value of the cell Reyolds number. Each symbol represents the result of a simulation that was run to a statistically stationary state. For comparison, the
dotted line shows the theoretical prediction of Eq. 7. As can be seen, the apprcach provides improved prediction of the coefficient compared to the standard dynamic model. As stated before, the difference in coefficient had no appreciable effect on the resolved scales or their energy syectrum.
This approach provides robust predictions of the coeficient for this case (in the viscous range), and is very easy to implement. However, it requires input based on theoretical argumeuts. It can thus only be applied to cases in which one knows a priori the dependence of the ratio of coefficient on scale. Therefore, this approach is not entirely dynanic, in the sense that important information about model coefficients must be specified and is not determined during the simulation.

5. Conclusions

The dynamic Sunagorinsky model has been examined in a case where it is known a priori that the coefficient depends on scale, namely in the viscous range. Theoretical arguments were reviewed giving the coefficient's expected dependence on scale or on mesh Reynolds number. A priori tests using well-resolved DNS data re-ealed an important property of the standard dynamic model as applied to such a case: The method gives the coefficient corresponding to the test-filter scale instead of the grid-scale.
Several possible reformulations of the dynamic model were examined andjor tested in iES of isotropic turbuleace. In the first, the limit a $\rightarrow 1$ was considered. Cising a priori tests at test-filter scales near the grid scale ($\alpha=1.5$ and 1.3). it was shown that unphysical behavior can result. This limit is also expected io be susceptible to numerical errors. Another proposal was studied in which the Grimano identity is used to solve for two unknown coefficients $C(\Delta)$ and $C(\underline{I})$ in the least-scuare-error sense. For implementations with the Smagorinsky model. this procedure was shown to be ill-conditioned essentially because the eigenvectors of the two basis tensors $|\overline{\hat{S}}| \hat{\bar{S}}_{i}$, and $\mid{\widehat{\mathcal{S}} \mid \bar{S}_{i j}}$ are almost 'co-linear' (their correlation coefficient is about $\rho \simeq 0.96$).
A new procedure, the bi-dynamic model, was proposed and tested. It is based on extrapolating coefficients obtained at two test-filters. When implemented with volume averaging, the method gave fair results. Some complications arose when the method was coupled with Lagrangian averaging. We conclude that while the idea of using more than one test-filter scale in sample the resolved field in more detai! appears to be promising in principle, in the present application the added complications outwigh the benefits. Finally, we tested a modified formulation in which oue solves for a single conficient at the grid-scale but must prescribe the ratio of coefficieuts at test and grid scales non-dyramically. This method proved quite practical. and it gave good results. Horverer, it is not completely jynamir since prior theoretiral information about scak- dependence must be esaployed (a similar approach was employed to account for grid anisotropy in Srotti et al in this volume).

Acknowiedsumemats

This mork profited from fruitful discussions with Prof. P. Moin. The financial support of CTR and ONR (NOOO14-92-J-1109, monitored by Dr. P. Purtell) is gratefully acknowiedged.

REFERENCES

Bardika, J., Flemzer. J. H., \& Reymolds, W. C. 1900 haproved subgrid scale models for large eddy simulation. AIAA-80-1357.
LiLly. D. K. 1967 The representation of small-scak turbolemce in numerical simulation experiments. In Proc. IDM Scientific Computing Sympesiem on Enwronmentel Scisaces.
Lid, S.. Meneveat, C., © Katz, J. 1994 On the properties of similarity subgridscale nodels as deduced from memserements in a turbulent jet. J. Fluid Moch. 275, 83-119.
Liu. S., Meneveau. C., \& Katz, J. 1995 Experimental study of similarity subgrid-scale models of turbulence in the far-field of a jet. Aphl. Sci. Res. S4, 177.

Lund. T. S. \& Rogens, M. M. 1994 An improved measure of strain state probability in turbulent fiomes. Plys. Fluils. 6, 1838-1847.
McMillan, O. J. \& Ferzigen, J. 1979 Direct testing of subgrid-scale models. AlAA-79-0072.
Meneveau, C., Lund, T. S., \& Cabot. W. H. 1996 A Lagramgian dymamic subgrid-scale model of turbulence. J. Flaid Mech. 310, 353.
Moin, P. \& Jiménez, J. 1993 Large Eddy Simulation of Complex Turbulent Flows. AIAA-93-5099.
Voke, P. R. 1996 Subgrid-scale modeling at low mesh Reynolds number. Theor. Comp. Fluil Dym. 8, 131-143.
Rogallo. R. S. 1981 Numerical experiments in honogencous turbulence. NASA Tech. Memo. 81315, NASA Ames Research Center.
Zang, Y., Street, R. L., \& Koseff, J. 1993 A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fleids A. 5, 3186-3196.

NEXT DOCUMENT

The incremental unknowns-a multilever scheme for the simulation of turbulent channel flows

By M. Chen ${ }^{1}$, H. Choi ${ }^{2}$, T. Dubois ${ }^{\mathbf{3}}$, J. Shen ${ }^{\mathbf{1}}$ and R. Temam ${ }^{\mathbf{4}}$

In numerical simulation of complex flows, it is important to identify different length scales of the flow and treat them differently. In this report, we introduce a new multilevel scheme for simulating turbulent channel flows. Two different versions of the scheme. uamely the spectral and finite difference versions, are preserted. The spectral version of the scheme is based on a spectral-Galerkin fermulation which provides a natural decomposition of the flow into small and large wavelength parts, and which leads to linear systems that can be solved with quasi-optimal computational complexity. In the finite difference version, the "Incremental Unknown" (IU) is used to separate the length scales. Preliminary numerical results indicate that the scheme is well suited for turbulence computations and provides results which are comparable to that by Direct Numerical Simulation (DNS) but with significantly less CPU time.

1. Motivation

The numerical simulation of turbulent flows is an extremely challenging task for both the numerical analvsts and computational fluid dynamicists. The computing power required to resolv- the enormous number of degrees of freedom and their nonlinear interactions involved in a turbulent flow is often near or beyond reach of the current computer capacity so that conventional numerical schemes are often impractical for turbulence simulations.

The aim of this paper is to introduce a new multilevel scheme which is based on a differentiated treatment for small and large wavelength parts. It is well known in turbulence theory that the large number of small wavelengths only carry a small part of the total kinetic energy of the flow, however, the effect of their nonlinear interactions with large wavelengths over a long term integration can not be neglected and must be adequately resolved. Nevertheless, the small wavelength part. especially their nonlinear interactions, do not need to be represented in the same accuracy as the large wavelength part. Our multilevel scheme is specially designed such that it would produce results comparable to that by DNS but at significantly less cost so that one can simulate more complicated flows with limited capability of

[^9]the computer. The method can be applied to a class of dissipative equations and can be combined with a large number of existing numerical metnods.

The method starts with separating the leagth scales of the solution u as

$$
u=f+g+r
$$

where f is the large length scale, g is the intermediate length scale, and r is the small scale. Then the different scales of the solution are treated differently, which could involve (a) neglecting some higher-order terms involving the small scales, (b) updating small scales with lager time interval. The effect of these further approximations would, if done correctly, reduce the CPU time for each time step, improve the stability (the CFL condition will be only related to the large wavelengths), and allow larger time steps.

There are two ways to look at this method. One is that we neglect some effect of the small scale terms. Another way is we think that large scale approximation is not enough. so we take into account the effect of small scale terms in an etricient way instead of 'moly adding more mesh points.
This method* een applied to the simulation of 2D and 3D forced homogeneous turbulence (see s. Jauberteau \&. Temam 1995a, 1995b, 1996 and the references therein). In the 3D case, it has been shown that the main statistical properties of homogeneous turbulence is well predicted with multilevel schemes. Indeed, while a saving in CPU time of $50-75 \%$ versus a classical Galerkin method is obtained, the energy and enstrophy spectra as well as the high-order moments of the velocity and its derivatives are accurately computed. The comparison of these results has been done with the results of direct simulations.

In the case of homogeneous turbulence, when Fourier expansion of the velocity is used, the separation of the flow into large and small scales is trivial. However, this is not obvious for the channel flow problem because of the no-slip boundary conditions at the walls. In particular, the popular spectral-tau (Gottlieb \& Orszag 1977) method is not suitable for this purpose. We shall ust the spectral-Galerkin method developed by Shen (1994, 1995) for the non-homogeneous direction. This spectral-Galerkin formulation not only provides a natural decomposition of the flow into small and large wavelength parts, but also leads to linear systems that can be solved with quasi-optimal computational complexity.
In the finite difference case, we will use the IU's developed by Chen $\&$ Teman (1991). The IU method has been used for steady equations, and the result is similar to preconditioning the associated matrix. The scheme was shown theoretically convergent and has an improved efficiency (Chen \&: Temarn 1993). Here for the first time, the IU method is applied to unsteady problems.
This report is an interim report: more detailed results using the new scheme for the turbulent channel flows will be reported later.

2. Incrememtal unknowns in the spectral case

2.1 Formulation of the equetions

We consider the Navier-Stokes equations

$$
\begin{gather*}
\frac{\partial u}{\partial t}-\nu \Delta x+(\varepsilon \cdot \nabla) u+\frac{1}{\rho} \nabla P=0 \tag{2.1}\\
\operatorname{div} x=0 \tag{2.2}
\end{gather*}
$$

in a channel $\Omega=\left(0, L_{x}\right) \times(-1,1) \times\left(0, L_{z}\right)$ with the boundary conditions: $=$ (u, v, u) is periodic in x and z, and no slip on the walls. For this channel flow, we assume that the pressure P takes the form $\boldsymbol{P}=\hat{P}+\boldsymbol{K}_{\boldsymbol{P}} \boldsymbol{x}$, where \dot{P} is periodic in directions x and z and K_{P} is a given constant.

Following Kim, Moin \& Moser (1987), we set

$$
\begin{align*}
\Lambda & =(u \cdot \nabla) u=\left(\Lambda_{x}, \Lambda_{y}, \Lambda_{z}\right), \\
f & =\frac{\partial u}{\partial x}+\frac{\partial w}{\partial z}, \\
g & =\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}, \tag{2.3}\\
h_{v}(\varkappa, u) & =\frac{\partial}{\partial x}\left(\frac{\partial \Lambda_{x}}{\partial y}-\frac{\partial \Lambda_{y}}{\partial x}\right)-\frac{\partial}{\partial z}\left(\frac{\partial \Lambda_{y}}{\partial z}-\frac{\partial \Lambda_{z}}{\partial y}\right), \\
h_{g}(u, u) & =-\left(\frac{\partial \Lambda_{x}}{\partial z}-\frac{\partial \Lambda_{z}}{\partial x}\right)=-(u \cdot \nabla) g+g \frac{\partial v}{\partial y}+\frac{\partial v}{\partial x} \frac{\partial w}{\partial y}-\frac{\partial v}{\partial z} \frac{\partial u}{\partial y}
\end{align*}
$$

then, (2.1)-(2.2) are equivalent to the following equations (cf. Kim et el. 1987):

$$
\begin{align*}
& \frac{\partial}{\partial t} \Delta v-v \Delta^{2} v=h_{v}(u, w) \\
& \frac{\partial g}{\partial t}-\nu \Delta g=h_{g}(u, w) \tag{2.4}\\
& f+\frac{\partial v}{\partial y}=0
\end{align*}
$$

From the boundary conditions of t and the continuity equation (2.2), we deduce boundary conditions for v and g :

$$
\begin{gathered}
v(x, \pm 1, z, t)=\frac{\partial}{\partial y} v(x, \pm 1, z, t)=0 \\
g(x, \pm 1, z, t)=0
\end{gathered}
$$

We emphasize that $h_{v}(\cdot, \cdot)$ and $h_{g}(\cdot, \cdot)$ are indeed bilinear forms since they are derived from the original bilinear form by linear differential operations.

Writing the Fourier expansion in directions x and z for v

$$
u(x, t)=\sum_{k \in Z^{2}} \dot{\mathbf{w}}_{k}(y, t) e^{e}\left(k_{-} \dot{Z}_{z}^{x} x+k_{k} \dot{Z}_{z}^{z}\right), k=\left(k_{x}, k_{z}\right)
$$

where $\hat{\mathbf{z}}_{k}=\left(\hat{u}_{k}, \hat{u}_{k}, \hat{u}_{k}\right)$, and similarly for f, g and h_{v}, h_{g}, we derive from (2.4) that

$$
\begin{align*}
& \frac{\partial}{\partial t}\left(k^{2}-\frac{\partial^{2}}{\partial y^{2}}\right) \hat{v}_{k}+\nu\left(k^{4}-2 k^{2} \frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{4}}{\partial y^{4}}\right) \hat{v}_{k}=\hat{h}_{v, k}(w, w), \\
& \hat{v}_{k}(\pm 1)=\frac{\partial \hat{i}_{k}}{\partial y}(\pm 1)=0, \tag{2.5}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{\partial \hat{g}_{k}}{\partial t}+\nu\left(k^{2}-\frac{\partial^{2}}{\partial y^{2}}\right) \hat{g}_{k}=\hat{h}_{g . k}(\varkappa, w), \tag{2.6}\\
& \dot{g}_{k}(\pm 1)=0,
\end{align*}
$$

where $k^{2}=\left(\frac{2 \pi}{L_{z}}\right)^{2} k_{x}^{2}+\left(\frac{2 \pi}{L_{x}}\right)^{2} k_{z}^{2}$.
From the equations relating the velority components u and w to f and g in (2.3), we derive

$$
\begin{align*}
& i k_{x} \frac{2 \pi}{L_{x}} \hat{u}_{k}+i k_{:} \frac{2 \pi}{L_{z}} \hat{w}_{k}=\dot{f}_{k}, \\
& i k_{:} \frac{2 \pi}{L_{z}} \hat{u}_{k}-i k_{x} \frac{2 \pi}{\hat{L}_{x}}-\hat{u}_{k}=\hat{g}_{k} . \tag{2.7}
\end{align*}
$$

For $\left(k_{i}, k_{z}\right) \neq(0,0)$, the relations (2.7) can be used to determine $\hat{u}_{k}(y . t)$ and $\dot{u}_{k}(y, t)$ in terms of $\hat{f}_{k}(y, t)$ and $\dot{g}_{k}(y, t)$. Hence, to complete the system, we still need additional relations for $\hat{u}_{0}(y, t)$ and $\hat{u}_{0}(y, t)$. To this end, we integrate the first and last components of the Navier-Stokes equations with respect to x and z to obtain

$$
\begin{array}{r}
\frac{\partial \hat{u}_{c}}{\partial t}-\nu \frac{\partial^{2} \hat{u}_{0}}{\partial y^{2}}+\frac{1}{L_{z} L_{z}} \int_{0}^{L_{z}} d x \int_{0}^{L_{z}} v(x) \frac{\partial u}{\partial y}(x) d z+K_{P}=0, \tag{2.8}\\
\frac{\partial \hat{u}_{0}}{\partial t}-\nu \frac{\partial^{2} \hat{w}_{0}}{\partial y^{2}}+\frac{1}{L_{z} L_{z}} \int_{0}^{L_{z}} d x \int_{0}^{\nu_{z}} v(x) \frac{\partial u}{\partial y}(x) d z=0 .
\end{array}
$$

The time discretization of (2.5), (2.6), and (2.8) is achieved by using a semi-implicit scheme with the second-order Crank-Nicolson for the linear terms and a third order explicit Runge-Kutta scheme for the nonlinear terms. Hence, we only have to solve a sequence of one-dimensional second-order equations for $\hat{g}_{\boldsymbol{k}}(y, t)$ and fourth-order equations for $\hat{v}_{k}(y, t)$.

Kim, Moin \&. Moser (1987) applied a Chebyshev-tau approximation to the y-direction. Since the direct application of tau method to fourth-order equations is unstable (Gottlieb \& Orszag, 1977), they proposed a time splitting scheme which consists of solving several successive second-order problems to enforce the boundary condirions on v by using a technique similar to the influence matrix method.
Based on a sequence of recent work by Shen (1994, 1995, 1996), we present below a spectral-Galerkin scheme for these second-order and fourth-order equations. Using this method, the system (2.5)-(2.6) can be directly solved.

2.2 A spectral-Galerkin approzimation of the Kim-Moin-Moser formulation

A Fourier-Galerkin approximation in the x and z directions is first applied to the problems (2.5) and (2.6), i.e. we look for

$$
\begin{equation*}
u_{N}(x, t)=\sum_{k \in S_{N}} \hat{u}_{k}(y, t) e^{\left.e^{\left(k_{s}\right.} f_{z}^{-} x+k_{;} ; z_{z}^{x} z\right)}, \tag{2.9}
\end{equation*}
$$

(where $N=\left(N_{s}, N_{z}\right)$ and $\left.S_{N}=\left\{k \in \mathcal{Z}^{2} /\left(k_{x}, N_{z}\right) \in\left[1-\frac{N_{x}}{2}, \frac{N_{x}}{2}\right] \times\left[1-\frac{N_{z}}{2}, \frac{N_{s}}{2}\right]\right\}\right)$ as a solution of the system of

$$
\begin{align*}
& \frac{\partial}{\partial t}\left(k^{2}-\frac{\partial^{2}}{\partial u^{2}}\right)_{k}+\nu\left(k^{4}-2 k^{2} \frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{4}}{\partial y^{4}}\right) \hat{v}_{k}=\hat{h}_{v \cdot k^{\prime}}\left(u_{N}, u_{N}\right) \tag{2.10}\\
& \hat{v}_{k}(\pm 1)=\frac{\partial i_{k}}{\partial y}(\pm 1)=0
\end{align*}
$$

and

$$
\begin{align*}
& \frac{\partial \hat{g}_{k}}{\partial t}+\nu\left(k^{2}-\frac{\partial^{2}}{\partial y^{2}}\right) \hat{g}_{k}=\hat{h}_{g, k}\left(u_{N}, u_{N}\right), \tag{2.11}\\
& \hat{g}_{k}(\pm 1)=0
\end{align*}
$$

for all $k \in S, x$.
We now describe Galerkin approximations of (2.10) and (2.11) in the y-direction. Let us denote

- P_{M} : the space of polynomials of degree less than or equal to M,
- $V_{M}=\operatorname{span}\left\{\varphi(y) \in P_{M}: \vartheta(\pm 1)=0\right\}$,
- $W_{M}=\operatorname{span}\left\{\vec{r}(y) \in P_{M}: \varphi(\pm 1)=0, \frac{\partial_{y}}{\partial y}(\pm 1)=0\right\}$.

Let $p_{j}(y)$ be cither the Legendre or Chebyshev polynomial of degree j. then

$$
V_{M}=\operatorname{span}\left\{\phi_{0}, \phi_{1}, \ldots, \phi_{M-2}\right\}
$$

with $o_{j}(y)=p_{j}(y)-p_{j+2}(y)$. Moreover, following Shen (1996), we can determine $\left(a_{j}, b_{j}\right)$ such that

$$
\psi_{j}(y)=p_{j}(y)+a_{j} p_{j+2}(y)+b_{j} p_{j+4}(y)
$$

satisfies the boundary conditions $\psi_{j}(\pm 1)=\frac{\partial \psi_{2}}{\partial y}(\pm 1)=0$, i.e. $\psi_{j} \in W_{M}$. Therefore

$$
W_{l f}=\operatorname{span}\left\{\psi_{0}^{\prime}, \psi_{1}^{\prime}, \ldots, \psi_{M-4}\right\} .
$$

The spectral-Galerkin scheme in the y-direction for (2.10) and (2.11) is to find $r_{N, M}(x, t)$ such that $i_{k . M}(y, t) \in W_{M}$, and $u_{N, M}(x, t)$ (similarly for u and g) such that $\hat{u}_{k, M}(y . t) \in V_{M}$, for all $k \in S_{N}$, such that

$$
\begin{array}{r}
\frac{\partial}{\partial t}\left(\left(k^{2}-\frac{\partial^{2}}{\partial y^{2}}\right) \hat{v}_{k}, \psi^{\prime} j\right)_{\omega}+\nu\left(\left(k^{4}-2 k^{2} \frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{4}}{\partial y^{4}}\right) \hat{v}_{k}, \psi^{\prime} j\right)_{-} \\
=\left(\hat{h}_{v, k^{\prime}}\left(u_{, i, M}, u_{N, M}\right), u_{j}\right)^{\prime} \tag{2.12}
\end{array}
$$

for all $j=0 \ldots, M-4$,
and

$$
\begin{align*}
& \frac{\partial}{\partial t}\left(\hat{g}_{k}, \phi_{j}\right)_{\omega}+\cdots\left(\left(k^{2}-\frac{\partial^{2}}{\partial y^{2}}\right) \hat{g}_{k}, \phi_{j}\right)_{\omega}=\left(\hat{h}_{y, k}\left(u_{N, M,}, w_{N, M}\right), \phi_{j}\right)_{\omega}, \tag{2.13}\\
& \text { for all } j=0, \ldots, M-2,
\end{align*}
$$

where $(\varphi, \psi)_{\omega}=\int_{-1}^{1} \varphi(y) \psi(y) \omega d y$ with $\omega(y) \equiv 1$ in the Legendre case and $\omega(y)=$ $\left(1-y^{2}\right)^{-\frac{1}{2}}$ in the Chebyshev case.

It is easy to see that in (2.13) the mass matrix \mathcal{M} with entries $m_{j l}=\left(\phi_{t}, \phi_{j}\right)_{\omega}$ is a sparse symmetric matrix with three nonzero diagonals, and that the stiffness :natrix S with entries $s_{\jmath 1}=\left(\frac{\partial^{2}}{\partial y^{2}} \phi_{l}, \phi_{j}\right)_{w}$ is diagonal in the Legendre case, and is a special upper triangular matrix in the Chebyshev case such that the linear system $(a \mathcal{M}+\mathcal{S}) x=b$ associated with (2.13) can be solved in $O(M)$ operations (Shen 1995). Sin.larly, the linear systems in (2.12) can be solved in $O(M)$ operations, see Shen (1994, 1995). We emphasize that the above spectral-Galerkin scheme is superior, in both efficiency and accuracy. to the tau-method used in Kim, Moin \& Moser (1987), and is, is, particular, suita.: for multilevel decomposition.

The Legendre-Galerkin method has been , nplemented and tested. In this code, the piseudo-spectral computation of the nonlinear terms is done at the Chebyshev-Gauss-Lobatto points in the normal direction (see Shen 1996). A $128 \times 129 \times 128$ simulation at the Reynolds number of 180 has been conducted. The statistics have been compared to the one presented by Kim, Moin \& Moser (1987).

2. 9 A multilevel spectral-Galerkin scheme

We now describe a multilevel scheme for the time integration of (2.12) and (2.13). For the sake of simplicity, we will only present a scheme based on a first-order semiimplicit scheme for the time discretization. However, one can easily generalize it to higher-order semi-implicit scheme.
The basic idea of the multilevel scheme is to decompose the solution into several length scales and treat them differently in order to improve the efficiency and stability of the classical Galerkin approximation. The special basis functions $\left\{\phi_{j}, \psi_{j}\right\}$ - ovide a natural decomposition of small and large wavelengths for this purpose. . urthermore, the small and large wavelengths are quasi-orthogonal in the following sense:

$$
\begin{align*}
& \left(\phi_{1}, \phi_{j}\right)_{w}=0, \text { for } j \neq l, l \pm 2, \\
& \left(\frac{\partial^{2} \phi_{l}}{\partial y^{2}}, \phi_{j}\right)_{\omega}=0, \text { for } l \neq j \text { (Legendre case). } \tag{2.14}\\
& \left(\frac{\partial^{2} \phi_{l}}{\partial y^{2}}, \phi_{j}\right)_{山}=0, \text { for } l<j \text { or } l+j \text { odd (Chebyshev case, }
\end{align*}
$$

and

$$
\begin{align*}
& \left(4, q, q_{j}\right)_{\nu}=0 \text {, for } j \neq l, l \pm 2, l \pm 4, \\
& \left(\frac{\partial^{2} \dot{+}}{\partial y^{2}}, \psi_{j}\right)_{\omega}=0 . \text { for } l \neq j, l \neq j \pm 2 \text {. } \\
& \left(\frac{\partial^{4} \varepsilon^{\prime} l}{\partial y^{4}},,^{\prime} j\right)_{\nu}=0, \text { for } l \neq j \text { (Legendre case). } \tag{2.5}\\
& \left(\frac{\partial^{4} \varphi}{\partial y^{4}}, u^{\prime},\right)_{\omega}=0 \text {, for } l<j \text { or } l+j \text { odd (Chebyshev case). }
\end{align*}
$$

Given two appropriate cut-off numbers M_{p}, M_{q} such that $0<M_{p}<M_{q}<M$. we may decompose $\hat{u}_{k, M}(y, f) \in V_{M}$ as follows

$$
\begin{align*}
\hat{u}_{k, M}(y, t) & =\sum_{j=0}^{M-2} \hat{u}_{k, j}(t) \phi_{j}(y) \\
& =\sum_{j=0}^{M_{p}-i} \hat{u}_{k, j} \phi_{j}(y)+\sum_{j=M_{p}-1}^{M_{q}-2} \hat{u}_{k, j} \phi_{j}(y)+\sum_{j=M_{q}-1}^{M-2} \hat{u}_{k, j} \phi_{j}(y) \tag{2.16}\\
& =p_{v}(y, t)+q_{v}(y, t)+r_{u}(y, t),
\end{align*}
$$

and sinilarly for $\hat{\omega}_{k, a r}(y, t)$ and then for $\dot{g}_{k, M}(y, 1)$, for all $k \in S_{N}$. Note that for the sake of simplicity, the dependence of p_{k}, q_{u}, and r_{u} in k is omitted. We may also decompose $\hat{v}_{k}:: 1(y, t) \in W_{M}$ as

$$
\begin{align*}
\hat{i}_{k, M}(y, t) & =\sum_{j=0}^{M-4} \hat{v}_{k, j} v_{j}(y) \\
& =\sum_{j=0}^{M_{p}-4} \hat{v}_{k, j} v_{j}(y)+\sum_{j=M_{p}-3}^{M_{p}-4} \hat{v}_{k, j} \dot{\psi}_{j}(y)+\sum_{j=M_{q}-3}^{M-4} \hat{v}_{k, y^{u} ;}(y) \tag{2.17}\\
& =p_{v}(y, t)+q_{v}(y, t)+r_{v}(y, t) .
\end{align*}
$$

We finally obtain the fcllowing decomposition for $\hat{u}_{k, M}$:

$$
\hat{\mathbf{u}}_{\boldsymbol{k}, M}=\boldsymbol{p}+\boldsymbol{q}+\mathbf{r}
$$

where $\boldsymbol{p}=\left(p_{w}, p_{v}, p_{w}\right)$ and similarly for \boldsymbol{q} and \mathbf{r}. The decomposition (2.16) on $\hat{u}_{k, M}$ and $\hat{w}_{\boldsymbol{k}, M}$ induces a decomposition of $\hat{y}_{\boldsymbol{k}, M}$ intn

$$
\hat{g}_{k, M}\left(y^{\prime}, t\right)=p_{g}+q_{g}+r_{g} .
$$

Then. thanks to (2.15) (resp. (2.14)), we can approximate the system (2.12) (resp. (2.13)) in $W_{M_{p}}$ (resp. $V_{M_{p}}$) as follows

$$
\begin{align*}
\frac{\partial}{\partial t}\left(\left(k^{2}-\frac{\dot{\partial}^{2}}{\partial y^{2}}\right) p_{r}, \psi_{j}\right)_{\omega} & +\nu\left(\left(k^{4}-2 k^{2} \frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{4}}{\partial y^{4}}\right) \boldsymbol{p}_{v}, \psi_{j}\right)_{\omega} \\
& =\left(\hat{h}_{v . k}(p+q+\boldsymbol{p}, \boldsymbol{p}+\boldsymbol{q}+\boldsymbol{r}), \psi_{j}\right)_{\omega} \tag{2.18}\\
& \text { for } j=0, \ldots, M_{p}-4
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial}{\partial t}\left(p_{g} \cdot \theta_{j}\right)_{-}+\nu h^{2}\left(p_{g} \cdot \varphi_{1}\right)_{\nu}-\nu\left(\frac{\partial^{2} p_{g}}{\partial y^{2}} \cdot \phi_{j}\right)_{\Delta} \\
& =\left(\bar{h}_{g} \cdot k(p+q+r \cdot p+\varphi+r) \cdot \phi_{j}\right)_{\mathbf{N}}, \tag{2.19}\\
& \text { for } j=0, \ldots, M_{p}-2 \text {, }
\end{align*}
$$

and in $W_{M_{4}}$ (resp. VM_{4}) as follows

$$
\begin{align*}
& \frac{\partial}{\partial t}\left(\left(k^{2}-\frac{\partial^{2}}{\partial y^{2}}\right)\left(p_{r}+q_{r}\right) \cdot \xi_{j}\right)_{\mu}+r\left(\left(k^{4}-2 k^{2} \frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{4}}{\partial y^{4}}\right)\left(p_{v}+q_{v}\right), \xi_{j}\right)_{\mu} \\
& =\left(\bar{h}_{v}, \boldsymbol{k}(p+q+r \cdot p+q+r) \cdot \dot{w}_{j}\right)_{\omega}, \\
& \text { for } j=0, \ldots . M_{1}-4 \text {. } \\
& \frac{\partial}{\partial i}\left(p_{g}+q_{s} \cdot 0_{1}\right)_{\mu}+\nu k^{2}\left(p_{g}+q_{g}, \phi_{j}\right)_{\omega}-\nu\left(\frac{\partial^{2}}{\partial y^{2}}\left(p_{g}+q_{g}\right)_{0} \phi_{\nu}\right)_{\nu} \tag{2.20}\\
& =\left(\dot{h}_{g, k}(p+\varphi+r \cdot p+q+r) \cdot \theta_{j}\right)_{w} . \tag{2.21}\\
& \text { for } ;=0, \ldots, M_{8}-2 .
\end{align*}
$$

Note that in (2.18)-(2.19) and (2.20)-(2.21) linear interaction terms coming from ($p_{g}, 0_{j}$) (resp. ($\left.y_{r} \cdot 0_{j}\right)_{0}$) ard similariy for r_{g} (resp. r_{v}) are neglected. Until numerical tests are performea it is not clear whether or not these terms have to be neglected. However, for the sake of simplicity we do not take them into account in the large or intermediate scale equations.

By projecting (2.12) (resp. (2.13)) onto the space $\|_{M} \backslash W_{M_{4}}\left(\right.$ resp. $V_{M} \backslash V_{M_{1}}$) we obtain the small scale equation

$$
\begin{align*}
& \frac{\partial}{\partial t}\left(\left(k^{2}-\frac{\partial^{2}}{\partial y^{2}}\right) r_{r} \cdot \dot{c}_{j}\right)_{\omega}+\nu\left(\left(k^{4}-2 k^{2} \frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{4}}{\partial y^{4}} r_{r} \cdot \varphi_{j}\right)\right)_{\omega} \\
& =\left(\hat{h}_{r} \cdot k(p+q \cdot p+q) \cdot \varphi_{j}\right)_{0} \tag{2.22}
\end{align*}
$$

$$
\begin{align*}
& \text { for } j=M_{4}-3 \ldots . . M-4 . \\
& \frac{\partial}{\partial t}\left(r_{g} \cdot \varphi_{j}\right)_{-}+\nu k^{2}\left(r_{g}, \phi_{j}\right)_{\mu}-\nu\left(\frac{\partial^{2} r_{g}}{\partial y^{2}}, \phi_{j}\right)_{\omega} \\
& =\left(\dot{h}_{, ~}, k(p+q \cdot p+q), \phi_{j}\right)_{\omega}-\frac{\partial}{\partial t}\left(q_{g}, \varphi_{j}\right)_{\mu}-\nu k^{2}\left(q_{,}, \phi_{,}\right)_{\nu} . \tag{2.23}\\
& \text { for } j=M_{q}-1, \ldots, M-2 \text {. }
\end{align*}
$$

We note that in (2.22)-(2.23) the nonlinear interaction bet ween the sanall wavelength part r and the larger wavelength parts $(p+q)$ is neglected.

Since $h_{p}(\because)$ is a bilinear form, we can write

$$
\begin{aligned}
h_{g}(\varphi+\psi \cdot \varphi+\psi) & =h_{g}(\varphi, \varphi)+\left(h_{g}(\varphi \cdot \psi)+h_{g}(\psi \cdot \varphi)+h_{g}(\psi \cdot \psi)\right) \\
& =h_{g}(\varphi, \varphi)+h_{g \cdot \operatorname{int}}(\varphi, \psi)
\end{aligned}
$$

and similarly for $h_{r}(\cdot \cdot \cdot)$.
We may now define the multilevel scheme based on the approximation i2 $^{2} 18$) (2.23).
 n_{0} we define $U_{N+2 n^{n+2}}=\boldsymbol{p}^{n+2 n_{n}}+q^{i+2 n_{4}}+\boldsymbol{r}^{n+2 n_{4}}$ by using the following natilevel scheme:

$$
\text { For } j=0.1 \ldots n_{n}-1
$$

$$
\begin{align*}
& k^{2}\left(1+v h^{2} \Delta t\right)\left(p_{1}^{n+2,+1} \cdot 6 t\right)_{-}-\left(1+\nu h^{2} \Delta t\right)\left(\frac{\partial^{2}}{\partial y^{2}} p_{r}^{n+21+2} \cdot 2\right)_{-} \\
& +\mu \lambda\left(\frac{\partial^{\prime}}{\partial y^{4}} p_{r}^{n+2,+1} \cdot k\right)=\left(\left(i^{2}-\frac{\partial^{2}}{\partial y^{2}} i p_{r}^{n+2 j} \cdot \varepsilon\right)\right)_{.} \tag{2.24}
\end{align*}
$$

$$
\begin{align*}
& \text { for } l=0 . \ldots . M_{p}-4 . \\
& q_{r}^{n+2 j+1}=q_{r}^{n+2 j} \text {. } \\
& r_{r}^{n+2 j+1}=r_{r}^{n+2 j}=r_{F}^{n} \text {; } \\
& \left(1+y l^{2} \Delta t\right)\left(p_{g}^{n+2 j+1} \cdot o_{1}\right)_{-}-\nu \Delta t\left(\frac{\partial^{2}}{\partial y^{2}} p_{g}^{n+2 j+1} \cdot o_{1}\right)_{-}=\left(p_{9}^{n+2} \cdot o_{1}\right)_{-} \\
& \left.+\Delta t i \hat{h}_{y}\left(p^{n+2)} \cdot p^{n+2}\right) \cdot O_{i}\right)_{0}+\Delta t\left(i_{g} \cdot \boldsymbol{n}\left(p^{n} \cdot(q+r)^{n}\right) \cdot O_{i}\right)_{\sim} \\
& \text { for } I=0 \ldots . M_{P}-\underline{?} \text {. } \tag{0.25}
\end{align*}
$$

$$
\begin{aligned}
& q_{g}^{n+2 j+1}=q_{g}^{n+2 j}, \\
& r_{i}^{n+2 j+1}=r_{i}^{n+2 j}=r_{g}^{n} \text {. } \\
& k^{2}\left(1+\nu N^{2} \Delta t\right)\left(\left(p_{r}+q_{r}\right)^{n+2)+2} \cdot 2\right)_{2}-\left(1+\nu k^{2} \Delta t h\left(\frac{\partial^{2}}{\partial y^{2}}\left(p_{r}+q_{r}\right)^{n+2)^{2}+2} \cdot()_{2}\right.\right.
\end{aligned}
$$

$$
\begin{align*}
& +\Delta t\left(\hat{h}_{V}\left((p+q)^{n+2 j+1} \cdot(p+q)^{n+2 j+1}\right) \cdot R \cdot\right)_{-} \\
& +\Delta t\left(\hat{h}_{r . t n}\left(p^{n}+q^{n} \cdot r^{n}\right) \cdot\left(z_{n}\right) .\right. \\
& \text { for } I=0 \ldots . M_{q}-I . \\
& r_{r}^{n+2 j+2}=r_{r}^{n+i j+1}=r_{r}^{n} . \tag{2.26}\\
& \left.11+1 k^{2} \Delta t\right)\left(\left(p_{g}+q_{g}\right)^{n+2 j+2} \cdot o_{1}\right)_{\nu}-v \Delta t\left(\frac{\partial^{2}}{\partial y^{2}}\left(p_{g}+q_{g}\right)^{n+2)+2} \cdot 0_{1}\right)_{-} \\
& =\left(\left(p_{g}+q_{g}\right)^{n+2 j+1} \cdot O_{l}\right)_{\alpha} \\
& +\Delta t\left(\hat{h}_{g}\left((p+q)^{n+2 j+1} \cdot p^{n+2)+1}\right) .01\right)_{2} \quad \text { (2.27) } \\
& \left.+\Delta f \dot{h}_{\text {g.in }}\left(p^{n}+q^{n} \cdot r^{\prime \prime}\right) \cdot 0_{t}\right)_{\sim} \\
& \text { for } l=0 \ldots . M_{q}-2 .
\end{align*}
$$

$r_{9}^{n+2 j+2}=r_{g}^{n+2 j+1}=r_{g}^{n}$.

Ouce we obtain $\boldsymbol{p}^{n+2 n^{2}}$ and $q^{n+!n}-$ from above. we compute $r^{n+2 n_{4}}$ as follows

$$
\begin{align*}
& \left(\left(l^{2}-\frac{\partial^{2}}{\partial y^{2}}+y_{x}^{n+2 n}-4_{1}^{n}+1 \cdot \theta\right) .\right. \\
& \cdots n_{n} \pm t\left(1 k^{4} \cdots \underline{2} k^{2} \frac{\partial^{2}}{\partial y^{2}} \varphi_{1}^{n-2 n} \cdot c \eta\right) \\
& \text { for } I=M, 3 \ldots . M-4 \text {. }
\end{align*}
$$

atid

$$
\begin{align*}
& =\left(r_{t}^{m+2 n} \cdot c_{1}\right)_{-}
\end{align*}
$$

$$
\begin{aligned}
& \text { for } I=M_{1}-1 \ldots . . M-2 \text {. }
\end{aligned}
$$

Note that the computation of the right hand side of (2.2th-(2.25) iresp. 2.26 .
 $O\left(M_{p} \log _{2}\left(M_{p}\right)\right.$) aprations in the normal direction. The uonlin ar interaction terms $h_{\text {rat }}$ and h_{g} an: are computed once at the time iteration $j=n$. Hence. dur
 only at $j=n$ atal $j=n+2 n_{n}$. Compared to a classical Galerkin (or tan) approximation the multilevel wiacme proposel here allows to significantly reduce the CPL^{-}

 d Temani 1995\%. 19961.

3. Incremental unknowns in the finite difference case

The main idea of the :multilevel scheme is to treat the large and suall sales differently in numeriral simulation. Therefone. it is impontat to have an appropriate decomposition of the flow into different lenmin male. In Sertion 3.1. we deariter a procedure to derompere the sohation into large and small orales in finite difference method. To illustrate the metiond. we start bey appivitg the It"s to the Burgar.
 chanmel fow databine. In Section 3.3. we nugent in alporithm to implement the wheme for the turindert chamel How.

S.1 Incremental unknowns on Burger's equation

In this section, we start with the two-level IU's, namely, we decompose the solution 4 into

$$
u=y+z
$$

The second-order IU's in one-dinensional case are defined as in Chen \& Temam (1991) by

$$
\begin{aligned}
& y_{2 \jmath}=u_{2,} \\
& z_{2 \jmath+1}=u_{2,+1}-\frac{1}{2}\left(u_{2,+2}+u_{2 \jmath}\right)
\end{aligned}
$$

Multilevel IU's can be defined recursively. Three-level IC's will be defined in Section 3.2.

Let us consider the Burger's equation,

$$
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left(\frac{u^{2}}{2}\right)=\nu \frac{\partial^{2} u}{\partial x^{2}}+\lambda(x . t), \quad u(0, t)=u(1, t)=0 .
$$

When the second order central difference scheme is used for the space derivatives and the explicit Euler is used for the time advancing, the finite difference scheme reads

$$
\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}+\frac{1}{4 \Delta x}\left[\left(u_{i+1}^{n}\right)^{2}-\left(u_{i-1}^{n}\right)^{2}\right]=\frac{v}{\Delta x^{2}}\left[u_{i+1}^{n}-2 u_{i}^{n}+u_{i-i}^{n} \mid+x\left(r_{i} f^{n}\right)\right.
$$

Writing y and = components separately, one finds that y satisfies

$$
\begin{aligned}
& u_{2 j+1}^{n}=z_{2 j+1}^{n}+\frac{1}{2}\left(y_{2 j+2}^{n}+y_{2 j}^{n}\right) . \\
& \frac{y_{2 j}^{n+1}-y_{2 j}^{n}}{\Delta t}+\frac{1}{4 \Delta x}\left[\left(u_{2 j+1}^{n}\right)^{2}-\left(u_{2,-1}^{n}\right)^{2} \mid\right. \\
& =\frac{\nu}{\Delta x^{2}}\left[u_{2 j+1}^{n}-2 y_{2 j}^{n}+u_{2 j-1}^{n}\right]+X\left(x_{2,}, t^{n}\right) .
\end{aligned}
$$

and = satisfies

$$
\begin{aligned}
& \frac{z_{2 j+1}^{n+1}-z_{2 j+1}^{n}}{\Delta t}+\frac{1}{2 \Delta t}\left[\left(y_{2 j+2}^{n+1}+y_{2 j}^{n+1}\right)-\left(y_{2 j+2}^{n}+y_{2 j}^{n}\right)\right] \\
& +\frac{1}{4 \Delta x}\left[\left(y_{2 j+2}^{n}\right)^{2}-\left(y_{2 j}^{n}\right)^{2}\right]=\frac{\nu}{\Delta x^{2}}\left[-2 z_{2 j+1}^{n}\right]+x^{\prime}\left(x_{2 j+1}, t^{n}\right) .
\end{aligned}
$$

Instead of evaluating z at each time step, we propose to $f x=$ for m steps and then evaluate once to save CPU time and memory. Therefore, as m increases, so dow the saving of CPU time. On the other hand, we are also at the risk of losmg accuracy as m increases. It is clear that when $m=0$, the scheme is the same as the original standard method with the fine mesh. while if we never update z and let it tre 0 . the scheme is simply the original standard methed in the coarse mesh and $u=y$.

To illustrate how much savings one could obtain by freezing z systematically, we list in Table 1 the ratio of the work with freezing $=m$ times vi. 0 times. with the assumption that the work per time step per grid point is independent of the mesh size. As an example, if one freezes : for one times step in a chree-dimensional problem, the work by using IU's is only 56.25% of that by using the stancerd finite difference method.

Table 1. Ratio of the work with freezing $=\boldsymbol{m}$ times vs. 0 times

m	0	1	2	3	\cdots	$\boldsymbol{N}_{\mathbf{1}}$
$1-\mathrm{D}$	1	0.75	0.67	0.625	\cdots	0.50
$2-\mathrm{D}$	1	0.625	0.5	0.44	\cdots	0.25
$3-\mathrm{D}$	1	0.5625	0.42	0.34	\cdots	0.125

We now test this scheme on a nodel problem. in which we try to recover the steady solution $u_{s}(r)=f(\mathbf{2 0 r})-f(0)+(f(0)-f(\mathbf{2 0})) r$ of Burger's equation. where

$$
f(t)=\sum_{k=1}^{15} \exp (\cos (k \sqrt{k}(2.5+0.5 t) \pi / 10)-0.3 \sin (0.8 t \sqrt{k} t \pi / 10)) .
$$

The forcing function $\boldsymbol{X}(r, t)=\boldsymbol{X}(x)$ is calculated by substituting ${ }_{i}(x ;$ into the equ:ati, m. Initial condition is taken as $u(r, 0)=\sin (2 r)$ with the boundary conditions $u(0 . t)=u(1 . f)=0$. By comparing the graphs of $u_{s}(x)$ with $\boldsymbol{\lambda}_{x}=512$. $N_{s}=256$, and $N_{t}=128$. one finds that $N_{t}=256$ is approximately the mininum number of grid points required to adequately resolve $u_{s}(r)$.

The numerical results using the original scheme and the proposed scheme with different m are compared (Fig. 1). For $m=1$ t. 4 . the results are almost identical. However, for $m=\mathbf{j}$. the approximate solution is significantly less accurate. Therefore, the proposed scheme has to be used with caution and m can not be too large.

3.2 Small scales in IU

In the multilevel scheme given in Section 2, a spertral method is used to decompose scales. However. it is not easy to define small scales in finite difference methods. In Section 3.1. the small scale component of the flow is defined in the context of IU's. In this section, we examine this conecpt.

For simplicity. we will only treat the three-level IU. As is done in Sertion 2. the method starts with separating the length scales of the flow into

$$
\begin{equation*}
u=f+g+r . \tag{3.1}
\end{equation*}
$$

where u is the velocity in the streamwise direction. f.g. and r are respectively the large. intermediate, and small scales. The definitions of f, g, and r are given below (see Fig. 2):

Figire 1. An exart steady state solution of the Burger's equation. $\mathrm{X}=250$ is the minimum for resolution.

Figurf: 2. Schematic diagram of separating scales in a finite difference method.

$$
\begin{align*}
& f_{4 i}=u_{4,} \\
& g_{4+2}=u_{4 i+2}-\frac{1}{2}\left(u_{4 i+1}+u_{42}\right) \tag{3.2}\\
& r_{4 i+1}=u_{4+1}-\frac{1}{2}\left(u_{4 i+2}+u_{41}\right)
\end{align*}
$$

where i is the index for the streanwise (or wall-normal. or spanwise) direction ($i=0,1,2, \ldots, N_{x} / 4$). The wall-normal and spanwise velocities can be defined in a similar way. We require the condition

$$
\begin{equation*}
|f|>|g|>|r| \tag{3.3}
\end{equation*}
$$

in order to validate the assumption of separating longth seales.
In the present study, the magnitudes of $f . g$. and r are estimated wing the database of turbalent channel flow. Turbulent flow in a channel is simulatid asing

DNS. The convection and diffusion terms are integrated in time using a third-order Runge-Kuttu method and the Crank-Kicolson method, respectively. A second-order central difference is used in space. A fractional step method is used to decouple the pressure from the velocity. The Reynolds number used is $\operatorname{Re} e_{r}=u_{r} \delta / \nu=150$ and the computational domain is $4 \pi \delta(x) \times 2 \delta(y) \times 4 \pi / 3 \delta(z)$, where u_{r} is the wall shear velocity, δ is the channel half width, and ν is the kinematic viscosity. The number of grid points used is $128(x) \times 129(y) \times 128(z)$.

Figure 3 shows the energy spectra of the velocity components in the streamwise and spanwise directions. where $E\left(f_{i}\right), E\left(g_{1}\right)$ and $E\left(r_{1}\right)$ are shown at three y-locations $\left(y^{+}=6.33,177\right)$. It is clear that r_{r} 's have the energy of small scales, while g, s have the energy of intermediate scales. Both g_{i} aud r_{i} have orders of magnitude smaller energies in small wavenumbers as compared to f_{1}. Therefore, the IU's definel in (3.2) properly describe the small and intermediate srales of the velocity.

f. 3 Implementation of IU in turbulent chennel fiow

Implementation of IU for the Navier-Stokes equations is very similar to that of IU for the Burger's equation (see Section 3.1), once the approximating factorization schence is used (see below). The only difference is the coupling betwern the velocity and the pressure.

The governing equations for an incompressible flow are

$$
\begin{gather*}
\frac{\partial u_{i}}{\partial t}+\frac{\partial}{\partial r_{j}} u_{i} u_{j}=-\frac{\partial p}{\partial r_{i}}+\frac{1}{R e} \frac{\partial}{\partial r_{j}} \frac{\partial u_{i}}{\partial x_{j}}, \tag{3.4}\\
\frac{\partial u_{i}}{\partial r_{i}}=0 . \tag{3.5}
\end{gather*}
$$

The integration method used to solve (3.4) and (3.5) is based on a semi-implicit fractional step method. i.e., third-order Ruage-Kutta method for the convertion terms and Crank-Nicolson method for the diffusion terms:

$$
\begin{align*}
\frac{\tilde{u}_{2}^{k}-u_{2}^{k-1}}{\Delta t}= & \left(\alpha_{k}+B_{k}\right) L_{i}\left(u^{k-1}\right)+\beta_{k} L_{2}\left(\hat{\dot{z}}^{k}-u^{k-1}\right) \tag{3.6}\\
& -\gamma_{k} N_{1}\left(u^{k-1}\right)-\zeta_{k} N_{1}\left(\varkappa^{k-2}\right) . \\
\Gamma^{2} \phi^{k}= & \frac{1}{\Delta t} \frac{\partial \hat{u}_{i}^{k}}{\partial r_{i}}, \tag{3.7}\\
\frac{u_{i}^{k}-\tilde{u}_{i}^{k}}{\Delta t}= & -\frac{\partial \phi^{k}}{\partial x_{i}}, \tag{3.8}
\end{align*}
$$

where L_{i} and N, are the diffusion and convection terms of (3.4), $k=1,2.3$, and

$$
\begin{array}{lll}
a_{1}=3_{1}=\frac{4}{15}, & \gamma_{1}=\frac{8}{15}, & \zeta_{1}=0 \\
a_{2}=j_{2}=\frac{1}{15}, & \gamma_{2}=\frac{5}{12}, & \zeta_{2}=-\frac{17}{60} \\
a_{3}=j_{3}=\frac{1}{6} . & \gamma_{3}=\frac{3}{4}, & \zeta_{3}=-\frac{5}{12} .
\end{array}
$$

Figire: 3. Energy spectra of the velocities, $u_{1}(-), u_{2}(--\infty)$. $u_{3}(\cdots \cdots)$: no symbol. f_{i} : ©. $g_{i}: \nabla, r_{i}(a) y^{+}=6 ;$ (b) $y^{+}=33:(c) y^{+}=177$.
here. $\left(\alpha_{k}+y_{k}\right) p^{k}=o^{k}-\left(\Delta t \beta_{k} / R e\right) \nabla^{2} \phi^{k}$.
Rearranging (3.6) in drita form (o $\bar{u}_{i}^{k}=\hat{u}_{i}^{k}-u_{i}^{k-1}$) gives

$$
\left(1-\Delta t i_{k} \frac{1}{R \epsilon} \Gamma^{2} \mu_{u_{i}^{k}}^{k}=\Delta t\left[\left(a_{t}+i_{k}\right) L_{i}\left(x^{k-1}\right)-z_{k} N_{i}\left(x^{k-1}\right)-\zeta_{k} N_{i}\left(x^{k-2}\right)\right] .\right.
$$

Approximating factorization of this equation gives

$$
\begin{align*}
& \left(1-\Delta t y_{k} \frac{1}{R_{t}} \frac{\partial^{2}}{\partial x^{2}}\right)\left(1-\Delta t y_{k} \frac{1}{R_{c}} \frac{\partial^{2}}{\partial y^{2}}\right)\left(1-\Delta t y_{k} \frac{1}{R c} \frac{\partial^{2}}{\partial z^{2}}\right) \Delta u_{k}^{k} \\
& =\Delta t\left[\left(o_{k}+y_{k}\right) L_{1}\left(v^{k-1}\right)-\gamma_{k} N_{3}\left(u^{k-1}\right)-\zeta_{k} \cdot V_{1}\left(w^{k-2}\right)\right] \tag{3.9}\\
& \equiv R_{i}\left(\boldsymbol{u}^{k-1} \cdot u^{k-2}\right) \text {. }
\end{align*}
$$

Let us define 1 , as

$$
\begin{equation*}
X_{1} \equiv\left(1-\Delta t 3_{k} \frac{1}{R \epsilon} \frac{\partial^{2}}{\partial y^{2}}\right)\left(1-\Delta t 3_{t} \frac{1}{R \epsilon} \frac{\partial^{2}}{\partial z^{2}}\right) \dot{\hat{u}} \dot{u}_{1} . \tag{3.10}
\end{equation*}
$$

Then. (3.9) becomes

$$
\begin{equation*}
\left(1-\Delta t \beta_{k} \frac{1}{\operatorname{Re}} \frac{\partial^{2}}{\partial x^{2}}\right)_{i}=R_{i} . \tag{3.11}
\end{equation*}
$$

For simplicity, we ouly focus on the velocity in the streamwise component. Notthat in turbulent chaunel dow the periodic boundary conditions are applied in the streanwise and spanwise directions (r, z) and the no-slip condition is applied in the wall-normal direetion (y).
Now. let us decompose (streamwise component of 1,) into three different scales as was introduced in Section 3.2:

$$
\begin{equation*}
1 \equiv f+g+r \tag{3.12}
\end{equation*}
$$

As a first step. (3.11) is approximated at each fourth grid point using a serondorder central differcuce scheme:

$$
\begin{equation*}
\imath_{1}-\Gamma\left(x_{1+1}-2_{k_{1}}+v_{1,-1}\right)=R_{1_{1}} . \tag{3.13}
\end{equation*}
$$

where $\Gamma=\Delta t \cdot 3_{i} /\left(\operatorname{Re} \Delta_{i}{ }^{2}\right)$.
Using a similar relation to (3.2), it can be easily shown that (3.13) becomes

$$
\begin{align*}
& -\frac{\Gamma}{4} x_{1+4}+\left(1+\frac{\Gamma}{2}\right) n_{41}-\frac{\Gamma}{4} _{1,-4} \\
& =R_{1_{4}}+\Gamma\left(\frac{1}{2} g_{4+2}+\frac{1}{2} g_{4 i-2}+r_{4+1}+r_{41-1}\right) . \tag{3.14}
\end{align*}
$$

 are updated with the newiy oltained 14 from (3.14): e.g.

$$
\begin{align*}
& n_{1+2}=g_{t+2}+\frac{1}{2}\left(x_{4 i}+n_{1+4}\right) \\
& n_{1+1}=r_{4 i+1}+\frac{1}{2}\left(r_{t+1}+n_{1+2}\right) . \tag{3.15}
\end{align*}
$$

where g and r are frozen for the periods of Δt_{g} and Δt_{r}. respectively. Δt_{g} and Δt_{r} are called as the frozen times for the internediate and small scales, respectively.

As a second step, (3.11) is approximated at every other grid point at $t=l \Delta t_{g}$ (l is an integer) using a second-order central difference:

$$
\begin{equation*}
-\frac{\Gamma}{2} x_{2 i+2}+(1+\Gamma)_{2 i}-\frac{\Gamma}{2} \times 2 i-2=R_{12 i}+\Gamma\left(r_{2 i+1}+r_{2 i-1}\right) . \tag{3.16}
\end{equation*}
$$

The γ at every other grid point is obtained by solving (3.16). The $\chi_{2 i t 1}$ are then updated with the frozen r, and $g_{4 i \pm 2}$ are updated: e.g.,

$$
\begin{align*}
& x_{2 i+1}=r_{2 i+1}+\frac{1}{2}\left(x_{2 i}+x_{2 i+2}\right) \tag{3.17}\\
& g_{4 i+2}=x_{4+2}-\frac{1}{2}\left(x_{4 i}+x_{4 i+4}\right) . \tag{3.18}
\end{align*}
$$

As a third step, (3.11) is approximated at every point at $t=l \Delta t_{r}$:

$$
\begin{equation*}
-\Gamma_{\chi_{i+1}}+(1+2 \Gamma)_{\chi_{i}}-\Gamma_{\chi_{i-1}}=R_{1_{i}} \tag{3.19}
\end{equation*}
$$

The 1 at every grid point is obtained by solving (3.19). The $r_{2 i \pm 1}$ are then updated as

$$
\begin{equation*}
r_{2 i+1}=\chi_{2 i+1}-\frac{1}{2}\left(\chi_{2 i}+\chi_{2 i+2}\right) . \tag{3.20}
\end{equation*}
$$

Once x's are obtaned at either $4 i .2 i$, or i points, similar procedures are applied to the other two directions. It is straightforward to extend the procedure described above in the spanwise and wall-normal directions. At the end of these procedures. the streanwise velocity is obtained. Again, the same procedure can be easily applied to the other two velocity components.

Let us write the numerical algorithm of IU:

1. Start with an initial velocity field u^{0} or a previous time step $u^{n, k-1}=u^{n-1}$.
2. Solve the discretized momentum equations at ($4 i, 4 j, 4 k$) grid points (similar to (3.14)) to obtain u at ($4 i, 4 j, 4 k$) points.
3. Update u at non- $(4 i, 4 j, 4 k)$ points with frozen g and (see (3.15)).
4. If $t=l \Delta t_{g}$, go to Step 5. If not, go to Step 2.
5. Solve the discretized momentum equations at ($2 i, 2 j, 2 k$) grid points (similar to (3.16)) to obtain u at $(2 i, 2 j, 2 k)$ points.
6. Update u at $(2 i \pm 1.2 j \pm 1,2 k \pm 1)$ points with frozen r and also update g at $(4 i \pm 2,4 j \pm 2,4 k \pm 2$; points (see (3.17) - (3.18)).
7. If $t=l \Delta t_{r}$, go to Step 8. If not, go to Step 2.
8. Solve the discretized momentum equations at all the grid points (similar to (3.19)) to obtain u at all points.
9. Update r at ($2 i \pm 1,2 j \pm 1,2 k \pm 1$) points ($\sec (3.20)$).
10. Solve the Poisson Eq. (3.7) at all points, update the velocity (3.8), and go to Step 2.

Note that it is not necessary for us to decompose the velocity into the same levels of scales in all the directions. That is, one may decompose the flow into two scales in the wall-normal direction and three scales in the streamwise and spanwise directions.
The inte.polation used in obtaining the neighboring velocity (e.g., (3.15)) deteriorates the momentum conservation property, and the mass conservation is easily violated unless the Poisson Eq. (3.7) is solved at each time step. However, the requirement of the Poisson solution at each time step clearly diminishes the advantage of using the IU method.
The modification and application of the present multilevel scheme to the turbulent channel flow are in progress and will be reported in the future.

REFERENCES

Chen, M. \& Temam, R. 1991 Incremental Unknowns for Solving Partial Differential Equations. Numer. Math. 59, 255-271.
Chen, M. \& Temam, R. 1993 Noolinear Galerkin Method with Multilevel Incremental Unknowns. Contributions in Numerical Mathematics, WSSIAA. 2, 151-164.
Debussche, A., Dubois, T., \& Temam, R. 1995a The Nonlinear Galerkin Method: A multiscale method applied to the simulation of homogeneous turbulent flows. Theoretical and Computetional Fluid Dynamics. 7(4), 279-315.
Dubois, T. Jauberteau, F., \& Temam, R. 1995b Dynamic multilevel methods in turbulence simulations. Computational Fluid Dyncmics Review, M. Hafez and K. Oshima ed., Wiley Publishers.
Dubois. T., Jauberteal, F., \& Temam, R. 1996 a Comparative Study of Multilevel Schemes in Homogeneous Turbulence. Proceeding of ICNMFD. 15.
Gottlieb, D. \& Orszag, S. A. 1977 Numerical Analysis of Spectral Methods: Theory and Applications. SIA M.CBMS, Philedelph $\cdot:$.
Kim, J., Moin, P., \& Moser, R. 1987 Turbulence tatistirs in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133-166.
Shen, J. 1994 Efficient spectral-Galerkin method I. direct solvers for second- and fourth-order equations by using Legendre polynomials. SIAM J. Sci. Comput. 15, 1489-1505.
Shen, J. 1995 Efficient spectral-Galerkin method II. direct solvers for second- and fourth-order equations by using Chebyshev polynomials. SIA M J. Sci. Comput. 16, 74-87.
Shen, J. 1996 Efficient Chebyshev-Legendre Galerkin methods for elliptic problems. Proceedings of ICOSAHOM 95. Houston J. Math., 233-239.

NEXT DOCUMENT

A priori testing of subgrid-scale models for the velocity-pressure and vorticity-velocity formulations

By G. S. Winckelmans ${ }^{1}$, T. S. Lund ${ }^{2}$, D. Carati ${ }^{3}$ and A. A. Wray ${ }^{4}$

Subgrid-scale models for large eddy simulation (LES) in both the velocity-pressure and the vorticity-velocity formulations were evaluated and compared in a priori tests using spectral Direct Numerical Simulation (DNS) databases of isotropic turbulence: 128^{3} DNS of forced turbulence ($\operatorname{Re}_{\lambda}=95.8$) filtered, using the sharp cutoff filter. to both 32^{3} and 16^{3} synthetic LES fields; 512^{3} DNS of decaying turbulence (Re $\mathrm{C}_{\mathrm{\lambda}}=63.5$) filtered to both 64^{3} and 32^{3} LES fields. Gaussian and top-hat filters were also used with the 128^{3} database. Different LES models were evaluated for each formulation: eddy-viscosity models, hyper eddy-viscosity models. mixed models. and scale-similarity models. Correlations between exact versus modeled subgrid-scale quantities were measursd at three levels: tensor (traceless), vector (solenoidal force'), and scalar (dissipation) levels, and for both cases of uniform and variable coefficient(s). Different choices for the $1 / T$ scaling appearing in the eddy-viscosity were also evaluated. It was found that the models for the vorticityvelocity formulation produce higher correlations with the filtered DNS data than their counterpart in the velocity-pressure formulation. It was also found that the hyper eddy-viscosity model performs better than the eddy viscosity model, in both formulations.

1. Velocity-pressure formulation and models investigated

Consider the Navier-Stokes equations for incompressible fluid in the velocitypressure formulation:

$$
\frac{\partial u_{i}}{\partial t}+\frac{\partial}{\partial x_{j}}\left(u_{i} u_{j}\right)+\frac{\partial P}{\partial x_{i}}=\nu \frac{\partial}{\partial x_{j}} \frac{\partial u_{i}}{\partial x_{j}} .
$$

Filtering, using a low-pass filter G of characteristic length Δ,

$$
\bar{\psi}(x)=\int \psi(y) G\left(\frac{x-y}{\Delta}\right) \frac{d y}{\Delta^{3}}, \quad \psi^{\prime}(x)=\psi(x)-\bar{\psi}(x) .
$$

[^10]with $\bar{\psi}$ the filtered value and ψ^{\prime} the remainder, leads to the following evolution equation for the filtered velocity field:
$$
\frac{\partial \bar{u}_{i}}{\partial t}+\frac{\partial}{\partial x_{j}}\left(\overline{u_{i} u_{j}}\right)+\frac{\partial \bar{P}}{\partial x_{i}}=\nu \frac{\partial}{\partial x_{j}} \frac{\partial \bar{u}_{i}}{\partial x_{j}}
$$
which is rewritten either as
$$
\frac{\partial \bar{u}_{i}}{\partial t}+\frac{\partial}{\partial x_{j}}\left(\bar{u}_{i} \bar{u}_{j}\right)+\frac{\partial \bar{P}}{\partial x_{i}}+\frac{\partial \tau_{i j}}{\partial x_{j}}=\nu \frac{\partial}{\partial x_{j}} \frac{\partial \bar{u}_{i}}{\partial r_{j}}
$$
or as
$$
\frac{\partial \bar{u}_{i}}{\partial t}+\frac{\partial}{\partial x_{j}}\left(\overline{\bar{u}_{i} \bar{u}_{j}}\right)+\frac{\partial \bar{P}}{\partial x_{i}}+\frac{\partial \bar{\tau}_{i j}}{\partial x_{j}}=\nu \frac{\partial}{\partial x_{j}} \frac{\partial \bar{u}_{i}}{\partial x_{j}} .
$$
where the 'subgr: 1 -scale stress' (sgs) tensor is defined as
\[

$$
\begin{aligned}
& \tau_{i j} \stackrel{\text { def }}{=} \overline{u_{i} u_{j}}-\bar{u}_{i} \bar{u}_{j}=\bar{C}_{i j}+\bar{R}_{i j}+L_{i j}^{\prime}, \\
& \bar{r}_{i j} \stackrel{\operatorname{def}}{=} \overline{u_{i} u_{j}}-\overline{u_{i} \bar{u}_{j}}=\bar{C}_{i j}+\bar{R}_{i j}
\end{aligned}
$$
\]

with the usual definitions for the cross term, the Reynolds term, and the Leonard's term:

$$
\begin{aligned}
& \bar{C}_{i j}=\overline{\bar{u}_{i} u_{j}^{\prime}}+\overline{u_{i}^{\prime} \bar{u}_{j}} \\
& \bar{R}_{i j}=\overline{u_{i}^{\prime} u_{j}^{\prime}} \\
& L_{i j}^{\prime}={\overline{\bar{u}} \bar{u}_{i}}^{\bar{u}_{j}}-\bar{u}_{i} \bar{u}_{j}=-\left(\bar{u}_{i} \bar{u}_{j}\right)^{\prime}
\end{aligned}
$$

Here, $\bar{C}_{i j}$ and $\bar{R}_{i j}$ are purposely witten with the 'overline' as they are the filtered value of some quantity. $L_{i j}^{\prime}$ is purposely written i. th the 'prime' as it is the remainder, after filtering, of some quantity and thus contains hig. …ntial frequencies.

The notation $\bar{T}_{i j}$ is somewhat misleading (but will nevertheless be retained). Indeed, although it is the filtered value of some quantity, it is not necessarily the result of filtering $\tau_{1 j}$. In the case of sharp cutoff filter in wave space, $\overline{\bar{\psi}}=\bar{\psi}$ and $\overline{\psi^{\prime}}=0$ so that $\bar{\tau}_{i j}$ is indeed the result of Sltering $\tau_{i j}$. In the case of smooth filters such as the Gaussian, the filtering of $\tau_{i j}$ produces $\overline{\bar{C}}_{i j}+\overline{\bar{R}}_{i j}+\bar{L}_{i j}$, which is not equal to $\bar{C}_{i j}+\bar{R}_{i j}$.

When doing LES with a computational grid which is of the same size as the assumed filter size Δ, one cannot accurately evaluate quadratic terms such as ($\bar{u}_{i} \bar{u}_{j}$) uning the coarse grid only, as such quantities have a high frequency content. One can only hope to resolve, on the coarse grid, quantities such as ($\overline{\bar{u}_{i}} \bar{u}_{j}$) (and even that requires using an appropriate reconstruction scheme, e.g.. the need for dealiasing in spectral rodes). The second form of the filtered equation is thus the one to consider in LES computations. It is assur.ed throughout this paper unless otherwise specified. (Notice that, if one were to use a computational grid smaller than the assumed filter size. then quantities such as $\bar{u}_{i} \bar{u}_{j}$ could be partially resolved.)

The trace of the sulgrid-scale tensor does not induence the dynamics of the filtered flow and is usually lumped into the pressure term:

$$
\begin{aligned}
& \bar{r}_{i j}^{*}=\bar{\tau}_{i j}-\frac{1}{3} \bar{r}_{k k} \delta_{i j}, \quad \bar{P}=\bar{P}+\frac{1}{3} \bar{\tau}_{k k} . \\
& \frac{\partial \bar{u}_{i}}{\partial t}+\frac{\partial}{\partial r_{j}}\left(\overline{\bar{u}, \bar{u}_{j}}\right)+\frac{\partial \bar{P}^{*}}{\partial r_{i}}+\frac{\partial \bar{F}_{i j}^{*}}{\partial r_{j}}=\nu \frac{\partial}{\partial x,} \frac{\partial \bar{u}_{i}}{\partial x_{j}} .
\end{aligned}
$$

 needs to be modeled: 3 degrees of freedom instead of 5 , (or 6 if one were also interested in modeling $\bar{\tau}_{k t}$). The modified pressure is solution of

$$
-\frac{\partial}{\partial r_{i}} \frac{\partial \bar{P}_{i}^{*}}{\partial r_{i}}=\frac{\partial}{\partial r_{i}} \frac{\partial}{\partial r_{j}}\left(\overline{\bar{u} \cdot \bar{u}_{j}}\right)+\frac{\partial \bar{f}_{i}^{*}}{\partial r_{i}} .
$$

Finally. the solenoidal (i.e., divergence-freei part of the subgrid-scale force is the only one that affects the flow dyramics. Defining \vec{g}_{i}^{*} as the solenoidal part of \vec{f}_{1}. the other part being the gradient of a potential $\bar{\phi}$ which is iumped into a new 'pressure'. $\overline{\mathcal{F}}=\overline{\boldsymbol{P}}+\overline{\mathrm{O}}$. we write:

$$
\begin{aligned}
\frac{\partial \bar{u}_{1}}{\partial t}+\frac{\partial}{\partial x_{j}}\left({\overline{\bar{u}}, \overline{u_{j}}}\right)+\frac{\partial \overline{p_{i}}}{\partial x_{i}}+\bar{g}_{i}^{*} & =\nu \frac{\partial}{\partial x_{i}} \frac{\partial \bar{u}_{i}}{\partial x_{j}}, \\
-\frac{\partial}{\partial x_{i}} \frac{\partial \bar{F}^{*}}{\partial r_{i}} & =\frac{\partial}{\partial r_{i}} \frac{\partial}{\partial x_{j}}\left(\overline{\bar{u}_{i} \bar{u}_{j}}\right) .
\end{aligned}
$$

Correlations of differeat LES models with filtered DNS data in isotropic turbutence were obtained and investigated. This was done at three levels: tensor level (tracrless sgs tensor), vector level (solenoidai force), and scalar level (dissipation). for two different DNS data sets, using the sharp cutoff fiter in wave space (with spherical truncation):
a) 128^{3} DNS of forced isotropic turbuience ($\operatorname{Re}_{\lambda}=95.8$) that was filtered to both 32^{3} and 16^{3} synthetic LES ficids. see Fig. 1.
b) 52^{3} DNS of decaying isotropic turbulence ($\operatorname{Re}_{\lambda}=63.5$) that was fitered to both 64^{3} and 32^{3} synthetic LES fields. see Fig. 2.
In addition. correlations at the tersor level were also obtained when using smooth filters (here applied in wave space) with $G(x / \Delta)=\Pi_{1=1.3} G\left(x_{1} / \Delta\right) . G(k \Delta)=$ $\Pi_{i=1,3} G: k, \Delta!$. sarb as the Gaussian (of same standard deviation as the top-hat).

$$
G\left(\frac{x_{1}}{\Delta}\right)=\left(\frac{6}{\pi}\right)^{i / 2} \exp \left(-6\left(\frac{x_{i}}{\Delta}\right)^{2}\right) ; \quad G\left(k_{i} \Delta\right)=\exp \left(-\frac{1}{6}\left(\frac{k_{i} \Delta}{2}\right)^{2}\right) .
$$

and the top hat.

$$
G\binom{x_{1}}{\vdots}=1 \text { if }\left|\frac{x_{1}}{\Delta}\right|<\frac{1}{2} . \quad 0 \text { otherwise : } \quad G\left(k_{1} \Delta\right)=\frac{\sin \left(\frac{k_{1} J}{2}\right)}{\left(\frac{t_{2}}{2}\right)} .
$$

Figine: 1. Spectram of the 138^{3} DNS ($_{\text {Re }}=95.8$). Also shown is the cut used to produce the 32^{3} synthetic LES field. - . $E(k)$; ---- $\boldsymbol{K}^{-5 / 3}$.
to generate synthetic LES fiedds fron the $128^{\mathbf{3}}$ DNS data (i.e. DNS with $k_{\text {max }}=64$). The cutoff wavenumber was set to $k_{\text {max }}=16$. hence $\Delta=\pi / k_{\text {max }}=\pi / 16$. Notice that, with smocth filters, the synthetic LES field still contains contributions from all original modes.

Many different LES models were investigated:
Model 1 (eddy-vismsity type, tensor noodeling):

$$
\vec{\tau}_{i j}^{M}=-2 \overline{\bar{v}_{i} \bar{S}_{i j}} \quad \text { with } \quad S_{i j}=\frac{1}{2}\left(\frac{\partial \bar{u}_{i}}{\partial x_{j}}+\frac{\partial \bar{u}_{j}}{\partial x_{i}}\right) .
$$

Different ctoices for the $1 / T$ scaling that appears in the eddy-viscosity were investigated:

$$
\begin{align*}
& \nu_{1}=C \Delta^{2}\left(2 \bar{S}_{1}, \bar{S}_{1 j}\right)^{1 / 2} . \tag{a}\\
& \nu_{\mathrm{f}}=C \Delta^{2}\left(\bar{\omega}_{j} \bar{\omega}_{\mathrm{t}}\right)^{1 / 2} \text {. } \tag{b}\\
& \nu_{1}=C \Delta^{2}\left(f / \Delta^{2}\right)^{1 / 3} . \tag{c}\\
& v_{f}=C \Delta^{2}\left(\underline{2} \bar{\omega}_{i} \bar{S}_{1}, \bar{\omega}_{j}\right) /\left(\bar{\omega}_{\bar{w}} \bar{w}_{1}\right) . \tag{d}\\
& \nu_{t}=C \Delta^{*}\left(2 \bar{\omega}_{i} \bar{S}_{i}, \bar{w}_{1}\right)^{1 / 3} .
\end{align*}
$$

where $\boldsymbol{\epsilon}$ is the rate of emergy transfer within the inertial range (assumed constant) and $\bar{\omega}=\Gamma \times \overline{\bar{\omega}}$ is the large-scale vorticity. The first choice is the classical Smagorinsky's scaling bacrd on docal dissipation by the large scales (e.g. see reviews by

Figine 2. Spectrum of the 512^{3} DNS ($\operatorname{Re}_{\boldsymbol{A}}=63.5$). Also shown are the cuts used to produce the 64^{3} and 32^{3} syuthetic LES fields. - : Comte-Bellot and Corrsin experimental data at $\mathrm{Re}_{\boldsymbol{\lambda}}=\mathbf{6 5 . 1}$. K normalized by Kolmogorov scale η

Rogallo \& Moin 1984. Lesieur et al. 1995). Consider the eigenvalues λ_{1}. λ_{2} and λ_{3} of the rate-of-strain tensor, with $\lambda_{1}+\lambda_{2}+\lambda_{3}=S_{t t}=0$. The scaling then produces an eddy-iscosity proportional to $\left(2\left(\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}\right)\right)^{1 / 2}$

The second choice is based on local enstrophy of the large scales (e.g., Mansinur et cl. 1978). Recalling the identity

$$
2 S_{1}, S_{i j}=\omega_{i} u_{i}+2 \frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}}\left(u_{i} u_{j}\right)
$$

together with the Poisson equation for pressure, it appears that. to first order. the iwo scalings differ by the local pressure Laplacian (which can have either ingn).

The third choice was rroposed by Carati et el (1995b) and is referrori to a the 'Kolmogorov' scaling. Li, foliowing Smagorinsky, focal equilibrium betwern the rate of energy transfer within the inertial range is identified with the subprid-scale dissipation $\epsilon \approx-\bar{\tau}_{i,}{ }^{M} \bar{S}_{1,}$, one recovers tine classical Smagorinsky's mordel for the eddy-viscosity. The Kolmogorov scaling has the practical advantage over the other models that fewer filtering operations are required when inip.ementing the dynamic procerlure as in Germano et al. (1961), Ghosal et al. (199:', Moin \& Jiménez (1993), Moin et al. (1994), Ghosal it al. (1995), Carati et al. (1995a). Whin
devoloping the dynamic procedure in the present formulation, one obtains
where \hat{i} is an additional 'test fiter' of the LES field. at scaire $\bar{\Delta}$, where C^{\prime} stands for the dimersional product $C e^{1 / 3}$. and where it hav liern assumed that both filters lie in the incrial rauge so that c is indeed the same at both filter sizes. Since the dynamic procedure alon assumes that the undel corfficient C is iuvariant with filtering scale in that range. it turns out that C^{\prime} is alwo invariant with filtcring srale and is. in fact. What is determined by the dynamic proredure.

The fourth scaling was propused by Winctrelmans (1995) and is based on the relative rate of change of the large seale enstrophy du- to 3-D stretching.

This scaling selects the eigenvalues used to compute the crldy-viscosity according to the relative orientation betwern $\bar{\omega}$ and the principal axes (eigenvectors) of the rate-of-strain tensor. Indeed. writing the components of $\overline{-1}$ in the system of principal axes as $\left(\overline{\sigma_{1}}, \overline{\mathcal{D}_{2}}, \overline{\omega_{3}}\right)$. this scaling produces an eddy-viscosity proportional to $\underline{2}\left(\lambda_{1} \bar{\omega}_{1}^{2}+\lambda_{2} \bar{\Phi}_{2}^{2}+\lambda_{3} \bar{\Xi}_{3}^{2}\right) /\left(\bar{s}_{1}^{2}+\bar{\sigma}_{2}^{2}+\bar{\Phi}_{3}^{2}\right)$. Hence a vinticity-meighted average of the rigenvalues is uxed to produce the eddy-viscosity. This scaling produces a negative eddy riscosity scaling in regions where enstrophy is decreasing. To ensure positivity, one can use either $i d /$ or $d_{4}=$ maxid. 0).

For completeness, a fifth scaling is cousidered. which is based on the rate of change of enstrophy, bence an eddy viscosity proportional to $\left(2\left(\lambda_{3} \overline{-x}_{1}^{2}+\lambda_{2} \overline{\sigma_{2}^{2}}+\lambda_{3} \overline{F_{3}^{2}}\right)^{1 / 2}\right.$

Modeis other than the classical LES mudel (Mordel 1) were also investigated: Model 2 (eddy-visrosity typr. sokenoidal force umodeling):

$$
\bar{g}^{\boldsymbol{H}}=-\nabla \wedge\left(\overline{\overline{v_{t}} \overline{\bar{z}}}\right) .
$$

Aodel 3 ihyper eddy-visosity type, tensor modeling:

$$
{\overrightarrow{r_{i j}}}^{M}=2 \Delta^{2} \overline{\bar{v}_{i} \Gamma^{2} \bar{S}_{i j}}
$$

Mordel $1+3$ (mixed eddy-viscosity and hyper eddy viscosity type, temsor modeling):

$$
\bar{F}_{1,}^{*}=-2\left(\overline{\bar{v}_{11} \bar{S}_{11}}-\Delta^{2} \overline{\bar{v}_{12} \Gamma^{2} \bar{S}_{11}}\right)
$$

Model $1+4$ (mixed. simpiost non eddy-visusity typr, tensot modeling):

$$
\bar{r}_{i 1}^{*}=-2\left(\overline{\bar{v}_{1} \bar{S}_{i j}}+C_{2} \Delta^{2} \overline{\left(\bar{S}_{21}\right.} \overline{\left.\bar{S}_{1 j}\right)^{\circ}}\right)
$$

He are unaware of any published results describing Model 3 or Model $1+3$. Howevet. Cerutti and dienevean (1996, private communicationt hate also considered this
model. Model $1+4$ is one of the many moshels investigaterl by Lund and Noxikox (1992) where they considered all posible models with the sis teusor futiction only of the strain and rotation rate temsors.

Notice that our can even build inmids that give a derent (i.e.. as gooxl as of het
 effect on the dynamiss of the filtered mocity field. e.g.-

$$
\bar{\tau}_{i,}^{M}=C \Delta^{2} \frac{\partial}{\partial r_{i}} \frac{\partial}{\partial r_{j}}\left(\bar{u}_{i} \bar{u}_{i}\right)
$$

 that correlation at the tensor level dex, mot nevessarily mean good dynamirs. What rrally matters is the solenoidal forcing.

Finally. scabe similarity menklis of Bardina's type. Models B. Wrte alvo invertigaterl (e.g. ser Horiuti 1993. Zang et al. 1993. Lin et al 1994. Salvetti d Bancrjer 1997. The cumbinations considered were:

$$
\begin{align*}
& C(\hat{\bar{u}}, \hat{\bar{u}},-\hat{\overline{\bar{u}}, \hat{\bar{u}}} \hat{i}) . \tag{a}\\
& C\left(\overline{u_{i}} \overline{z_{i}},-\hat{\bar{u}_{1}}, \hat{u_{1}}\right) . \tag{b}\\
& C\left(\bar{w}_{i}, \bar{u}_{j}-\hat{\bar{u}_{i}}, \hat{\bar{u}},\right) \text {. } \\
& C(\hat{\bar{u}}, \hat{\bar{u}},-\hat{\bar{u}}, \hat{\bar{u}},) \text {. } \tag{d}
\end{align*}
$$

where the additional filtering of the LES fied was done at twice the size of the original filter. and with the same filter type. Model B_{a} is the filtering of $\bar{u}, \bar{u},-\hat{\bar{u}}, \hat{\overline{1}}$, and is similar to $\bar{F}_{i j}$, which is ther original fikering of $u, u,-\overline{u_{i}} \bar{H}_{3}$. Monht B , is similar to $r_{1},=\overline{u_{1} \bar{U}_{j}}-\bar{u}_{2} \bar{u}_{y}$. Model Br was also investigated. in a priori testing. in Menevau \&: Lund (1992). Mordel By is the remainder. after smond filtering, of $\overline{\bar{u}}_{i} \hat{\bar{u}}_{1}$. and is thus not expected to perform well.

2. Optimization of the coeflicient(s) and correlations

We- first consider optimization of the model's confficient(s) when mo spatial rariation is allowed. This is a natural requirement as the morlels are being compared with D.VS data in isotropie turbulewere. For each level, the value of C that provides the minimum crror, in the least square sense, between 'exact' and 'morleled' subgrid-scale quantities is evaluated. Defining

$$
\bar{\tau}_{i,}^{* M}=C_{r} \bar{m}_{i j}^{*} \cdot \bar{g}_{i}^{M}=C_{g} \bar{m}_{i}^{*} .
$$

and (.) as integration over physical space. one then ohtains:
At the trareless tencor level:

$$
C_{r}=\frac{\left(\bar{r}_{k 1}^{*} \bar{m}_{k l}^{*}\right)}{\left\langle\bar{m}_{l l}^{*} \bar{m}_{k l}^{*}\right\rangle}
$$

At the solenoidal force kevel:

$$
C_{g}=\frac{\left(\bar{g}_{t} \bar{m}_{t}\right)}{\left(\bar{m}_{k}^{*} \bar{m}_{t}^{*}\right)}
$$

At the scalar level (= dissipation level):

$$
\bar{d}^{*}=\bar{u}_{k} \bar{g}_{i}^{*} . \quad \bar{d}^{* M}=\bar{u}_{k} \bar{g}_{k}^{M}=C_{4} \bar{m}^{*} . \quad C_{1}=\frac{\left(\bar{d}^{*} \bar{m}^{*}\right)}{\left(\bar{m}^{*} \bar{m}^{*}\right)} .
$$

For modek with two corfirients. defining

$$
\vec{F}_{i j}^{M}=C_{r 1} \bar{m}_{2 j}^{*}+C_{r 2} \bar{n}_{i j}^{*}
$$

the least-square optimization then leads to

$$
\left(\begin{array}{cc}
\left\langle\bar{m}_{k 1}^{*} \bar{m}_{k l}^{*}\right\rangle & \left(\bar{m}_{k 1}^{*} \overline{\bar{n}}_{k 1}^{*}\right\rangle \\
\left\langle\bar{m}_{k 1}^{*} \bar{m}_{k 1}^{*}\right\rangle & \left\langle\bar{n}_{k 1}^{*} \bar{n}_{k 1}^{*}\right\rangle
\end{array}\right)\binom{C_{r 1}}{C_{r 2}}=\binom{\left(\bar{T}_{k 1}^{*} \bar{m}_{k 1}^{*}\right)}{\left(\bar{r}_{k 1}^{*} \bar{m}_{k 1}^{*}\right\rangle}
$$

and similarly for the coefficients at the force and dissipation levels.
The correiations betwern 'exact' and 'noodeled' subgrid-scale quantities are defined in the usual way.

$$
\begin{aligned}
& \eta_{g}=\frac{\left(\bar{g}_{k}^{*} \overline{\boldsymbol{g}}_{k}^{M}\right)}{\left(\overline{\boldsymbol{g}}_{k}^{*} \vec{g}_{k}^{*}\right)^{1 / 2}\left(\overrightarrow{\boldsymbol{g}}_{k}^{*} \overrightarrow{\boldsymbol{g}}_{k}^{\mathrm{M}}\right)^{1 / 2}} . \\
& \mu_{d}=\frac{\left(\bar{d} \bar{d}^{-M}\right)}{(\bar{d} \bar{d})^{1 / 2}\left\langle\bar{d}^{M} \bar{d}^{M}\right)^{1 / 2}} .
\end{aligned}
$$

One interesting quest inn is pusied when using nixed models instead of the simplest models (e-g., using Mordel 1+3 instead of Modei 1 alone or Model 3 aloue): by how much can one expert to improve the correlation? Part of the answer lies in the following identity:

$$
\left(\eta_{r}^{m+n}\right)^{2}=\frac{\left(\eta_{r}^{m}\right)^{2}+\left(\eta_{r}^{m}\right)^{2}-2 \eta_{r}^{m} \eta_{r}^{n} \eta_{m}^{n}}{1-\left(\eta_{m}^{n}\right)^{2}}
$$

where η_{d}^{b} stands for the correlation between n and b. Lpper and lower bounds are obtained as:

$$
\max \left(\left(\eta_{r}^{m}\right)^{2} \cdot\left(\eta_{r}^{n}\right)^{2}\right) \leq\left(\eta_{r}^{m+n}\right)^{2} \leq\left(\eta_{-}^{m}\right)^{z}+\left(\eta_{r}^{n}\right)^{2}
$$

The above formulas alm, hold for correlations at the force or energy dissipation levels by replacing η_{r} by $\eta_{\text {g }} \eta_{d}$. The best situation occur, when the two terms used
in the models (a) each correlate well with the exact sulgrid-scale quantity. and (b) are nor highly correlated with each other. This is mufortunately not the caw for all moxten tested in this paper (see results), as well as in ohber papers ("E. Lund is Sorikar 1992).

We then go on to consider bocal optimization of the morlel's comfficient(s) where spatial tariation is allowed. Although one usually uses dynamic LES models with corfficients) that are averaged (and hence unform) ia the direvions of flow homogeneity (here all three directions), the present study is justified by the hope that some noxdet. in some formulation. might exhibit a better behatior than the others in terms of cowficient(s) uniformity. In the sank spirit. it is believed that dynamic models will then have to work less hard, e.g., reyuire less awraging of the coefficient(s) obrained dyuamically.

The alove least square optimization is then carried out locally. at the tensor level. For niodels with one cofficient the local optimization leads to

$$
C_{r}=\frac{\bar{F}_{k 1} \bar{m}_{k 1}^{*}}{\bar{m}_{i 1} \bar{m}_{k 1}}
$$

For undels with two corfficients, the linear system is solved locally to determine $C_{r_{1}}$ and $C_{r_{2}}$. The local optimization can be done only at the tensor level. Inderd. the force. being the divergence of the sgs tonsor, must remain written in conservative form (so as to have zero global integral in the case of isotropic turbulence). Since C_{r} now depends on spare. it cannot l_{x} pulled out of a derivative surh as $\partial\left(C_{r} \bar{m}_{i}^{*}\right) / \partial r$. (If one were to relax the constraint that the force be conservation. an optimization at the force level woukc. of course. be possible.)

Correlations are then computed in the same way as alowe, at all three levels. At the ransor level. they are now artificially much higher than those obtained with uniform C. Since the C s are optimized locally, their spatial cariation is quite higit. including regions of negative ralues. interesting quantities are evaluated and reported: mean. ras $\left(\left(C^{2}\right)-(C\rangle^{2}\right)^{1 / 2}$. and normalized pdf. the better models exhibiting a sharper ri.e. smaller rms) pdf which is also more skewrd towards positive C.

3. Vorticity-velocity formulation and models investigated

Consider LES in the vorticity-velucity formulation:
with the subgrid-srale matisymmetric tensor defined as

$$
\begin{aligned}
& i_{1}, \stackrel{\text { del }}{=}\left(\overline{\dot{w}_{i} u_{j}}-\overline{\dot{\nu}_{j} u_{1}}\right)-\left(\bar{w}_{i} \bar{u}_{j}-\bar{w}_{j} \bar{u}_{1}\right)=\bar{C}_{2 j}+\bar{R}_{1 j}+\bar{L}_{1,}^{\prime} .
\end{aligned}
$$

where

$$
\begin{aligned}
& \bar{C}_{2}=\left(\overline{\overline{\bar{\sigma}_{i} u_{j}^{\prime}}}-\overline{\overline{\bar{z}_{j} u_{2}^{\prime}}}\right)+\left(\overline{\dot{u}_{1}^{\prime} \overline{u_{j}}}-\overline{\dot{u}^{\prime}, \overline{\bar{u}_{2}}}\right) . \\
& \bar{R}_{i j}=\overline{u_{1}^{\prime} u_{j}^{\prime}}-\overline{u_{j}^{\prime} u_{2}^{\prime}} \text {. }
\end{aligned}
$$

Scaling	C.	C,	C4	$C{ }^{\prime}$	\#r	$7{ }^{\prime}$	72	(Cr)	$\frac{\pi m 8}{m e a}$	η_{r}	$7{ }_{5}$	7.	
\cdots	0.008	0.016	0.013	0.0093	0.12	029	0.34	0.014	4.4	0.57	0.60	0.59	
b	0.012	0.019	0.016	0.013	0.13	0.28	0.52	0.018	4.1	0.56	0.59	0.58	
c	$0.21{ }^{\circ}$	0.35°	0.29°	$0.21{ }^{*}$	0.13	0.28	0.33	$0.23 *$	4.0	0.57	0.59	0.59	
d	0.013	0.037	0.036	0.041	0.07	0.20	0.27	0.012	15.0	0.57	0.60	0.59	
[d]	0.019	0.043	0.036	0.031	0.10	0.26	0.32	0.036	5.8	0.57	0.ce	0.59	
${ }_{\text {d }}^{+}$	0.019	0.037	0.031	0.024	0.11	0.27	0.33	0.032	4.8	0.57	0.60	0.59	
e	0.011	0.029	0.028	0.039	0.07	0.20	0.27	0.0032	16.0	0.57	0.59	0.58	
\|e		0.017	0.032	4.627	0.028	0.11	0.26	0.31	0.028	5.1	0.56	0.59	0.58
e+	0.017	0.024	0.022	0.022	0.13	0.25	0.13	0.023	4.2	0.56	0.59	0.58	

Table 1. Investigation of the influence of scaling. Model $1,128^{3} \rightarrow 32^{3}$ with sharp cutoff. (*: value of $C e^{1 / 3}$).

LES in the vorticity-velocity formulation is a natural choice which requires modeling ouly three quantities. Defining $\bar{\beta}_{1}=\bar{\gamma}_{23}=-\overline{7}_{32}, \bar{\beta}_{2}=\bar{\gamma}_{31}=-\bar{\gamma}_{13}$. $\overline{\boldsymbol{\gamma}}_{3}=\overline{\boldsymbol{\gamma}}_{12}=-\overline{\boldsymbol{\gamma}}_{21}$. together with $\overline{\boldsymbol{\gamma}}_{11}=\overline{\boldsymbol{\gamma}}_{22}=\overline{\boldsymbol{\gamma}}_{33}=0$, one obtains $\nabla \cdot \overline{\boldsymbol{\gamma}}=\nabla \times \bar{\beta}$. Hence, modeling is already at the 'vector' level, since modeling $\bar{\gamma}$ is really modeling $\overline{\boldsymbol{p}}$. Moreover, it is already in the forti: of a solenoidal forcing', $\nabla \times \overline{\boldsymbol{p}}$. For instance. the equivalent of the classical Smagorinsky's model is simply:
Model 1 (eddy-viscosity type):

$$
\bar{\gamma}_{11}^{M}=-? \overline{\bar{\nu}_{i} \bar{r}_{1 j}} \quad \text { with } \quad \bar{r}_{3 j}=\frac{1}{2}\left(\frac{\partial \bar{v}_{1}}{\partial x_{j}}-\frac{\partial \bar{v}_{j}}{\partial x_{i}}\right) .
$$

which is identical to doing:

$$
\frac{\partial \bar{\omega}}{\partial t}+\nabla \cdot(\overline{\bar{\omega}} \overline{\bar{w}}-\overline{\bar{w}} \overline{\bar{\omega}})=\nabla \times\left(\overline{\bar{\nu}} \overline{\nabla^{2}} \overline{\nabla^{2}}\right)+\nu \nabla^{2} \bar{\omega} .
$$

Another model investigated is:
Model 2 (hyper eddy-viscosity type):

$$
-\Delta^{2} \nabla \times\left(\overline{\overline{讠_{t}} \nabla^{4} \overline{\mathbb{W}}}\right)
$$

4. Results and discussion

The velocity-pressure LES formulation is considered first, with the classical Model 1 but different scalings. The results are compiled in Table 1 for the case $128^{3} \rightarrow 32^{3}$ with sharp cutoff.

For mode's that can produce local negative scaling, s. it is always better to restrict it to positive values by using $|s|$ or $s_{+}=\max (s, 0)$: better correlations are obtained in the case of uniform C, and sharper distribution of C in the case of variable C_{r} (smaller ratio 'ros/nean', e.g. 4-6 instead of 15-16). Of the two options. $|s|$ is always slighely better than s+.

For cases with uniform C (optimized at each level), the correlations are different at cach level. typically $\eta_{\mathrm{r}} \approx 0.12 . \eta_{\mathrm{s}} \approx 0.27$, and $\eta_{\mathrm{d}} \approx 0.33$. The choice for the $1 / T$
eraling is fomed to be unimportant as it dese not affect the correlations significantly. Since the bedel representsonly a crude estimate of the sge stresses. the corredations obtained at the tensor leved are quite low. Things inprove a bit when considering correlation at the force level, and even more so at the dissipation level. This is to be experted as one has to work less hand in the modeling effort: a degreses of freedon versus 3 versms 1. Resolts in Lumd d Sovikov (1992) and Clark et al. (1979) for isorope turbulence report $1 / \approx 0.2$ (such correlations are abo obtained here, as prosented at the end of this sertioni. Piomelli et al. (198s) for mobulent chanmel How. and Mc.Milland Ferager (1979) for homogemernts sheat tow reporting $\eta_{r} \approx 0.1$. H: the cas of uniform C. the conchations only uravate the alignument betwern the modei ath the exact puatities not the magnithele. Indeed, C drops out of the there whations defining the comelations. In particular, one cond ner a value which is such that the global dissipation obtained with the model. ($\boldsymbol{d}^{\circ!}$). be equal to the exact glotail dissipation. $\left(\bar{d}^{*}\right): C \neq\left\{\bar{d} ; / ;::^{*}\right\}$. These values are alse reported in the tables.

For caves with matiable ('aptimized locally at the teumer bevel), the corredations are pretty much the same at all levels. To attain correlations in the range 0.560.00. the model has to work hard': highly varying C_{r} field as wern in the ratio rms/mean $4-5$ and in the nommalized podf of Fig. 3.

An investigation is also carried ont wevaluate the relative participation of the two terms $\bar{C}_{1,}^{*}$ and $\bar{R}_{1,}^{*}$ in in the correlations. ser Table ?. As experted from the mathematical detinitions of these terms. the model correlates befter withi $\bar{C}_{i j}^{*}$ than with $\bar{R}_{i,}^{*}$. It alwe correlates better with $\bar{C}_{1,}^{*}+\bar{R}_{i,}^{*}$, han with $\bar{C}_{i,}^{*}$ alone.

\bar{C}	$\stackrel{\rightharpoonup}{R}_{1}$	Ir	'93	$1 / 1$
no	yes	0.0646	0.102	0.171
yes	no	0.108	0.278	0317
yes	yer	0116	0.286	0.336

Table 2. Coutributions of \bar{C}_{i}^{*}, and \bar{R}_{i}^{*}, th the correlations: Moxdel 1 with scaliug (a); $128^{3} \rightarrow 32^{3}$ with sharp cutoff.

Model 2 is considered mext. This model is not ohtained by taking the rurl of Morle! 1 (it would if ν were uniform). Severtheless. since the choice of sealing was found to be :mimpontant with Model 1 . Which means that very local variation of :/t are unimportant. Model 2 is expected to perform as Model 1. This is indeed found to be the case. For srating (a): $C_{g}=0.020, C_{d}=0.016 . \eta_{g}=0.29, \eta_{1}=0.34$.

Model 3 is considered next. The results are reported in Table 3 and in Fig. 3. This model performs significanty better than . Wodel 1 at all there levels, and for hoth cases of miform and variable restficiont. In partionlar. with wambin C_{r}. the

Model $1+3$ with miform confficionts dens uot perfonm substantially better than

Figire: 3. Normalized pdf for Model $1(\bullet)$ and Model $3(x)$ with scaling (a): $128^{3} \rightarrow 32^{3}$ with sharp cutoff.

Mondel	C	C_{3}	C_{d}	${ }^{1} \mathrm{r}$	$1 / 9$	$\boldsymbol{\eta}$ d	(C)	$\frac{\text { meas }}{\text { mean }}$	75	19	ηd
1	0.0086	0.016	0.613	0.12	0.29	0.34	0014	1.1	0.37	0.60	0.59
3	0.0030	00037	0.0034	0.16	0.33	0.39	000040	33	0.59	0.62	0.63
$1+3$	$\begin{aligned} & .0 .0077 \\ & 0.0046 \end{aligned}$	$\begin{aligned} & .0014 \\ & 0.10062 \end{aligned}$	$\begin{aligned} & -0.012 \\ & 0.0060 \end{aligned}$	0.17	0.34	0.40	$\begin{array}{\|c\|} \hline-00059 \\ 0005.3 \end{array}$	$\begin{array}{r} 24 \\ 5.6 \end{array}$	0.75	0.76	0.76
4	0.0089	-0073	-0.076	0.031	-0.21	-0.29	0.1819	12	0.57	0.74	0.53
$1+1$	$\begin{aligned} & 0.01 i \\ & 0.039 \end{aligned}$	0.0 : 0.01	$\begin{gathered} 0.012 \\ -0012 \end{gathered}$	0.16	0.29	0.34	$\left[\begin{array}{l} 0.019 \\ 0.1147 \end{array}\right.$	$\begin{array}{r} 16 \\ 69 \\ \hline \end{array}$	0.7)	0.71	0.73

Table 3. Companison of Morlel 3 and Model $1+3$. Mordel 4 and Model $1+4$. with Model 1: scaling (a): $128^{3} \rightarrow 32^{3}$ with sharp cutoff.
and $\Gamma^{2} \bar{S}_{i j}$ are highly correlated to each other (relative rorrelations $\eta_{r}=0.87$. $\eta_{g}=0.94, \eta_{d}=0.951$. It is found that this model corresponds to diffusion with the hyperviscosity tem ($C_{2}>0$) corrected by some antidiffusion with the viscosity term $\left(C_{1}<0\right)$. In the case with variable coefficients. it is foumd that $C_{T_{1}}$ must vary a let in order to bring the correlations to 0.750 .76 : wry high ratio of rms/mean for $C_{r l}$.

Finally. Model $1+4$ is investigated. Model 4 alone performs very poorly: in the case of uniform rofficient. the optimization leads to a corfficient of different sign whether the correlation is formed at the tensor level, or at the force and dissipation levels; in the cose with variable coefficient, a ratio mms/mein of 12 is obtained.

Model $1+4$ with uniform coefficients does not perform better than Model 1 alone. This is in accordance with results in Lund \& Novikov (1992). This is due not only to the high correlations between the two terms (relative correlations $\eta_{r}=-0.55$, $\eta_{g}=-0.67, \eta_{d}=-0.82$), but also to the low correlations of Model 4 alone. In that respect, Model $1+3$ performs significantly better than Model $1+4$. In the case with variable coefficients, the correlations for Model $1+4$ are in the $0.73-0.75$ level, with not much of an increase in the ratio rms/mean for $C_{r_{1}}$, and even a decrease in the ratio for $C_{r 2}$. This is in contrast with what was obtained with Model $1+3$.
The case where smooth filters are applied to the DNS data is also investigated. In that case, correlations are obtained at the tensor level only. The reason being that the filtered data for the $\tau_{1 j}$, was computed on the original 128^{3} grid, but was only sampled, for output, on a 32^{3} subset of that grid. Since it still contains very significant contributions from all original modes, this data cannot be properly differentiated to obtain the forces. All possible contributions to the sgs tensor were considered and were correlated with Model 1, see Table 4.

$L_{i j}^{*}$	$\bar{C}_{i j}^{*}$	$\bar{R}_{i j}$	C_{r}	η_{r}	$\left(C_{r}\right)$	$\frac{\text { ras }}{\text { nean }}$	η_{r}
no	no	yes	0.00062	0.083	0.0014	7.2	0.41
no	yes	no	0.0054	0.000	0.011	12	0.42
no	yes	yes	0.0060	0.034	0.012	11	0.42
yes	no	no	0.0047	0.067	-0.0027	47	0.41
yes	no	yes	0.0053	0.077	-0.0014	92	0.41
yes	yes	no	0.010	0.27	0.0683	2.8	0.34
yes	yes	yes	0.011	0.26	0.0097	2.6	0.33

Table 4. Gaussian filtering of the 128^{3} DNS; Model 1 with scaling (a).
We feel that the cutoff filter is the most appropriate for generating synthetic LES fields from DNS data as it completely eliminates the 'small scale' information that will never be present in a large eddy simulation. In that sense, a priori tests using smooth filters such as the Gaussian are of a more academic interest. Indeed, an LES simulation would not be able to capture with the 32^{3} grid the 'small scale' information which is still present after smooth filtering of the 128^{3} DNS data. With the Gaussian, the filter value at the cutoff wavenumber (i.e., at the edge of the 32^{3} grid) is $0.663^{3}=0.291$, which is still very significant. At twice that wavenumber, it has dropped to $0.193^{3}=0.0072$. It thus can be argued that a 64^{3} grid (or so) would be needed to correctly capture the important part of the fine grain information left after Gaussian filtering.
Proceeding nevertheless with this study, one finds that the case where Model 1 is correlated with $\bar{C}_{i j}^{*}+\bar{R}_{i j}^{*}+L_{i j}^{*}\left(=\tau_{i j}^{*}\right)$ performs quite well: $\eta_{r}=0.26$ for the case with uniform coefficient, rms/mear of only 2.6 to reach $\eta_{7}=0.33$ for the case with variable coefficient. Similarly ${ }^{\prime}$. veve $\bar{C}_{i j}^{*}+L_{i j}^{*}$. The cases $L_{i,}{ }^{\prime}$ and $\vec{R}_{i j}{ }^{*}+L_{i j}^{* \prime}$ perform very poorly: very iow correlation in the case with uniform coefficient, extremely high value of rms/mean in the case with variable coefficient.

Figure 4. Normalized pdf for Model 1 with scaling (a); Gaussian (•) and top-hat (-) filtering of the 128^{3} DNS.

All other case are such that $L_{i j}^{*}$ ' is not included and perform very poorly, e.g.. the case $\bar{C}_{i j}^{*}+\bar{R}_{i j}^{*}\left(=\bar{F}_{i j}^{*}\right)$, which has only $\eta_{r}=0.084$. In conclusion, the correlation with $r_{i j}^{*}$ is significantly higher than what was obtained with sharp cutcoff ($\eta_{r}=0.26$ instead of 0.12) but the correlation with $\bar{r}_{i j}^{*}$ is significantiy lower ($\eta_{r}=0.084$ instead of 0.12). Finally, very similar results are obtained when using the top-hat filter instead of the Gaussian, see e.g., Fig. 4 for very similar pdf's.

The scale similarity models, Models B, are considered next, first with sharp cutoff filter, then with Gaussian filter.

Type	C_{t}	C_{9}	C_{d}	C_{d}^{\prime}	η_{r}	η_{s}	η_{d}
a	$\ddots .028$	0.022	0.084	0.68	0.043	0.017	0.070
b	0.015	0.031	0.083	0.43	0.039	0.034	0.098
c	-0.0054	-0.044	-0.0	3	1.20	-0.022	-0.12
d	0.0076	0.039	0.090	1.2	0.015	0.031	0.075

Table 5. Scale similarity models, $128^{3} \rightarrow 32^{3}$ with slarp cutoff.

With sharp cutoff, Models B are only compared to \bar{F}_{i}^{*} (since $L_{i j}^{\bullet \prime}$ cannot be captured on the 32^{3} grid), see Table 5. It is seen that very low levels of correlations are obtained regardless of the Model's type. This is in accordance with results by Meneveau \& Lund (1992). Again, one must recall that, in the case of uniform C.
the correlation is independent of C. Nevertheless, when C is optimized as usual, one obtains a very large difference between $C_{d}{ }^{\prime}$ and C_{r}, C_{g}, C_{d}, which is also indicative of very poor models. Thus, with sharp cutoff filter. Bardina's type models show essentially no correlation with the relevant sgs quantities: trace-free tensor $\bar{\tau}_{i}^{*}$. solenoidal force \bar{g}_{i}^{*}. In fact, if anything, Models Ba and Bb only correlate a little when the trace of $\bar{\tau}_{1,}$ is kept ($\eta_{T}=0.13$ and 0.11 respectively).

Type	sgs	C_{r}	η_{r}	$\left\langle C_{7}\right\rangle$	$\frac{\mathrm{rms}}{\text { mean }}$	$1 / \mathrm{r}$
a	$T_{i j}^{*}$	0.14	0.29	0.21	1.8	0.61
	$\bar{\tau}_{i j}^{*}$	0.57	0.70	0.51	0.93	0.73
b	$\tau_{i j}^{*}$	0.47	0.70	0.38	0.90	0.74
	\bar{T}_{i}^{*}	0.29	0.25	0.33	2.8	0.53
c	$\tau_{i j}^{*}$	0.014	0.062	0.0073	48	0.47
	$\bar{T}_{i j}^{*}$	0.37	0.92	0.36	0.57	0.78
d	T_{13}^{*}	0.095	0.20	0.15	2.8	0.57
	$\bar{\tau}^{*}$	047	-0.55	-0.40	1.44	0.64

Table 6. Scale similarity models: Gaussian filtering applied to the 128^{3} DNS.
With Gaussian smoothing, things are completely different, see Table 6. Models B are hire compared to both $\tau_{i j}^{*}$ and $\bar{r}_{i j}^{*}$. Model Ba is 'similar' to $\bar{\tau}_{i j}^{*}$, and correlates indeed very well with it: $\eta_{T}=0.70$ for the case with uniform C, very low rms $/ \mathrm{mean}$ of 0.93 for the case with variable C. Model Bb is similar' to $\tau_{i j}^{*}$ and correlates indeed very well with it: $\eta_{\mathrm{r}}=0.70$ for the case with uniform C, rms $/$ mean of 0.90 for the case with variable C. Model Bc correlates very poorly with τ_{1}^{*}, but extremely well with \bar{F}_{1} : $: \eta_{T}=0.92$ for the case with uniform C, rms/mean of 0.57 for the case with variable C. This is the highest correlation encountered in the course of this study. It is consistent with the 0.8 correlation reported in Meneveaud Lund (1992). Model Bd does not perform well, as expected, since it is the remainder of some quantity after second filtering.

Tiesse impressive results are misleading. Indeed, Gaussian filtering of the DNS data produces a synthetic LES field that still contains considerable contributions from the small scales. As this small scale information will not be present in an real LES, results obtained with the sharp cutoff filter are more representative of what might be expected from using Bardina's models in LES.

The vorticity-velocity LES formulation is now considered. The correlation at the antisymmetric tensor level, $\gamma_{i j}$, is denoted as C_{7}, at the 'forcing' level as C_{g}. at the 'enstrophy dissipation' level as C_{d}. The results obbained with the eddy-viscosity model. Model 1, and with the hyper eddy-viscosity model, Model 2. are presented in Table 7.

The eddy-visersity model in the vorticity-velocity formulation produces signifcantly higher correlations than its counterpart in the velocity-pressure formulation: in the case of unifom coefficient, $\eta_{\gamma}=0.19$ instead of $\eta_{+}=0.12 . \eta_{g}=0.32$ instead of $0.29, \eta_{d}=0.46$ instead of 0.34 ; in the case of variable coefficient, $\eta_{7}=0.71$

Model	C_{9}	C_{g}	C_{d}	C_{d}^{\prime}	η_{γ}	η_{g}	η_{d}	$\left\langle C_{\gamma}\right\rangle$	$\frac{\text { In }}{\text { mei }}$	η_{γ}	η_{g}	η_{d}
1	0.019	0.026	0.019	0.021	0.19	0.32	0.46	0.023	4.6	0.71	0.74	0.80
2	0.0041	0.0046	0.036	0.039	0.23	0.35	0.48	0.0045	1.3	0.73	0.75	0.79

Table 7. Vorticity-velocity formulation; Model 1 and Model 2 with scaling (a); $128^{8} \rightarrow 32^{3}$ with sharp cutoff.
instead of $\eta_{r}=0.57 . \eta_{g}=0.74$ instead of $0.60, \eta_{d}=0.80$ instead ic 0.59 , with essentially the same ratio rms/mean as before, and a pdf which is more skewed towards positive C, see Fig. 5.

Again, the hyper eddy viscosity version of the model performs even better than the eddy-viscosity version. sce Table \bar{i} and pdf of Fig. 5.

Figere 5. Normalized pdf for Model 1 (a) and Model 2 (+) with s aling (a) in the vorticity velority formulation: $128^{3} \rightarrow 32^{3}$ with sharp cutoff.

Moreover, one finds for both models that the coefficients optimized globally are close to each other. and that they are also close to the average of the coefficient optimized locally. This is also indication good candidate models for LES.

For completeness. the case of smooch filtering of the DNS data is also investigated. see Table 8. The Gaussian and top-hat filter produce sibilar results. The eddyviscosity model in the vorticity-velocity formulation performs slightly better than in the velocity-pressure formulation: in the case of uniform coefficient, $\eta_{\gamma}=0.28$ instead of 0.26 : in the case of variable coefficient, $\eta_{\gamma}=0.55$ instead of 0.33 . with

T314	*	C	17	$\left(C_{7}\right)$	$\frac{18}{\text { max }}$	リ
Smuvian	i1)	0.014	028	0:014	21	0.n.3
topliat	is)	0.01:	0.2 .1	0.016	23	0.3
Cixucan	${ }^{3} 11$	0042	0.0.3	0.6009	1.6	0.3
Bephtiat	-	00.0	00.7)	00029	12	0.3

 DNS: Morlell with ratine (at.
 inchuled (i.e.. when uing \bar{F}_{a}, instad of at. the model correlites very penty.

Sof fat, all correlations have bern obrained using the same 125^{3} DNS databine in

 lorit 64^{3} and 32^{3} suthetic LES fields. The regions of the spertra where the cut is done are markeri in Fig . 1 and 2 . Alihough there is no pure $h^{-5 / 3}$-inertial range in this 512^{\prime} computation at such ${ }^{F}$. there is almont an inertial range. the 64^{3} cut Weing to the far night of it. and the 32^{3} cut being within it. With tie $128^{\mathbf{2}}$ database. the $3 \underline{2}^{3}$ cut is als, to the far right of the "inertial range' (actually probably asore at the Ingmamg of the -dissipation range ${ }^{\circ}$, and the 16^{3} cut is w: hini tie inertial range. Result, of thi institiation done in the velority premure formulation are reported in Table 9 and in Fig. 6. The renalts corresporing to the voricity whery formalation are preverl ia Table 10.

Data	C	C_{3}	C	C_{d}^{\prime}	17	15	18	$C_{r}{ }^{\text {i }}$	$\frac{\mathrm{rm}}{\mathrm{m} \times \mathrm{an}}$	$1 /$	if	$1 / 1$
$128^{3} \rightarrow 32^{3}$	0.0avs	0.016	$0.0: 3$	0 (masm	012	0.29	034	0014	4.4	0.78	0.60	0.89
$125^{3} \rightarrow 15^{3}$	0 OMI	0.087	0070	0.069	0.14	0.32	0.36	0.1:	3.3	049	D 3in	0338
$512^{2} \rightarrow 64^{\circ}$	3016	0.019	0.018	0.018	0 13	0.30	042	0022	31	0.9	0 \#0	0.31
$512^{3} \rightarrow 32^{7}$	01029	0 02s	0.02n	0.031	0.29	0.39	0.59	0.036	2.0	061	0 c 4	0.35

Table 9 . Inverigation of different databases and of diferent cut loritions in each database vercity-presure fomulation: Model 1 with scaine ia; sharp cutoff.

Wie concentrate on correlations obtainer! with taiform roefficients. When con sidering differeat cuts within the same database one finds that the cut within the incrtial range produces higher corielations than the cui to the far right of that range. Wi- don't see any obvions reason at this time why this should bre the case. Lererthelos. this tinding holds for both databases investigated and for both formu lations.

Sotice that the superior performance of time vorticity-velocity formulation ower the velecity presoure formmation is wot as marked in the 512^{3} runs as it is in the

Hata	C	(3	C_{1}	$C{ }^{\prime}$	1	! ${ }^{\text {a }}$	11	iC.		4	If	ग4
$128^{3} \rightarrow 32^{7}$	0019		0019	0.021	019	0.32	(146	0025	46	0.71	A. 5	0×3
$512^{3} \rightarrow 64^{3}$	(102z	6128	0023	0.02:	021	0.29	6.n	0025	4.3	0.11	0.73	0×1
$51^{27} \rightarrow 3^{3}+$	0.632	0 0.ia	0.033	003:	0.28	0.3:	062	4035	3.0	0.73	10.74	0 m

Tabie 10. Inverigation of different databases and of differme eut locations in earh databane: vorticity velecity formahtion: Model 1 with scaling (a): sharp, rutoff.

Figire 6. Vormalized piff for Model 11 with scaling (a) in the velocity-pressure
 with starp cotoff
128^{3} rums. In partionder. the $312^{3} \rightarrow 32^{3}$ rawe are seny comparable when C is uniform (still slightly herter when C is allowed to sory,

5. Conclusions

A few con-lusin th can tw made from the invertigation done nsing the sharp cutoff filter to produre the swithetic J.ES fields from the DSS databases. The choice ior the $1 / T$ sealing in the coldy-viscosity is fomad to 10 unimportant as it does not significantly affeet the correlations between moxdeled and rxact sgs quantities at any of the three levels. there frev tensor. solenowdal forcine. dissipation. It is found that the hyper eddy viseonty monel yields higher correlations than the erde-visercity model in twoth the werity pressure and the vorticity velority fornalations. It thenappears as a goond candidate for real LES and should be tested numerically. Sralesimilarity medels exhiht comentially no correlation with the exart ses quantitics
when the diarp cutoff filter is used. The correlations obtained with simple LES nendels in the voricity-veherity formulation are higher than those obtained with
 wrtici: y -whority formuation might be a good candidate for real LES. with rediant ars moditing crrer. If errtainly appears as a natural choice. In should itiso be tesed sumerically in real LES.
Some courlinimis are also reached from the investigations dene using the Gansian and top hat fiters in orfer to produce the synttetic LES field. It in fund that the L_{i}^{\prime}, contribution is essential in order to prociuce significant cortolations. The concelations are then artificielly higher than those obtained xith sharp citoff.
 uro Is ataikiste in a real LES. In particular, some scale similarity noodels exhihit remarkably high correlations when smooth filters are used.

Finally. it is fonnd that the kevel of ohsained correlation is quite scusitive to the databose inverigate d, and to the loration of the spectral reut' used to protere the smiteric LES EidN. Wanything, our incestigation shows tiat me must exercise canfion winet compariug correlarions reported by different authors and when workine with tifferent datalnans and with different noutels or emmulations.

REFEREXCES

Carath. D.. Ghosal. S di Mons. P. 1995 Oa the representation of backisater in dynanar loralization mondel. Píys. Fleds. 7(3), 060-16.
Cabati. D.. Jasse. K de Levd. T 1995 a family oidynamir modeis for largectly simulation. Ann. Res. Bricfs. Center for Turibukene Rescarlt (Stauford Gamenty NASA Ames. $\mathbf{3 5}+40$.
Certtris. S. Mevevat, C. 1996 Statistical equilibrium in 3-1) rurbuirate: implications for hypervisons and moalorai sulgrid unodel. In properamon for goathel abbmessoct.
Clahk. R. A.. Ferziger. J. H. \& Revnolds, W. C. 1979 Etaluation of sulogrid-scale moriels using an accurateiy simulated turbuirn: flow. 's. Fiusd Mech 91, 1.
 and narrow-hand velocity signals in grid-grnerated iskropic harbaleuce. J. Fluid Mech. 48, 273-337.
Gehmado. M. Phomli. C.. Mons. P. © Cabot, W. 1991 Ad. namic subgrad scale eddy-visconity noodel. Phys. Flyids A. 3(7). 1760-65.
Ghosat. S. Livd. T. S. \& Moin, P. 1992 A local dymanic model for large eqdiy simulationt. Ann. Res. Briefs. Center for Turbuleare Mesearch (Stanford (niwenity and NASA Ames), 3-25.
 ization model for large eddy simulation of turbulent flows. J. Flud Mrch. 286. 292.250

Horicti. K. 1993 A proper velocity srate for modeliag subgrid-scale eddy visrosi ties in lerge eddy sinulation. Phys. Finide A. 5(1), 146-57.
Lesifin. M. Comie. P. \& Métats. O. 1995 Numerical inmulations of coberent wrtices in turbulane. Appl Mech. Res. 48(3), 121149.
LII . S.. Mexeveal. C. \& Katz. J. 1994 On the properties of similarity subgridscak modets as deduced from nerasuremeats ia a turbulent jet. J. Fhuid Merk. 275, 83-119.
Livo. T. S. d. Nothov. E. A. 1992 Pesameterization of subgrid-scale strens by the velocity gradient tengor. Ann. Res. Breff. Center for Turbukencr Research (Stanford Cniversity/NASA Antes). 27-43.
M. Milian. O. J. difrazger. J. H. 1979 Direct i.sting of subgrid-scale uodels. AJAA S. 17. 1340.
Mexeveat. C. \& Luvd. T. S. 1992 Search for subgrid-sale parametrtization by projertinat pars:att regression. Proceolinge of the 1992 Summer Progrem Conter for Turindence Resserth (Stanfurd Ciniversity/NASA Ames). 61-8?.
Mayiotr. N. X. Fenzkier. J. H. \& Tevnolds. W. C. 1978 Lerge-ddy smmalaion of a turbulent ximing leger. Report TF-11. Thernosciences Div.. Dept of Merh. Eng. Stanford Eniversity.
Mfon. P. Ai Jinévez. J. 1993 Large eddy simulation of cumplex turbulent flows. AIAA 24'h Flud Dynemics Conference. Ordando. F1.. ALAA paper 93-3099.
Mon. P.. Caram. D. Lend. T., Gnosag S. d. Anselvoll. K. 1994 De. refopurent: and applications of dynamic noodets for large eddy simulation of complex tlows. 7 th Fluid Dynemics Symposium on Apptication of Direct and Large Eddy Sumulation to Trenstion and Terbelence. Chania. Cretc. Greere. AGARD.CP-351. 1:1.9.
Promelli. C.. Mons P. de Fehziger. J. H. 1928 Modet coasistency in iagge addy simulation of turbulent channel flows. Phge. Flutd. 31(7), 1584-91.
Rorialio R. S. 1. MoIN. P. 1984 Numetical simulation of turbulent flows. Ann. Res. Flaud Merh 16, 93.137.
Salvetit. M. V. \& Baverife. S. 1995 A prioritests of a new dynamic subgridsrale s:adel for finitedifictence large-eddy simulations. Phys. Fluids. 7(11), 283147.

Wincrelmavs. G. S. 1905 Some progress in largeeddy simulation using the 3 D vortex particl method. Ann. Res. Briefs, Center for Turbulence Research (Stanford Cinversity/NASA Ames), 391-415.
Zavg. Y.. Strett. R. L. \& Koseff. J. R. 1993 A dyamic mixed subgridsaike nedel and its application to turbulent tecirculating flows. Phys. Fluid. A. 5(12), 3186-96.

NEXT DOCUMENT

LES on unstructured deforming meshes: towards reciprocating IC engines

By D. C. Haworth ${ }^{1}$ and K. Jansen ${ }^{\mathbf{2}}$

Abstract

A variable explicit/implicit characteristics-based advection schene that is wroudorder accurate in space and time has been developed recently for unstructurevl deforming meshes (O'Rourke \& Sahota 1996a). To explore the suitability of this methodology for large-eddy simulation (LES), three subgrid-scale turbulence models have been iuplemented in the CHAD CFD code (O'Rourke \& Sahota 19961): a corstant-coofficient Smagorinsky model. a dynamic Smagorinsky model for flow: having one or more directions of statistical homogencity, and a Lagrangian dynamic Sn:agorinsky model for flows having no spatial or temporal homogeneity (Menevean et al. 1996). Computations have been made for three canonical flows, progressing towards the intended application of in-cylinder flow in a reciprocating engite. Grid sibes were werlevterl to be comparabl. to the coarsest meshes used in earlier spertral LES studies. Quantitaine results are reported for decaying bomogeneons isotropicturbulence. for linear (non-solenoidal) strain of homogeneous isotropic turbulence. and for a plauar channel flow. Corputations are conapared to experimentil measurements, to dirert-numerical simulation (DNS) data. and to rapid-distortion theory (RDT) where appropriate. Generally satisfactory evolution of first and serond monernts is fourd on these crirse meshes: deriations are attributed to insufficiont mash resolution. Issues incleide mesh resolution and computational requirement for a specitied level of accur:scy, analytic characterization of the filtering implierl by the numeriral nethod, wal! treatment, and inflow boundary conditions. To resolve there issues. finer-mesh simulations and computations of a simplified axisymmetric reciprocating piston-cylinder assembly are in progress.

1. Introduction

Contemporar: three-dimensional time-dependent models for flow and rombustion in reciprocatiug IC engines are based on solutions to Reynolds-averaged governing equations (R.A.VS' based modeling; Amsden et a!. 1989. Haworth et al. 1900). In RANS. the local instantaneous value of a computed dependent variable represents an ensemble- or phase-average over many engine cycles at a sperified spatial lor: tion and crank phasing. In general, two-equation ($k-t$) closures have bcen used to model turbulent transport, with standard equilibrium wall functions. Shortcomings of RANS molels have been documented by several generations of turbileture

1 Gill RdD Center

2 Center for Turbuhere Research currenty at Rensselaer Polytechaic Institine
 Tahry \& Haworth (1992. 1996).

An alternative to RANS is large eddy smulation LES . Here the governing rquations are spatially filtered rather rhan eusemble averaged. Explicit account is taken of flow structures larger than the filter width. which is on the order of the mesh spacing. whike the infineuce of unresolved scales is mondeted using a suhgrid-scale (SCiS) mondel Beratme statistics of small-seale turbule wer are experted to is moreuniversal that thone of the large scake. LES offers the promise of wider generality and reduced morleline uncertainty.

LES is particularly appealing for IC engine applications. Turbulence nodel formulation and calibration traditionally have bern carrievl ont in statistically stationary and or honmegerns flows for simple geonetric configurations. To bring these ukedels to lnat in a phase-averaged formulation implies an equivalence letweru ensmble- and spatial or tomporal-averages letgolicity that has lren denesu-
 demands a reasonalike degree of commonality in turlmbere structure betwern the bendmark flow and the ongine. While universality has bern arguel in the limit of fully-developed high-Reyoolds-number broad-inertial-range turbulence. it is dubious for the low Reymolds mumbers (Sertion ti) and complex threv-dimensional transient flows that chararterize the engine.

The same menkrate Reyuols mumbers that make IC pagine fiow problematic for RANS reuder it an apperaling candidate for LES. It has bevin ontimated that
 combustion require at least 100^{3} mo- in points asing serond order or higher mumerical methods. This correoponds to smb-tillimeter meh sparings in a typical antomotive IC eugine and is ust far be yond curreve practice of 250.000 to 500.000 nodes. This mesh density shond suffice to capture large- and intemediate-scale flow structurs. Thus for IC engimes. LES mesh repuirement: are experterl to be comparable to those of RANS.

 at tempts to distimguish anong 'mean.' turbulence. and rerlic tariability components of the flow (El Tahry de Haworth 1992). This divinetion bevomes mont in a spatially-filtered formulation.

A drawbark of LES is that substantially more computational offort maty be re quired compated of RANS. In the engine. for example. arcumulating ensemble-mean statistics via LES require computations through maltiphe cugine cycles. Other issues include givnerric complexity (moving piston and valves) and the relatively inmature state of LES fot modeling complex enginoring flows. It is the purpose of the present research to adrance LES on sewral of these fonts. First. We seek
 methorlology (Sertion 2i. Sernd. we implement and eraluate the performance of

(Sertion 3). And third, we consider several other physical modeling issues that arise in engines, including treatment of solid walls and inflow/outflow boundaries (Saction 4).

2. Numerical methodology

The high-order finite difference schemes and spectral methods that traditionally: have bren used for DNS and LES are not suited to complex geometric configurations: with moving houndaries. On the other hand, the first-order time, second-ordor simardiscretizarions typirally employed for enginecring RANS computations (Amsden et al. 1989. Haworth et al. 1990) are overly dissipative for LES. Here we require lorh that the numerical methodology be compatible with the intender application of in-cylinder flow and combustion, and that it be sufficiently accurate for meaningful large-eddy simulation.

A novel discretization scheme called NO-UTOPIA (NOde-Centered Enstructured TOpology: parallel Implicit Advection) has been developed recently by ORourked. Sahota (1996a. 1996b). NO-UTOPIA is a variable explicit/implicit advection scheme that differences along characteristic directions to yield formal sccoud-order accuracy in space and time, provided that the material-speed Courant number is less than unity. It has been implemented using node-centered variables and an edge-laieed data structur?, allowing fully unstructured meshes.

For the present study, the equations solsed are those of conservation of mass, momentum. and enthalpy; the equation of state is that of an ideal gas with constant specific heats. Computations are compressible, although the Mach number is small for all rases considered here. To accommodate arbitrary mesh deformation. advertive terms in the governing equations are written using velocities relative to the moring grid. A pressure based irerative solution procerlure patterned after SIMIPLE is used.

The momentum equation for a control volume is obtained by integrating the Davier-Stokes equations over an arbitrary volume I' with bounding surface S that is moving with velocity $\underline{\varepsilon}$. Density, Cartesian velocity components, and pressure are denoted by ρ, u_{1}, and p, respectively: the (constant) laminar viscosity is μ_{L} Adopting Cartesian tensor notation with summation over repeated lower-case Roman indices, the momentum equation has the form,

$$
\begin{equation*}
\frac{d}{d t} \int_{1} \rho u_{1} d \tau+\int_{S} \rho u_{2}\left(u_{3}-v_{3}\right) d A_{3}=-\int_{S} p d A_{1}+\int_{S} T_{e f f} n d A_{1}+\int_{i} \rho g_{1} d \tau \tag{11}
\end{equation*}
$$

Here y_{i} is a borly force per unit mass. The effective stiess $\tau_{e n} ;$ is the sum of a viscous or laminar stress τ_{μ} and the subgrid scale stress $\tau_{S G S}$,

$$
\begin{equation*}
\tau_{\text {eff } \mu}=\tau_{\mathrm{L}, 1}+\tau_{\mathrm{SGS} \mu_{1}} \text {, with } \mathrm{I}_{\mu}=2 \mu_{\mathrm{L}} S_{\mu 1}-2 \mu_{\mathrm{L}} \frac{\partial u_{l}}{\partial x_{l}} \delta_{\mu} / 3 . \tag{3}
\end{equation*}
$$

Here $S_{\mu 1}$ is the rate-of-strain tensor. $S_{j i}=\left(\frac{\partial_{u_{1}}}{\partial_{r_{1}}}+\frac{\partial_{a_{1}}}{\partial_{2}}\right) / 2$, and λ_{31} is Kronecker's delta. No supplementary turbulence model transport equations are carried for the subgrid-scale models considered here (Section 3).

Care is needed in the specification of initial conditions. For each flow, we select a reference vekocity and length V_{0} and L_{0} (Section 4). Fluid properties $\gamma=c_{p} / c_{r}$ (ratio of specific heats) and \boldsymbol{R} (specific gas constant) are set to nominal values for air. The Mach number based on U_{0} is $M_{0}=U_{0} / c_{0}$ where $c_{0}^{2}=\gamma R T_{0}$ is the square of the reference sound speed and T_{0} the reference temperature. Reference density and pressure are ρ_{0} and μ_{0}, respectively. Laminar viscosity μ_{L} is set to match the tesired reference Reynolds number Reo. Remaining reference quantities and fluid properties are specified as:

$$
\begin{array}{r}
\gamma=1.4 . R=288.291 \mathrm{~J} / \mathrm{kg}-\mathrm{K}, M_{0}=0.1 \\
\rho_{0}=1.0, \mu_{0}=\left(\gamma M_{0}^{2}\right)^{-1}, \mu_{\mathrm{L}}=\rho_{0} U_{0} L_{0} R \epsilon_{0}^{-1} . \tag{3}
\end{array}
$$

Initial nodal velocities and pressures are prescribed, and nodal temperatures are set such that the initial entropy is uniform. $T=T_{0}\left(p / p_{3}\right)^{(7-1) / 7}$.

3. Subgrid-scale models

The three models considered are of the Smagorinsky type. Here the influence of unresolved (subgrid-scale) motions on the resoired scales is treated as an additional

$$
\begin{equation*}
\tau_{\mathrm{SGS}}^{j t} 102 \mu_{\mathrm{SGS}} S_{\mu_{1}}-2 \mu_{\mathrm{SGS}} \frac{\partial u_{i}}{\partial x_{i}} \delta_{\mu} / 3 \tag{4}
\end{equation*}
$$

The subgrid-scale viscosity μ sGs is taken to be proportional to a norm of the local rate-of-strain $|S|$ and to a filter width Δ.

$$
\begin{equation*}
\mu_{\mathrm{SGS}}=, C_{0} \Delta^{2}|S|, \text { with }|S| \equiv 2\left(S_{1}, S_{13}\right)^{1 / 2} \tag{5}
\end{equation*}
$$

The single model coefficient is C. It is the specification of C, and Δ that distinguishes the three models.

9. 1 Conatent-coefficient Smegorinsky model

The simplest model results from taking C, to be a constant and Δ to be equal to the mesh spacing. To accommodate non-uniform mesh spacing. Δ in Eq. (5) is specified as.

$$
\begin{equation*}
\Delta=V^{1 / 3} \tag{6}
\end{equation*}
$$

where V is the volume associated with a computational element.
Calibration with respect to benchmark turbulent flows has led modelers to adopt different values of C. For homogeneous isotropic dec.ving turbulence, the value $C_{s}=0.17^{2}$ is found to result in a good match with the uneasurements of ConteBellot \& Corrsin (1971) (Sertion 4.1). For planar channel flow, a value of $C_{1}=0.1^{2}$ yields better agrecment with measurements and DNS data (Section 4.3). The nonuniversality of C, motivates the need for a more general model.

3. 2 Dynamic Smegorinsky model

Germano et al. (1991) proposed an approach for etaluating subgrid-scale mociel coetficients from information contained in the resolved fields. Two filter widths are introduced, $\bar{\Delta}$ and $\bar{\Delta}$, where $\bar{\Delta}>\bar{\Delta}$. Dependent variables filtered at scale $\bar{\Delta}$ are denoted by the overbar notation () while the hat notation $\hat{()}$ denotes filtering at the larger scale. Formally, the first filter corresponds to an explicit filtering of the governing equations at the scale $\bar{\Delta}$. In practice, the first filter is implicit in the numerical method. That is, the quantity $\bar{u}_{i}(\underline{x}, t)$ denotes the computed velocity delivered by the numerical methot at position \underline{x} and time t.
The second filter, or 'test filter,' corresponds to a hypothetical second filtering at a larger scale. Thus $\hat{\bar{u}}_{t}(\underline{x}, t)$ represents the LES-computed velocity field filtered at scale $\hat{\bar{\Delta}}$. Stress tensors T_{j}, and T_{j}, represent the subgrid-scale stresses for the two filter widths, respectively: $\tau_{j i} \equiv \rho \overline{u_{j} u_{i}}-\rho \bar{u}_{j} \bar{u}_{i}$, and $T_{j i} \equiv \rho \widehat{\overline{u_{j} u_{i}}}-\rho \widehat{\overline{u_{j}}} \hat{\bar{u}_{i}}$. Here the fluid density ρ can vary in time, but is nearly uniform in space (low Mach puabber). Filtering τ_{j}, through the second filter yields the quantity $\hat{\tau}_{11}=\rho \widehat{\bar{u}_{j} u_{1}}-\rho \overline{\bar{u} \bar{u}_{1}} \overline{\bar{u}}_{4}$. Then subtracting $\hat{\gamma}_{1,}$ from T_{11} yields a second-order tensor $\boldsymbol{L}_{j 1}$, which can be thought of as the stresses resulting from turbulent motions at scales intermediate between $\bar{\Delta}$ and $\overline{\bar{\Delta}}$:

Equation (7) is the Germano identity.
In the Snagorinsky model, subgrid-scale stresses at both scales are modeled consistently as.

$$
\begin{equation*}
r_{11}=2 \rho C, \bar{J}^{2}|\bar{S}| \bar{S}_{, 1} \text {, and } T_{n}=2 \rho C, \hat{\bar{\Delta}}^{2}|\overline{\bar{S}}| \hat{\bar{S}}, \mathrm{n} \tag{8}
\end{equation*}
$$

Equation (8) is substituted into Eq. (7) to yield,

Under the assumption that C, and $\bar{\Delta}$ are constants with respect to the second (test) filtering operation,

$$
\begin{equation*}
L_{\mu}=2 \rho C_{0} \bar{\Delta}^{2}\left((\hat{\bar{\Delta}} / \bar{\Delta})^{2}\left|\hat{S}_{\mid} \hat{\bar{S}}_{j 1}-\right|{\widehat{\mathcal{S}} \mid \bar{S}_{1}}\right)=-2 \rho C_{0} \bar{\Delta}^{2} M_{\mu} \tag{10}
\end{equation*}
$$

Equation (10) defines the second-order tensor M_{j} which, like $L_{j i}$, is directly romputable from th: LES resolved velocity field.

The quantity $C, \bar{\Delta}^{2}$ is chosen in a manner that minimizes the error in satisfying Eq. (10), $\epsilon_{11} \equiv L_{j}+2 C_{, ~} \bar{\Delta}^{2} M_{j 1}$. Here we follow Lilly (1992) in minimizing this error in a least-squares sense with the constraint that $C_{3} \bar{\Delta}^{2}$ does not vary over homogenems directions to yield,

$$
\begin{equation*}
C, \bar{\Delta}^{2}=\frac{\left\langle L_{i j} M_{i j}\right\rangle}{2\left\langle M_{k 1} M_{k l}\right\rangle} . \tag{11}
\end{equation*}
$$

The angled brackets () represent an average over homogeneous directions.
The dynatnic model offers several advantages compared to the constant-coefficient model. Subgrid-scale viscosity increases locally in areas of low grid resolution in response to the high energy fourd between the two filter scales (large $L_{j i}$). And, $\mu_{\mathrm{s} G \mathrm{~s}}$ decreases to zero in case all scales of motion are fully resolved locally ($\boldsymbol{L}_{\mathrm{j}} \rightarrow 0$). A second advantage of the model as formulated here is that the filter width itself $\bar{\Delta}$ need not be explicitly specified. It is the ratio of the filter widths $\hat{\bar{\Delta}} / \bar{\Delta}$ that appears in $M_{i j}$ (Eq. 10). It is experted that the ratio of filter widths should be more uniform than the filter width itself on nonuniform deforming meshes.
A fundamentai limitation of the model as outlined here is that it requires at least one direction of statistical homogeneity. We therefore consider a third variant of the Sin igorinsky model that addresses this shortcoming.

9. 3 Lagrangian dynamic Smegorinsky model

Meneveau et al. (1996) proposied to accumulate the averages required in the dynamic model over flow pathlines rather than over directions of statistical homogeneity. In this case, the error incurred by substituting the Smagorinsky model (Eq. 8) into the Germano identity (Eq .7) is minimized along fluid-particle trajectories. The error to be minimized is the accumulated local squared error E along the pathline followed by the fluid particle that is located at position $\underline{\underline{x}}$ at time t :
 the trajectory followed by the fluid particle at times $t^{\prime}<t$. The quantity $\boldsymbol{W}\left(t-t^{\prime}\right)$ is a weighting function that determines the relative importance of past events, and the error $\epsilon_{i j}$ is the difference between left- and right-hand sides of Eq. (10). As in the previous formulation (Section 3.2), it is assumed that $C, \bar{\Delta}^{2}$ does not :ary strongly over the scale of the test filter. Then the value of $C_{3} \bar{\Delta}^{2}$ that minimizes the error E is.

$$
\begin{equation*}
C, \bar{\Delta}^{2}=\frac{I_{L M}}{I_{M M}} . \tag{12}
\end{equation*}
$$

where.

$$
\begin{align*}
& \left.I_{L M}(\underline{x}, t)=\int_{-\infty}^{t} L_{i}, M_{1 j}\left(\underline{z}\left(t^{\prime}\right), t\right), t^{\prime}\right) W\left(t-t^{\prime}\right) d t^{\prime} \\
& \left.I_{M M}(\underline{x}, t)=\int_{-\infty}^{t} M_{1 j} M_{i j}\left(\underline{z}\left(t^{\prime}\right), t\right), t^{\prime}\right) W\left(t-t^{\prime}\right) d t^{\prime} \tag{13}
\end{align*}
$$

An expedient choice of weighting function is one that decays exponentially backwards in time. $\mathfrak{W}\left(t-t^{\prime}\right)=T^{-1} \exp \left[-\left(t-t^{\prime}\right) / T\right], T$ being a memory or telaxation time scale. This choice allows the integral quantities $I_{L M}$ and $I_{M M}$ to be expressed as solutions to transport-relaxation equations. Meneveau et al. (1906) observed that high mumerical accuracy is not needed in the solutions of these equations, and adopted the expedient of updating nodal values of $I_{L M}$ and $I_{M M}$ by interpolating
from surrounding nodes at the upstream position:

$$
\begin{align*}
& I_{L M}^{n+1}(\underline{r})=\max \left(0 . a\left[L_{1}, M_{i}\right]^{n+1}(\underline{x})+(1-a) I_{L M}^{n}\left(\underline{x}-\overline{\underline{u}}^{n} \Delta t\right)\right) \text {, and } \tag{14}\\
& \left.\left.I_{M M M}^{n+1}(\underline{r})=a\left[M_{i}, M_{i}\right\}\right]^{n+1}(\underline{x})+1-a\right) I_{M M}^{n}\left(\underline{x}-\underline{\underline{u}}^{n} \Delta t\right) .
\end{align*}
$$

where $a=\left(\Delta t / T^{n}\right) /\left(1+\Delta t / T^{n}\right)$. Here superscript $n+1$ denotes quantities evaluated at the current time, superscript n quantities at the previous time, and Δt is the computational time step. Trilinear interpolation is used to evaluate quautities at the upstream position $\underline{\underline{x}}-\underline{\underline{\bar{u}}} \Delta t$ from computed values at the surrounding nodes.
We adopt the relaxation time T selected by Meneveau et al. (1996).

$$
\begin{equation*}
T=\theta \bar{\Delta}\left[\left(2 \Delta^{2}\right)^{3} I_{L M} I_{M M}\right]^{-1 / 8}, \tag{15}
\end{equation*}
$$

where the walue of the model coefficient is $\theta=1.5$. This choice for T tends to redure the memory time in regions of high strain (large $M_{1}, M_{i j}$) and in regions of large nonlinear energy transfer (large L_{i}, M_{i}). The memory time increases to reach back further in time along the particle's trajectory in case $L_{i}, M_{i,}$, remains negative over a persistent period. Negative $L_{i j} M_{i j}$ might otherwise result in negative subgridscale viscosity, implying energy transfer from small to large scales and numerical instability.

4. Flow sonflgurations

In a reciprocating engine, all flow velocities scale with the mean piston speed. which is proportional to the crankshaft rotational speed; length scales are indepeadent of cingine speed. Thus the mean-flow Reynolds number $\boldsymbol{R e}_{b}$ (based on bore diameter and mean piston speed) and the turbulence Reynolds number $R_{\text {e }}$ i hased on turbulence intensity and integral length scale) increase in proportion to engine speed. At $2,000 \mathrm{r} / \mathrm{min}$. these are estimated to be $\mathrm{Re}_{\mathrm{t}} \approx 36,000$ and $\mathrm{Ret}_{\mathrm{t}} \approx$ 1.000. respertively: In-cylinder turbulence, particularly at low engine speeds, is a low-to-moderate Reynolds number phenomenon.

The number of turbulence 'eddy-turnover' times available for the decay of induction generated turbulence in the engine is estimated to be greater than ten. Induction generated turbulence has largely decayed by the time of ignition: it is the breakdown of the large-scale induction-generated flow structure that has the major influence on near-TDC turbulence ad flame propagation. During compression and expansion. the in-cylinder flow is sabjected to linear mean strains. The mean strain due to piston motion is slow compared to turbulence time scales, but persists for a large number of eddy-turnover times. These observations guide our choire of test cases for LES.

4.1 Decay of homogeneous wotropic turbulence

This canonical configuration is of relevance to the engine by virtue of the long times available for urbulence decay between intake-valve closure and ignition. Bemchnark measurements were reported by Comte-Bellot \& Corrsin (1971). There
the temporal decay of homozeneous isotropic turbulence was approximated by gridgenerated turbulence in a und tunuel.

Here we compare computed turbulence kinetic energy decay $\bar{k}=\left\langle\bar{u}_{i} \bar{u}_{i}\right\rangle / 2$ and three-dimensional energy spectra to the experimental data of Comte-Bellot \& Corrsin (1971). Turbulence was generated using a grid spacing of $M=5.08 \mathrm{~cm}$ in a uniform mean flow of velocity $U_{\infty}=10 \mathrm{~m} / \mathrm{s}$, yielding a Reynolds number of $U_{\infty} M / \nu$ $=34,000$. Data were reported at three downstream stations: $U_{\infty} t / M=4$?, 98, and 171.

Computations are done on triply-periodic uniform cubic meshes of length 2π along each edge. Scaling: are such that the edge of the computational box 2π corresponds to a physical length of 0.55 m , and the computational reference velocity $U_{0}=1.0$ corresponds to the physical velocity $U_{\infty}=10.0 \mathrm{~m} / \mathrm{s}$. Other sculings and parameters are summarized in Eq. (3).

The initial velocity field is prescribed by a procedur . lar to that used for incompressible spectral simulations. We begin with a superpe 'tion of Fourier modes having a prescribed energy spectrum but random phases; this is projected onto the divergence-free space. The resulting field represents the low upstream of the first measurement station. It is adranced in time over several turbulence eddy turnover times to adjust to compressibility and to build phase coherence. The process is repeated with different initial fields until a satisfactory match is obtained between the computed and measured energy spectrum at the first measurement station $U_{\infty} t / M=42$.

Comparisons between model and measurement are made on the basis of filtered quantities. Energy spectra are filtered based on our limited understanding of the nature of the filtering implied by the numerical method. We assume that () corresponds to a top-hat filter in physical space at the mesh spacing with trapezoidal-rule integration.

Initial computations are for a mesh of 32^{3} nodes. This has been the tradition. starting point for new numerical methodologies in LES, but is marginal for resolving the physics of the flow. At the initial measurement station $U_{\infty} t / M=42$, the computational box edge corresponds to between ten and twenty integral length scales of the turbulence: fewer than three mesh points span an integral scale. By the final measurement station $U_{c o t} t / M=171$, the turbulence integral scale has roughly dunbled. The computational time step is prescribed such that material Courant numbers are less than unity.

4.2 Linear strain of initially isotropic turbulence

Homogeneous strain of initially homogeneous isotropic turbulence has been a second canonical configuration for analysis, modeling, and experiment. Here we consider the inear expansion and the linear compression for their particular relevance to the IC engine. Results are compared to rapid-distortion theory (RDT). a linearized theory of turbulence that is appropriate in the limit where the mean strain rate is large compared to an inverse turbulence eddy turnover time (Kassinos \& Reynolds 1994). Although IC engines appear to be far from the RDT limit, this nonetheless provides a sound basis for model evaluation. This configuration also
exercises the code's mesh deformation capability.
The behavior that we seek to capture is the distribution of energy among the three normal stress components. We monitor the evolution of the normalized anisotropy :ensor \bar{b}_{i}, as a function of the total strain C^{*}.

$$
\begin{equation*}
\bar{b}_{i j}=\left\langle\bar{u}_{i} \bar{u}_{j}\right\rangle /\left\langle\bar{u}_{l} \bar{u}_{l}\right\rangle-\delta_{i j} / 3, C^{*}=\exp \left[\int\left|S^{*}\right| d t\right] \tag{16}
\end{equation*}
$$

Here S^{*} is the dominant eigenvalue of the modified rate-of-strain tensor $S_{i j}^{*}$, where $S_{i j}^{*}=S_{i j}-S_{11} \delta_{i j} / 3$. In the absence of mean rotation, the evolution of $\bar{b}_{i j}\left(C^{*}\right)$ in the RDT iimit for a non-solenoidal mean strain $S_{i j}$ is the same as the evolntion of $\bar{b}_{i},\left(C^{*}\right)$ for the corresponding divergence-free rate-of-strain S_{i}^{*} (Kassinos \mathbb{A} Reynolds 1994).

The linear expansion is the superposition of spherical (isotropic) expansion and irrotational avisymmetric contraction. Experiments (see Kissinos \& Rey.tolds 1904 fer references) show that the anisotropy $\bar{b}_{i j}$ depends weakly on the magnitude of the mean rate of strain. Thus even for slow linear expansions, the evolution of $\bar{b}_{i}\left(C^{*}\right)$ is expected to be similar to that predicted by RDT. The linear compresion is the superposition of spherical compression and irrotational axisymmetric expansion. In this case, experiments reveal that stronger anisotropy develops at slower mean rates of strain.

Initial meshe's and velocity fields are the same as those for decaying turbulence simulations (Section 4.1). The mean strain rate is imposed by deforming the domain in a manner that maintains a constant rate-of-strain S_{33} along the r_{3} coordinat. direction. The mesh deformation rate varies linearly from zero at $x_{3}=0$ to $S_{33} L_{3}$ it at $x_{3}=L_{3}(t)$, yielding exponential expansion or contraction of the mesh with thae. $L_{3}(t)=L_{3}(0) \cdot \exp \left[S_{33} t\right]$.

4.9 Planar channel flow

The planar channel flow adds the complexity of walls and a single statistically nonhomogensous direction. Computations are performed on a rectangular prism of dimension L_{1} (streamwise) by L_{2} (normal to the wall) by L_{3}. Relevant dimensionless parameters are Reynolds numbers based on the wall friction velocity u_{T}, and on the bulk velocity: $R \epsilon_{\tau} \equiv u_{\tau} \delta / \nu$, and $R e_{B} \equiv U_{B} \delta / \nu$ where $U_{B}=\int_{0}^{L_{2}}\left(\bar{u}_{1}\left(x_{2}\right)\right) d x_{2} / L_{2}$. and δ is the channel half-width. Here angled brackets () denote averages over planes parallel to walls.

Results are computed for a low Reynolds number of $R e_{T}=180$ ($R c_{B} \approx 2.800$). The computational domain is $4 \pi \delta$ by 2δ by $4 \pi \delta / 3$. The initial mesh of 33×65 $\times 33$ nodes is comparable to that adopted by earlier researchers for this Reynolds number. although higher-order numerical methods have been us 1 in most previous work (e.g., Piomelli 1993). Mesh spacing is uniform in x_{1} and r_{3} and follows a tanh distribution in x_{2}. Grid spacing varies from a minimism of $\Delta y^{+}=0.87$ at the wall to a maximum of $\Delta y^{+}=11.7$ at the channel centerline, where the ${ }^{+}$notation denotes standard wall-units scaling ($y^{+} \equiv y u_{r} / \nu$). Computations are periodic in x_{1} and r_{3}, with no-slip boundaries at $x_{2}=0$ and $x_{2}=L_{2}$.

 deraying tarbalenes. Fiter correspmads io a mo-hat in physical pace on a 323

 uamir Smagorinsky monlet.

 r_{1} diaterion giells.

$$
\begin{equation*}
g_{1}=Q_{2}^{-1}\left(1, R_{1} / \wedge_{1} i^{2}\right. \tag{117}
\end{equation*}
$$

 ing is. Eq. 3!. The flow is allowed to develep for atmoti 20 flow-through timen

 Computed result: are compared of DNS remalts of Kim it al. 11985! at the same Rr.

4. Ansummetric piston-cylinder assembly

The target configuation for estativhing the fanibility of in ralimer LES in the
 pancake (that head and piston) chataber though a cot ral pipe of inside diameter 18.7.5 mmand longth IN m. The piston is driven in omple harmonic motion at a speral of 200 r min tirengh a 60 inm stoke: there is no compression. Bore diame-

 files of mean and me axial velocity at 10 mmaxial increments starting at the

Figtre 2. Evolution of filtered three-dimensional energy spectra for homogeneons isotropic detaying turbulence. The filter is a top-hat of width $2 \pi / 16$ in physical space with trapeeoidal-rule integration. Symbols are experimental measurements of Comte-Bellot d: Corrsin (1971): $E_{\infty} t / M=42: \times E_{\infty} t / M=98:+C_{x} t / M=171$. Line are computations ior the constant-coefficient Smagorinsky model with $C_{1}=$ 0.15^{2} on 32^{3} meshes: - $E_{0} t / M=42 ;---U_{x^{t}} / / M=98:--C_{x} t / M=171$.
head for crank pesitions of $36^{\circ} .90^{\circ} .144^{\circ}$. and 270° after top dead-center. This flow can be thought of as an extension of the classic statistically stationary sudden expansion/contraction to a statistically periodic case.
Several pieces of information are sought from these computations. First, we ran evaluate the performance of subgrid-scale turbulence models in a configuration approaching that of an engine on a deforming unstructured mesh. Second, we will build experience with explicit phase- (ensemble-) averaging compared to spatial filtering and traditional RANS uodeling. Third, we can establish mesh resolution requirements, particularly in the vicinity of walls. This includes a determinaiion of the need for explicit wall models beyond that provided by the subgrid-scalc molel. And fourth. we will explore the nature of inflow forcing required to generate realistic in cylisder flow tariability.

5. Results

All displayed results represent the resolved motion delivered by the numerical method in combination with thr specified subgrid-scale model. These are the $\overline{0}$ filtered quantities as defined in Section 3. No attempt has bren made to add explicit subgrid-scale coutributions to the stresses.

5.1 Decay of homogeneous isotropic turbulence.

The effert of filtering on the fraction of resolved turbulence kinetic energy in the experiments of Comte-Bellot \& Corrsin (1971) has been computed. For the filtering

FiglaE 3. Evolution of the normalized anisotropy tensor \bar{b}_{2} as a function of total strain C^{\bullet} for the linear expansion. Open symbols are RDT results (Kiassinos \& Reynatis 1994!: = RDT. h_{11}; Δ RDT. b_{22}; 0 RDT. b_{33}. Lines are computations for the constant-coeffirient Smagorinsky model with $C_{3}=0.17^{2}$ on 32^{3} meshes: $— S_{33} \cdot \bar{K} / \bar{\epsilon} \approx 4 . b_{11} ; \cdots \cdots S_{33} \cdot \bar{k} / \bar{\epsilon} \approx 4 . b_{22} ; \cdots S_{33} \cdot \bar{k} / \bar{\epsilon} \approx 4, b_{33}:-S_{33}$. $\bar{k} / \bar{z}=\varepsilon b_{11}:--S_{33} \cdot \bar{k} / \bar{\epsilon} \approx 8, b_{22}:+4+4 S_{33} \cdot \bar{k} / \bar{\epsilon} \approx 8, b_{33}$. (Results for the lower rate-of-strain S_{33} are indistinguishable from those at the higher S_{33}.)
assumed to be closest to our numerical method (top-hat filter with trapezoidalrule integration) only about 45% of the energy is resolved at the first measurement station on the 32^{3} mesh.

The decay of filtered turbuience kinetic energy versus time for the 32^{3} mesh is displayed in Figure 1. With no subgrid-scale model, there already is substantial decay resulting mainly from numerical dissipation. Constant-coefficient Smagorinsky adds sufficient additional dissipation to yield good agreement with measurements, using the standard value of the model coefficient ' $C,=0.1 i^{2}$). The dynamic Smagorinsky model yields similar results, returning a value of $C, \approx 0.16^{2}$. close to the standard value.

Filtered three dimensional energy spectra are plotted in Figure 2. There is a pile-up of energy at wave numbers just beyond the peak of the spectrum in the computations. Thus while we are able to match the energy decay rate on this coarse mesh. the dynamies of the system are not fully captured. This is not surprising in a computation where less than half of the energy is resolved.

5.2 Linfar strein of initially isotropic iurbulence

Evolution of the normalized anisot ropy tensor as : function of total strain is given in Figs. 3 and 4. Results are presented for two different values of $S_{33} \cdot \bar{K} / \bar{\epsilon}$ to show the influence of mean rate-of-strain. All numerical results are for a 32^{3} mesh using the constant-coeffirient Smagorinsky model $\left(C,=0.17^{2}\right)$. RDT data are shown for

Figtre 4. Evolution of the normalized anisotropy tensor $\bar{b}_{1,}$, as a function of total strain C^{*} for the linear compression. Open symbols are RDT results (Kassinos \&: Rinsiolds 1994): o RDT, $b_{11} ; \Delta$ RDT. b_{22}; o RDT. b_{31}. Lines are computations wir the constant-coefficient Smagorinsky model with $C_{3}=0.17^{2}$ on 32^{3} meshes: $-S_{33} \cdot \bar{L} / \bar{\epsilon} \approx-4 \cdot b_{11}: \cdots \cdots \cdots \cdot S_{33} \cdot \bar{k} / \bar{\epsilon} \approx-4, b_{22}:-\cdots-S_{33} \cdot \bar{k} / \bar{\epsilon} \approx-4, b_{33}$: $--S_{33} \cdot \bar{k} / \bar{\epsilon} \approx-8, b_{11}:--S_{33} \cdot \bar{k} / \bar{\epsilon} \approx-8, b_{22} ;+1+1+S_{33} \cdot \bar{k} / \bar{\epsilon} \approx-8, b_{33}$.

comparison.

For the linear expansion, computations are in gool quantitative agreemrnt with RDT and are iusensitive to the applied mean rate-of-strain (Fig. 3). This is consistent with experimental trends reviewed by Kassinos \& Reynolds (1994).
Results for the linear compression warrant further discussion (Fig. 4). In this case computed results are closer to RDT for the slower mean rate-of-strain, and the degree of anisotropy ince eases with increasing mean rate-of-strain. This is contrary to experimental trends, which show increasing anisotropy at slower rates of strain (Kassinos \& Reynolds 1994).
The Reynolds-averaged turbuleuce stress transport equation for homogeneons turbulence subjected to a uniform mean strain rate is derived by standard procedures.

$$
\begin{equation*}
\frac{d\left(\rho\left(\bar{u}_{k}^{\prime} \bar{u}_{l}^{\prime}\right)\right)}{d t}=-\rho\left(\bar{u}_{i} \bar{u}_{k}^{\prime}\right) \frac{\partial\left\langle\bar{u}_{i}\right\rangle}{\partial x_{1}}-\rho\left(\bar{u}_{i} \bar{u}_{1}^{\prime}\right\rangle \frac{\partial\left\langle\bar{u}_{k}\right\rangle}{\partial x_{i}}+\bar{T}_{k 1}^{r}+\bar{T}_{k 1}^{\prime}-\bar{\epsilon}_{k 1} . \tag{18}
\end{equation*}
$$

The prime notation emphasizes that there is non-zero mean flow, $\vec{u}_{1} \equiv \bar{u}_{\mathbf{i}}-\left(\bar{u}_{1}\right)$. Here the first two terms on the nght-hand side represent the rate of production. $\bar{T}_{k 1}^{r}$ and $\bar{T}_{k l}^{*}$ are the 'rapid' and 'slow' pressure-rates-of-strain, respectively, and $\overline{\mathrm{f}}_{k 1}$ is the riscous dissipation. In the limit of rapid distortion. $\tilde{c}_{k t}$ and $\bar{T}_{k t}^{*}$ are negligible.
 production goes directly into ($\left.\bar{u}_{3}^{\prime 2}\right)$ and is redistributed to the other two components

Figune. 3. Streamwise mean velocity profies normalized by the bulk velocity C_{B} for the planar channel flow at $\operatorname{Re}_{5}=180$. Symbols (\times) are the DNS data of Kim et al. (1987). Lines are computations ofi the $33 \times 65 \times 33$ mesh: ---- constantseefficient Smagrifitity. $e=0.13^{i} ;-$ dynamir Smagorinsky; - Lagrangian dumaic Smagorinsty.
$\left\{\vec{u}_{1}^{\prime}{ }^{2}\right)$ and $\left(\vec{u}_{2}^{2}\right\rangle$ via the pressure rate-of-strain terms. For the low-resolution LES computations of linear conepression, the effective rapid pressure-rate-of-strain model does not redistribute sufficient energy from the 'direct' production component to the other two. Moreover, the effective slow pressure-rate-of-strain madel responds incorrectly to a decrease in the mean rate-of-strain.

5.9 Plasar channel foo

Mean velocity profiles from the dynamic Smagorinsky and Lagrangian dynamic Smagorinsky models are very similar to one another, and show better agreement with DNS than the constant-coeficient model (Fig. 5). All three models deviate from DNS in the logarithmic region ($y^{+}>10$). Ratios of centerline meean velocity to bulk velocity ($\bar{u}_{1}(y=\delta) / U_{B}$ are 1.22 for constant-coefficient Smagorinsky, 1.15 for dynamic Smagorinsky. 1.15 for Lagrangian dynamic Smagorinsky, and 1.16 for the DNS of Kim et al. (1987).

Both dynamic noudels effectively 'turn down' the subgrid-scale viscosity in the vicinity of the wall. The mesh spacing $\bar{\Delta}$ decreases close to the wall, as does the model coefficient C, The latter behavior is demonstrated in Fig. 6. There computed profiles of $C_{!}^{1 / 2}$ extracted from the dynamic model and the Lagrangian dynamic model are shown. For the former model. the standard value of 0.1 is recovered in the center of the flow, with a rapid drop-off to zero at the walls. The Lagrangian dynamir model behaves similarly out to a distance of about $\boldsymbol{y}^{+} \approx \mathbf{4 0}$. but levels off to a lower value of $C_{8}^{1 / 2} \approx 0.06$ at the centerline.

Computed Reynolds-stress profiles from the Lagrangian dynamic model are given

Figure 6. Computed profiles of $C_{9}^{1 / 2}$ adjacent to the lower wall for the planar channel fiow at $R c_{r}=180$. Symbols ($\bullet, \times,+$) are planar-averaged profiles from the dynamic Sraagorinsky model at three instants of time. Lines (- , ---- , --) are planar-averaged profiles from the Lagrangian dynamic Smagorinsky model at three instants of time
in Figs. \bar{i} and 8 . Results from the dynamic model are similar. while the constant coefficient model gieids somewhat poorer profiles (not shown). This is consistent with our findings from the mean velocity profiles of Fig. 5. Normal stress connponents display qualitatively correct behavior (Fig. 7), but there are significant quantitative departures from the DNS data. In particular, on this coarse mesh, all models tend to leave too much energy in the direct production component $\left\langle\bar{u}_{1}^{2}{ }^{2}\right.$) at the expense of $\left(\vec{u}_{2}^{2}\right)$ and $\left(\vec{u}_{3}^{2}\right)$. The value of thr peak shear stress is computed reasonably well. although the LES profile is shifted outward from the wall compared to the DNS data (Fig. 8). These findings suggests that the present mesh resolution is marginal for computing second-order statistics, especially in the log-law region.

5.4 Axisymmetric piston-cylinder essembly

Computations are in progress at the time of this writing. Quantitative comparisons with measurements of Morse et al. (1978) are forthcoming.

6. Discussion and conclusions

This research has explored a candidate numerical methodology and subgrid-scale stress mordels for LES of flow in reciprocating IC engines. The present results hate been obtained using coarse meshes that are representative of minimal mesh requirements for speetral LES. Generally reasonable evolution of first and serond moments has been found nevertheless. This is an encouraging finding. given the low formal accuracy of the numerics. Based on these early results. it is anticipated that acreptable arcuracy can bre obtained using prartical mesh densitics.

Figure 7. Turbulence intensities normalized by the wall friction velocity u_{r} for the planar channe! fow at $R_{t_{r}}=180$. Symbols are the DNS data of Kim et al. (1987): - streanwise (r_{1}) component: = wali-normal (r_{2}) component; + cross-stream (r_{3}) component. Lines are computations using the Lagrangian dynamic Smagorinsky nodel (resolved portiont: ———streamwise (x_{1}) component; --- wall-normal (x_{2}) component: --- cross-stream (x_{3}) component.

Specific deficiencies have been attributed to inadequate spatial resolution. These include the energy spectrum decay for isotropic turbulence and insuffixient energytransfer from the 'direct' production component for linear compression and planar channel flow. The iwo dynamic models have demonstrated an advantage compared to the constant-coefficient model in the planar channel flow. No specific deficiencies of the dynamic subgrid-scale models have been identified. In some cases, model results are not murl different than those obtained in the absence of any explicit subgrid-scale model. This is consistent with earlier LES work for coarse meshes and low-order numerical methods. It remains to establish that these deficiencies can be ovcroone through :nesh refinement, and to quantify resolution requirements for a sperified level of fidelity to experiment or to benchmark computations. Short of explicitly filtering the governing equations at a scale much larger than the mesh spacing. it will remain difficult to isolate numerical inaccuracy from subgrid-scale model performance in LES.

Beyond spatial resolution. the most pressing outstanding issue is the lack of analytic characterization of the filtering implied by non-spectral numerical methods: what is \bar{u}_{1} ? While it is straightforward to analyze and implement a variety of filters in spectral methods (e.g.. spectral cutoff. spatial top-hat, spatial/spectral Gaussian), there has ber'u little analysis to guide the implementation of filters implicit in finite-difference, finite-volume, or finite-element schemes on unstructured meshes. Our experience with the initial spectrum for decaying turbulence shows that the present discretization scheme afferts all wavenumbers to some extent. The same has

Figite: 8. Turbulence shear stress normalized by the square of the wall friction velocity for the planar channel flow at $R e_{r}=180$. Symbols (0) are the DNS data of Kim et el. (1987). Lines (-) are computations using the Lagrangian dynamic Smagerinsky model (resolved portion).
been found for other non-spectral methods that are being explored for unstructured LES (Jansen 1995).

Other outstanding issues for in-cylinder LES include wall treatment and inflow boundary conditions. Piomelli (1993) has shown that accurate LES results can be obtained using the dynamic model at high Reynolds numbers without further explicit wall modeling. The challenge at inflow boundaries is to establish the nature of forcing needed to yield in-cylinder velocity statistics representative of measured 'ryclic variability.' A final determination of suitability awaits the results of finermesh simulations for the three canonical configurations, and multıpie-cycle results for the axisymmetric piston-cylinder assembly.

Acknowledgments

The first author thanks Drs. M. S. Sahota and P. J. O'Rourke of Los Alamos National Laboratory for many he!pful discussions related to the use of CHAD. This project benefited inmeasurably from the opportunity to interact with the other CTR Summer Prugram visitors and hosts. In particular, we thank Prof. Parviz Moin for the opportunity to participate.

REFERENCES

Amsden, A. A., O'Roukie, P. J. \& Butler, T. D. 1989 KIVA-II: a computer program for chemically reactive flows with sprays. Los Alamos National Laboratory Report LA-11560-MS.

Comte-Bellot. G. \& Connsin. S. 1971 Simple Eulerian time correlation of full- and narrow-band velocity signals in grid-generated, 'isotropic' turbulence. J. Fluid Merh 48, 273-337.

El Tahry, S. H. \& Hawonth, D.C. 1992 Directiors in turbulence modeling for in-cylinder flows in reciprocating IC enginer. A/AA J. Prop. G Power. 8, 1040-1048.
El Tahry, S. H. \& Haworth, D.C. 1956 A perspective on the state-of-the-art in IC engine conbustion modeling. SIAM Siztl. Internetional Conference on Combustion. New Orlenrs, LA. (To be submitted for publication.)
Germano. M., Piomelli, U., Moin, P. e Cabot. W.H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A. 3, 1760-1765.
Haworth, D. C. El Tahry, S. H., Huebler. M. S. \& Chang, S. 1990 Multidimensional port-and-cylinder flow calculations for two- and four-valve-per-cylinder engines: influence of invake configuration on flow structure. SAE Paper No. 900257. (Alsc SAE Trans., J. of Ergines, 1990.)
Jansen, K. 1995 Preliminary large-eddy simulations of flow around a NACA 4412 airfoil using unstructured grids. CTR Annmal Research Briefs - 1995. NASA Ames/Stanford Univ. 61-72.
Kissinos, S. C. \& Reynoids, W. C. 1994 A structure-based model for the rapid distortion of homogeneous turbulence. Stenford University Dept. of Mech. Eng. Thermosciences Diziszon Repart TF-61.
Kim. J., Moin. P. \& Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133-166.
Lilix, D.K. 1992 A proposed modification of the Germano subgrid-scale closure method. Phys. Fluid. A. 4, 633-635.
Meneveat. C., Lend. T. S. \& Cabot. W. H. 1996 A Lagrangian dynamic subgrid-scale model of turbulence. J. Flwid Mech. 319, 353-385.
Morse, A. P., Whitelaw, J. H. \& Yianneskis. M. 1978 Turbulent flow measurement by laser Doppler anemometry in a motored reciprocating engine. Im perial College Dept. Mech. Eng. Report FS/78/24.
O’Rotrke. P. J. \& Sahota, M. S. 1996a A variable explicit/implicit numerjcal method for calculating advection on unstructured grids. (Submitted to J. Comput. Phys.)
O'Rotrie, P. J. \& Sarota, M. S. 1996b NO-LTOPIA: the flow solver for the CHAD computer library. Los Alemos Nationa! Laboratory Report. (In preparation.)
Pionelli. U. 1993 High Reynolds number calculations using the dynamic subgridscale stress model. Phys. Fluids A. 5, 1484-1490.

NEXT DOCUMENT

Large-eddy simulation of a backward facing step flow using a least-squares spectral element method

By Daniel C. Chan ${ }^{1}$ and Rajat Mittal ${ }^{2}$

Abstract

We report pieliminary results obtained from the large eddy simulation of a backward facing step at a Reynolds number of 5100 . The numerical platform is based on a high order Legendre spectral elemen: spatial discretization and a least squares time integration scheme. A non-reflective outfow boundary condition is in place to minimize the effect of downstream influence. Smagorinsky model with Van Driest near wall damping is used for sub-grid scale modeling. Comparisons of mean velocity profies and wall pressure show good agreement with benchmark data. More studies are needed to evaluate the sensitivity of this method on numerical parameters before it is applied to complex engineering problems.

1. Introduction

Many aerospace and conmerciai products operate in a dynamic flow environment. The structural integrity, performance, and development costs oi these products are affected by the unsteady flowfields they encounter. In rocket propulsion systems. dysumic loads are the cause of many life limiting and failure mechanisms. For instance, a number of dynamic load related issues manifested themselves during the development of the space shuttle main engine, resulting in hundreds of millions of dollars of program development cost, in terms of hardware redesign and testing. Unsteady flows can also be a very effective sound generating merhanism; George (1920) states that the aerodynamically generated noise increases approximately as velocity to the $6^{\text {th }}$ power. Therefore, the aerodynamic noise generated by vehicles traveling at high speeds can be very annoying to both passengers and commmities located in the proximity of major highways and railroads. In some European countries where trains can travel in excess of 200 MPH , the responsible agency has to erect sound walls along the railroads to minimize the effects of noise pollution. This requirement can drastically increasie the construction and maintenanct costs of a railway system. For passenger cars, unacceptable noise levels inside the compartment can have adverse effects on sales.

In light of the inportance in characterizing the dynamic flow environment in both aerospace and commercial applications. Rocketdyne has initiated a multi-year effort to detplop a general purpose computational fluid dynamics based analysis aysten fon dyuamic load prediction. This system will provide high-fidelity predictive rapabiity through the development of a novel numerical algorithm and

[^11]utilization of distributed parallel computiag. The numerical algorithm is a high order spectral method which provides the unique capability to accurately model complex geometries and rapidly varying flowfields. Parallel computing provides the necessary memory capacity and speed required for large scale computations. All these features have been incorporated in the Rocketdyne Unstructured Implicit Flow (UniFlo) solver. The UniFlo code is capable of performing a hierarchy of fluid dyname analyses including direct numerical simulation (DNS), large eddy simulation (LES) and Reynolds average Navier-Stokes solution (RANS). Only DNS and LES can provide time accurate information that is needed for unsteady turbulent simulations. LES models flow features that are not directly captured by the grid resolution employed. This technique is also known as subgrid scate (SGS) modeling. The LES approach (vs. DNS) can relax the requirement on grid resolution that is normally very demanding for turbulent flow simulations making it an effective tool for engineering analyses. However, one also has to be concerned with the numerical errors that increase as the grid is coarsened. If not controlled properly, these errors can overwhelm the advantage offered by LES. Therefore, the purpose of this work is to first evaluate the numerical accuracy of UniFlo in predicting time dependent flows. Once this is accomplished, we then assess the capability of the Smagorinsky SGS model in predicting turbulent flow. The backward facing step configuration is chosen as the benchmark case since it mimics the flowfield in a rocket engine combustor and existing numerical and experimental data are availabie for comparison.

In what follows, we describe the numerical method, boundary condition and SGS model employed by UniFlo. Numerical results demonstrating accuracy of the method and effectiveness of the Smagorinsky modei are also provided.

2. Numerical method

The Navier-Stukes equations are written as a first order system and can be represented as $\mathcal{L} \vec{u}=\vec{f}$ in a domain $\Omega \subset \Re^{n}$ which is subjected to the condition $\mathcal{B} \vec{u}=\vec{g}$ along a piecewise smooth boundary Γ. \mathcal{C} is a frst-order partial differential operator:

$$
\mathcal{L} \vec{u}=\sum_{i=1}^{n_{1}} \mathcal{A}_{1} \frac{\partial \bar{u}}{\partial x_{i}}+\mathcal{A}_{0} \bar{u}
$$

$n_{d}=2$ or 3. depending on the spatial dimeasions, $x_{t}^{\prime} s$ are the Cartesian coordinates. \vec{u} has a length n, where n is the number of dependent variables, \vec{f} is the forcing function. and both B and \vec{g} describe the appropriate boundary conditions. \mathcal{A} 's are $m \times n$ matrices which describe the characteristics of the system of equations being solved. The idea behind the least squares spectral dement method (LSSEM) is to minimize the residual

$$
R=\mathcal{L} \vec{u}-\vec{f}
$$

in a least squares sense within the domain of interest and construct the functional as

$$
I(\vec{u})=\frac{1}{2}\|\mathcal{L} \vec{u}-\vec{f}\|_{0}^{2}=(\mathcal{L} \vec{u}-\vec{f} \cdot \mathcal{L} \vec{u}-\vec{f})
$$

?y setting $\delta I=0$ and $\delta \vec{u}=\vec{w}$, one can reduce the problem to

$$
(\mathcal{L} \vec{w}, \mathcal{L} \vec{u})=(\mathcal{L} \vec{w}, \mathcal{L} \vec{f}) \quad \vec{w} \in S
$$

where, $S=\left\{\vec{u} \in H_{0}^{1}(\Omega) ; B \vec{u}=g\right.$ on $\left.\Gamma\right\}$, and H_{0}^{1} is the Sobolev space with a compact support. For incompressible viscous flows, the working variables are velocity, pressure, and vorticity. By using this system of equations, one can employ any of the C^{0} functions to approximate the spatial variation of the dependent variables. UniFlo employs isoparametric mapping to Iransform the governing equations from the Cartesian coordinate system to a generalized. coordinate system where the spatial discretization is performed. The domain of interest is divided into a set of non-overlapping elements and within each element, basis function derived from Legendre polynomials is used for spatial discretization. The spatial accuracy depends on the choice of the order of Legendre polynomial bi sis function and can vary from element to element. This approach, also known as spectral element, has been formulated by Ronquist and Patera (1987). LSSEM uses a common interpolating function to approximate all of the dependent variables. Even with the presence of the convective terms, the resulting set of algebraic equations are positive definite and symmetric. LSSEM maintains a tight coupling among all of the governing equations and provides a set of we!l-defined boundary conditions that are consistent with flow physics and mathematical constraints. It does not require any user defined artificial damping factor to maintain numerical stability. To maintain high spatial accuracy at the domain boundary, UniFlo does not need special treatment such as the utilization of ghost points. The convective terms are linearized with the Newton-Raphson procedure so that the spatial derivatives can be discretized implicitly. Sub-iterations are required at each time step for the purpose of minimizing the effect of linearization errors. For most problems, the residual can be reduced by four orders of magnitude in less than three iterations. The accuracy is second order in time with the application of a backward differencing scheme. For instance, the temporal derivative of the velocity component, u, can be discretized as

$$
\frac{\partial u}{\partial t}=\frac{u^{s-1}-4 u^{2}+3 u^{0+1}}{2 \delta t}
$$

where superscripts represent different time levels. The resulting algebraic equations are soived by the conjugate gradient method with Jacobi preconditioning. The structure of the coefficient matrix is completely arbitrary and the solution procedure does not rely on any pre-defined order. More details of this method is given by Chan (1996).

The boundary conditions are: (1) specified velocity at the inlet, (2) no slip along solid walls, (3) stress free and vanishing normal velocity component along the plane of symmetry and (4) 'free boundary' along an outflow plane. For a Cartesian grid, stress frce condition is imposed by setting the horizontal vorticity components to zero. Points located on a 'free boundary' are treated as unknowns and solved directly.

Ficune 1. Streamlines behind a backward facing step at Re $=389$; top half: result for long donain. bottom half: result for truncated domain.

For turbulent flows, we relate the suhgrid scale stresses to t :" strain rate of the resolved velocity field via Boussinesq approximation. The difiusion term of the NavierStokes equations then becones

$$
-\left(\frac{1}{R e}+v_{i}\right) c_{i j} k \frac{\partial w_{k}}{\partial r_{3}}-\frac{\partial v_{i}}{\partial x_{j}} 2 S_{v}
$$

where v_{i} is the eddy viscosity, S_{1}, is the strain rate, and \sim is the vorticity. The va'se of e_{i}, is equal to zero muless each of the number 1.2 , and 3 occurs as a su'script. Furthermore, 1 ,th is equal to 1 if the order of subseripts is cyclic, it becomes of 11 if the order of subscripts is not cyclic. The eddy viscosity is computed as

$$
\begin{aligned}
& v_{1}=(C, \Delta)^{2} \mid S_{i}, l f \\
& \Delta=(\delta x y \delta z)^{1 / 3}
\end{aligned}
$$

where C, $=0.1$ and f, is the Van Driest damping furction defined as

$$
f_{:}=1.0-\exp \left(\frac{-\delta^{+}}{26}\right)
$$

In reality the value of C, is not constant and can change in time and space. Vear a corner, b^{+}is deternined with the shortest normal distance from the adjacent walls Thif procedure is somewhat ad hoc and is problem dependent.

Figere. 9. Predi-ted profiles at an axial distance of 5 inket heights behind a backward facing step with $\boldsymbol{R e}_{\boldsymbol{t}}=\mathbf{3 5 9}$. - results obtained with long domain --.- results obtained with triacated domain. (r) axial velocity profile and (b) vorticity profic.

3. Numerical results and discussion

To demonstrate the effertiveness of the current outfiow bonadary condition. we app! y it :o compute the laminar for behind a backward facing step studied ex-:-rrimentally by Armaly et al. (1983). The Reynoids number. based on the inlet height and avcrage welority. is 359 The ratio between the inkt and step heights is 0.94 . Flow mparates whitud the step and reattaches at an axial distance that is - yeal to alvout cight step, heishes from the plane of expansion. Two extt donains. one intig and on short. are used. For the long domain rase, the axial length behind ine ste p is $1 \overline{1}$, the flow has room to reattach after separation and recover to -fuliy-developed fow: therefore. the downerean influcnce on the flowfied tear the :•ep is small. and for comparison we can use the predicted profiles as the basciine. For the short dom: in case. : he outflow plane. which cuts through the separated region. is located at 5 iniet heights bein's the step. Because of thic, accuracy of the predicted profiles is strmagly mfluenced by the outfow lomiday cond: :on. Fon tiur dependent turbulent fiow, this sitcation is similar to having i. 7 eddy pass across an outfow boundary. A parabolic profice is imposed atong the ink: plane which is locatec: at 2 inket heights upstream of the expansions. Figure 1 shows the grid systems and stramlines predieted by Cuiflofor both the short and long domains. In both rases. 5 collocation points are placed within each element. The total mumber of elenents: $\mathbf{i} 2$ for the long domain and 36 for tire short domain. The fow pattern is almost the same in tooh caves. For the shot domain case. laving : : teverse fow on part of the onffiow boindary does not present numerical concterace prointin and this further demonstrates the robustness of the rurrent utmoriwat methed and ouffow boimdary condition. The predicted reattachment is 8. 6 time the ialet heright andis in goed agreenebe with the test data. Armaly ot al. aloc, report that at $R_{t}=389$, the flow lrgins to separate from the uppry wall

Figune 3. Prerlicted profiles behind a backward-facing step with Re $=800$:
 of 7 and (biaxial low ation of 15 .
rould not be mea:ured. This phonomena is correctly predicted by UniFlo. Figure 2 show: the axial velocity and vorticity profiles at an axial location of 5 inlet beights behind the step. The irend in both rases is ifentical, with only less than : i percent discrepaney on the magnitude.

The next test raw in due to Gartling 1990) and Gresho et al. (1993). The purpose of this exerriw is to answer some of the gastic ns saind by Gresho et al. as

Figure 4. Predicted wall vorticity distribution for a backward-facing step with $R_{f}=800, \circ \mathbf{5}^{\text {th }}$ order, $\Delta 6^{\text {th }}$ order, and $07^{\boldsymbol{t}^{t}}$ order, (e) upper wall and (b) lower wain.
to whether spectral nethods can handle flow geometries with a sharp corner and predict the correct flow behavior. Through careful numerical stidies and stability analysis, they conclude that at a Reynolds number of 800 , the flow behind a backward facing step with $1: 2$ expansion ratio is indeed steady. With this in mind. we first perform the simulation as a steady state problem by turning off the transient terms in the Vavier-Stokes equations. The rectangular flow domain is $\mathbf{1 7}$ units long and 1 unit high. The flow enters the domain along the top half portion of the left boundary with a parabolic profile. The Reynolds number hased on the step height and mean velocity is 800 . Figure 4 shows the grid skeleton eniployed; rhere are 4 elements in the vertical direction and 11 elements in the streamwise direction. Within each element, we apply $5^{\text {th }}, 6^{\text {th }}$, and $7^{\text {th }}$ order polynomials, respectively, in earh of the two directions. Figure 3 shows the comparison between the predicted profiles and benchmark data at two different streamwise locations. All except the rertical velocity profile at the axial location of 7 show an excellent agreement wirh the bencimark data of Gartling. Figure 4 shows the vorticity distribution. which is proportional to shear stress. along the bottom and top boundarics. By examining these plots, one can determine both the separation and reattachment points. Along the lower wall. Uniflo predicts a reattachment lergth of 6.1, whercas along the upper wall. it predicts a separation at the strean wise location of 4.8 and a reattachment at the streamwise location of 10.5 . These predictions are in excellent agreement with the benchmark data. These results also indicate that for steady flow computation, numerical error incurred from using an under-resolving grid is very localized.

We then rompute the same problem by treating it as an unsteady flow. Initially: the flow is stagnant inside the domain. Figure 5 shows the temporal evolution of the streamlines for the case where $6^{\text {ih }}$ order polynomials are used inside rarh element. Overall this grid resolution produces satisfactory results for steady state calculation. however, this is not the case tor time accurate simulation. A transient process. which involves a sequence of vortex shedding, takes place along the upper

Ficime 6. Strmanline showing the time evolution of the fiowfield lehind a backward frime ciep at a Reynolds muiber of soo computation performed with a 1s . 4 gril sud $6^{\text {" }}$ order Legendre polywomals: asymptotic state is seady from wep to bettom time 10. 20. 30. 50. 80 . 100. and 140.
before attenfting to explan the waderlying fiow physire.
Haknix whiswa some of the relecant numerical issues, we then use Cmiflo to simulate the thite dimensional backward facing step configuration where experi nurual data of Jovic and Drwer (1994). DXS data of Le and Monn 1994, and LES
 emplowel is thons in Fis 7 There are 13 elements in the streanwise diretion, 6 shements in the vertiral diertien and 6 efewent in the spanwis directinh. Within

Figure. 8. Time and spanwise average flow quantities predicted by !nifio for a three-dimensional backward facing step at $R e=5100$, top: pressure coefficient along bottom wall, - UniFlo prediction, -- DNS result of Le \& Moin---- LES result of Akselvoll \& Mran, and o experimental result of Jovic \& Driver; bottom: axial velocity profiles at selected streamwise locations: ——— UniFlo, a DNS result of Le \& Moin.

4. Summary

We have demonstrated that a spectral based flow solver can be used to simulate the flow behind a backward-facing configuration. The weak singularity located at the corner does no' present numerical problem to the least squates inethod. Sumerical error can generate unsteady flow phenomena that could be mistaken as real flow physirs. Thereiore, grid dependence stady is paramount (more so that
the sterady state flow calculation) in unsteady fow simulation. The preliminary results obtained from the LES show good agremment with bexh experimental data and numerical data. Further studies are needed in order to understand the role of the sulogrid seake noolel in these simulations. The Smagorinsky uorlel with Van Driest wall damping is, however, difficult to implement for complex geometries. Future work will include the implementation of dynamic models that do not req:irwall damping function and user specified model constaut.

5. Acknowledgments

The first athor is supported by the Rockeidyere IRdD program and be would like to thank Munir Sindir and Steve Barson for their continuing interest in his work. Technical disenssion with Charles Meneveau. Ken Jensen, and Dan Haworth provided many insightful ideas on LES. Parviz Moin made all this possible and his hospitality i- greaty approciated.

REFERENCES

Akselvohi. Kivt \& Moin, Parviz 1905 Large erdy simulation of turbulent confined connmiar jets and turbulent flow ower a backward faring step. TF-63. Department of Mechanical Engineering. Stanford Eniversity:
Abuali: B. F.. Derst. F., Pemeira. J. C. F.. A Schonég. B. 1983 Experimental end therretical investigation of barkward-facing step flow. J. Fluid Mech. 127, 473496.
Chin. Davifi. C. 1906 A least squares spectral clenent method ior incompressibie ilow simulations. Procedings of the Fiften Intermational Conference on Nemencai Methodi in Flaid Dynamics. Springer-Virlag.
Gantins: David 1990 A tes! problem for outfow boundary conditions Flow over a backward-facing step. Int l. J. for Num. Mt th. in Fluids. 11, 953.967.
Gforge: Albert R 1990 Aatomobile Acrorlyuanic Noiss. SAE Transactions. 99-6, 43:-457.
Grfaho. P. M., Gartimg, D. K.. Cliffe. K. A., Garhat. T. J. Spencf. A. Winters. K. H. Giodm!ch, J. W'. A Tomizysnht, T. R. 1993 Is the steady viscous inconmerssible 2n fiow over a backward-facing step at Re $=800$ stable? Int 7. J. for Nurr. Meth. in Fluids. 17, 501-541.
Jovic. S. \& Dratir. D. M. 199; Backwardfacing step measurement at low Revolds mumier $R_{e_{h}}=5000$. SASA Terhuical Memoramlum 10S807. Ames Rewarch Center, Mohtett Field. CA 94035-1000.
 over a backward facinge step, TF-5s. Dept. of Merhatucal Engr.. Stanford Cniversity:
 method for th. Stefan Problem. Int l. J. fur Num. Meth. in Engr. 24, 29739295.

NEXT DOCUMENT

Evaluation of a vortex-based subgrid stress model using DNS databases

By Ashish Misral AND Thomas S. Lund ${ }^{2}$

The performaice of a subgrid stress (SGS) model for large-eddy simulation (LES) developed by Misra \& Pullin (1996) is studied for forced and decaying isotropic turbulence on a 32^{3} grid. The physical viability of the model nssumptions are tested using DNS databases. The results from LES of forced turbulence at Taylor Reynolds number $R_{\lambda} \simeq \mathbf{9 0}$ are compared with filtered DNS fieids. Probability density functions (pdfs) of the subgrid energy transfer, total dissipation, and the strech of the subgrid vorticity by the resolved velocity-gradient tensorr show reasonable agreement with the DNS data. The model is also tested in LES of decaying isoropic turbulence where it correctly predicts the decay rate and energy spectra measured by Comte-Bellot \& Corrsin (1971).

1. Introduction

The aim of this study is to use DNS data of isotropic turbulence to evaluate the performance of a new subgrid-stress model. LES is performed for both forced and decaying turbulence, and statistics are compared with appropriately filtered DNS fields and with some experimental results. The SGS stresses are calculated from a structural model of the subgrid vorticity proposed by Pullin \& Saffman (1994). henceforth PS. This model has some similarity to the eidy-axis structure model for one-point closure proposed independently by Reynolds \& Kassinos (1995). PS assume that the subgrid structure consists of an ensemble of straight stretched vortex structures each with an arbitrary intercal vorticity distribution. Some support for this type of structure of the fine scales is provided by the observed tendency, in several numerical simulations, for the alignment between the vorticity vector and the eigenvector corresponding to the algebraically intermediate vaiue of the principal rate-of-strain. Moreover, stretched-vortices have been used to make quantitative predictions for a range o? fine-scale turbulance properties (Lundgren 1982, Pullin \& Safman, 1993, 1994). Misra \& Pullin (1996) have examined and implemented several different versions of the locally anisotropic model of PS. In this report we will discuss one such model and examine its performance when measured against experiment and filtered DNS.

[^12]
2. Vortex orientation model

In the PS model. the orientations of the structures are given by a podf of the distribution of Euker-angles describing the transformation from laboratory to structurefixed axes. The Reyuolds stresses are proportional to the turbulent kinetic anergy of the wortex collection times a tenser-moment of the priff. For example, a deltafunction pdf in which all vortices in a subgrid domain have a common direction described by the unit wector è gives Reynolds stresses.

$$
\begin{equation*}
r_{i j}=\left(\delta_{i j}-\dot{e}_{1} \dot{\varepsilon}_{j}\right) \int_{k_{c}}^{\infty} E(k \cdot d) \tag{1}
\end{equation*}
$$

where k_{c} is the cutoff wavenumber and the subgrid kinetic energy is given by $K=$ $\int_{t,}^{x} E(f) d k$. PS proposed a simplified version of the mondel using a rapid-distortionlike approximation in which the orientation of the subgrid vortices have a twodelta function pdf defined by the eigenvectors corresponding to the largest two eigenvalues of the resolved rate-of-strain tensor \tilde{S}_{y}. It ran be shown that such a model can not produce backscatter. In this report we study the performance of a slight variant of their original model wherein there is alignment between the rigenvector corresponding to the maximum eigenvalue of the rate-of-strain tensor. \dot{e}_{3}, and the resolved vorticity vector. $\dot{\Delta}$. The Reynolds stresses are then given by

$$
\begin{equation*}
T_{i}=\left(\mu\left(i_{2}-\dot{i}_{3 i} i_{3}\right)+(1-\mu)\left(\delta_{i}-i_{0}-\frac{\rho}{j}\right)\right) \int_{k_{c}}^{\infty} E(k) d k . \tag{2}
\end{equation*}
$$

where μ is the fraction of structures alignal with the thaximally extensive eigenvector and e^{*} is the unit vector along is. As partial justification for (2) we remark that one should expect complete alignment with in in the DNS limit. We currently rake $\mu=0.5$. In order to calculate the subgrid energy. K, a local balance between production by the resolved scales, and the sum of subgrid and resolved scale dissipation is assumed. When coupled to an assumed holmogorov subgrid energy spectrum produced by the (unknown) internal structure of the vortices with a cutoff at $k \eta=1$, where $\eta=\left(\nu^{3} / \epsilon\right)^{1 / 4}$ is the local Kolumporov length. an equation sufficient to determine the dissipation is obtained. This is given by

$$
\begin{align*}
\epsilon=2, \tilde{S}_{i 3} \tilde{S}_{1}- & \frac{3 \hbar_{0}}{2{\Lambda_{c}^{2 / 3}}_{\epsilon^{2 / 3}}\left(1-\left(k_{r i}\right)^{2 / 3}\right) \tilde{S}_{i j}} \\
& \times\left(\frac{1}{2}\left(\delta_{i j}-\tilde{i}_{3 i} i_{3 j}\right)+\frac{1}{2}\left(\lambda_{i j}-i_{i}\left(j_{j}\right)\right) .\right. \tag{3}
\end{align*}
$$

where $\boldsymbol{K}_{\mathbf{0}}$ is the Kolmogorov constant. When the mosid parameter $\boldsymbol{K}_{\mathrm{u}}$ is specified. (3) can be solved for the total dissipation ϵ and the sobgride energy determined from the Kolmogoror spectrum. This gives closure.

Equation (3) has the dineasions of $L^{2} T^{-3}$; we therefore divide (3) by $k_{e}^{4} t^{3}$ which results in two non dimensional parameters (see Misra A: Pullin for details).

$$
\begin{align*}
& \hat{S}_{1}=\frac{2 \tilde{S}_{i j} \tilde{S}_{1 j}}{k_{c}^{4} \nu^{2}} . \\
& \hat{S}_{2}=\tilde{S}_{2}, \frac{\left.\left(\frac{1}{2}\left(\delta_{1}\right)-\dot{\epsilon}_{31} \dot{\epsilon}_{3}\right)+\frac{1}{2}\left(\delta_{1}-f_{1}, \dot{j}\right)\right)}{2 k_{c}^{2} v} \tag{4}
\end{align*}
$$

where \hat{S}_{1} represents the resolved scale dissipation while \hat{S}_{2} represents the stretch experienced by the subgrid vortices by the resolved velocity-gradient tensor. The SGS dissipation may be written as,

$$
\begin{align*}
\varepsilon_{2 g a} & \equiv-\widetilde{S}_{i j} T_{i j} \\
& =-\tilde{S}_{i j}\left(\frac{1}{2}\left(\delta_{i j}-\tilde{e}_{3 i} \tilde{e}_{3 j}\right)+\frac{1}{2}\left(\delta_{i j}-e_{i}^{\omega} \epsilon_{j}^{\omega}\right)\right) K \tag{5}\\
& \sim-\widehat{S}_{2} K \\
& =\tilde{S}_{s t r}^{\prime} K
\end{align*}
$$

where $\dot{S}_{z t r}^{\prime}$ is the component of $\dot{S}_{1 ;}$ aligned with the vortex. Hence backscatter. defined by $\epsilon_{\text {sg }} ; 0$ occurs whenever $\widehat{S}_{2}>0$ - the subgrid vortices are being compressed on the average - while $\widehat{S}_{2}<0$. the vortices are axially stretched - gives cascade.

This model has been implemented for both forced and decaying box turbulence by Misra \& Pullin. They examine several alternative scenarios for determining the instantancous orientations of vortices in a given cell.

3. Results and discussions

The incompressible, filtered Navier-Stokes equations are solved in a 32^{3} box, with and without forcing, using periodic boundary conditions in all three directions. A Fourier-Galerkin pseudo-spectral method is used with ' $3 / 2$ dealiasing rule' for the non-linear terms, i.e. 32 Fourier modes in each direction were advanced in time, the computation of the non-linear terms were done using 48 modes in each direction. A second order explicit Runge-Kutta scheme is used for time advancement.

9.1 Decaying turbulence

We study decaying isotropic turbulence in order to compare our results to the experiment of Comte-Bellot and Corrsin. They measured the energy spectrum at three downstream locations in grid turbulence. One can relate this to decaying isotropic turbulence by invoking the Taylor approximation. We mimic their experiment by studying turbulence in a cubical box with periodic boundary conditions. In a frame of reference moving with the mean flow speed,

$$
t=\int_{0}^{x} \frac{d x^{\prime}}{\bar{U}\left(x^{\prime}\right)}
$$

where x is the downstream distance from the grid and $\bar{U}(x)$ is the mean flow velocity over the cross-section of the tunnel. We have non-dimensionalized the experimental data by the following charecteristic velocity, length and time scales: $L_{r e f}=\sqrt{3 L_{0}^{\prime 2} / 2}, L_{\text {re } f}=L / 2 \pi$ and $t_{\text {re } f}=L_{\text {re } f} / U_{\text {ref }}$. In their experiments the velocity fluctuation at the first measuring station is $\sqrt{U_{0}^{\prime 2}}=22.2 \mathrm{~cm} / \mathrm{s}$, the freestream speed is $U_{\infty}=10^{3} \mathrm{~cm} / \mathrm{s}$ and the spacing of the turbulence generating mesh

Figure 1. Decay of resolved (-) and subgrid (----) kinetic energy. No model: ….... . Experiment: Resolved, nabgrid. 4 .

Figire: 2. Time evolution of specira in decaying turbulence. Experiment: 0. $\mathrm{t}=42$: $\Delta, \mathrm{t}=98$; $0, \mathrm{t}=171$. Simulation at corresponding times: - .
is $M=5.08 \mathrm{~cm}$. The size of the computational box. $L-11 . M$. was chosen to contain roughly four integral scales. The times at the three stations were measured in terms of $U_{\infty} t / M$. The initial Taylor Reynolds number is $R_{\lambda} \simeq 80$. In order to compare the resolved and the subgrid part of the turbulent energy produced by the computation. the measured spectra have been integrated over the relevant scale ranges.

Figure 1 shows the deray of the resolved energy with time. The LES gives good agrement with experiment. The dotted line is the result of ruming the simulation with the model switched off. It is evident that the model plays an important role in predicting the correct decay of the kinetic energ. Aside from the parameter μ (set to 0.5). the model requires a value of the Kolmogorov constant. While acceptable results were obtained with the standard value of $\boldsymbol{K}_{0}=1.5$ a slight improvement was observed when higher values were used. The results in Fig. 1 were obtained with $K_{0}=1.0$. While this value is on the edge of the uncertainty band from experimental measurements (Sreenivasan 1995), it is well within the predicted range.
from numerical simulatica; Jiméner et al. report a value of $K_{0} \approx 2$ in a $\mathbf{2 5 0}{ }^{\mathbf{3}}$ DNS of isotropic turbulence at $\boldsymbol{R}_{\boldsymbol{\lambda}}=94.1$. It is possible that elevated values of the Kolinogorov constant in numerical simulatiors is a low Reynolds number effect. If this is the case, it stands to reason that a larger value should be used in the present simulations which are also performed at relatively low Reynolds number.

The decay of the subgrid energy with time is also shown in Fig. 1. Note that the subgrid energy is obtained from the model without the solution of additional field equations. The subgrid energy is a quantity derived from a knowledg. of the resolved field and the chosen subgrid energy spectrum; it therefore can not he initialized to match the experimental value. Figure 2 shows a plot of the resolved energy spectra with the mea urements at the initial time and then at the two later instants. T n nitial spectrum is generated to match the experimental date, while the later two curves are the preciicted spectra arising trom the LES calculation. Figure 1 gives the area under the curve of Fig. 2 at the three time instants, over the iesolved range of scales.

9.2 Forced turbulence

Forcing is achieved by exciting low wavenumbers such that the totel energy injection rate is constant in time. A certain selected number of Fourier modes are chosen from a wavenumber shell $|\boldsymbol{k}|=\boldsymbol{k}_{\mathbf{0}}$. The Fourier coefficient of the forcing term is then written as,

$$
\begin{equation*}
\widehat{\mathbf{f}}_{k}=\frac{\delta}{N} \frac{\hat{\tilde{U}}_{k}^{*}}{\left|\hat{\tilde{U}}_{k}^{2}\right|} \tag{6}
\end{equation*}
$$

for all modes in the specined shell. The above choice of $\widehat{\mathbb{f}}_{k}$ ensures that the energy injection rate, $\sum \widehat{\mathbf{f}}_{k} \cdot \tilde{\tilde{U}}_{k}$, is a constant and equal to δ. We have chosen $k_{0}=2, N=$ 20, and $\delta=0.1$ for all the runs. (See Carati et el. 1995)

Simulatious with forcing were performed such that a statistical steady state is reached when staistics are collected. Results in this report are rresented for Taylor Reynolds number, $R_{\lambda} \simeq 85$ in order to make comparisons with 128^{3} DNS results at approxima ${ }^{+1}$ ly the same Taylor Reynolds number.

Figure $3 \mathrm{a}-\mathrm{b}$ shows scatter plots of \hat{S}_{1} versus \hat{S}_{2} from the LES as well as from filtered D.NS data. These plots show the intensity of the vortex stretch as a function of the resolved dissipation rate. Notice that the DNS data displays a significant fraction of points with positive stretch parameter, \hat{S}_{2}, (backscatter) whereas the model rarely predicts these events. Quantitatively, the DNS shows roughly 30% backscatter, which is consistent with previous measurements (Piomelli et al. 1991). In contrast, our model yields only $\sim 3 \%$ backscatter. While there is clearly a large discrepancy in the prediction of backscatter in Fig. 3, it should be noted that the percentage of backscatter can be controlled through the parameter μ in Eq. 2. $\mu=1$ corresponds to complete alignment with \tilde{e}_{3} and results in no backscatter. while $\mu=0$ corresponds to complete alignment with $\dot{\psi}$ and gives about 40% backscatter. When $0 \leq \mu<0.4$, the decay of the kinetic energy appears correct, but the decay of the energy spectra is somewhat unsatisfartory with a trend towards flattening of the

Figene 3. Scatter plot of S_{1} and \hat{S}_{2} in fitered DXS (a) and LES (b)
spectrum at later times. In the range $0.4 \leq u \leq 1$, there is a general inscasitivits to μ, leadiag to correct statistics and diminisäing backscatter. The performam- of the model for all value of μ in forced turbulence is satisfactory. Presently we show results for $\mu=0.3$ which are typical of the behanor of the decay of the resolved enersy spectrum and of the resolved and subgid energy for $0.4 \leq 1 \leq 10$

An interesting feature of Fig 3 is that all points lie within a bounding paratoln An estimate based on a locally two-dimensional maximum stretch' scenatio for $S_{\text {, }}$, gives a bounding pazabola $S_{1}=16 \hat{S}_{2}^{7}$. We find howerve that $S_{1}=12 S_{2}^{2}$ gives a slighty better boundary and so this curve is displayed in the figotre. The impontance r backscatter has been a question of debate though there is s me e lence in the literature of its importance in wall-bounded flows. The bart-nter property of the model is also llustratel in Fig ta, which shows a pdi of the streth. that part of the velocity gradient tensor which stretclies the sulgrid vorticity. The stretrh is suitably normalized by $\sqrt{71 \nu}$. While the two curves peak at approximately the same location, the LES show: predoninant stret ching. Figure 4t is a plot of the pif of the subgnid energy transfer. : . ite points on the lefl of the origin exhilit backscatter. It is clear from the figure that the LES does well in the cavade region. The pdf of the total dissipation $\log _{10}(6 / 6)$ is displayed in Fig. tr. The total dissipation c is a positive definite puantity by coastruction as defied in i31. The divtribution of appears to be approximately log -nornal.

4. Concluding remarks

The behavior of an SGS model for LES has beer tested agninst fitered DNS fields at similar Reynolls numbe .s. The model is stable and appears to produce a good quantitative description of the resolved flow and of the subgrid enersy. It shows the right decay rate and gives geod agreement with the experiments of ConteBellot and Corrsin. The model seems to work well for forced turbulence. Misra

Figere 4. Pdf of: (a) stretch, (b) subgrid energy transfer, (c) total dissipation. —— LES, ---- DNS.
\& Pullin demonstrate that it produces negligible SGS dissipation in the limit of fully resolved flow. A small amount of backscatter is produced by the version of the model tested presently albcit not as much as is indicated by the filtered DNS field. An adjustable parameter in the model is the Kolmogorov constant. The value presently used is within the bounds of experimental values. The model is about 25% more expensive in CPU time than the simple Smagorinsky model. Some subgrid mode! features show qualitative but not strong quantitative agreement with the equivalent quantities from filtered DNS fields at a similar Reynolds number. It remains to be seen how well the model will function for free-shear or wall-bounded flows. Future work will aim at constructing models with alternative representations of the subgrid vortex orientations.

Acknowl-dgments

AM was partially supported under NSF Grant CTS-9634222 and wishes to acknowledge fruitful discussions with Prof. D. I. Pullin. Hospitality provided by CTR during the 1996 Summer Program is gratefully acknowledged.

REFERENCaS

Conte-Bellot. G. © Corrsin. S. 1971 Simple Enk rian time corrchation of full
 Fluid Mech. 48. 273-337.
Carati. D.. Ghosal. S. \& Mons. P. 1995 On the repremtation of harkisrattet in denamir localization models. Phys Fluidi 713). G06-616.
Jimenez.J. Whay A. Saffman. P. G. de Roxahio. R. S. 1993 The strurture of intense verticity in homogenems isorropic turlmience. J. Flutd Mech. 255. 60 90.
 Phys Flurds 25. 2193-2203.
Mason. P. and Thonson. D. 1992 Stochastic back wather it large evdy simula tion of boundary layers. J. Fluid Mech. 242. 31-is.
Miska. A. de Pelilis. D. I. 1996 a vortex-beivel viligrid stress model for largerddy simulation. Submitted to Phys Fluds
Phomelli. C.. Cabot. W. H., Moin. P.. Lef. S. 1991 Subgrid-scal- hark-matter in turbulett and transitional flows. Phys Fixads 8. 215-224.
 near-wall turbulence. Phys Fluids 8. 215-224.
 turbulent fine scales. Phys Fluds A 5. 126-145.
 spertra for a vortex model of homogenenus animerrepic turbukice. Phys Fluids 6. $3010-302 \mathrm{~T}$.
 hommgeneous urbulence. Proc. R. Soc. London A. 8i-104.
Smacorinshy, J. 1963 General circulation experimern-w with primitive equations. Mon. Weather Rer. 91. 99.
Shemitasal. K. R. 1995 On the universality of the Kolmogoto constant. Phy. Fludd 7111. 2778 2784.
Vincent, A. \& Alenegrizi. M. 1994 The dyamis of vorticity tules in hone. genemus turbulence. J. Fluid Mech. 258. 24j-2j̈.

NEXT DOCUMENT

Hydroacoustic forcing function modeling using DNS database

By I. Zawadzki', J. L. Gershfeld ${ }^{1}$, Y. $\mathbf{N a}^{\mathbf{2}}$ and M. Wang ${ }^{3}$

A wall pressure frequency spectrum model (Blake 1971) has been evaluated using databases from direct numerical simulations (DNS) of a turbulent boundary layer (Na d Mon 1996). Good agreement is found for moderate to stro g adverse pressure gradient flows in the absence of separation. In the separated flow region. the model underprediets the directly calculated spectra by an order of inagnitude. The diserepancy is attributed to the violation of the model assumptions in that part of the flow domain. DNS computed coberence length scales and the normalized wall pressure cross-spectra are compared with experimental data. The DNS results are consistent with experimental observations.

1. Introduction

Understand:ng the physics of the interaction of the airfoil turbulent boundary layers incident to the trailing edge is of interest to the designers of practical aifframe components and lifing surfaces. Flow at trailing edges involves complex phenomena including adverse pressure gradient effects, flow separation. vortex shedding. and pressure scattering at the edge boundary discontinuity. It is not surprising then. that even an approximate treatment of practical cases, particularly from the vantage point of sound gencration, ezcounters serious difficulties. Inviscid flow theories that capture the purely acoustic interaction of the flow with the trailing edge have been developed (Howe 1978.1988). Several experiments have also been performed (Brooks \& Hodgson 1981, Blake 1986) which shed some light on the physirs of the viscous flow problem. Well designed experimental efforts are invaluable in improving our understanding of the phenomena as demonstrated by Gershfeld et al. (1988) and Blake \& Gershfeld (1989). They are. however, limited in terms of providing global information about the flow. One of the principal weaknesses of the experimental estimations of the flow acoustic source terms is that they are essentially ad hoc. The experimentalist must assume a priori which of the several potential flow acoustic sources are relevant so that estimates of the dipole source strength may be made. It is only when the direct dipole sound field is measured that the empirical estimates of the forces associated with the direct dipoles can be determined to be relevant. Cifortunately, there have been very few successful measurements of the trailing edge direct dipole sound field. When the inviscid

[^13]rurbuknt flow dipole sonnd formulations of Howe (1978. 1988) are applied with a Kutta ondition. the prerlicted dipole sound field doxs not agrer with experimen tal data (Brooks A Hodgson 1981). Only when the Kutta condition is removed does his model agree. Viscous DNS calculations may add insight into this modeling dilemma. The adzantage of flow databaves obtained bey me:ans of numerical simu lations is that they contain spatial and temperal data throughout the flow domain which is not attanable in laboratory experiments.

Trailing edge thows of interest often include both attached and separated thow regines (Brooks de Hodgson 1981. Blake 1984). With that in mind. we utilize the numerical database developed by Na A Moin (1996). Since the database includes flow with adverse pessure gradient and separation, it was well suited as a first step towards modeling of the more complex flow trailing edge interartions. Our goals were two-fold. First. we wanted to re-examine the database from the point of thew of an aeroacoustician to complement the results already presented by Sa d. Moin. (There is a certain degree of skepticism anong the applienl communit! as to whether relativety low Reynolds number DSS calculations can be of use for predicting high Reynolds number fows found in practical reanzations. Wall pressure spectra reported by Na A. Moin show many features and trends observed in the experiments, a hint that D.SS calculations arc, in fart. relevant.) Our second goal was to revisit a wall pressure model developed lone betore there were means of reliably assessing its accuracy or limits of applirability. DNS database provides such means since it contains both the complete flow data neressary for the input to the model as well as directly calculated wall pressures which can be nsed to verify or invalidate the mompledictions.

2. Wall pressure model

 wall normal. and spanwise mordinate. respertively, white n. r, u (or $u_{1}, i=1.2 .3$! will be the corresponding fluctuating velocity components. Other quantities pertaining to a given coordinate direction will carry an appropriate coordinate sulncript ef.g. k_{g} is the streamwise component of the wave-number vector k. For an it. compressible flow invoking the usual boundary laym approximation craluation of pressui" cati le redured to solving the Poissonis equation iser. for example. Blake 1986)

$$
\begin{equation*}
\Gamma^{2} \mu(x . t)=-2 \rho_{0} \frac{\partial r}{\partial r} \frac{\partial((x . t)}{\partial y}-\mu_{0} \frac{\partial^{2} u_{1} u_{j}}{\partial r_{t} \partial r_{3}} \tag{11}
\end{equation*}
$$

where C is the mean streamwise velocity. Lilley (1960 denived a solution of Eq. (1) in terms of the wave manber frequency spectrman of the wall pressure.

$$
\begin{equation*}
\Phi_{p p}\left(\mathbf{k} \cdot \nu^{\prime}\right)=\frac{4 \rho_{0}^{2} k_{x}^{2}}{k_{z}^{2}+k_{z}^{2}} \int_{0}^{x} d y \int_{0}^{x} d y^{\prime}-\left(y+y^{\prime}\right) \sqrt{k_{z}^{2}+k_{i}^{2}} \Gamma(y) \Gamma\left(y^{\prime}\right) \Phi_{r}\left(y \cdot y^{\prime}: \mathbf{k} \cdot x^{\prime}\right) . \tag{2}
\end{equation*}
$$

where $k=\left(k_{r}, k_{:}\right)$is the wave number vector in the plane parallel to the wall. $T(y)=\frac{\partial r}{i / 4}$ is the mean shear, and $\Phi_{v}\left(y, y^{\prime}: \mathbf{k} .-1\right.$ is the cross-spertral density of
the vertical velocity field. Equation (2) was derived under the assumption that the second term on the right hand side of Eq. (1) is negligible compared with the first term, and that the source field is spatially homogeneous in the (k_{x}, k_{z}) plane. Blake (1971) further modified Lilley's solution by introducing a separable model for the vertical velocity spectrum:

$$
\begin{equation*}
\Phi_{r}\left(y \cdot y^{\prime} ; \mathbf{k} \cdot \omega\right)=\overline{r^{2}}(y) \bar{R}_{\mathrm{vr}}\left(y \cdot y^{\prime}\right) \dot{\omega}_{\mathrm{v}}^{z}\left(k_{x}\right) \phi_{\mathrm{rv}}^{z}\left(k_{z}\right) \phi_{m}\left(\omega-k_{x} U_{c}\right) . \tag{3}
\end{equation*}
$$

Here, $\overline{v^{2}}(y)$ is the mean square of vertical fluctuating velocity. $\hat{R}_{v v}\left(y, y^{\prime}\right)$ is a normalized correlation in the y-direction. $\phi_{m}\left(\omega-k_{r} U_{c}\right)$ is the moving axis spectrum, \boldsymbol{C}_{c} is the convection velocity, and $\phi_{r r}^{r}\left(k_{r}\right)$ and $\phi_{r e}^{z}\left(k_{z}\right)$ are wave number spectra defined as the Fourier transforms of, respectively, normalized streamwise and spanwise separation correlation functions of vertical velocity. (We use the lowercase symbol ϕ to denote the normalized spectrum functions. The normalization is: $\int_{-\infty}^{\infty} \phi\left(k_{i}\right) d k_{t}=1$.)

Using (3) Blake (1971) obtains the wall pressure frequency spectrum by integrating Eq. (2) with respect to the wave number components $k_{x}, k_{:}$. The final result can be written in the form

$$
\begin{equation*}
\left.\Phi_{P r}(\omega)=4 \rho_{0}^{2} \int_{0}^{\infty} d y \int_{0}^{\infty} d y^{\prime} \bar{v}^{2}(y) \hat{R}_{r e}\left(y \cdot y^{\prime}\right) \tau(y) \tau\left(y^{\prime}\right) \frac{1}{U_{C}} \dot{\sigma}_{v r}^{r}\left(\frac{\omega^{\prime}}{U_{C}^{\prime}}\right) I \frac{\omega}{U_{C}}, y \cdot y^{\prime}\right) . \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
i\left(k_{r}, y, y^{\prime}\right)=\int_{-\infty}^{\infty} d l_{;} \frac{k_{z}^{2}}{k_{x}^{2}+k_{z}^{2}} e^{-\left(y+y^{\prime}\right) \sqrt{k_{s}^{2}+k_{i}^{2}} \phi_{r r}^{z}}\left(k_{z}\right) . \tag{4a}
\end{equation*}
$$

Taylor's hypothesis of frozen convection was used in the integration leading to Eq. (4). Mathematically. the hypothesis states that $\phi_{m}\left(k_{r}-\frac{v_{c}}{v_{r}}\right)=\delta\left(k_{x}-\frac{u_{i}}{u_{c}}\right)$. which leads to the following equivalence of the normalized wave number spectrum $\phi_{\text {rr }}^{F}\left(k_{z}\right)$ and the frequency spectrum $\varphi_{r r}(\omega)$:

$$
\begin{equation*}
\phi_{\mathrm{rt}}^{z}\left(k_{\mathrm{z}}\right)=\frac{1}{V_{c}} \dot{\sigma}_{\mathrm{rr}}\left(\frac{\omega}{U_{C}}\right) . \tag{5}
\end{equation*}
$$

In order to evaluate Eq. (4.4a) one needs to compute the vertical correlation $\bar{r}^{2}(y) \dot{R}_{\text {ef }}\left(y . y^{\prime}\right)$. the mean shear $T(y)$, and the wave number spectra $\varphi_{r r}^{r}\left(k_{x}\right)$ and $\varphi_{\mathrm{zr}}^{2}\left(R_{:}\right)$(See discussion in sections 4.2 and 4.3 on seiecting the location at which the spectra should be evaluated). Calculation of these quantities from the DNS database is a straightforward matter. We should point out that in principle one could compute the cross-spectral density function $\Psi_{\boldsymbol{v}}\left(\boldsymbol{y}, \boldsymbol{y}^{\prime} ; \boldsymbol{k} . w^{\prime}\right)$ without resorting to the soparable model (Eq. (3)) and integrate numerically Eq. (2) directly to obtain the pressure frequency spectrum. Besides net being physically revealing. such a procedure. however, would be prohibitively expensive in terms of computational time and memory.

We should also point out the modeling described above is applicable only to convective wave numbers near $k_{z}=\mu / U_{\mathrm{C}}$. In other words. Eq. (4) does not encompass sources outside of the convective range. Other models of wall pressure
spectrum (Chase 1980) could be used to include bruader range of wave numbers. However. trailing edge noise is dominated by scattering of convective wall pressures; (with boundary discontinuity providing the conversion mechanism to acoustic wavenumbers - Howe (1979). Therefore. from the standpoint of acoustic radiation, Blake's simplified approach to computing the wall pressure spectrum should be sufficient.

3. DNS database

Most of the data presented here (with the exception of Fig. 2a) will refer to the separated flow calculation in the Na \& Moin (1996; database. Following Na \& Moin. we introduce the won-dimensional variables gi:en by

$$
\begin{equation*}
u_{i}^{*}=\frac{u_{t}}{L_{0}}, \quad r_{i}^{*}=\frac{x_{i}}{\delta_{i n}^{*}}, \quad t^{*}=\frac{t L_{0}}{\delta_{i n}^{*}} . \quad p^{*}=\frac{p}{\rho l_{0}^{\tau_{0}^{2}}} \tag{6}
\end{equation*}
$$

where C_{0} is the mean velocity at inlet and $\delta_{i n}^{0}$ is the (dimensional) inlet displacement thickness. All quantities discusse. 4 in the following sections, including the wave number and frequency spectra. incorpora:e this nondimensionalization. The superscript *. denoting uon-dimensional quantities, has been dropped to simplify notation.
In order to establisit for the reader the reference coordinates for differeat flow regimes. the mean streamlines were reproluced in Fig. 1.

Figthe: Mean flow streamlines.
In non-dimensional units (Eq. 6) the streanwise and spanwise extent of the computational domain is, respectively, 350 and 50 . The vertical height is 64 . Flow separation is induced by prescribing suction-blowing velecity profile along the upper boundary. As a result, strong adverse pressure gradient exists between the nondimensional coordinates $r=90$ and $x=150$. Boundary layer separation occurs around $x=160$. Coordinate $r=220$ corresponds to the center of the separation bubble. Grid resolution is $513 \times 193 \times 129$ points in the streamwise, wall-normal. and spanwise directions, respectively. The Reynolds number based on inlet momentum thickness and free stieam inlet velocity is 300 . For additional details of the flow calculations, including description of the computational method, we refer the reader to $\mathrm{Ne} \&$ Moin (1996).

4. Results and discussion

4.1 Wall pressure data enalysis

Standard tools of correlation analysis were utilized to analyze the DNS calculated wall pressure data. We wanted to establish whether DNS results, which are obtained for a relatively low Reynolds number, are in agreement with experimental data. The comparisons also served to validate our numerous computer codes. Let $\mathbf{r}=\left(r_{x}, r_{3}\right)$ be a separatiou vector in a plane parallel to the wall. Defining the cross-correlation function of a field quantity q as an ensemble average.

$$
\begin{equation*}
R_{q q}(\mathbf{x}, \mathbf{r}, \tau)=\left\langle q^{\prime}(\mathbf{x}, t) q^{\prime}(\mathbf{x}+\mathbf{r}, t+r)\right\rangle \tag{7}
\end{equation*}
$$

the cross spectrum function is the Fourier transform of (7) with respect to the time delay:

$$
\begin{equation*}
\Phi_{\varphi q}\left(\text { x, r. }, \psi^{\prime}\right)=\int_{-\infty}^{\infty} R_{q q}(X, r, \tau) e^{-i \omega \tau} d \tau \tag{8}
\end{equation*}
$$

Coherence is defined as the cross spectrum squared, normalized by the local autospectrum:

$$
\begin{equation*}
\gamma^{2}(x, r, w)=\frac{\left|\Phi_{q q}(x, r, w)\right|^{2}}{\left|\Phi_{q q}(x, 0, \omega)\right|\left|\Phi_{q q}(x+r, 0, w)\right|} \tag{9}
\end{equation*}
$$

The Corcos (1963) model of the cross-spectrum of tne wall pressure, p, has the form
with A and B modeled as exponentially decaying functions. These functions are calculated by expressing the square root of the coherence (Eq. 9) in terms of the similarity variable $\omega r / L_{C}$. The results for the streamwise component are shown in Fig. 2.

As a reference, the results for the zero pressure gradient flow, obtained using a separate D.NS database (Na \& Moin 1996, Chapter 3), are plotted in Fig. 2a. They are closely described by the experimentally observed exponential function with decay constant $a=-0.125$ (Brooks \& Hodgson 1981). Abraham \& Keith (1995) report similar agreement with the experimental results for DNS simulated turbulent channel flow. When an adverse pressure gradient is present, however, the streamwise coherence curves decay at a much faster rate (Fig. 2b) and the Corcos constant has to be altered. A reasonable fit is obtained with a decay constant $a=0.4$. This trend is in agreement with the observations of Schloemer (1967). We evaluated the Corcos " A " function for several streamwise locations corresponding to varying degree of pressure gradient and found that the decay constant increases monotonically with the pressure giadient.

By contrast, we found the rate of decrease for the spanwise Corcos similarity function " B " to be practically independent of the pressure gradient. As shown in Fig. 3a. the results at $x=120$ agree reasonably with the experimentally observed exponential rate of decrease $b=-0.7$. The situation changes dramatically, however.

Figler 2. Streamwise coherence in Corcos similarity form. (a) Zero pressure gradient flow for selected values of frequency ω : $\bullet 0.31 . \operatorname{3.47} \nabla 0.63, \circ 0.79,00.94$. $\times 1.1$: —— $\epsilon^{-0.125-r_{x} / H_{0}}$. (b) Adverse pressure gradient flow at $x=120 ; \omega=$

Figltaf 3. Spanwise coherence in Corcos similarity form. (a) $x=120$, (b) $x=220$; for selected values of frequency: $0.21,-0.42, ~=0 . \overline{0} 9 . \circ 0.8, ~-1.0 ;$
when the function is evaluated inside the separation bubble (Fig. 3b). All the curves stay very close to a constant value of unity which demonstrates that the wall pressure in the separated flow region is essentially two-dimensional.

Another experimentally measurable characteristic of the wall pressure is given by the frequency dependent streamwise and spanwise length scales. These are obtained by calculating the coherence for a suitably chosen separation vector and integrating
the result over the separation distance. For example, the spanwise length scale is given by:

$$
\begin{equation*}
\Lambda_{z}(\mathbf{x}, \omega)=\int_{0}^{\infty} \sqrt{\gamma^{2}\left(\mathbf{x}, r_{z}, \omega\right)} d r_{z} \tag{11}
\end{equation*}
$$

where r_{2} is the spanwise separation distance. Gershfeid et al. (1988) have calculated both spanwise and streamwise coherence length scales for their trailing edge measurements which included adverse pressure gradient effects. They have assumed the Corcos relation: $\Lambda=C \frac{U}{W}$ and proceeded to calculate the proportionality constant C for varying flow conditions. They have found the constant value to range between 0.5 and 1.5 for the spanwise length scales and between 1.75 and 6.0 for the streamwise length scales. Figure 4 shows that the DNS calculated length scales fall within the range observed by Gershfeld et al.

Figure 4. (a) Streamwise coherence length scales: - DNS, ….... $1.75 \mathrm{U} / \omega$, ---- 6.0/ ω. (b) Spanwise coherence length scales: •DNS, $\cdots \cdots \cdot 1.5 \mathrm{U} / \omega,---0.5 \mathrm{C} / \mathrm{w}$.

One of the quantities required for the integrand of Eq. (4) is the two-point correlation of vertical velocity. Hunt et al. (1987) have demonstrated that for boundary layer flows the normalized correlation has an approximately self-similar form when expressed as a function of $y / y^{\prime},\left(0 \leq y \leq y^{\prime}\right)$. In Fig. 5 we plot the correlation with the normalization as prescribed by Hunt et al.
In the attached region (Fig. 5a) the self-similarity can be clearly observed for values of y^{\prime} up to 4. At the streamwise location where the correlation in Fig. 5a was calculated $(x=80)$, the $y^{\prime}=8$ position lies too close to the boundary layer edge so the self-similarity is not expected to be preserved there. On the other hand, at the center of the separation bubble the boundary layer thickness is much larger than 8, and as a result none of the curves plotted in Fig. 5b shows drastic departure from the other curves. However, the collapse is not as good as for the first four y locations in Fig. 5a. This is not surprising as the flow in the separated region does not at all resemble a typical boundary layer profile.

Figure 5. Two-point correlation of wall-normal velocity component. (a) $x=80$. (b) $x=220$: $-y^{\prime}=0.5 . \cdots y^{\prime}=1.0, \cdots \cdots \cdots y^{\prime}=2.0 .-y^{\prime}=4.0 .-\cdots y^{\prime}=8.0$.

4.2 Discussion of the wall pressure model assumptions

For the sake of completeness we list the assumptions made in deriving the wall pressure model Eq. (4):
1 . Boundary layer approximation.
2. Spatial homogeneity of the source term in the planes parallel to the wall.

3 . Dominance of the linear source term over the nonlinear part.
4 . Spatial localization (in the wall-normal direction) of the sources.
5. Spectral separability of the source field.
6. Taylor's hypothesis of frozen convection.

Assumption 1 is readily satisfied before the flow separation. This allows neglecting certain terms when deriving the Eq. (1). In the separated region, instantaneous velocity vector plots (Na \& Moin 1996. Fig 5.14) show very small velocity vectors with frequent flow reversal in the region between the wall and the separated shear layer. Therefore. in this region the boundary layer approximation, which presumes preferable mean flow direction with the streamwise component being much larger than the other components, is no longer valid.

Assumption of spatial homogeneity is implicit in expressing the pressure and velocity fields in terms of wave number spectra (Eqs. (2) and (3)). Strictly speaking one cannot expect to find homogeneity in the streamwise direction in a spatially developing flow. All we can hope for is for the flow to be "locally homogeneous", in the sense that the streamwise variation is locally small enough so that computing the ensemble average ($E_{q} .7$) and taking the Fourier irtinsform with respect to the streamwise separation is physically meaningful at least for a certain range of the wave numbers. Figure 6 shows one of the diagnostics of the spatial homogeneity. It shows two-point streamwise separation correlation contours of the wali pressure. One can see that up to the point of separation ($x<150$) and inside the separated
region ($190<x<260$), the field is nearly homogeneous (contour lines are nearly parallel to the abscissa). In the vicinity of the separation point, ($150<x<190$) the correlation function is strongly dependent on the streamwise location.

Figure 6. Wall pressure two-point streamwise separation correlation contours.
The next approximation - neglecting the nonlinear term in Eq. (1) - used to be considered very plausible until the work of Kim (1989). Kim has demonstrated that the contributions of both terms to the wall pressure are of comparable magnitude. with the total pressure exceeding both the linear component's contribution by about 30 percent. Therefore, we expect Eq. (2) to underestimate the spectral levels of the wall pressure.

Spatial localization of the sources is the key to representing the vertical velocity spectrum via Eq. (3), which de-facto puts all the dependence on the y-coordinate in the correlation term and makes the remaining terms independent of y. We plotted the magnitude of the y-coordinate dependent part of the source term in Fig. 7 .

One can see a clearly pronounced peak very close to the wall for locations upstream of the separation bubble (Fig. 7a). At the detachment point (Fig. 7b. $x=160$), the height of the peak has decreased by an order of magnitude and its effective width has become comparable with the thickness of the boundary layer. In the center of the separated region $(x=220)$, the maximum of the source term has moved away from the wall to coincide with the location of the shear layer and the peak has become even broader. In the reattachment region ($x=280$), a new maximum begins to reappear near the wall.

The assumption of spectral separability states that the wave number spectrum in the plane parallel to the wall can be expressed as a product of two functions, each dependent on, respectively, only the streamwise and spanwise wave number component. It is a convenient tool which allows obtaining the final result (Eq. (4)) in a simple form. In principle, one could compute the exact two-dimensional spectrum by calculating two-point correlation for all possible pairs of streamwise and spanwise separations and taking two-dimensional Fourier transform of the result.

Figure 7. Wall pressure model source term as a function of the distance from the wall, (a): $x=80, \cdots x=120$, (b): $-x=160, \cdots x=220$, $x=280$.

Figure 8. Normalized spectra of vertical velocity component at $(a)(x, y)=$ $(80,0.76),(b)(x, y)=(130,0.76) ; — \phi_{v e}^{x}\left(k_{x}\right), \cdots \frac{1}{U_{c}} \phi_{v v}(w)$.

We have not performed such calculations and, therefore, cannot comment on the errors incurred by using the separable representation.

The last ar 'roximation, the Taylor's hypothesis of frozen convection, can be tested by calculatirg and comparing the spectra in Ea. (5). Before making the comparison, one must choose a proper value for the convection velocity U_{C}. A natural choice is the local mean velocity. The normalized spectra calculated in the $y=0.76$ plane at two selected streamwise locations, $x=80$ and $r=130$, are shown in Fig. 8a, 8 b . The local mean velocity $U_{\text {local }}$ at these coordinates is, respectively,
0.26 and 0.29 . Clarly, with this choice of $E_{C}=E_{l o c a l}$ the spertra agree very well - Een when evaluated at the location with a severe loc:" drerse pressure gradient (Fig. 8b).

6. 3 Comparison of model predictions with DNS data

The model predictions are calculated by numerically integrating (4). The integration is straightforward once all the ingredients of the integrand are knoun. There are. however, issues concerning the determination of the convection velocity \dot{C}_{C} and the wavenumber spectra $\Phi_{v r}^{r}\left(k_{s}\right)$ and $\Phi_{v=z}^{z}\left(k_{z}\right)$ in the integrand, which descrve a brief disenss:on.

Usink the wal! pressure convertion velocity inferred from time-space correlations calculated by $\mathrm{N}_{\mathrm{a}} \mathrm{d}$. Moin would not be compatible with the spirit of this work. One would prefer to rely exclusively on the velocity field data and not to use any variablethat is a characteristic of the quantity that we are trying to predict. With regard to the normalized velocity wavenumber spectra, one esperts them to be iidependent of y. since the y-dependence has been included in the vertical correlation function in the separable representation (3). Under this premise it appears reasonable to pick a single constant- y plane and take the $\Phi_{r i}^{T}\left(k_{s}\right)$ and $\Phi_{r=}^{-}\left(k_{z}\right)$ there as the rep resentative uave:umber spertra required in (4). The convertive velocity [${ }^{\circ}$ c can be approximated by the loral mean velocity, as demonstrated by Fig. 8 . Ideally, one would prefer the selected y-plane to coincide with the location of maximmm source magnitude, as the contribution from the vicinity of the suarce prak is expected in dominate over contributions from all other locations (Biake 1984). (Of course. the notion that the maxinum source magnitude contribut's most to the wall pressure is valid only when the shear layet is close enough to the wall. Otherwise. the effects of the exponential factor in Eq. (ta) may become significant). However, the difference should be small even if the selected plane deviates from the source peak. so long as it lies within the active source region where the separable representation (3) holds.

In the present calculations, the vertical-velocity wavenumber spectra are approximated by those at $y \approx 0.76$ for the streamwise stations $r=80$ and $120 . y=7.0 \bar{i}$ for $x=160$, and $y=19.67$ for $x=220$. Our choices of the y-planes are limited by the available DNS data (there are only five y-planes with complete space time velocity information saved in the original DNS database). The E_{C} value is approximated by the local mean velority at the given (x, y)-position.

The model predietions at four different streamwise locations, representing different flow regimies. are shown in Figs. 9 and 10. The directly computed pressure spectra are also plotted for comparison. In the attached flow region at $s=86$ (Fig. 9 a) and $r=120$ (Fig. 9b). the agreement between model and DNS is very good. The under-preciiction at low frequencies may be attributed to neglecting ther nonlincar terms in Eq. (1). Considering that the contributions from the retained and negierted term are of comparable magnitude (Kim 1989), and given the approximations involsed in the evaluation of the integrand, a discrepancy (underestimate) should be experted.

At the How aparation point $r=160$ (Fig. 10a) familiar underprediction at low frequencies is again observed. Therr is also a marked difference at the high oud of

 (E4. 4). --- DNS.

Figure: 10. Wall prossure frequency spectrum. (a) $x=160 . —$ model $\operatorname{Eq} .4$ using velocity spetrum at $y=\overline{6} .0 \overline{7}$). - - model ($E_{I}+$ ining velocity spectrum

the frequency spertrum irompare solid and dashed lines in Fig. 10). Onc possiblereason for the "misalignment" of the spectra could be an improper choice (restricted by the limited avalable data) of the representative wavenumber spectrum $\Phi_{r, ~}^{r}\left(k_{8}\right)$ and the correspondiag convection velocity \mathcal{C}_{r}. Inderd. if we use the $y \approx 2.2 s$ plane instead of our first choice $y=7.05$, the model spectrum shifts towards lower frequencies (Fig. 10ai. These results serm to contitm that the optimma choice would be $y \approx 5$. i.e. neat the lecation of the peak of the soure term icf Fig. Tb)
 than an order of magnimde. As disenssod in $-\cdots t i o n 4.2$ the model failure may be
attributed to the fart that the nature of the flow in this regime is largely ineompat ible with the model assumptions. For the model to perform well. the wall pressure has to be the signature of a specirally separable source localizell in the y-direction (ef. (3). moving at a constant speed. This condition is violated. given the large vertical extent and the wide range of flow characteristirs in the separated zone. The exponential decay of the Green's function (cf Eq. 4a) accentuates the contribution of the eddies closer to the wall than the detached shear layer, particularly in the high frequency range. In other words. less energetic eddies may compete. in terms of their contribution to the wall pressure. with higher intensity sonrces depending on their relative proximity to the wall. For the separated Aow, therefors, a 'representative" source y-layer with a single convertive velocity is differlt, if not imponsible. to identafy:

5. Conclusions and future work

There is an ongoing need for an accurate prediction of wall pressure spectrum in aeroacoustic enginecring applications. Since current co:nputational rapabilities cannot provide the necessary space and time resolution for computing the pressure spectrum cirectly (for the Reynolds numbers of interest!, appropriate models have to be utilizel. In this project we have demonstrated that a simplificd model developed for a flat plate turbulent boundary layer can be used for predicting wall pressure frequency spectrum of a flow with a strong adverse pressure gradient. In practical cases RANS calculations could provide the mean sheat and wall-nomal turbulence intensity required by the motel. Hunt et al's. (1985) similarity model can be used for the correlation function of vertical velocity. The wave number spertra of vertical velocity, also needed as input to the mendel, ran be calculaterl from experimental so-point correlation flow measurement.

Our resuits also stow that in the separated region the model's performance is unsatisfactory. It is perhaps premature to assume that the model would fail for any separated flow scenario. From the exponential form of the Green's function in Eq. (4a). it is apparent that the contribution of the shear layer as a source term of the wall pressure rapidly diminishes with the distance from the wall. Therefore. the accurary of the model's prediction should depend on the distance betwern the shear layer and the wall as woll as on the strength of the shear layer relative to the turbulence level in the separation bubble. In any event. the non-linear pressure source terms need to be included in order to obtain accurate wall pressure spertrum predictions for a broad class of separated flows.

We plan to use the experience gained during the course of this work as a stepping stone towards modeling. with the aid of DNS and LES simulations, of wall pressure sperira of incie complex trailing edge flows.

Acknowledgements

The authors are thankful to Dr. W. Blake for his guidance and many culightening discussions. and to Prof. P. Moin for helpful suggetions during the summer program. Support for this work provided by O.VR, with P. Purtell as program manager. is gratefully acknowledged.

REFERENCES

Abraham. B. M. and Kerti, W. K. 1995 Analysis of the wall pressure field from a numerical simulation of turbulent channel flow. ASME NCA-Vol 19/ FED-Vol. 230. Flow Noise Moleling, Mewsrement end Control 55-e5.
BlakE, W. K. 1971 Turbulent velocity and pressure fields in boundary layer flows over rough surfaces. Symposiem on Turbulence in Liquid. Univ. of Missouri, Rolla. 114-122.
Blake. W. K. 1984 Trailing edge flow and serodynamic sound. Part 1 and Part 2. DTNSRC Report - 83/113.

Blake. W. K. 1986 Mechanics of flow-induced sound and vibration I. II Academic Press, London.
Blake. W. K. and Gfrishfeld J. L. 1989 The aeroacoustics of trailing edges. Ch. 10. Lecture Notes in Engneerrag. Springer Verlag. 46, 457-532.
Broons. T. F. and Horgson, T. H. 1981 Trailing edge noise predirtion using measured surface pressures. J. Sound Vibr. 78, 69.117.
Chase. D. M. 1980 Modeling the wave-vector frequency spectrum of turbulent boundary layer wall pressure. J. Sound Vibr. 70, 29-68.
Corcos. G. M. 1963 On the resolution of pressure in turt alence. . J. Acoust. Soc. Am. 35, 192.199.
Gershffld, J. L.. Blake. W. K. and Knisley. C. K. 1988 Trailing edge flows and serodynamic sound. AlAA-88-3826.CP First Netional Fluid Dgnemics Congress, 2133-2140.
Howe, Mi. S. 197s A review of the theory of trailing edge noise. J. Sound Vibr. 61, 473-465.
Howe, M. S. 1979 The influence of surface rounding on trailing edge noise. J. Sound Vibr. 126(3), 503-523.
hunt. J. C., Mon, P., Moser, R. D. and Spalart, P. R. 1987 Self similarity of two point correlations in wall bounded turbulent flows. Proceedings of the 1987 Summer P. agrem, Center for Turbulenre Research. NASA Ames/Stanford Cniv., 25-36.
Kim. J. 1989 On the structure of pressure fluctuations in turbulent channel flow. J. Fluid Meck. 205, 421-451.

Lilley, G. M. 1960 Pressure fluctuations in an incompressible turbulent boundary layer. College of Aeroneutics, Cranfeld. Report No. 133.
NA, Y. and Mons. P. 1996 Direct numerical simulation of turbulen: boundary layers with adverse pressure gradient and separation. Report No. TF-68. Thermosciences Division. Dept. of Mech. Eng.. Stanford Cniv.
Schloemer. H. H. 1967 Effects of pressure gradients on turbulent boundary wai! pressure fluctuations. J. Acoust. Soc. Am. 42, 93113.

NEXT DOCUMENT

A study of the turbulence structures of wall-bounded shear flows

By M. S. Chong ${ }^{1}$ J. Soria ${ }^{2}$ A. E. Perry ${ }^{1}$
J. Chacin ${ }^{3}$ Y. Na^{4} and B. J. Cantwell ${ }^{5}$

This project extends the stady of the structure of wall-bounded flows using the topotogiral properties of eddying motions as developed by Chong et al. (1990). Soria et al. (1992, 1994). and as recently extended by Blackburn et al. (1996) and Chacin et al. (1996). In these works, regions of flow which are foral in nature are identified by being enclosed by an isosurface of a positive small value of the discriminant of the velocity gradient tensor. These regions resemble the attached vortex loops suggested first by Theodorsen (1955). Such loops are incorporated in the attached eddy model versions of Perry \& Chong (1982), Perry et el. (1986). and Perry \& Marusir (1995), which are extensions of a model first formulated by Townsend (1976). The DNS data of wall bounded flows studied here are from the zero pressure gradient flow of Spalart (1988) and the boundary layer with separation and reattachment of Na \& Moin (1996). The flow structures are examined from the viewpoint of the attached eddy hypothesis.

1. Introduction

In the attached eddy hypothesis, eddying motions are envisaged to consist of vortex tubes or cores which form loops as first proposed by Thecdorsen (1955). These loops are referred to by many names depending on the shape one believes they possess. e.g. horseshoes, hairpins. \cap, Λ or $I I$ eddies, etc. A problem immediately arises as to what constitutes a vortex core. There has been some debate regarding this over the years and many workers have been involved, e.g. Truesdell (1954), Cantwell (1979), Vollmers (1983), Dallman (1983), Chong, Perry \& Cantwell (1989, 1990), Robinson (1991). Lugt (1979), and Jeong \& Hussain (1995), to mention a few. To avoid endless discussion and debate the authors will simply identify those regions in the flow which are "focal", to be shortly defined, and refer to them as "foral regions". The attached eddies postulated in the attached eddy hypothesis need not necessarily be focal since this condition depends on the relative strengths of the local rate of rotation tensor and the local rate of strain tensor (defined in Eqs. (8) and (9)). The results of the attached eddy hypothesis are derived purely from the

[^14]

Figure 1. Local non-degenerate topologies in the $\boldsymbol{Q}-\boldsymbol{R}$ plane. $S F / S$: stable focws/stretching, C F/C: enstable focws/contracting, $S N / S / S$: stable node/saddle/saddle and USN/S/S: Unstable node/saddle/saddle.

Biot-Savart law and in no way depend on the above relative strengths. Whether or not a region of vorticity is focal depends on the rate of strain environment in which it is embedded and so also do all definitions for a vortex core. Nevertheless it is felt that most if not all of the attached eddies should display extensive focal regions as a result of the work of Blackburn, Mansour \& Cantwell (1996), who examined the data from channel flow computations of Kim (1989). Here focal regions were found to exist in tubes, some of which extended from very close to the wall to the center plane of the channel. The authors consider these to be the clearest and most spectacuiar indicators of eddying motions so far seen in DNS data and at first sight look like the attached eddies envisaged by Perry and Chong (1982).

Following Chong, Perry \& Cantwell (1989, 1990), the geometry of the strcamline pattern at any point in the flow, as seen by a non-rotating observer moving with the velocity of that point, can be classified by studying certain invariants of the velocity gradient tensor $A_{i j}=\partial u_{i} / \partial x_{j}$ at that point. Here u_{i} is the velocity vector and x_{i} is the space vector. The characteristic equation of $A_{i j}$ is

$$
\begin{equation*}
\lambda^{3}+P \lambda^{2}+Q \lambda+R=0 \tag{1}
\end{equation*}
$$

where P, Q and R are the tensor invariants. These are

$$
\begin{gather*}
P=-\operatorname{trace}(A) \tag{2}\\
Q=\frac{1}{2}\left(P^{2}-\operatorname{trace}\left(A^{2}\right)\right) \tag{3}
\end{gather*}
$$

and

$$
\begin{equation*}
R=-\operatorname{det}(\mathbf{A}) \tag{4}
\end{equation*}
$$

For incompressible flow, $P=0$ from continuity and so

$$
\begin{equation*}
\lambda^{3}+Q \lambda+R=0 \tag{5}
\end{equation*}
$$

The cigenvalues λ which determine the topology of the local flow pattern are determined by the inveriants \boldsymbol{R} and \boldsymbol{Q}. In fact the $\boldsymbol{R}-\boldsymbol{Q}$ plane, shown in Fig. 1, is divided into regions according to flow topology.

The discriminant of $A_{i j}$ is defined as

$$
\begin{equation*}
D=\frac{27}{4} R^{2}+Q^{3} \tag{6}
\end{equation*}
$$

and the boundary dividing flows with complex eigenvalues from real is

$$
\begin{equation*}
D=0 \tag{7}
\end{equation*}
$$

Figure 2 shows contours of D on the $R-Q$ plane. For $D>0$, Eq. (5) admits two complex and one real solution for λ. Such points are called foci and are part of the focal regions mentioned earlier. If $D<0$, all 3 solutions for λ are real and the associated pattern is referred to as a node-saddle-saddle point according to the terminology adopted by Chong et al. (1990).

As implied earlier, the velocity gradient tensor can be split into two components thus:

$$
\begin{equation*}
A_{i j}=S_{i j}+W_{i j} \tag{8}
\end{equation*}
$$

where $S_{i j}$ is the symmetric rate of strain tensor and $W_{i j}$ is the skew symmetric rate of rotation tensor. These are given by

$$
\begin{equation*}
S_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{i j}=\frac{1}{2}\left(\frac{\delta u_{i}}{\partial x_{j}}-\frac{\partial u_{j}}{\partial x_{i}}\right) \tag{10}
\end{equation*}
$$

The invariants of S_{1}, are P_{s}, Q_{0}, and R_{s} and are defined in an analogous way as the invariants of A_{i}. For incompressible flow $P_{s}=0$,

Figle 2. Tracetories of constant D in the $R-Q$ plane.

$$
\begin{equation*}
Q,=-\frac{1}{2} S_{1} S_{i j} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{s}=-\frac{1}{3} S_{i j} S_{j k} S_{k} \tag{12}
\end{equation*}
$$

The corresponding invariants of W_{i} are P_{w}, Q_{w} and $R_{w} . P_{w}=R_{w}=0$ but Q_{w} is non zero and is given by

$$
\begin{equation*}
Q_{w}=\frac{1}{2} W_{i}, W_{1 j} \tag{13}
\end{equation*}
$$

and is proportional to the enstrophy density. Other relations of interest are

$$
\begin{equation*}
\phi=2 \nu S_{i j} S_{i j}=-4 \nu Q_{s} \tag{14}
\end{equation*}
$$

where ϕ is the dissipation of kinetic energy into heat per unit mass and it should be noted that Q, is always a negative quantity.

It can be shown that

$$
\begin{equation*}
Q=Q_{w}+Q_{s}=\frac{1}{2}\left(W_{i,} W_{i j}-S_{1,} S_{1 j}\right) \tag{15}
\end{equation*}
$$

According to the work of Viellefosse (1982,1984) and the more recent work of Cantwell (1992), the evolution of the velncity gradient tensor $A_{i j}$ for a fluid particle is given by the following :

$$
\begin{equation*}
\frac{\partial A_{i j}}{\partial t}+u_{k} \frac{\partial A_{i j}}{\partial x_{k}}+A_{i k} A_{k j}-A_{k m} A_{m k} \frac{\delta_{i j}}{3}=H_{i j} \tag{16}
\end{equation*}
$$

Here $\delta_{i j}$ is the Kronecker delta and

$$
\begin{equation*}
H_{i j}=-\left(\frac{\partial^{2} p}{\partial x_{i} \partial x_{j}}-\frac{\partial^{2} p}{\partial x_{k} \partial x_{k}} \frac{\delta_{i j}}{3}\right)+\nu^{\prime} \frac{\partial^{2} A_{i j}}{\partial x_{k} \partial x_{k}} \tag{17}
\end{equation*}
$$

If the viscous term and the pressure Hessian terms are small, the evolution of $A_{i j}$ for fluid particles follows the so called restricted Euler equation, and solution trajectories of such particles follow the contours of constant D on the $\boldsymbol{R}-\boldsymbol{Q}$ plane as shown in Fig. 2. It is thought that this might be an appropriate des ription of the motions for fine scale eddies at high Reynolds numbers. It is found here that this restricted Euler equation is not valid for the Spalart (1988) data, which is of course at low Reynolds number. However, computations show that once a particle is focal it is highly probahle it will remain focal. This study of particle trajectories on the $R-Q$ plane gives us a first glimpee of how fluid dynamics might be combined with the usual kinematic description of eddy structures as has been used in the attached eddy hypothesis.

It has been pointed out that three-dimensional plots of vortex lines or particle trajectories are extremely complex and confusing and not very helpful in gaining an insight into eddying motions (Cantwell (1979)). However, a very interesting feature of the isosurfaces of constant D found by Blackburn et al. (1996) is that they enclose a rather concentrated and well-ordered bundle of vortex lines. Finally, Blackburn et al. found that isosurfaces of constant D were superior to isosurfaces of enstrophy density or dissipation of kinetic energy for showing clear, well defined structures. The authors do not fully understand why this should be and this is a question which needs to be pursued in future work.

2. Results

2.1 Normalization of the discriminant

The raw values of the discriminant D were used in the case of the Spalart DNS data without any additional normalization. In the case of the Na \& Moin DNS data, it is assumed that the inflow free-stream velocity is unity and that all length scales in the database are normalized by $\delta_{\text {in }}^{\circ}$, the displacement thickness of the inflow boundary layer. The computed raw values of D were normalized by a velocity gradient representative of the mean separation bubble flow to the power of 6 . This resulted in the raw values of D being multiplied by a factor of 10^{6}, and so maximum values of normalized D were of order 10^{6}. Typical values of D used in the isosurface visualization of D were of the order of $1-10$.

2.2 Zero pressure gradient boundary layer

Figure 3 shows a very clear picture (from Chacin et al. 1996) of isosurfaces of the discriminant for part of the Spalart (1988), $R e_{e}=670$, zero pressure gradient turbulent boundary layer simulation data. Some Theodorsen-type vortices are apparent

Figure 4. lsosurface of constant discriminant, D. for zero pressure gradient turbulent boundary layer flow at $R_{\theta}=670$ for different threshold values of (a) $D=1.0$, (b) $D=0.25$ and (c) $D=0.1$. The displayed boundary layer struetures cover $\Delta x^{+}=2442, y_{\text {min }}^{+}=0.4, y_{\text {mar }}^{t}=375$ and $\Delta=^{+}=1221$. Hert ${ }^{+}$lewotes viscous lengths.

Fricine.5. Particle erajectories on the $R-Q$ plane romputed from the wew ressure gradient tubukent boundary layer data of Spalett (1988)
together with intertwining tubes forming braids which are neer the sufface and are aligned with the streanwise direction. Figures 4(a), (b), and (c) slow the same How rase of Spalart liut for a different time frame covering a larger ficld of data The figures are ordered for diminishing values of D. Figure $4(a)$ shows structures whinh could be interpretell as \cap or A elides when viewed from upstram. These Ioops appear to lem in the sireanwisc direction. As the thireshold" is reduced (i.e. as the whe of D for the isosurface is reduced). more attached von - ' 'ops become apparent. but the pieture becomes confusing. The struetures are at is smooth as

Figure 6. Particle trajectories using a lint ar diffusion model for $\boldsymbol{H}_{i j}$ of Martiu \& Dopazo (1995).
the Chacin et al. (1996) data, and this is because of computer storage problems. There is nonetheless a suggestion of Theodorsen type structures with focal tuhes coming down to the wall and running along it in the streamwise direction. Superposition of vortex lines (done at the computer terminal) is confusing, but they tend to lomp and lean in the streamwise directio- in a manner sianilar to the isosurfaces of D.
Particle trajectories on the $R-Q$ plane show that there is a rapid convergence to sumall but pusitive D. Figure 5 shows a typical calculation for a selection of particles with $D>0$ at the initial time. These particles are identified at $t=0$ and then followed in space as the DNS code is run forward in time for several eddy characteristic turnover times. These calculations show that once a particle has a prositive discriminant (i.e. once it is focal), it has a high probability of remaining focal over several eddy turnover times. Varicus models for the $H_{i j}$ term are currently being formulated. One recent model by Martin \& Dopazo (1995) shows ensemble averaged $R-Q$ trajectories with the topology sketched in Fig. 6, and this is consistent with the above findings. Time evolution computations and animations of the isosurfaces of the discriminant show that such surfaces retain their shape and identity for considerable streamwise distances. When viewing a movic madeup of successive frames, these structures appear to convect downstream in close accordance with Taylor's hypothesis. Smah restructures close to the wall appear to be convecting at smaller velocities than the larger structures further away from the wall. All of this is consistent with aspects of the attached eddy model discussed ly Perry ct al. (1986).
In zero pressure gradient layers, there seems to be a strong link betweon these attached eddies and the Reynolds shear stress. Perry and Chong (1982) showed that

 Isonndary layer fow with Res $=670$ in (a) visron- whl-leyer $y^{+}<5.0$ (bi) luffer
 $y^{+}>10$. The romtone luvele shown are womalizell hy u?
it is likely that they contrilute alnost cutimly to the witu vorticity distribution
 averaged value, of $-n^{\prime} r^{\prime}$ occur wear to and on mhliet side of the contont $D=0$ on the $R>0$ branch of the $R-Q$ plane. Here n^{\prime} mul r' are the streamwise and wall mormal mompment of the velority fluctmatione w-prelively.
 by an attarliml whly come from regions close in jly-iril pure to lie inovirfare of D. which is small ant Inritive as sen in Fis. 9 of that wferome. They femm that high Reynolds seres ivents ane strongly mum lited with clonges in sign of the disrrinmant Ihis is tmportant wat the wall where the theriminat and the

Figire 8 . Joint probability density function betweer Q and R for aro presure gradient turbulent boundary layer flow with $\boldsymbol{R}_{\mathbf{s}}=670$ in (a) viscous sub-layer $y^{+}<5.0$ (b) buffer layer, $5.0<y^{+}<41$. (c) logrithmic region. $41<y^{+}<107$ and (d) wake region, $y^{+}>107$.
vorticity have completely different character. The role of the discriminant needs to be darified. One approach would be to analyze the velocity gradient tensor induced by artificial isolated eddies of various shapes using the Biot Savart law in the manner of Perry and Marusic (1995).
Figures 8, 9. 10, and 11 show joint probability distribution diagrams of the various topological invariants. On these diagrams are shown contours of the joint pdfs of various pairs of quantities. Figure 8 shows the joint pdf's of R and Q and Figs. $8(a)$ through to $8(\mathrm{~d})$ show results for the sublayer, buffer sone, logarithmic region, and wake region respectively. Figure 9 shows the joint pdf of R, and Q. In the sublayer. Fig. $9(\mathrm{a})$ shows that most of the rate of strain is two dimensional. since the data

 awt ull whe remen $\|^{-}$. 10^{-}.
wherts aheng the Q, isis and wery ligh Q, values are ewcountered In the buffer कw woults shown in Fis 91, there is a drift twarrls $D=0$. ant Q, is hal that of the wihly,t In. Fig 9iel, the legarithmie revion, there is a further terrease in. Q. wit furtive wervinent tomards the $D=0$ contour. The rate of strain is vers ther thmensimetl. In the wake region shown in Fig $9(1)$. (Q.I is orders of mitutmik suallet than the other regions and wry lithe lissipation is orrirring there.

Figure 11 , liow the wint plf between $-Q$, and Q.. A lize of 15 through the oricin is smptemitic of wertex sheet hehavor on two dimensonal shearing. Data ramine fies w the Q, axis could be interpreted as brlonging to vortex tules, ant

Furnt 10 Jont probablity dencity function wetween Qu ant - Q. for writ

 and (I) wake regimi, yt? 10 ?
 Itssipation, In Fis 101 at the sublayer results give shee like brhaver wlich is wet

Figure 1: shem the gif luetwen leth 2 and Qu Here

$$
\begin{equation*}
n=\frac{-S_{1}, u}{-1-k} \tag{17}
\end{equation*}
$$

Ficimi 11 Jint probalhity density fuiction betwen loo/2 and Qu for zero
 liver $y^{+}=12$ bi buffre hyer. $y^{+}=16$. (e) logarithmie region. $y^{+}=57$ and $d t$ wake rezon $y^{+}=243$
wher- -x is the witicte wetor Also it can be hown leg. see Soria and Clong (1993) that

$$
\begin{equation*}
\sim, S_{, r},=R-R . \tag{117}
\end{equation*}
$$

The quantity in - 2 is a measur of the stretching and contracting in the direction of the wisticity wertor Fios all mases in Fig 11 the highest vorticity has no stretch me. Figure 12 shows the conditional volume integrated $Q_{\text {. a }}$ and Q, for D greater than a specified tireshold value as a finction of this threstold value of D. These whine integral have limen momshied by the wal whine integral of Q. and Q. repertively. In rdition to the cases including the visoms zone, these normalized

Ficenf 12. Conditional volume integrals of Q, and Q, uormalized by the volume integralk of Q, and Q. respectively as a function of the cut off value of

 $y^{+}>37 \rightarrow-\int Q_{u}\left(D>D_{\text {enn }} d V / \int Q_{s} d V\right.$ and $y^{+}>37$.

Figi hi 13. Mean streanline pattern for turbulent boundary layer with separation and reattachment. The dinensions shown were normalized by the displacement thickness at the inlet plane.
conditional integrals have been computed for $y^{+}>6.4$, thus eliminating the viscous sublayer contribution, and for $y^{+}>37.4$, thus eliminating the entire viscons zone contribution. The results show that independent of the y^{+}threshold focal regons a count for approximately 75% of all volume integrated $Q_{\text {. }}$. (ie costrophyl aul 66% of all volume integrated Q. (ise. dissipation of mechanical energy)

2.I Separating and reattaching boundary layer

Figure 13 shows the mean flow streamlines of a turbulent boundary iayer which nominally starts as a zero pressure gradient layer using the Spalart data of $\boldsymbol{R}_{\boldsymbol{p}}=\mathbf{3 3 0}$ as an inflow lwmodary roodition. Thesr computations wre carried out using a finite differences method. As the flow moves downstream, the pressure gradient is arranged to be zero, then adverse, and then favorable, resulting in a separation hulble. The flow bears a strong resernblance to the experiment of Perry and Fairlie (1975). but the Reynolds number for that experimeu* wes orders of magnitude higher than this compatation.

Figure 14 (left side) shows an elevation view of the isosurfaces of the discriminant, and one can see a myriad of structures, many of which extend through from the wall to the outer adee of the boundary iayes and gemerally lean in the streamwise direction. The-structures keave the wall completely downstrean of the mean separation point and ride enve the separation bubble and thers reattach. In the separation bubble there is an extensive region which seems to tre devoid of fluid particles with positive discrimiuaut. Figure 15 (left side) shows the instantaneous surface limiting streamhnes or "skin friction lines". In the up:tream part of the fiow. bifurcation lims (curves towards which neighboring trajectories asymptote) are most mident. The precise definition and property of such lines are given by Hormung and Perry (1984) and Perry ana Hornung (1984). As the pressure gradient becomes adverse. the sikin friction lines reveal critical points all over the surface prior to the mean flow separation region. Ender the butble, the scale or -pacing of the rritical $\mathrm{p}^{\text {winitis }}$ is much larger than in the mean attached fiow and farge -notes" of spatation and reatarhment are evident mear the urean flow separation and reattachnent "lines" respertively. After reattachuent, bifurcation lines aro reformed after a short streaniwise distance with a much widet spanwise spacing than upstrean of the sepraration bubble. This spacing is nu doubt related to the viscons scaling as a kower shear relocity gives rise to the wider spacing-

Figure 15 (right side) shows the surface vortex lines which are orthogonal to the skin friction lines. In regions far upstream and downstrean of the separation bubble. kinks in the vortex lines indicate a bifurcation line in the skin friction lines. Hornung and Prrry (1984) showed that near a bifurcation line, neighboring skin fiction lines are exposential curves and the vortex lines are orthogenal parabolas. Figure 10 shows skin friction lines and vortex lines superimposed for selected pasts of the fow and the bifurcation patterns just mentioned are apparent. This orthegonality property throughout the limiting wall firld acts as a useful check on the corroctuess in our data processing and in some asperts of the computations. Critical ponats in the limiting surface streamlines aue also critical points in vorticity. In the separation region, the laige velocity field andes which are apparrnt are foci in the verticity fid ld.

In Figure : 4 , the side and plan views of the ismsurfaces of the discriminant sho x that the structures sppear to bo pulled apart and stretched as they ride over the separation bubble. Coles (1956.1957) formulated a biypotiesis for the mean velocity protiles which consider a turbulent bomadary layer to consist of two romponents; suprimpresed namely a wall component which follows the universal law of the

(1)

(b)

 wortes. limes conmet ts the will he the Thembermen type eddies as shown sketcievt in Fir. ITal. The wake component of velocity ant the peak in the Reyuolls shent stress which occur well away from the wall when the Coles wake factor is apprecinble is considered to be gemerated ly wake ellies which are thought to consist of -panvise undulating vortex cores as shown in Fig. Ti.(H). This model is suppured by mean tlow, broadhami twhitience and spectral mevsurenemts and an andysis usimg convolution integrah fing computing the effect of a rantom artay of edrlis with a mone of seales (ser Pery $\&$ Marnsic (1995) for detalls). It is almost obvion from The perme of the isosuffere of the discriminant in Fig. 14 thet as the fow develope in the alverse pressure gradient and as the Coles wake factor increases. nome of the whlies which contribute ts the Reymolds shear stress and mean fow vorticity are ellies which ur now somected to the hommtary Once apparation has occorted.

 is munterl

Figure 17. (a) Wall eddies and (b) wake eddies, after Perry \& Marusic (1995). Note that here, unlike earlier convention, z is the coordinate normal to the wall rather than y.

3. Conclusions

This study has shown that there exists evidence for the Reynolds shear stress carrying structures in zero pressure gradient turbulent bounday layers, and they consist of attached eddies in the form of tubes of positive discriminant connected to the wall. The vortcx loops envisioned by Theodorsen, the vortex tubes used in the model of Perry and Marusic (1995), and the tubes or arches of positive discriminant observed in simulations all bear striking resemblance to one another. But there are important differences which still need to be reconciled. The evidence presented here indicates that Reynolds stress generation is correlated, not with the vorticity, but with the discriminant of the velocity gradient tensor, especially near the wall where these two quantities have quite different character.
For adverse pressure gradients, there is evidence of wake structures which are not connected to the wall. However, because of the carly stages of the present work and the difficulties encountered with the resolution of the stored data (if not the computed data), the evidence, although encouraging, is not conclusive. Furthermore we should keep in mind at all times that we are dealing with low Reynolds number flows where the range of eddy length scales is relatively small.

Acknowledgments

This work was supported by the Center for Turbulence Research, NASA AMESStanford Joint Institute for Aeronautics and Acoustics, NASA Grant NAG-1-1610 and the Australian Research Council. Additional supercomputing resources were provided by the San Diego Supercomputer Center.

REFERENCES

Blackburn, H. M., Mansour, N. N. \& Cantwell, B. J. 1996 Topology of fine-scale motions in turbulent channel flow. J. Fluid Mech. 310, 269-292.
Cantwell. B. J. 1979 Coherent turbulent structures as critical points in unsteady flow. Archiwum Mechaniki Stosowanej. (Archives of Mechanics). 31, 5, 707 721.

Cantwell, B. J. 1992 Exact solution of a restricted Euler equation for the velocity gradient tensor. Phys. of Fluid. 4(4), 782-793.
Chacin, J. M., Cantwell, B. J. \& Kline, S. J. 1996 Study of turbulent boundary structure using the invariants of the velocity gredient tensor. To appear in the Journal of Experimental, Thermal and Fluid Science. November.
Chong, M. S., Perry, A. E. \& Cantwell, B. J. 1989 A general classification of three-dimensional flow fields. Proceedings of the IUTAM Symposium on Topologioal Flaid Mechanics, Cambridge (Edited by H. K. Moffatt and A. Tsinober), 408-420.
Chong, M. S., Perry, A. E. \& Cantwell, B. J. 1990 A general classification of three-dimensional flow fields. Phys. of Fluids. A4(4), 765-777.
Dallmann, U. 1983 Topological structures of three-dimensional flow separations. DFVLR Rep. IB 221-82-A07. Gottingen, West Germany.
Hornung, H. G. \& Perry, A. E. 1984 Some aspects of three-dimensional separation. Part I. Streamsurface bifurcations. 2. Flugwiss. Weltraumforsch. 8, 77-87.
Jeong, J. \& Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 69-94.
Kim, J. 1989 On the structure of pressure fluctuations in simulated turbulent chatnel Low. J. Fluid Mech. 205, 421-451.
Lugi, H. J. 1979 The dilemma of defining a vortex. In Recent Developments in Theoretical and Experimental Fluid Mechanics (ed. U. Muller, K.G. Roesner \& B. Schmidt), Springer, 309-321.

Martin, J. \& Dopazo, C. 1995 Velocity gradient invariant evolution from a linear diffusion model. Proceedings of the Twelfth Australasian Fluid Mechanics Conference. 743-746.
Marusic, I. \& Perry, A. E. 1995 A wall-wake model for the turbulent structure of boundary layers. Part 2. Further experimental support. J. Fluid Mech. 298, 389-407.

NA, Y. \& MoIN, P. 1996 Direct numerical simulation of turbulent boundary layers with adverse pressure gradient and separation. Stanford University Report TF68.

Perry, A. E. \& Fairlie, B. D. 1975 A study of turbulent boundary-iayer separation and reattachment. J. Fluid Mech. 69, 657-672.
Perpy. A. E. \& Chong, M. S. 1982 On the mechanism of wall turbulence. J. Fluic Mech. 119, 173-217.
Perry, A. E. \& Hornung, H. G. 1984 Some aspects of three-dimensional separation. Part II. Vortex skeletons. Z. Flugwiss. Weltraumforsch. 8, 155-160.
Perry, A. E., Henbest, S. M. \& Chong, M. S. 1986 A theoretical and experimental study of wall turbulence. J. Fluid Mech. 165, 163-199.
Pfrry, A. E. \& Marusic, I. 1995 A wall-wake model for the turbulent structure of boundary layers. Part 1 Extension of the attached eddy hypothesis. J. Fluid Mech. 298, 361-388.
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Ann. Rev. Fluid Mech. 23, 601-639.
Soria, J., Chong, M. S., Sondergaard, R., Perry, A. E. \& Cantwell, B. J. 1992 Topology of time-developing incompressibie mixing layers. Proceedings of the Center for Turbulence Research Summer Program, 1992. Stanford Univ./NASA Ames, 101-121.
Soria, J. \& Chong, M. S. 1993 The structure of intense focal regions in a direct numerical wake flow calculation. Proceedings of the Ninth Symposium on Turbulent Shear Flows. 3.1.1-3.1.6.
Soria, J., Chong, M. S., Sonderganrd, R., Perry, A. E. \& Cantwell, B. J. 1904 A study of the fine scale motions of incompressible time-developing mixing layers. Phys. of Fluids. 6(2), 871-884.
Spaliart, P. R. 1988 Direct simulation of a turbulent boundary layer up to Re⿻ $=1410$. J. Fluid Mech. 187, 61-98.
Theodorsen, T. 1955 The structure of turbulence. 50 Jahre Grenzschichtforsung.
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow 2nd edn. Cainbridge University Press.
Truesdell, C. 1954 The Kinematics of Vorticity. Indiana University Press.
Vienlefosse, P. 1982 Local interaction between vorticity and shear in a perfect incompressible fluid. J. Phys. (Paris). 43, 837-842.
Vieillefosse, P. 1984 Internal motion of a small element of fluid in an inviscid flow. Physica A. 150, 150-162.
Vollmers, H. 1983 Separation and vortical-type flow atound a prolate spheroid. Evolution of relevant parameters. AGARD Symposium on Aerodyn. of Vortical Type Flow in Threc-Dimensional. Rotterdam. AGARD-CP342, 14.1-14.14.

NEXT DOCUMENT

Optimal and robust control of transition

By T. R. Bewley' AND R. Agarwal ${ }^{2}$

Optimal and robust control theories are used to determine feedback control rules that effectively stabilize a linearly unstable flow in a plane channel. Wall transpiration (unsteady blowing/suction) with zero net mass flux is used as the control. Control algorithms are considered that depend both on full flowfield information and on estimates of that flowfield based on wall skin-friction measurements only. The development of these control algorithms accounts for modeling errors and measurement noise in a rigorous fashion: these disturbances are considered in both a structured (Gaussian) and unstructured ("worst case") sense. The performance of these algorithms is analyzed in terms of the eigenmodes of the resulting controlled systems, and the sensitivity of individual eigenmodes to both control and observation is quantified.

1. Introduction

The behavior of infinitesimal perturbations in simple laminar flows is an important and well-understood problem. As the Reynolds number is increased, laminar flows often become unstable and transition to turbulence occurs. The effects of the turbulence produced in such flows are very significant and often undesirable, resulting in increased drag and heat transfer at the flow boundaries. Thus, a natural engineering problem is to study methods of flow control such that transition to turbulence can be delayed or eliminated.

Transition often occurs at a Reynolds number well belor that required for linear instability of the laminar flow. Orszag \& Patera (1983) demonstrate that finite amplitude two-dimensional perturbations can highly destabilize infinitesimal threedimensional perturbations in the flow. Butler \& Farrell (1992) show that the nonorthogonality of the eigenmodes of subcritical flows implies that perturbations of a particular initial structure will experience large amplification of energy before their eventual decay, and suggest that such amplification can sometimes lead to flow perturbations large enoughs for nonlinear instability to be triggered. Such nonlinear instabilities can lead to transition well below the critical Reynolds number at which linear instability occurs. Results such as these have renewed interest in the control of the small (linear) perturbations, as the mitigation of linear perturbations also lessens the potency of these noulinear "bypass" mechanisms.

A firm theoretical basis for the .ontrol of small perturbations in viscous shear flows is only beginning to emerge. An important step in this direction is provided

[^15]by Joxlin et el. (1995) and Joshi, Speyer, \& Kim (1990), who atalyer this probtern in a closed-kop framework. in which the dynamics of the flow system tuegether with the controller are examined. Joslin et al (1995) apply optimal control theory to a problem related to the one presented here: in their approach, the control is derermined through an adjont formulation requiring full flowfirld infonmation. Joshi, Speyer. \& Kim (1996) consider essentially the same problem analyzed in this paper. and show that a simple ronstant gain feedback with an integral compensator nay Ie used in a single-input/single-output (SISO) sense to stabilize the flow: a single ontput (the appropriate Fourier component of the streamwise drag is multiplied by some scalar K and summed with a refercuce sigual to detcrnine the corresponding component of the iontrol velocity. This proportivetal approsch is a sperial rase of a class of proportional-integral-derivative (PID) controlkers. Witich combine turns which are proportional. integrals, and derivatives of a sralar contput of a system.

The present work extends these analyses to rigoromsly acrount for state distur bances and measurement moise. A two-step control approach is ussel. First. a state estimate is developral from a (potentially inaccurate) model of the flow equasions. with corrections to this state estimate provided by (norisy) flom measurments fed bark through an output iajection matrix L. This state estimate is then naultiplied by a fedback matrix K to determine the control. Ponentially. this approsech cas: yield better result, that a PID controller. In companison to the PID approsad. the present appororh has many more parampers in the control law (aperifically. the elements of the matrices \boldsymbol{K} and \boldsymbol{L}), which are rigoronsly optimized for a rlearly defined objective. In this manner. multiple-input/multiple-ometput (Milio) systms are handerd naturally and the controller is couplerl with an atimator which models the dynamics of the system itself.

Many problems it fuid uerhanics. experially thone involving turbulonere are dominater by nonlinear behavior. In such problems, the limear analysis perforner! in this paper is not valin! Howrwer, oftimal control appresaches. which use full state information, may still be formulated (Abergel is Temam 1990) and performed (Xhnu \& Bewkey 1995) with impressive results. In orier to make surch shemes practical. one nust understand leow to account for disturbancen in a rigorous fashion and how to estimate acrurately the necessary components of the -tate (for instauce, the location and strength of the near-wall coherent structures / baved on limited fins measurements. The currem paper makes these concepts chat in a flud merhanical sense. albeit for a linat problem, and thas provides a step in this development.

The controllers and estimators used in this work are detemaned by \mathcal{H}_{2} and \mathcal{H}_{2} approaches. These techniques have revently been rast in a compact form hav Doyle it al. (1989). and are well suited to the current problem. mathich the issue of morest is the ability of a clowed-lomp system to rejoct dieturbancen to a laminar flow whon only a few noisy measurements of the flow are avalable.

In §?. we derive the gowerning equations ior the prment flow stability problem and rast these cyuation- in an standard notation. In $\}$. the control problim is atalyzed in terms of the controllability and observability of cach individual cigemase of of the

is summarized and applied to the present systern. In this cuntrol apprownh. iwo Riccati rquations dencribe a fanily of $\boldsymbol{H}_{\mathbf{2}}$ and $\boldsymbol{H}_{\mathbf{x}}$ controllers which take inio account structured (Gaussian) and unstructured (-worst casp-) disturbances. Rsults of thex approachec are presented in $\$ 5$. and $\$ 6$ presents some concluding reniarks.

2. Governing equations

This chapter derives the equations goorrning the perturbations to a laminar chan nel fow and casts them in a fonn to which standard control techniques may be applier!. This fauniliar discussion is presented to precisely defiso she controd problen nuder cuasideration.

2.1 Consintows form of flew equetion.

Consider a stea. plape channel fow with maximum velocity C_{0} and channel
 whority profile in the stramwise dirertion (x) may be writerit $\boldsymbol{C}^{\prime}(y)=1-y^{2}$ ons the shomain $y \in-1.1$. The equations goveruing small. incompressible. threrdinnensonal paturimations ir.wi are

$$
\begin{align*}
& \left.\Delta \dot{r}=\left\{-i k_{r} \boldsymbol{C} \Delta+i k_{r} t^{+m}+\Delta \Delta / R_{e}\right)\right\} r \tag{1a}
\end{align*}
$$

where A_{z} is the streamwise wavenumber, k : is the spanwise marenuubiber. $\Delta \equiv$
 Fourier compment of the wall normal velocity, and - is the Fonurict component of the wall-normal vorticity: Equation (la) is the (fourth ordet) Orr-Sommerfetd rquation for the wall-normal velority modes, and (Ib) is the (serond order) muarion for the wall-mormal vorticity modes. Note the one-way coupling between these two equations. Also note that. from any solution ($v .-i$) the streanwise vetocity and spanwise velocity we may be extracted by manipulation of the continuity eyuation and the definition of wall-normal vorticity into the form

$$
\begin{align*}
& u=\frac{i}{k_{r}^{2}+k_{z}^{2}}\left(k_{s} \frac{\partial v}{\partial y}-k_{z}-i\right) \tag{2a}\\
& w=\frac{-1}{k_{r}^{2}+k_{z}^{2}}\left(k_{z} \frac{\partial v}{\partial y}-k_{z}+i\right) \tag{2b}
\end{align*}
$$

Control will be applied at the wall as a boundary coudition on the wail-normal component of velority v. The bommary conditions on u and are no-silp $t a=$ $u^{*}=0$. which implies that $-=0$ and (by continuity) $\partial r / \partial y=0$ on the wall.

In this development. it is assumed that an array of sensors. which can measure streanwise and spanwise skin friction. and actuators, which provide wall nocmal blowing and suction with zero net mass flux, are monnted on the wails of a laninas rhasnel fow, It is aloo assumed that a sufficient number of smours and artuators are instalked surh that individal Fourier compenents of wall sikin friction and wall transpiration ma: the approximated. and the analysis is co.tiod thrcugh for a particular Fonrer morie.

2.2 Discrete form of Row cquetions

The continnou prol kun described above is discretized on a grid of $\mathrm{X}+1$ Chebysher-Ganss-Labatto po uts surh that

$$
y_{t}=\operatorname{ros}(x l / N) \quad \text { for } 0 \leq 1 \leq N
$$

 surh that the derivative of with mespert to y on the diserve sef of $\boldsymbol{X}+1$ point: is giver by

$$
\because^{\prime}=\mathbf{D} \quad \text { and } \quad \therefore=\mathbf{D}
$$

where the prine ('indrindicates the (partial derivative of the dincrete quantity
 plished by modifying the first derivative matrix suct that

$$
\tilde{n}_{l-}= \begin{cases}0 & l=0 . N \\ D_{1-} & 1 \leq l \leq N-1\end{cases}
$$

Differentiation of r with respert io y is then given by

$$
\boldsymbol{r}^{\prime}=\dot{\mathbf{D}} \mathrm{r} . \quad \boldsymbol{r}^{\prime \prime}=\mathbf{D} \mathbf{r}^{\prime} . \quad r^{m}=\mathbf{D} \mathbf{r}^{*} . \quad \text { and } \quad r^{m \prime \prime}=\mathbf{D r}^{\prime \prime \prime}
$$

With these derivative matrices, it is straightforward to write (1) in matrix form. This is accuaylingol be first expressing the matrix form of i 1 ; on all $N+1$ colk cation points surh tha:

$$
\begin{align*}
& \dot{r}=\boldsymbol{C} r \tag{Fa}\\
& \therefore=\mathcal{C} r+S . \tag{36}
\end{align*}
$$

where $\mathcal{C} . C$, and S are $i N+1) \times(N+1)$ (Nove that. for $t_{s}^{2}+i^{2} \neq 0$, the matrix form of the LHS of 1 la $;$ is invcrtible, so the form ! 3 a ! is eacity determined.! Ther Dirictuet bonudary conditions are explicitly prewribed as separate forring teras. To aromnplish this. derompase C.C. and S acroudine to
where f_{11}, f_{21} and A_{2} are $\{N-1\}$ a $\left(N-i f\right.$ and $b_{11} . b_{12}, b_{21}$ and b_{22} are

$$
r=\left(\begin{array}{c}
r_{1} \\
\vdots \\
r_{-1} \\
-1 \\
\vdots \\
-\cdots,
\end{array}\right) \quad A \equiv\left(\begin{array}{cc}
A_{11} & 0 \\
& \\
A_{21} & A_{22}
\end{array}\right) \quad B \equiv\left(\begin{array}{ll}
b_{11} & b_{12} \\
& \\
b_{21} & b_{22}
\end{array}\right) \quad u \equiv\binom{v_{0}}{r_{1}}
$$

where r is $2(N-1) \times 1, A$ is $2(N-1) \times 2(N-1 ; B$ is $3(N-1) \times 2$ and u is 2×1. we may express (3) in the standard form

$$
\begin{equation*}
\dot{r}=A r+B u \tag{4}
\end{equation*}
$$

The vector x is referred to as the "state". and the vector u is referred to as the "contrul'.

2.1 Well mossurcments

He will consider control algorithms using both full flowfield information and wall information only. For the latter case, we will assume that measurennents made at the wall provide information proportional to the streamwise and spanwive stin friction

$$
\begin{aligned}
& y_{m 1}=\left.\frac{\partial u}{\partial y}\right|_{\text {mper }} \text {-an } \quad y=z=\left.\frac{\partial u}{\partial y}\right|_{\text {bower }- \text { all }} \\
& y_{m 3}=\left.\frac{\partial v}{\partial y}\right|_{\text {opper }} \quad \operatorname{man} \quad y_{m 4}=\left.\frac{\partial r}{\partial y}\right|_{\text {Lemer }} .
\end{aligned}
$$

Equatious (2a) and (2b) allow us to express these measurcuents as linear combimarions of r and u. Defining $a \equiv z k_{z} /\left(k_{x}^{2}+k_{z}^{2}\right)$ and $b \equiv-i k_{i} /\left(k_{z}^{2}+k_{z}^{2}\right)$ and using the derivative matrices, the measurements are expressed as

$$
\begin{aligned}
& y_{m 1}=\left(a \hat{D}^{2} r+b D_{m}\right)_{\text {apper man }} \quad y_{m 2}=\left(a \dot{\mathcal{D}}^{2} r+b D_{\dot{*}}\right)_{\text {mower min }} \\
& y_{m 3}=\left(b \dot{D}^{2} v+a D_{n}\right)_{\text {mper mall }} \quad y_{m A}=\left(b \hat{D}^{2} r+a \eta_{i}\right)_{\text {lowet vall }}
\end{aligned}
$$

Now derompose $\dot{\mathcal{D}}^{\mathbf{2}}$ and \boldsymbol{D} according to

$$
\dot{D}^{2}=\left(\begin{array}{ccc}
d_{1} & c_{1} & d_{3} \\
* & * & * \\
d_{2} & c_{2} & d_{4}
\end{array}\right) \quad D=\left(\begin{array}{ccc}
* & c_{2} & * \\
* & * & * \\
* & c_{4} & *
\end{array}\right)
$$

where r_{1}, c_{2}, c_{3}, and c_{4} arp $1 \times(N-1)$ and d_{1}, d_{2}, d_{3}, and d_{4} are 1×1. Finally: defining

$$
j=\left(\begin{array}{l}
y m 1 \\
y m 2 \\
y m 3 \\
y m 4
\end{array}\right) \quad C \equiv\left(\begin{array}{ll}
a c_{1} & b c_{3} \\
a c_{2} & b c_{4} \\
b c_{1} & a c_{3} \\
b c_{2} & a c_{4}
\end{array}\right) \quad D \equiv\left(\begin{array}{ll}
a d_{1} & b d_{3} \\
a d_{2} & b d_{4} \\
b d_{1} & a d_{3} \\
b d_{2} & a d_{4}
\end{array}\right)
$$

where y_{m} is $4 \times 1, C$ is $4 \times 2(N-1)$, and D is 4×2, allows us to express y_{m} in the standard forni of a linear combination of the state r and the control u

$$
\begin{equation*}
y_{m}=C x+D u \tag{5}
\end{equation*}
$$

The vertor $y_{m o}$ is referred to as the "measurcment".

3. Analysis of comtrol problems

In §2, it was shown that the equations governing suall perturbations in a laminar chanel flow may be expressed in the standard form

$$
\begin{align*}
\dot{x} & =A x+B u \tag{6a}\\
y_{m} & =C x+D u \tag{66}
\end{align*}
$$

where all variables are complex and the system matrix A is dense and non-selfadjoint. We now discuss the eigenmodes of A and identify which of these modes may be modified by the control u and which may be detected by the measurements ym.

It has been shown (Orizag 1971) that, for Re ≤ 5772, the uncontrolled problem itself is stable and. for Re >5772. weak instability is seen (though most of the eigenvalues remain stable , with the greatest instability near $k_{z}=1.0$ and $k_{z}=0.0$. We seck a method to determine the control u whid stabilizes the system in a manner which is robust to system uncertainties. To simplify our disrussion, we will restrict our attention in the remainder of this work to the particular case Re $=\mathbf{1 0 , 0 0 0}$. $k_{k}=1.0$, and $k_{:}=0.0$. Joshi. Speyer, \& Kim (1996) explore the (Re, k_{r}, k_{z}) parameter space further.

For $k_{z}=0$ (6 mo-dimensional perturbations), $C=0$ in (3), entirely decoupling the \pm eigenmodes from both the eigenmodes and from the control $a=\left(v_{0}, v_{N}\right)^{T}$. In the language of control theory, the ω eigenmodes are thus "uncontrollable" by the contrul u. (However. it is also seen that the + pigenmodes are stable, so these modes will, so to speak. Take care of ehemselves".) Thus, for the remainder of this paper. wr will restrict our attention to the reigenmodes arcording to system (6) with

$$
r=\left(\begin{array}{c}
r_{1} \\
\vdots \\
v_{N-1}
\end{array}\right) \quad A=\left(\begin{array}{l}
A_{11}
\end{array}\right) \quad B=\left(\begin{array}{ll}
b_{11} & b_{12}
\end{array}\right) \quad u=\binom{r_{0}}{r_{N}} .
$$

where I is $(N-1) \times 1 . A$ is $(X-1) \times(N-1), B$ is $(N-1) \times 2$ and u is 2×1 and

$$
y_{m}=\left(\begin{array}{l}
y_{m 1} \\
y m 2 \\
y m 3 \\
y m 4
\end{array}\right) \quad C=\left(\begin{array}{l}
a c_{1} \\
a c_{2} \\
b c_{1} \\
b c_{2}
\end{array}\right) \quad D=\left(\begin{array}{ll}
a d_{1} & b d_{3} \\
a d_{2} & b d_{4} \\
b d_{1} & a d_{3} \\
b d_{2} & a d_{4}
\end{array}\right)
$$

where y_{m} is $4 \times 1 . C$ is $4 \times(N-1)$. and D is 4×2. (All the constituent matrices. vectors, and flow measurements are described in the previous section.'

3.1 System enelysis

We now address whether or not all of the current system's $N-1$ eigenmodes may be controlled by the $m=2$ control variables. and whether or not all of these cigenmodes may be observed with the $p=4$ measurements. To accomplish this, it
is standard practice to consider two matrices which characterize the controllability and ohservability of the system as a whole (Lewis 1995). These ape the system controllability Gramian L_{c} of $\left\{A\right.$ B) and the sysiem observability Gramiani L_{0} of (C.A). which may br found by solution of

$$
\begin{aligned}
& A L_{+}+L_{C} A^{*}+B B^{\bullet}=0 \\
& A^{*} L_{0}+L_{*} A+C^{*} C=0
\end{aligned}
$$

Note that stable numerical techniques to solve equations of this form. referred to as Lyapumiv equations, are well developed.

If L_{r} is (nearly) singular, there is at least one cigenmode of the system which is (nearly) unaffected by any choice of control u. and the system is allind -uncontrollable'. If all uncontrollable eigenmodes are stable. and a coitrohler maxy be constructed such that the dynamics of the system may for made stabbe by the application of cuntrol. the system is ralled "stabilizable".

Similarly. if L_{0} is (nearly) singular. there is at least one eigenmode of the system which is (ncarly) indiscernible by the measurements y_{m}. and the system is cailed "unoberrable". If all unobservable eigenmodes are stable. and an estimator may be constructed such that the dynamirs of the error of the estimate may be madie siable by appropriate forcing of the estimator equation, the system is called "detectable".

For the present system. the smallest eigenvalue of both L_{r} and L_{0} are ronuputed to be near machine zero, indicating that the present system as derived above is both uncontrollable and unobservable. Gramian analysis can not identify which of the eigenmodes are uncontrollable or unobservable. bowever. so it is impossible to predict from this unalysis alone whether or not the system is stabilizable and detertable. For this reason. we now develop a method to determine which of the cigmunodes of a system may be affected by the control u and. similarly. which rigrunodes may be discerned by the measurements y_{m}.

9.2 Individual eigenmode enalysis

We will now make use of the modal canonical form of the system (6) to quantify the scnsitivity of each eigenmode of A to both control and observation (Kailath 1980. In order to clarify the derivation, we shall examine each eigenmore of the system separately. Define the eigenvalues λ_{1} and the right and left eigenvectors. ξ_{z} and η_{2}. of A such that

$$
\begin{aligned}
\text { right eigenvectors: } & A \xi_{1}=\lambda_{1} \xi_{1} \\
\text { left eigenvectors: } & \eta_{1}^{*} A=\lambda_{1} \eta_{1}^{\circ}
\end{aligned}
$$

where the eigenvectors are normalized such that $\left\|\xi_{1}\right\|=\left\|\eta_{1}\right\|=1$ for all i. Assume A has distinct cigenvalues (this may be verified for the present system described above). Then any x may be decomposed as a linear combination of the (independent but not orthogonal) right eigenvectors such that

$$
\begin{equation*}
x=\sum_{1} n_{1} \xi_{1} \tag{̄̄n}
\end{equation*}
$$

Differentiating with respect to time.

$$
\begin{equation*}
\dot{i}=\sum_{i} \dot{\alpha}_{i} \xi_{i} \tag{76}
\end{equation*}
$$

Also. note that left and right eigenvectors corresponding to different eigenvalues are orthogonal, but those corresponding to the same eigenvalues are not

$$
\begin{array}{ll}
\left(\eta_{,}, \xi_{1}\right)=0 & j \neq i \\
\left(\eta, \xi_{1}\right) \neq 0 & j=i \tag{86}
\end{array}
$$

3.2.1 Definitson of modal control sensitivity

By (6a) and (i). we have

$$
\begin{aligned}
\sum_{i} \dot{a}_{i} \xi_{i} & =A \sum_{i} a_{i} \xi_{i}+B u \\
& =\sum_{i} a_{i} \lambda_{i} \xi_{i}+B u
\end{aligned}
$$

Taking the inner product with η, and uoting (8a) yields

$$
\left(\eta, . \dot{\alpha}, \xi_{j}\right)=\left(\eta, a, \lambda, \xi_{j}\right)+(\eta, B u)
$$

Noting (8b). this yields

$$
\dot{\alpha_{j}}=\lambda, \alpha,+\frac{\left(B^{*} \eta_{j}\right)^{*} u}{\eta_{j}^{*} \xi_{j}}
$$

If the vector $B^{\bullet} \eta_{j}=0$. then $\dot{\alpha}_{j}=\lambda, a$, for any u. In terms of equation (7a). the component of x parallel to s, is not affected by the control u. and the eigenmode is said to be -uncontrollable". Further. the norm of the coeficient of u

$$
\begin{equation*}
f_{j}=\frac{\left|\eta_{j}^{*} B B^{\bullet} \eta_{j}\right|^{1 / 2}}{\left|\eta_{j}^{\bullet} \xi_{j}\right|} \tag{9}
\end{equation*}
$$

which we shall call the control sensitivity of mode j. is a quantitative measure of the sensitivity of the eignamode j to the control u. Note the dependence of this expression on the matrix $B B^{*}$, which is the same term whin drives the Lyapunov equation for controllability Gramian L_{c}.

9.2.2 Definition of madal observation sensitivity

By (6b) and (7) and assuming. for the moment. that $u=0$. we have

$$
y_{m}=\sum_{j} a_{j} C \xi_{j}
$$

If the vector $C \xi_{1}=0$, then y_{m} will not be a function of a_{3}. In terms of equation (7 a). the component of r parallel to ξ, does not coutribute to the measurements y_{m}. and the eigenmode is said to be "unobservable". Firther, the norm of $C \xi$,

$$
\begin{equation*}
g_{j}=\left|\xi_{j}^{*} C^{\bullet} C \xi_{j}\right|^{1 / 2} \tag{10}
\end{equation*}
$$

which we shall call the observation sensitivity of mode j. is a quantitative measure of the sensitivity of the measurement y_{m} to eigenmode $;$. Note the dependence of this expression on the matrix $C^{*} C$, which is the same term which drives the Lyapunovequation for obervability Gramian L_{0}.

J	λ,	f,	g_{3}
1	0.00373967-0.23752649i	0.265545	102.61
3	-0.03516 $28-0.96463092$ i	0.000215	72.85
4	-0.03518658-0.96464251i	0.000005	1.45
5	-0.05089873-0.27i20434i	0.026606	347.98
6	- $0.06320150-0.93631654 i$	0.000513	81.39
7	$-0.06325157-0.93635178 i$	0.000021	2.90
S	-0.09122974-0.90798303i	0.000931	83.36
3	-0.09131286-0.90815633i	0.000056	4.32
10	-0.11923285-0.87962i29 i	0.001587	7.67
11	-0.11937073-0.87975576	0.000124	5.37
12	-0.12450198-0.34910682i	$0.1 \% 1859$	69.50
13	-0.13829653-0.41635102i	0.037660	252.09
14	-0.14723393-0.85124584i	0.002833	63.31
15	-0.14742560-0.85144938i	0.000268	5.59
16	-0.17522868-0.82283504i	0.005581	44.14
:		:	:
38	-0.32519719-0.63610486i	5.659801	0.78
39	-0.34373267-0.67764346i	4.685315	0.64
:	!	;	
53	$-0.66286552-0.67027520 i$	0.259581	11.58

Tabi.E 1. Least stable eigenmodes of A (n, control) and the asociated control and observation sensitivities. Note that all eigenvalues agree procisely with those reported by Orszag (1971). Calculation used Chebysher collocation terimique witl: $N=140$ in quad precision (128 bits per real number). The second cigenmode, which is not shown here, is spurious (see text). Note that the only unstable mode$(j=1)$ for the present system is both sensitive to the control u and easily detected by the measurements y_{m}.

3.3 Sensitivity of eigenmodes of A to control and observation

The least stable eigenvalues of A and their corresponding rontrol and observation sensitivities f_{2} and g_{3} are tabulated in Table 1. Note that the fourth eigenmode is five orders of magnitude less sensitive than the first eigenmode to modifications in the control. In general, those modes in the upper branch of Fig. la (large $|3(\lambda)|$) are much less sensitive to control than those in the lower branch (small $\mid 3(\lambda) ;$). Sear the intersection of the two branches $(\beta(\lambda) \approx-0.3)$. the control sensitivity is maximum. with this sensitivity decreasing slowly to the left of this intersertion () (λ) <-0.3). It can be predicted that the eigenmodes corresponding to the largest f, may be affected most upon application of some feedback coutrol u.

Note that the flow measurements are two orders of magnitude less sensitive to the fourth eigenmode as they are to the first eigenmode. It can be peedicted that the state estimates of the eigenmodes corresponding to the largest g, wili be most

Figure la. Least stable pigenvalues: $\left|3\left(\lambda_{j}\right)\right|$ versus $\boldsymbol{R}\left(\lambda_{j}\right)$.

Figure ib. Eigenvectors corresponding to (left to right): ; $=1$ (unstable, lower branch), $j=3$ (stable. upper branch), $j=4$ (stable, upper branch). and $j=5$ (stable, lower branch), plotted as a function of y from the lower wall (bottom) to the upper wall (top). Real component of eigenvector is shown solid and imaginary component dashed. Corresponding eigenvalues are reported in Table 1.
accurate when estimating the state based on noisy measurements.
An important observation from Fig. 1b is that eigenvalues in the upper branch of Fig. la have corresponding cigenvectors with vaniations primarily in the center of the channel. and are thus less controllable via wall transpiration and less observable
via wall measurements than eigenvalues in the lower branch. This observation is quantifed by reduced values of f, and g, for these modes in Table 1 .
The second eigenvalue computed, at $\lambda_{2}=-0.0235+1.520 i$ is spurions. Spurions eigenmodes may be easily identified two ways: i) the eigenvalue moves significantly when N is modified slightly, though the eigenvalues reported in Table 1 renain converged. and ii) when plotted, spurious modes are dominated by large oscillations from grid point to grid point across the entire domain, though converged eigenmodes are well resolved. Spurious eigeumodes are expected using this approach and may be disregarded.

4. Summary of \mathcal{H}_{2} and \mathcal{H}_{∞} control theories

In §2, the equations governing the stability of a laminar channel flow were derived and cast in the form

$$
\begin{align*}
\dot{x} & =A x+B u \tag{11n}\\
y_{m} & =C x+D u \tag{11b}
\end{align*}
$$

where the constituent matrices A, B, C, and D were summarized and discussed in §3. We now seek a simple method to determine a control u based on the measurements y_{m} to force the state x towards zero in a manner which rigorously accounts, for state disturbances, to be added on the RHS of (11a), and measurement noise. to be added on the RHS of (11b).

The flow of information in this problem is illustrated schematically in the following block diagram.

The plant, which is forced by external disturbances, has an internal state x which cannot be observed. Instead, a few noisy neeasurements y_{m} are made, and with these measurements an estimate of the state $\hat{\boldsymbol{x}}$ is determined. This state estimate is then fed back to through the controller to determine the control a to apply back on the plant in order to regulate x to zero
To be more precise, we will consider feer' . " \therefore er measurements y_{m} such that a state estimate \hat{x} is first determined by we system model

$$
\begin{equation*}
\dot{\hat{x}}=A \dot{x}+B u-\hat{u} \tag{12a}
\end{equation*}
$$

$$
\begin{align*}
\hat{y}_{m} & =C \hat{x}+D u \tag{126}\\
\hat{u} & =\mathcal{C}\left(y_{m}-\hat{y}_{m}\right), \tag{12c}
\end{align*}
$$

then this state estimate is used to produce the control

$$
\begin{equation*}
u=K(\hat{x}) . \tag{13}
\end{equation*}
$$

Equation (11). with added disturbance terms on the RHS. is referred to as the "plant". (12) is referred to as the "astimator", and (13) is referred to as the "controller". The problem at hand is to compute linear time-invariant (LTI) functions \mathcal{C} and \boldsymbol{K} such that i) the "output injection" term \bar{u} forces the state estimate \dot{r} in the estimator (12) towards the state x in the plant (11), and ii) the control u computed by the controller (13) forces the state x towards zero in the plant (11).

We will now demonstrate how to apply \mathcal{H}_{2} and \mathcal{H}_{x} control theories to determine \mathcal{C} and $\mathcal{N}^{\text {. }}$. (Note that we will redefine several variables used in $\$ 2$ to derive the Orr-Sommerfeld equation. Considered in the context of this chapter, this should present no confusion.) With this presentation, one set of control equations, involving the solution of two Riccati equations, describes a family of $\mathcal{H}_{\mathbf{2}}$ and $\mathcal{H}_{\mathbf{x}}$ control algorithms. The reader is referred to Doyle et al. (1989). Dailey et al. (1990), and Zhou. Doyle, \& Glover (1996) for derivation and further discussion of the control theories summarized here.

$$
\text { 6.1 } \mathrm{H}_{2} \text { control theory }
$$

4.1.1 Optimal control (LQR)

The first step in considering the system (11) is to consider the problem with no disturbances and measurements which identically determine full information about the state. so that $\hat{r}=x$ (i.e. no estimation of the state is necessary). These assumptions are quite an idealization and can rarely be accomplished in practice, but this cxcrcise is an important step to determine the best possible system performance. It is for this reason that the controller in this limit is referred to as optimal. Under these assumptions about the system, the objective of the optimal controller. of the form in (13), is to regulate (i.e. return to zero) some measure of the flow perturbation r from an arbitrary initial condition as quirkly as possible without using excessive amo .is of control forcing. Mathematically, a cost function for this problem may thus be expressed as

$$
\begin{equation*}
\mathcal{J}_{L Q R} \equiv \int_{0}^{\infty}\left(\|x\|^{2}+\ell^{2} u^{*} u\right) d t . \tag{14}
\end{equation*}
$$

The term involving $\|x\|^{2}$ is a measure of the state disturbance x integrated over the time period over which the initial perturbation decays, which is taken as $t \in[0 . \infty)$. The term involving $u^{*} u$ is an expression of the magnitude of the control. These two terms are weighted together with a scalar ℓ^{2}, which represents the price of the contro!. This quantity is small if the control is "cheap" (which generally results in
larger control magnitudes), and large if applying the control is "expensive". As the state equation is linear, the cost quadratic, and the control objective regulation. this controller is also referred to as a linear quadratic regulator (LQR).

The mathematical statement of the present control problem. then, is the minimization of $\mathcal{J}_{L Q R}$. This results in regulation of r without excessive use of control effort. Note that minimization of $\mathcal{J}_{L Q R}$ is equivalent to minimization of the integral of $z^{*} \approx$, where

$$
z \equiv\binom{Q^{1 / 2} x / \ell}{u}
$$

and where Q is a diagonal matrix with diagonal entries $Q_{j}=\pi / N$, as required by the appropriate definition of the inner product (Canuto et al. 1988). In order to arrive at a form which is easily generalized in later sections. define

$$
B_{2} \equiv B \quad C_{1} \equiv\binom{Q^{1 / 2} / \ell}{0} \quad D_{12} \equiv\binom{0}{I}
$$

For notational convenience, the state equation (11a) will be considered as "forced" with a right hand side forcing term r which shall be set to zero. as this regulation problem simply drives the state towards zero without external command input. The state equation (11a), the performance measure z, and the state estimate \hat{r} then may be written

$$
\begin{align*}
& \dot{x}=A x+r+B_{2} u \tag{15a}\\
& z=C_{1} x+D_{12} u \tag{15b}\\
& \hat{x}=x .
\end{align*}
$$

The optimal controller $\mathcal{K}_{I, Q R}$ is sought to relate the (precise) state estimate \hat{x} to the control u, which is applied to control the evolution of the state x such that the cost $\mathcal{J}_{L Q R}(z)$ is minimized. The important matrices of the system described by (15) may be summarized in the shorthand form

$\mathcal{P}_{L Q R}=$| $\dot{\boldsymbol{r}}$ |
| :---: |
| $\dot{\boldsymbol{x}}$ |\(\left[\begin{array}{c|cc}\boldsymbol{x} \& r \& u

A \& I \& B_{2}

\hline C_{1} \& 0 \& D_{12}

I \& 0 \& 0\end{array}\right]\).

The flow of information is represented by the block diagram

where $\mathcal{P}_{L Q R}$ is the fiow system given by (15) and $\hat{\Lambda}_{l Q R}$ is the optimal controller. which is still to be determined. The system output : may be used to monitor the
performance of the system. Note that the command inpui is $r=0$ and there are no disturbance inputs; the task of the control u is simply to regulate the state x from nonzero initial conditions back to zero. The state $x=\hat{x}$ is fed back through the controller $\mathcal{K}_{L Q R}$ to control the system.

Given this general setup, a Hamiltonian is defined such that

$$
H_{2} \equiv\left(\begin{array}{cc}
A & -B_{2} B_{2}^{*} \tag{16a}\\
-C_{1}^{*} C_{1} & -A^{*}
\end{array}\right)
$$

As shown in Doyle et al. (1989), the Hermetian positive-definite solution X_{2} to the algebraic Riccati equation defined by this Hamiltonian

$$
\begin{equation*}
A^{*} X_{2}+X_{2} A-X_{2}\left(B_{2} B_{2}^{*}\right) X_{2}+\left(C_{1}^{*} C_{1}\right)=0 \tag{16b}
\end{equation*}
$$

denoted $X_{2}=\operatorname{Ric}\left(H_{2}\right)$, then yields the optimal ITi state feedback matrix

$$
\begin{equation*}
\boldsymbol{K}_{2}=-\boldsymbol{B}_{2}^{\bullet} \boldsymbol{X}_{2} \tag{16c}
\end{equation*}
$$

The optimal LTI controller $\mathcal{K}_{L Q R}$ is then given simply by

$$
\begin{equation*}
u=K_{2} \hat{x} \tag{17}
\end{equation*}
$$

This controller minimizes $\int_{0}^{\infty} z^{*} z d t$ in a system with no disturbances and arbitrary initial conditions. Note that standard numerical terhniques to solve equations of the form (16b) are well developed (Laub 1991).

4.1.2 Kalmen-Bucy filter (KBF)

When there are disturbances to the system, and thus the state is not precisely known, the state (or some portion thereof) must first be estimated, then the control determined based on this state estimate. The Kalman-Bucy filter, of the form (12). accomplishes the required state estimation by assuming that the state disturbaices and the measurement noise are uncorrelated white Gaussian processes. To accomplish this, we introduce two zero-mean white Gaussian processes w_{1} and w_{2} with covariance matrices $E\left[w_{1}^{*} w_{1}\right]=I, E\left[w_{2}^{*} w_{2}\right]=I$, where $E[\cdot \mid$ denotes the expectation value. With these new disturbance signals, and with \hat{G}_{1} defined as the square root of the covariance of the disturbances to the state equation and G_{2} deuned as the square root of the coviriance of measarement noise, the system (11) takes the form

$$
\begin{align*}
\dot{x} & =A x+G_{1} u_{1}+B u \tag{18a}\\
y_{m} & =\because x+G_{2} u_{2}+D u . \tag{18b}
\end{align*}
$$

The objeciive of the Kalman-Bucy filter is to estimate the state x as accurately as possible based solely on the measurements y_{m}. Put another way, the Kalnan-Bucy filter attempts to regulate the norm of the state estimation crror $x F$ to zero, where

$$
x_{E} \equiv x-\hat{\boldsymbol{I}}
$$

and where the state estimate $\hat{\bar{z}}$ shall be determined by a filer of the for:n (10). Mathematically: a cos: function for this problem may thus be expressed as

$$
\left.\mathcal{J}_{h B F} \equiv E[\|=\mathrm{E}]^{2}\right]
$$

where : $E \equiv x_{E}$ for notational convenience. (As Gaussian disturbances u_{1} and u_{2} continually drive this system. an integral on $t \in\{0, x)$, as used to define $T_{!}, Q H$. is not convergent for this problem. and the expectation - Nue is the relerant meanime. i

The mathematiral statement of the present control problem, then, is the mini mization of $\mathcal{T}_{\text {h }} \mathrm{FF}$. This results in a "best possible" estimate of the state 5 . In order to arrive at a form which is easily generalized in later sertions, assumr G. is nousingular and define

$$
B_{1} \equiv\left(\begin{array}{lll}
G_{1} & 0
\end{array}\right) \quad C_{2} \equiv G_{2}^{-1} C \quad D_{21} \equiv\left(\begin{array}{ll}
0 & I
\end{array}\right)
$$

and the vector of disturbances

$$
w \equiv\binom{u_{1}}{u_{2}}
$$

Also. define new "observation" veriors y and \hat{y} by a simple change of variables suct: that

$$
y \equiv G_{2}^{-1}\left(y_{m}-D u\right) \quad \bar{y} \equiv G_{2}^{-1}\left(y_{m}-D u\right) .
$$

Note that this change of variables does not represent any real limitation. for whenever any flow measurement y_{m} is made in a physical implementation. the controi u at that moment is also known, so the observation y is easily detemined from the flow measurement y_{m}. With this change of variables, (18b) and (12b! may ter expressed as

$$
\begin{align*}
& y=C_{2} x+D_{21} u \\
& \dot{y}=C_{2} \dot{r} \tag{19b}
\end{align*}
$$

As we ar. developing the equations for an estimator. it is appropriate nou to exantine the equations for the state estimation error $E E$ and the ouput estimation cror $y \mathrm{y}: \equiv y-\dot{y}$. Subtracting (12a) from (18a) and (19h) from (19a) yields the susem

$$
\begin{align*}
& \dot{x}_{E}=A x_{E}+B_{1} u+\dot{u} \\
& z E=x_{E} \tag{20b}\\
& y_{E}=C_{2} x_{E}+D_{21} u . \tag{20r}
\end{align*}
$$

The Kalman-Bucy filter $\mathcal{L}_{\text {KBr }}$ is sought to relate the output estimation error yf: to the output injertion term \dot{u}. which is used to control the evolution of the state estimation error x_{C} such that the cost $\mathcal{J}_{h B f}(z f)$ is minmized in the presure of Gaussian disturbances \boldsymbol{w}. The important matrices of the system descriluel by $\mathbf{t} 20$, may be summarized in the shorthand form

$$
\left.F_{\text {h AF }}=\begin{array}{c}
\dot{\operatorname{r}} E \\
\mathrm{yE}
\end{array} \quad \begin{array}{c|cc}
\mathrm{T}_{\mathrm{E}} & \boldsymbol{v} & \dot{\mathbf{i}} \\
A & B_{1} & I \\
\hline I & 0 & 0 \\
C_{z} & D_{21} & 0
\end{array}\right]
$$

The fiow: of information is represented by the block diagram

Where $\mathrm{A} \boldsymbol{5 F}$ is the flow system given by (18) and $\mathcal{C}_{\mathrm{A}} \boldsymbol{H F}$ is the Kaiman-Bury filter. wL:-in ís still to be determined. The system output =f: may be used to monitor the perforr ance of the system. This system accounts for Gaussian disturbances u and mosy : boservaticui ye of the system. which are fed bact through the filter \mathcal{C}_{h} wf to prodace the staie estimate. Note the striking similarity of the structure of Phaf to the structure of the conjugate transpose of PLQQ. For this reason. these two problems are seferred to as "duals", and their solutions are ctsely related.

Giveu this general setup. anotber Hamiltonian is diffined such that

$$
J_{2} \equiv\left(\begin{array}{cc}
A^{*} & -C_{2}^{*} C_{2} \tag{21a}\\
-B_{1} B_{i} & -4
\end{array}\right)
$$

As shown in Doyle er al. (1989), the Hermetian positive definite solution I_{2} to the algebraic Riccati equation defined by this Hamiltonian

$$
\begin{equation*}
A Y_{2}+I_{2} A^{*}-Y_{2}\left(C_{2}^{*} C_{2} i Y_{2}+\left(B_{1} B_{1}^{*}\right)=0\right. \tag{21b}
\end{equation*}
$$

detored $Y_{2}=$ Ricl J_{2} I. then yields the LTI estimator firdhack matrix

$$
\begin{equation*}
L_{2}=-Y_{2} C_{2}^{*} \tag{21c}
\end{equation*}
$$

The LTI Rainali-Bucy filter $\mathcal{C}_{\boldsymbol{H}} \boldsymbol{\theta F}$ is then simply given by

$$
\dot{u}=L_{3} y E
$$

and thus the complete state estimator is given by

$$
\begin{equation*}
\dot{i}=A \dot{x}+B_{2} u-L_{2}\left(y-C_{2} \dot{r}\right) \tag{2-2}
\end{equation*}
$$

This estimator minimizes $E\left[\|r-\dot{r}\|^{2}\right]$ in a system with Gaussip-` disturbauces in the state equation and Gaussian noise in the measurements.
4.1. H_{2} contral (LQG=LQE + SBF)

A controller/estimator of the form (12)-(13) for the complete system desrrilwit by (18) with Gaussian disturbances may now be constructed. The oljective of the control is to minimize

$$
\mathcal{J}_{z} \equiv E\left[\|x\|^{2}+f^{2} u^{\bullet} u\right]
$$

wierre || $\left|\mid\right.$ denctes the standard Euclidian corm, also known as a - uorm ${ }^{-}$. Nore that minimization of \mathcal{J}_{2} is equivelent to minimization of the expectation value of $z^{*}=$. where

$$
=\equiv\binom{Q^{1 ; 2} x / \ell}{m}
$$

and Q is a dingonal matrix with diagonal entries $Q_{y}=\pi / N$ as required by the appropriate definition of the irner product. As the control objective is the minimization of the expertation value of the square of a 2 -morm, this type of coniroller/estimator is referred to as \mathcal{H}_{2}. As the strie equation is linear. the cost quadratic. and the disturbences Gaussian. this type of controlker/estimator is also referred to as linear quadratic Gaussian (LQG).

Combining the notation developed in the previous two sections

$$
\begin{array}{lll}
B_{1} \equiv\left(\begin{array}{ll}
G_{1} & 0
\end{array}\right) & C_{1} \equiv\binom{Q^{1 / 2} / C}{0} & D_{12} \equiv\binom{0}{I} \\
B_{2} \equiv B & C_{2} \equiv G_{2}^{-1} C & D_{21} \equiv\left(\begin{array}{ll}
0 & I
\end{array}\right)
\end{array}
$$

with the vertor of disturbances x and the observation veriors y and \dot{y} defined such that

$$
r \equiv\binom{c_{1}}{c_{2}} \quad \begin{aligned}
& y \equiv G_{2}^{-1}\left(y_{m}-D_{u}\right) \\
& \dot{y}=G_{2}^{-1}\left(y_{m}-D_{u}\right) .
\end{aligned}
$$

the system (18) and the control nbjective for the minimization of J_{2} take the form

$$
\begin{align*}
& \dot{r}=A x+B_{1} u+B_{2} u \tag{23a}\\
& ==C_{1} x+\quad D_{12} u . \tag{236}\\
& y=C_{2} x+D_{21} w . \tag{23r}
\end{align*}
$$

An \mathcal{H}_{2} controller/estimator is sought to reiate the observations y to the control u. which is applied to control the evolution of the state x such that the cost $\mathcal{J}_{2}(z)$ is minimized in the presence of Gaussian disturbances u.

The remariable result from control theory (Lewis 1995) is that the \mathcal{H}_{2} controller/estimator of the form (12)-(13) which minimizes \mathcal{J}_{2} for this systenn is formed by simple combination of the optimal controller and the Kalman-Bucy filter such that

$$
\begin{align*}
& u=K_{2} \dot{r} \tag{24a}\\
& \dot{\dot{r}}=A \dot{r}+B_{2} u-L_{2}\left(y-C_{2} \dot{r}\right) \tag{24b}
\end{align*}
$$

Where $K_{\text {: }}$ is given loy (16)

$$
K_{2}=-B_{2}^{\infty} X_{2} \quad X_{2}=\operatorname{Ric}\left(\begin{array}{cc}
A & -B_{2} B_{2}^{\bullet} \tag{24c}\\
-C_{1}^{*} C_{1} & -A^{*}
\end{array}\right)
$$

and L_{2} is given by (21)

$$
L_{2}=-H_{i} C_{2}^{*} \quad \boldsymbol{Y}_{2}=\operatorname{Ric}\left(\begin{array}{cc}
A^{*} & -C_{2}^{*} C_{2} \tag{24d}\\
-B_{1} B_{i}^{*} & -A
\end{array}\right)
$$

Note the separation stncture of this solution. The computation of $\boldsymbol{K}_{\mathbf{2}}$ does not depend upon the influence of the disturbances, which are accounted for in B_{1} and C_{2}. The computation of L_{2} does nol depend upon the weightings in the cost function. Which are accounted for in C_{l}. or the minnor in which the contral a afiect: the state, which is accounted for in B_{2}. In other mords, the problem of control and the problen of stake estimation are entirely decoupled.

$4.2 \mathrm{~K}_{\infty}$ control

The \boldsymbol{H}_{x} rontrolleriestimator described in this section is very similar to the $\boldsymbol{H}_{\mathbf{2}}$ rontroller/estimator described previously. Consideration is mow given to disturbances. which we shall distinguish with a new variable 1. of the "worst" possible structure (as made precise befow), rather than the Gaussian structure assumed in the \mathcal{H}_{2} case. Considered in the frequency domain. the controller/estimators derekoped in this section provide a system behavior in which the maximun singular value of the closed-loop, transfer function. also known as the "x-norm", is less than some constant. Which shall be referred to as 7 . As this approach may be interpreted as luanding the x-norm of the transfer function from the disturbances to the performance measure, it is referred to as \boldsymbol{H}_{x} control. For further details of the frequency-domain explanation of $\boldsymbol{H}_{\mathrm{x}}$, the reader is refersed to Doyk et el. (1989) and Zhou. Duyle. \& Giover (1996).

The gonerning equations to be considered in this sertion are identical to (23):

$$
\begin{align*}
& \dot{r}=A x+B_{1} u+B_{2} u \tag{25a}\\
& ==C_{1} x+\quad D_{12} u \tag{256}\\
& y=C_{2} x+D_{21} x . \tag{25c}
\end{align*}
$$

An \boldsymbol{H}_{*} controller/estimator is sought to relate the olservations y to the control u. which is applied to control the evolution of the state x such that the cost \mathcal{J}_{∞} i) is minimized in the presence of some "worst case" disturbance I. As before, the G_{1} and G_{2} matrices used to define this system describe any covariance structure of the dist urlances known or expected a priori (for instance, if one measurement is known to be noisier than another). These matrices are taken as identity matrices if no such structure is known in advance.

Effertively. the rest function considered for $\mathcal{H}_{\boldsymbol{x}}$ control is

$$
\begin{equation*}
\mathcal{J}_{x} \equiv E\left[r^{*} Q x+f^{2} u^{\bullet} u-\gamma^{2} \imath^{\bullet} \backslash\right] \tag{26}
\end{equation*}
$$

$A u$ is sought, through a controller/estinato: of the form (12) (13), to mitimize \mathcal{J}_{∞}, while simultencously an external disturbance \backslash is sought to marimize \mathcal{J}_{x}. (In this manner, 1 is the "worst possible" disturbance, as it is exactly that disturbanct which increases the relevant cost function the most.) Tuus, the $\boldsymbol{\mathcal { H }}_{\boldsymbol{x}}$ problen is a "min-max" problem. The term involving $-\gamma^{2}$ limits the magnitude of the unstructured disturbance in the maximization of \mathcal{J}_{x} with respert to $\boldsymbol{\lambda}$ in a manner analogous to the term involving f^{2}, which limits the magnitude oi the control in the minimization of \mathcal{J}_{∞} with respect to u.

The result (Doyle et al. 1989) is that an \boldsymbol{H}_{∞} controller/estimator of the form (12) -(13) which minimizes \mathcal{J}_{∞} in the presence of some component of the worst case unstructured disturbance I for this system is given by

$$
\begin{align*}
& u=K_{\infty} \dot{\boldsymbol{r}} \tag{27a}\\
& \dot{\hat{r}}=A \dot{\mathbf{r}}+B_{2} u-L_{\infty}\left(y-C_{2} \dot{\boldsymbol{r}}\right) \tag{27b}
\end{align*}
$$

where h_{x} is given by

$$
K_{x}=-B_{2}^{*} X_{x} \quad \mathbf{K}_{x}=\operatorname{Ric}\left(\begin{array}{cc}
A & \gamma^{-2} B_{1} B_{1}^{*}-B_{2} B_{2}^{*} \tag{27c}\\
-C_{1}^{*} C_{1} & -A^{*}
\end{array}\right)
$$

and L_{x} is given by

$$
L_{x}=-Y_{x} C_{2}^{*} \quad Y_{x}=\operatorname{Ric}\left(\begin{array}{cc}
A^{*} & \gamma^{-2} C_{i}^{*} C_{i}-C_{2}^{*} C_{2} \tag{27d}\\
-B_{1} B_{i}^{*} & -A
\end{array}\right)
$$

Note first that. in the $\boldsymbol{\gamma} \rightarrow \infty$ limit, the \boldsymbol{H}_{2} controller/estimator is recovered. s) the set of two Riccati equations in (27) describes both the \boldsymbol{H}_{2} (optimal control + Kalman-Bucy filter) and the \boldsymbol{H}_{∞} problems.

It may also be shown that, as the upper-right blocks of the Hamiltonians may not be negative definite, a solution to these Riccati problems exists only for sufficiently large 7 : the smallest ? $=\gamma_{0}$ for which a solution to these equations exists may be found by trial and error (Doyle et al. 1989). An \boldsymbol{H}_{∞} controller/estimator for $\gamma>70$ is referred to as suboptimal.

4.9 Comparison of \boldsymbol{H}_{2} and \mathcal{H}_{∞} control equetions

Most of the robustness problems associated with \boldsymbol{K}_{2} stem from the state estimation. Optimal (LQR) rontrollers themselves, provided with full state information. generally have excellent performance and robustness properties (Dailey et al. 1990). Recall from $\$ 4.1 .3$ that the problems of control and state estination in the \mathcal{H}_{2} formulation are decoupled.

An important observation of $\$ 4.2$ is that the problems of control and state estimation in the $\mathcal{H}_{\boldsymbol{x}}$ formulation are coupled. Specifically, the computation of $\boldsymbol{K}_{\boldsymbol{x}}$ deperds on the experted covariance of the state disturbances. which are arcomnted for in B_{1}. and the computation of L_{x} depends on the weightings in the cont function. which are accounted for in C_{1}. This is one of the essential features of \mathcal{H}_{x} control.

By taking into account the expected covariance of the state disturbances. reflected in \boldsymbol{B}_{1}. When determining the state feedback matrix $\boldsymbol{K}_{\boldsymbol{\infty}}$. the components of i corresponding to the components of x that are expected to have the smallest forcing by external disturbances are weighted least in the feedback control relationship $u=\boldsymbol{K}_{\boldsymbol{x}} \dot{\boldsymbol{i}}$.
Similarly, by taking into account the weightings in the cost function, reflected in C_{1}. when determining the estimator feedback matrix L_{x}. the components of $;$ corresponding to the components of x that are least important in the computation of J_{x} are forced with the smallest corrections by the outpur injection term $L_{x}(y-y)$ in the equation for the estimator.
By applying strong control only on those components of \dot{r} significantly excited by external disturbances. and by applying strong estimator corrections only to those components of \dot{r} important in the computation of the cost function, $\boldsymbol{H}_{\boldsymbol{x}}$ feedback gains for components of the system not relevant to the control problem are reduced from those in the \mathcal{H}_{2} case. With such feedback gains reflured, the stability properties of $\mathcal{H}_{\mathrm{xc}}$ controller/estimators in the presence of state disturbances and measurement noise may be expected to be better than their \mathcal{K}_{2} counterparts, at the cost of a (hopefully, small) degradation of perfornance in terms of the $\mathbf{2}$-norm of the output = for the undisturbed system.

4.4 Numerical method

Standard numerical terhniques are now applied to all aspects of this problem. In order to simplify both the theory to be presented and the numerical algorithm to be coded, no further mamipulation of the equations is used beyond the matrix represcntations (25) and (27). It was observed that the minimal realization approach (Kailath 1980) is well suited to reduce the computation time necessary to determine effective control algorithms by the present approach: however. such an approach xis: not found to be neressary in the present case.
Tise algebraic Riccati equations are solved using the method of Laub (1991), which invoives a Schur factorization. This is found to be a stable numerical algorithm for all rases tested. The implementation of Laub's method is written in Fortran-30 and follows closely the algorithm used by the Matlab function are. (Grace et al. 1992). A Lyapunov solver. modeled after the Matlab function 1yap.a. is used to compute the system Gramians.
Two LAPACK routines (Anderson e: '? 1995). zgeev.f and zgees.f, are used to compute eigenvalues/eigenvectors and Schur fartorizations. These routines are compiled in quad precision (128 bits per real number) to ensure sufficient numerical precision in the eigenvalue computation. All computations are carried out with $N=140$ to ensure good resclution of all significant eigenmodes. The eigenvalues of A match all those tabulated by Orszag (1971) to all eight derimal places, as shown in Table 1, indicatiug that this numerical method is sufficiently accurate.

5. Performance of controlled systems (no dist urbances)

We now examine the brhavior of the "closed-loop" systems obtained by application of the above controliers and estimators to the "nominal" (t.e. no disturbances)
channel thow stability problem. In other words, we examine the lediatior of the fow and the controlker/estimators operating together as a single dyuamical systini:. By looking at "root locus" plots which map the movenent of the eigenvalues of theor systems in the complex plane with respect to the reievant parameters. this beharior is well quantified. We shall also examine the emtrol and ebservation winitivius defined in $\$ 3.2$ for two special cases in order to better understand tbe fundanental limitations of controllers and estimators applied to the present system.

$$
5.1 \mathrm{H}_{2} \text { contro! }
$$

5.1.1 Optimal control (LQR)

In order to investigate the controllability of the closed-loop cigenamers when all mode are obsertable, consider the system described in $\$ 4.3 .1$. With $r=0$ and examining only the equations for \dot{r} and \dot{r}, the plant is given (in the shorthand motation used in \$4) by

$$
P_{L Q R}=\begin{gathered}
\dot{r} \\
\dot{i}
\end{gathered}\left[\begin{array}{c|c}
x & u \\
A & B_{2} \\
\hline I & 0
\end{array}\right]
$$

with the control now given by

$$
u=K_{2} \dot{x}+u^{\prime}
$$

where an additional control term u^{\prime} has bern adced to stady the sensitivity of the closed-loop system to further modification of the control. Putting the glant and the controller together. '!e closed-loop systeni may be represented by

$$
\mathcal{P}_{\text {LQR(elsoed loop) }}=\begin{gathered}
\dot{r} \\
\dot{r}
\end{gathered}\left[\begin{array}{c|c}
\dot{c} & u^{i} \\
A+B_{2} K_{2} & B_{2} \\
\hline I & 0
\end{array}\right]
$$

The eigenmodes of $A_{H_{2}} \equiv A+B_{2} K_{2}$ describe the dynamics of the dosed lowip system for the unmodified control rule ($u^{\prime}=0$). Figure 2 shows the movement of these cigenvalues with respect to the free parameter of the control problem. t. used to determine K_{2}. The eigenvalues for $\ell \rightarrow \infty$ are very near those of the uncontrolled system A in Fig. 1, with the previously unstable morle moved just to the left of the inaginary axis. The eigenvalues generally move to the left as ℓ is df : :-ased. Comparing Fig. 26 with Fig. 1b, it is seen that the control modifies nows those eigenmodes with significant variations near the wall.

The sensitivity of the eigenmodes of the closed loop LQR svstem so momitication of the control rule may be quantified by performing the analysis of $\$ 3.2 .1$. replacing the eigenmodes of A by the eigenmodes of $A_{h_{2}}$. The result of this analysis for small f is shown in Table 2. This table shows that, in the $\ell \rightarrow 0$ limit, the system inatrix is morlified to the point that the eigenmodes are no longer semsitive to further modification of the control. In other words. all the controllable dynamics of the system have leen modified by K_{2} and are arcounted for in the closed lex, in this limit. This is one demonstration that the optimal controller extrate the test possible performance from a given (full-information) system.

Figure 2a. Hoot locus of least stable eigenvalues of $I_{h_{2}}$ as a function of the frec parameter of the \mathcal{H}_{2} controller. ℓ. The figenvalues fo: $t \rightarrow \infty$ are marked with an (x).

Figite 2b. Eigencutors of $A_{h_{3}}$. with $\epsilon=10^{-4}$, coriesponding to (left to right): $j=1, j=3, j=4$. and $j=5$. Feal component of eigenvector $i s$ shown solid and imaginary component dashed. Correspording eigenvalues are reported in Table?

5.1. Kalmon-Bucy filter (KBF;

The entimator itself has its own set of dynamics These dynamice are captured loy the exuations for the state estimator crror, as duscribed in $\$ 4.1 .2$. We now make ise of this system in urder to investigate the observability of closed - foop eigmonodes

j	λ_{j}	$f ;$
3	$-0.03513233-0.96462128 i$	0.000000029
4	$-0.03518652-0.96464261 i$	0.00000001
5	$-0.06255259-0.29262711 i$	0.000001101
6	$-0.0631035 i-0.93629329 i$	0.000000070
7	$-0.06325089-0.93635257 i$	0.000000003
1	$-0.06644730-0.29721403 i$	0.000001116
8	$-0.09102975-0.90793951 i$	0.000000129
9	$-0.09130964-0.90805917 i$	0.00000008
10	$-0.11890731-0.87955083 i$	0.000000226
11	$-0.11936036-0.87976246 i$	0.000000020
12	$-0.14335180-0.43962023 i$	0.000062503
14	$-0.14673294-0.85111508 i$	0.000000414
15	$-0.1473990 i-0.85146161 i$	$0.000000-45$
13	$-0.14803996-0.44586838 i$	0.000003081
16	$-0.17450455-0.82261690 i$	0.000000842

Table 2. Least stable eigenmodes of the closed loop system $A_{h_{2}}$ and their sonsitivity to cuntrol for the optimal controller in the cheap control limit ($\ell=10^{-4}$). The numbering of the eigenvalues shown is the same as the numbering of the cigenvalues of Table 1 to which they are connected by the root locus of Fig. 2. Note that the control in this limit drives all eigenmodes to positions at which chey are insensitive :o further modifications of the control, as illustrated by the large reductions in f_{3}. Note also that those eigenmodes with the iargest values of f_{3} in Table 1 (specifically. those in the lower branch have moved the most.
when all nodes are controllaiole. With $u^{\prime}=0$ and examining only the equations for \dot{x}_{E} and $y E$, this plant is given by

$$
\mathcal{P}_{\mathrm{K} B F}=\begin{gathered}
\dot{x}_{E} \\
y E
\end{gathered}\left[\begin{array}{c|c}
x_{E} & \dot{u} \\
A & I \\
\hline C_{2} & 0
\end{array}\right]
$$

with the output injection now given by

$$
\hat{u}=L_{2} y E+\hat{u}^{\prime},
$$

where an additional output injection term "i' has been added to study the sensitivity of the closed-loop system to farther modification of the output injection rule. Purting the plant and the estimator together, the closed-loop system may be represented by

$$
F_{\text {h } B F(\text { Clased loop })}=\begin{gathered}
\dot{x}_{E} \\
y_{E}
\end{gathered}\left[\begin{array}{c|c}
x_{E} & \dot{u}^{\prime} \\
A+L_{2} C_{2} & I \\
\hline C_{2} & 0
\end{array}\right] .
$$

The figenmodes of $A_{L_{2}} \equiv A+i_{2} C_{2}$ describe the dynamics of the closed loop system for the unmodified output injection rule ($\hat{u}^{\prime}=0$). Figure 3 shows the movement of

Figune 3. Hoot locus of least stable eigenvalues of $A_{L_{2}}$ as a function of + . iree parameters of the \mathcal{H}_{2} estimator, \boldsymbol{g}_{1} and g_{2} (note that we take $g_{1}=g_{2}$ for the purpose of drawing the coot locus). The eigenvalues for $g_{1}=g_{2} \rightarrow 0$, marked with (x), are very near those of the uncontrolled system A in Fig. 1, with the previously unstable mode moved just to the left of the imaginary axis. The eigenvalues generally move to the left as g_{1} and g_{2} are increased.
these rigenvalnes with respect to the free parameters of the estimator problem. This is done by assuming that the matrices descriting the covariance of the disturbances have the simple form $G_{1}=g_{1} I$ and $G_{2}=g_{2} I$, where g_{1} and g_{2} are real scalars.
The sensitivity of measurements yE to the eigenmodes of the closed loop KBF system may be quantified by performing the analysis of $\oint 3.2 .2$, replacing the eigenmodes of A by the eigenmodes of $A_{L_{3}}$. The result of this analysis for large $g_{1}=g_{2}$ is shown in Table 3. This table shows that, in the $g_{1}=g_{2} \rightarrow \infty$ limit. the system matrix is modified to the point that the measurements are no longer sensitive to the eigenmodes of the closed-loop system. In other words, all the measurable dynamics of the system have been extracted by L_{2} and are accounted for in the clused loop system in this limit. This is one demonstration that the Kalman-Bucy filter extracts the best pussible state estimate from a given (fully-controllable) state estimator.
$5.1 .3 \mathrm{H}_{2}$ control ($L Q G=L Q R+K B F$)
It was mentioned in $\$ 4.1 .3$ that the controller/estimator which minimized the relevant cosi functional $\left(\mathcal{J}_{2}\right)$ in the presence of Gaussian disturbances could be found by considering the controller and estimator problems separately. In this section, it is shown that the closed-loop performance of a system of the form (23) (without disturbances)

$$
\begin{aligned}
& \dot{x}=A x+B_{2} u \\
& y=C_{2} x
\end{aligned}
$$

j	λ_{j}	g,
3	$-0.03505745-0.96474093 i$	0.000000568
4	$-0.03518656-0.96464253 i$	0.000000004
6	$-0.06287931-0.93668086 i$	0.000000644
7	$-0.06325136-0.93635193 i$	0.000000008
5	$-0.08362450-0.25066856 i$	0.000002858
8	$-0.09059621-0.90874817 i$	0.000000673
9	$-0.09131196-0.90805689 i$	0.000000011
1	$-0.09565183-0.17658643 i$	0.000000094
10	$-0.11823779-0.88095122 i$	0.000000646
11	$-0.11936807-0.87975709 i$	0.000000014
12	$-0.14209547-0.25910275 i$	0.000000130
14	$-0.14584717-0.85329567 i$	0.000000549
15	$-0.14741926-0.85145293 i$	0.000000014
16	$-0.17347707-0.82577419 i$	0.000000399
13	$-0.17418920-0.40314656 i$	0.000002002

Tabie 3. Least stable eigenmodes of the closed-loop system $A_{i, 2}$ and their sensitivity to observation for the Kalman-Bucy filter in the large disturbance limit ($g_{1}=g_{2}=10^{2}$). The numbering of the eigenvalues shown is the same as the numbering of the eigenvalues of Table 1 to which they are connected by the root locus of Fig. 1. Note that the estimator in this limit modifies all eigenmodes until the measurements are no longer sensitive to them, as illustrated by the large reductions in g_{j}. Note also that those eigennodes with the largest values of g, in Table 1 (specifically, those in the lower branch) have moved the most.
combined with an estimator/controller of the form (24)

$$
\begin{aligned}
& u=K_{2} \dot{x} \\
& \dot{\hat{x}}=A \hat{x}+B_{2} u-L_{2}\left(y-C_{2} \dot{x}\right)
\end{aligned}
$$

may also be evaluated by considering the controller and estimator problems separately. To accomplish this, simply combine the above equations into the closed-loop composite system

$$
\binom{\dot{x}}{\dot{x}}=\left(\begin{array}{cc}
A & B_{2} K_{2} \\
-L_{2} C_{2} & A+B_{2} K_{2}+L_{2} C_{2}
\end{array}\right)\binom{x}{\dot{x}} .
$$

Gaussian elimination, first on the rows and then on the columns, reveals that the eigenvalues of this system are the same as the eigenvalues of the system

$$
\left(\begin{array}{cc}
A+B_{2} K_{2} & B_{2} K_{2} \\
0 & A+L_{2} C_{2}
\end{array}\right)
$$

In other words, the eigenvalues of the closed-loop composite system for the \mathcal{H}_{2} problem are simply the union of the eigenvalues of the controlled system $A_{h_{z}}=$ $A+B_{2} K_{2}$ and the eigenvalues of the estimated system $A_{L_{2}}=A+L_{2} C_{2}$ discussed in the previous two sections and illustrated in Fig. 4.

Figurf. 4. Least stable cigenvalues of the composite closed-loop system with the \mathcal{H}_{2} controller/estimator, taking $\ell=g_{1}=g_{2}=1$. Note that the eigenvalues are simply the eigenvalues of the closed loop controller $(+)$ together with those of the closed loop estimator (*).

$5.2 \mathcal{H}_{\infty}$ control

As with the \mathcal{H}_{2} controller/estimator, the performance of the closed loop composite system with the \boldsymbol{K}_{x} controller/estimator

$$
\binom{\dot{\dot{~}}}{\dot{x}}=\left(\begin{array}{cc}
A & B_{2} K_{\infty} \\
-L_{\infty} C_{2} & A+B_{2} K_{\infty}+L_{\infty} C_{2}
\end{array}\right)\binom{x}{\dot{x}}
$$

may be evaluated by considering the performance of the controlled system $A_{h_{\infty}}=$ $A+B_{2} K_{\infty}$ and the performance of the estimated system $A_{L_{\infty}}=A+L_{\infty} C_{2}$ separately. The root locus of the eigenvalues of $A_{\boldsymbol{K}_{\mathbf{x}}}$ are plotted with respect to the parameter γ of the H_{∞} problem in Fig. 5, clearly illustrating the tendency of \mathcal{H}_{∞} controllers to modify only the least stable components of the system, as opposed to the \mathcal{H}_{2} controller of Fig. 2, which modifies all controllable modes of the system.

6. Conclusions

Optimal and robust control theories have been successfully applied to the OrrSommerfeld equation. Given control on the wall-normal component of boundary velocity only, the flow system is shown to be stabilizable but not controllable. Given measurements of wall skin-friction only, the flow system is shown to be detectable but not observable. It is shown that $\boldsymbol{\mathcal { H }}_{\mathbf{2}}$ controllers/estimators modify all of the controllable/observable modes of the system. In contrast, the \mathcal{H}_{∞} controllers modify the corresponding \mathcal{H}_{2} controllers only in the most unstable component, as $\mathcal{H}_{\boldsymbol{\infty}}$ targets a bound only on the maximum value of the transfer function.

Figure 5. Root locus of least stable eigenvalues of the \boldsymbol{H}_{∞} controller versus $\boldsymbol{\gamma}$. taking $\ell=100, g_{1}=g_{2}=0.001$. The result with $\gamma \rightarrow \infty$, marked with the (x). gives the corresponding \boldsymbol{H}_{2} controller. Note that the \mathcal{H}_{∞} controller modifies only the least stable eigenmode of this \mathcal{H}_{2} result, without expending any extra control effort to control those eigenmodes not associated with the maximally unstable component of the system. Note also that $\gamma=\gamma_{0}$, marked with the (0), is reached by reducing ? until the least stable eigenvalue corresponds to one of the uncontrollable eigenmodes in the upper branch, which cannot be moved further left; in the present case, this corresponds to a numerical value of $\gamma_{0}=0.26$.

In the $\ell \rightarrow 0$ limit of the \mathcal{H}_{2} controller, corresponding to cheap control and thus large values of u, all eigenmodes of the closed-loop controlled system are shown to be modified to points at which they are no longer sensitive to further modifications of the control. Similarly, in the $g_{1}=g_{2} \rightarrow \infty$ limit of the \mathcal{H}_{2} estimator, accounting for large disturbances on both the state and the measurements, all eigenmodes of the closed-ioop system for the estimator error are shown to be modified to points at which they are not discernible by flow measurements.

These results indicate that \mathcal{H}_{2} controllers and estimators are optimal for their desired purposes, but may contain large feedback gains. On the other hand, \mathcal{H}_{∞} controllers only target the least stable comronents of the system, and thus have smaller feedback gains while still achieving the same worst case performance for the nominal plant. Such reduced feedback gains generally result in improved robustness to inaccuracies in the system model.

Acknowledgements

The authors thank Profs. Parviz Moin and Steven Crow for inspiration during the geriesis of this project, Prof. Alan Laub for advice on the numerical approach to the Riccati equation, Miss Sharon Liu and Mr. Yogesh Tupe for useful discussions of the sontrol theory, Mr. S. Scott Collis for recommending the weak formulation
for the Neumann b.c.. Dr. R. K. Owen for assietance with quad precision, and Dr. Krishnan Mahesh for comments on a draft copy of this manuscript.

REFERENCES

Abehgel, T. \& Temam, R. 1990 On some control problems in fluid mechanics. Theor. and Comip. Fluid Dynamics. 1, 303-325.
Anderson, E., Bal, Z.. Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A.. Hammarling, S., McKenney, A., Ostrouchov, S., and Sorensen. D. 1995 LAPACK Usets' Guide. SIAM.
Butler, K. M. \& Farrfll, B. F. 1992 Three-dimensionaloptimal perturbations in viscous shear flows. Pkys. Fluids A. 4, 8, 1637-1650.
Canito, C., Husgaini. M. Y., Quarteroni. A., di Zang. T. A. 1988 Spectral Methods in Fluid Dynamics. Springer.
Dailey, R. L., Doyle, J. C., Stein, G., Banda. S. S., \& Yeh, H. H. 1990 Lecture Notes for the Workshop on \mathcal{H}_{∞} and μ Methods for Robust Control Presented at 1990 American Control Conference. May 21-22. San Diego.
Doyle. J. C., Glover. K., Khargonekar, P. P., \& Francis, B. A. 1989 State-Space Solutions to Standard \mathcal{H}_{2} and \mathcal{H}_{∞} Control Problems. IEEE Trans. Auto. Control. 34, 8. 831-847.
Grace, A., Latb, A. J., Little, J. N., \& Thompson, C. M. 1992 C. •al System Toolbox User's Guide. The MathWorks, Inc.
Joshi. S. S.. Spfyfer. J. L., \& Kim, J. 1996 A systems theory appro ' to the feedback stabilization of infinitesimal and finite-amplitude disturban. . plane Poiseuille flow. Accepted for publication in J. Fluid Mech.
Joslin, R. D.. Gunzblrger, M. D., Nicolaides, R. A., Erlebacher, G., \& HUSSAINI, M.Y. 1995 A self-contained, automated methodology for optimal flow control validated for transition delay ICASE Report No 95-64. NASA Langley Research Center, Hampton, VA.
Kiallath, T. 1980 Linear Systems. Prentice-Hall.
LatB. A. J. 1991 Invariant subspace methods for the numerical solution of Riccati equations. In The Riccati Equation (ed. Bittaini, Laub, \& Willems), 163-196. Springer.
Lewis, F. L. 1995 Optimal Control. Wiley.
Orszag, S. A. 1971 Accurate solution of the Orr-Sommerfeld stability equation. J. Fluid Mech. 50, 4, 689-703.

Orszag. S. A., \& Patera, A. T. 1983 Secondary instability of wall-bounded shear flows. J. Fluid Mech. 128, 347-385.
Zhou, K.. Doyme. J. C., \& Glover, K. 1996 Robust and Optimal Contro!. Prentice-Hall.

NEXT DOCUMENT

Simulation and modeling of the elliptic streamline flow

By G. A. Blaisdell' and K. Sharifr ${ }^{\text {a }}$

Dirert numeri-al simulations are perforned for the elliptic streanline flow, which is a bonnemenems turbubnt flow that rombines the effects of solinl body rovation asoi strain. Sinulations are run over a range of parameters in order to derernime the effert of changing rotation and strain separately. For early tinms the monlincay cascade is suppressed. but then is re-est ablished at later times. The growth rate of turbuk nt kinetic cmergy agrees at early times with the trends from linear theory: but at later times the thow sems to approarh an asyuptotic state that is independent of the ratic of mear. flow rotation rate to strain rate. A comparison with standard Reymoids ciress turbulence models is made. It is fround that for strong rotation rates, the monkis predict decay of the turbuknce, while the simulations show expmential growth. Close examination of the simulation results shows that they are affected by excessively tow Reymolds numbers. Suggestions for reducing low Reynoids number effects in future simulations is given.

1. Introduction

1.1 Motivetion

The elliptic streamlite flow is an important flow for many reasons. This thow contans the effects of both rotation and strain and is therefore similar to the mean flow in a vortex strained in the plane perpendicular to its axis. Such flows provide insight into fundamental vortical interactions within turbulence, and the instability caused by the strain has been proposed as a universal mer hanism for ervergy transfer from large scales to small scales (Picrrehumber: 1986).
A strained vortex also orcurs in airplare wakes, in which rarh wingtip vortex induces a srain field on the other. The strain feit can affert she stability of these vortires and thereby their turbulent strut?ure downstrama. The ability to understand and predict the turbulent strurture of the yortices is impostant to the wake hazard problem. which is n f minjor concern for the safety of conumercial aircraft.
Another example of a flow witi the combined effects of rotation and srain is the muter rare of the earth's interior. The electricaly conductint fluid in the rater prition of the earth: rore rotates with the earith but is also strained by tidal forces. A iarge seale serondary How results. which has been propused as the canse of the

[^16]magnetic field (Malkus (. Berry 1988). Additional examples are flow in fluid-filled satellites and in rertangular cavities.

The clliptic streamline flow is also a good test case for turbuleare models for rotating flows. It has an added complication beyond that of pure roiation, but it is still a basir flow. The additional strain rate is present in mest practical engineering flows and. therefore. is a decessary efiect for turbukence models to capture. As shown in Sertion 3. standard Reynolds stress models predirt decay of the turbulent kinetic euregy for cases with strong rotation. whereas the D.NS shyms exponential growth. Therefore the ciliptir streamline flow presents a challtreging case for turbulence unxdeters

1.2 Beckground

The elliptic streamline flow has been studied using Rapid Distortion Theory (RDT) by Cambon ot al. (1985) and Caubon et al (1994). Difierent approanches were used by Pierrehumbert (1986), Bayly (1986). and Wiklif (1990). who performed inviscid stability analyses. For circular streamlines (pure rotation) there are co unstabs- mandes, while for elliptic streamlines a band of unstable modes exists in which the growth rate depends on the polar angle of the wavenumber vector. The thand of unstable angles iucrenses in width for increasiag ellipticity of the streamlines. Alwo. the growth rate of the unstable mordes is independent of the magnitude of the wavenumber vect n. Therefore. arbitrarily sn:all three dimensional fluctuations t an in created by an instability of a basic : wo-dimensional flow. Pierrehumbert suggested that this might be a mechanism for the cavade process in turbulent flows.

The efferts of vismit: were studied by Landman \& Saffman (1987) and are included in the RDT analyses of Cambon et al. The growsth rate of the instabilities is modified by risensity x, that the growth rate is no kniger indeperdent of the magnitude of the waveaumber vector. Landman d: Saffman found a high wavenumber cut-off of the instability. However, chere is no kow whwnumber cut-off. and arbitrarily large seales ase unstable. This fact causes the turbulent eddies to eventually outgrow the computational domain in the DNS discussed below.

An interesting experiment corresponding to elliptic streamline flow was done by Malius (1989). A rank with nuoving flexible walls was used to create a flow with diliptic sireamlines. He ohverved a collapse phenomerion in which the two-dimensional flow suddenly breaks down inte three-dimensioazl small scale motions. Waleffe (1900) studier the stability of the enclosed elliptic fiow and sugxested the collapse phenomenon is due to nonlinear interactions in which the mear flow is altered. It is not clear at this point how this confined flow in reiated to the honngeneous turbulent flow st:Idied here.

Lundgrea \& Mansour (1996) investigated the stability of a vortex in a rectanguiat domain. This flow is very similar to the elliptic streandine flow and displays a similat instainiity. However, their flow has a mean velocity which decays in time. and their flow is inhomogeneous. These two factors introduce additional compli ratine efferts asid make gathering turbuience statistim difficult berause of the low statistical sample that is available. The elliphe streamline flow and its instability is aiso related to the instability of a strained. finite-sized wortex with uniform vorticity
studied hy Hidnall et al. (1974) and others.
An experinent which was designed to correspond to the honogeneous elliptic streamline flow was performed by Benoit (1992). He investigated grid generated turbulence created by a rotating grid and then passed through a spccially designed diffuser with elliptic cross-sections. Benoit also analyzed the flow using lincar rapid distortion theory: In order to compare with his results, simulations at Reynolds numbers higher than those in the current st udy are needed. This point is discussed futher below.

There has beren a considerable amount of work done on the stability of the elliptic streamline flow. However, the only numerical simulations that have been done are the preliminary simulations of Blaisdell \& Shatiff (1994). The currert simulations are a continuation of that work. With the use of direct numerical simulation, the nonlinfar development of the flow and the fully turbulent state can be examined.

I.9 Objectives

The objurives of this work are to investigate the elliptic streamline flow for the fully turbulent case and to provide statistics for comparison with turbulence moodels. One of the issues to be investigated is whether the linear instability modes Fi:ne io donnitate the fow even in the presence of large initial disturbances. The wifert of the governing parameters on the development of the flow is also to be studied. For the elliptic streamline flow the governing parameters are: (1) the ratio of the rotation rate to the stran rate. which gives the aspert ratio of the elliptic stramulines. (?) the ratio of a mean flow time scale, such as the rotation rate. to the purbulence time scale, and (3) the turbulent Reynolds number. Simulations are chonu to vary these parameters in a systematic way. However. it is found that the Reynolds numbers of these simulations is low enough that the development of the flow is significantly affected. Suggestions for overcoming this limitation in future simulations are discuised in Section 4.

Turbulence statistics. including full Feynolds stress budgets, have been calculated for each of the simulations. One objective was to do a detailed comparison with turbulence models. However, because of the low Revnolds numbers of the current simulations. a meaniugful quantitative comparison cannot be done. Nonetheless a brief comparismn of the turbukent kinetic energy growth is presented in Sertion 3.

2. Governing equations iz mumerical method

Consider homogeneous turbulence with the mean flow

$$
U_{1}=U_{1, j, r} . \quad U_{1, j} \equiv\left(\begin{array}{ccc}
0 & 0 & -\gamma-c \tag{1}\\
0 & 0 & 0 \\
\gamma-e & 0 & 0
\end{array}\right)
$$

Which dewerituen a one-parameter family of streamline patterns in the r - : plane (the other parametcrents the strength of the flow). The case $\gamma=0$ corresponds to pure strain with two principal directions at $\pm 45^{\circ}$ relative to the x axis while $0<\mid$? $\mid<$, , given vortical strain dominated flows with hyperbolic streamlines, their asymptotes.
being shallower or sterper than the pure strain case according as $(e-\gamma) /(e+\gamma)<1$ or >1. The limit $|e=h|$ is pure shear. The case $\epsilon=0$ corresponds to pure rotation white $0<|\mathrm{f}|<\mid$ in gives vortical rotation dominated flows with geometrically similar elliptic streamlines with aspect ratio $E \equiv \sqrt{(7+\epsilon) /(7-\epsilon)}$. This case is depicted in Fig. 1.

The code shear j. developed by Dr. R. S. Rogallo (of Los Altos Hills, Calif.) to run on the Intel parallel computers at NASA Ames for the case of pure shear and cmploying a subset of the techniques described in Rogallo (1981), was nodified to treat the ahove cases and to run on the IBM SP2 using MPI for message passing. The $r=$ plane was rhisen as the plane of defornation to minimize disruption to the code. The program uses the second-order Runge-Kutta scheme to time-advance the Fourier transformed Navier-Stokes equation (notation will be explained monentarily:

$$
\begin{equation*}
\frac{d}{d t}\left(F \hat{u}_{2}\right)=F\left\{n_{i,}^{(2)} v_{, ~ m} \hat{u}_{m}-i \Pi_{i j}^{(1)} k_{m} \widehat{u, u}{ }_{m}\right\} \tag{2}
\end{equation*}
$$

Due to the use of coordinates that deform with the mean flow, the k_{i} in Eq. (2) represent time-dependent physical wavenumbers:

$$
\begin{equation*}
k_{i}=l_{j}^{\prime}, B_{j t}(t), \quad \dot{B}_{1 y}=-B_{1 t} C_{t, \rho} \tag{3}
\end{equation*}
$$

whie hats druote the three-dimensional Fourier transform with respect to coungitational wavenumbers $k_{:}^{\prime}$. Space discretization is implied by the restriction of $\beta_{\text {; }}$ to integers $-M / 2 \leq k_{i} \leq M / 2$: homogeneity is realized when there is a sufficiently large range of small wavenumbers with energy tending to zero. The symbol $n_{i j}^{(n)} \equiv \lambda_{2}-n k_{i} k_{j} / h^{2}$ with $n=1$ is the projector applied to the Navier-Stokes equation to eliminate pressure; a slightly different projector. $\Pi_{4}^{(2)}$, appears in the linear term due to an additional contribution from the time derivative term in deforming coordinates. The aliasing error concomitant with the pseudo-spectral evaluation of ${\hat{u}, u_{m}}^{m}$ is controlked (but not exactly climinated) by a combination of phase shifing and spherical truncation in which modes with $k^{-2}>2(M / 3)^{2}$ are discarded upon return to wavenumber space. The viscous integrating fartor F. satisfying $(1 / F) H F / d t=+\nu k^{2}(t)$, is obtained analytically. Since in the linearized limit exact time integration of (2) is not possible (or at least not trivial. Waleffe 1990). the present version of the program does not treat the rapid distortion limit exactly. Rather, the time step is chosen to be the more restrictive one obtained from the mean flow and the non-linear term. For pure shear the flow-field ran be re-meshed to prevent extreme distortion of the computational domain. In the elliptic flow. Lowever, a fluid element undergoes time-pericdic shearing and straining. and rather than tackle the corresponding re-meshing problem. small enough ellipticities are considered so that the minimum interior angle of the efemout. $\left.\theta_{\text {min }}=\tan ^{-1}\left[2 E / / E^{2}-1\right)\right]$, does not berome too small (for the largest case of $E=3$ considered. $\theta_{\text {min }}=37^{\circ}$).

In Blaisdell (: Shariff (1994) the code was tested for: (i) The linear inviscid and viscous behavior of a single Fourier mode compared with the results of Landman \&-

Figire: 1. (a) Schematic view of combination of rotation and strain. (b) Elliptic streamline. (The direction of the arrows corresponds to $\boldsymbol{\gamma} \boldsymbol{> 0}$ and $\boldsymbol{c} \boldsymbol{> 0}$.)

Saffman (1987) (ii) Pure rotation (Mansour et al. 1991, Ro $=\mathbf{0 . 2 4 \overline { 4 }}$, their Fig. 2(a)) (iii) Pure shrar (Rogers et al. 1986. Case C198U).

3. Simulations and results

s.i Initial conditions

The initial conditions for the simulations were obtained in the same way as those of Mansour et el. (1991). An initind energy spectrum was specified of the form

$$
\begin{equation*}
E(\kappa)=\kappa^{4} \exp \left(-2\left(\kappa / \kappa_{p}\right)^{2}\right) . \tag{4}
\end{equation*}
$$

where n_{p}, is the location of the peak in the spectrum. For the runs described here n, was chosen to be either 24 or 48 depending on whether the number of grid points was nominally 128^{3} or 256^{3} respectively. The larger number of grid points and the larger n_{p} means that those simulations have a larger computational domain size relative to the integral scales of the turbulence. The flow field was then evolved as deraying isotropic turbulence until it became fully developed as measured by the velocity derivative skewness obtaining a steady value near $\mathbf{- 0 . 5}$ and the turbulent kinetic energy displaying algebraic decay with a nearly constant decay rate. In practice it was found that by starting the simulations with a turbulent Reynolds number (see definition below) $\operatorname{Re}_{T}=823$ and allowing them to decay to $\operatorname{ReT}=51$, the alove conditions were met. This developed flow field was then used as initial conditions for the clliptic flow runs.
The simulations of Blaisdell \& Shariff (1994) and those presented here do not match the Reynolds number of Mansour et el. We attempted to do so. but were confrouted with the difficulyy that, with the elliptic streamline flow, the large scales gain rnergy and quickly outgrow the computational domain. This problem does not orcur for the pure rotation case where the turbulence simply decays. As a result. we found it necessary to change our initial conditions to make the computational domain larger relative to the initial integral scales of the turbulence. Because of the corresponding loss of resolution in the small scales. we reduced the Reynolds number.

The turbulent Reynolds number grows exponentially in the elliptic streamine flow and rearhes values well over 1,000 in the current DNS. However, because this is not an equilibrium flow, the turbulent Reynolds number is not a good indicator of the ratio of length scales in the problem or the degre of nonlinearity. As is shown below. it is four.f that the curreat DNS are affected by the low Reynolds numbers of the simulatious: This means that the DNS data cannol be used in a quantitative way to tesit high Reynolds number turbulence noodels. However, a qualitative comparison is made below with two standard Reynolds stress models, which shows the models fail to predict the correct behavior, especially at larger rotation rates. lu Section 4. suggestions are made for changing tie method of generating the initial conditions so that the initial turbulent Reynolds number will not be so low. Higher Reynolds number simulations will allow quantitative compariscn with Reynolds stress motels and will provide more useful information.

9. 2 Parmeter space \boldsymbol{E} linear theory

The gove:ning nondinensional parameters for the elliptic streamline flow are (1) the asperet ratio of the . Hiptic streamlines. E, which is related to the ratio of the mean strain rate to the mean sotation rate, (2) the ratio of the turbulent time seale to a mean flow time scale. which can lee measured either in terms of the mean flow strais as $S_{i}^{*}=c i / \varepsilon$ or in terms of the mean flow rotation as $S_{j}^{*}=\gamma k / \varepsilon$, where k is the turbulent kinetic cuergy and E is its dissipation rate, and (3) the turbulent Beywolds number. Rf $T=q^{4} /(E v)=4 k^{2} /(E \nu)$. The parameters used in the current simulations are shown in Tabie 1. Simulations ei-pés are eltiptic streamline flows witin aspect ration varying from 1.1 to 3.0. Simulatims sl and sla are shear flow simulations and. therefore, have a value $E=\infty$. Mist of the simulations are done with the same initial nondimensional strain rate. This was done in order to examine the effert of varying the mean flow rotation rate. This can be seen in Fig. 2 which shows the parameter space in terms of $S_{;}^{*}$ and $S_{;}^{*}$. The radial lines indicate a given 2spert ratio. going from the 45° line for shear flow $(E=x)$ to eliptic flows with $E=3.0 .2 .0,1.5 .1 .25$, and 1.1. Simulation el with $E=1.1$ is of the scale of the plot. The circtes give the initial values for each simulation and a given simulation is constrainced to lie along one of the radial lines with a fixed aspect ratio. E. The values of $S_{\text {; }}$ and S; will change as the turbulence develops, and it is believed that asymptotic values of these quantities should be apprnached. Sinculation e2x has the same aspect ratio as e? but the value of nondimensional strain rate is changed so that the aondimensional rotation rate is the same as that of the corresponding shear flow simulation. sl. The two shear fitow simulations, sl and sla, differ ina the initial Reynolds number.

It is helpful in interpeting the results of the current simulations in examine the predirtions of lincar stablility therry within the parameter space shown in Fig. 2. A linear stability code empioying the method of Landman \& Saffman (1987) was used to compute the maximum inviscid growth rate as a function of strain rate. f. and rotation rate. 7 . Fig. 3(a) shows a contour plot of the inviscid growth rate. σ. The nondimensional growth rate, $\sigma /$? can be collapied onto a single cure as shown by Leadman \& Saffman and given in Fig. 3(b). This curve corresponds to

Table 1. Initial comdition and run piameters for the simuintions.

Case	F	$S_{\text {ti }}^{*}$	$S_{\text {eo }}$	Rrte	GRID	\cdots
cl	3.1	17.7527	1.68691	51	$128 \times 220 \times 128$	$\underline{9}$
c?	1.25	7.6848i	1.68691	51	$\underline{256 \times 440 \times 256}$	48
e2a	1.25	1.65631	0.370297	51	$128 \times 20 \times 128$	24
2	$1 .:$	$4.3505:$	1.68031	51	$\underline{2} 6 \times 440 \times 250$	48
e. 1	2.0	2.8110	1.65691	31	$256 \times 440 \times 256$	48
$8{ }^{5}$	3.0	2.10564	1.68691	51	$256 \times 512 \times 235$	45
sl	x	1.63691	1.68691	51	$129 \times 200 \times 128$	24
sla	x	1.68691	1.68691	102	$192 \times 330 \times 192$	24

a cross-section through the contour ifot of Fig. 3 (a) for a fixed rotation, sate. \%, as indicated by the horizantal doted line in Fig. 3 (a). If the groveth rate is nondinensionalized by tio strain rate, one obtains the phot of $\sigma / 6$ stonnu in Fig. 31-i. This curve correspond to a cross-section through the contour plot of Fig. 3(a) for fixed strain rate, s, ax indicated by the vertical dotted line. Bayly plotted the nondimensional growth rate as σ, Ω, where $\Omega=\sqrt{\gamma^{2}-\epsilon^{2}}$ is the angular rotation rate for a fluid element as it tra:er ies an elliptic streamline. This curve corresponds to a cross-section througi the contour plot at a fixed Ω or through the nondimensional parameter space of $F_{i g} 2$ at a fixed Rossisy number. Ro $=1 /(=\boldsymbol{2}$). Landman \& Saffman point out that the plot of Bayly does not give a gocil indicatiou of the behaijor of the growth rate as one approaches pure shear, $i=1$. The most romplete picture, however, comes from the contour piot in Fig. 3(a) trgether with the crosssections in Figs. $3(b)$ and (c). For cases with a fixed initial rotation rate. there is an aspert ratio for which the srowth rate is a maximum (near $E=3.0$). For cases with a fixed initial strain rate. the growth rate increase's as the rotation rate increases. For cases with a fixed initial fosshy number, the grouth rate decreases a; the rotation rate increases. Therefore, the effect of rotation cannot be put into the simple statement that strong rotation suppresses ihe growth of turbulence. as is often assamed. In the sections that follow, the growth rate of the turbulence within the DNS will be examined unil the trends will be compared to those seen from the linear therry

3.3 Turbalence evolution

The elliptic streamline flow is inearly unstabie for any non-zero strain rate. C. Fron the linfar theory the tubbulent kinetic enargy grows exponentially Larger length scairs are not affected by wseosity and have a larger growin rate. Therefore. cventually the flow becomes dommated by larger and larger length scales. When this happens the energy containing eidies outgrow the computetioral domain. They

Figure: 2. Parameter space based on the initial noudimensional strain rate and rotation rate. The 45° line rorresponds to shear flow ($E=\infty$). The other radial lines are for $E=\{.0,2.9,1.5 .1 .25$ and 1.1. The circles indicate the initial conditions for the current sinulations.
become afferted by the periodic boundary conditions and the statistics are no longer reliable.

Since the dominant effert of rotation on the turbulencr is to suppress the tronlinear cascade, it is uscrful to have a measure of the noninear transfer of energy from large scales to small scales. Mansour et al. (1991) used a generalized skewness defined by

$$
\begin{equation*}
S=-\frac{6 \sqrt{15}}{7} \frac{\int \kappa^{2} T(\kappa) d \kappa}{\left(\int \kappa^{2} E(\kappa) d \kappa\right)^{3 / 2}} \tag{5}
\end{equation*}
$$

where κ is the magnitude of the wavenumber vector, $E(\kappa)$ is the three-dimensional energy spectrum. $T(n)$ is the transfer spectrum. and the numerical prefactor is such that for isotropic turbulence S is approximately - 05 .

The evolution of the skewness S is shown in Fig. 4(a) for simulations which span the range of aspect ratios $E=1.25,1.5 .20$, and 3.0. As soon as the mean flow is turned on, the skewness begins tc drop in magnitude, indicating that the nonlinear cascade is inhibited. The rases with lower aspect ratios (more ciominated by rotation) have a skewness that romes closer to zero. So. as one would expect, stronger rotation leads to stronger suppression of the nonlinear processes. Interestingly rnough the sinmbations show that the skewness recovers at later times as the turbulence grows. Also. it seems that the skewness approsche's an asymptotic value that is the same for all aspect ratios. although the case with $E=1.25$ roisd not be carried far enough in time to see if the skewness recovers fully.

The linear stability analysis of the elliptic streanline flow indicates that the turbuent kinetic encrgy grows exponentialiy. A nondineensional growth rate can be defined by

$$
\begin{equation*}
\frac{1}{c k} \frac{d l}{d t} \tag{6}
\end{equation*}
$$

Figite 3. (a) Contours of inviscid growth rate a. (i) Nondimensional growth rate for constant 9 . (c) Nondimensional growth rate fer constant e. (d) Nondimensional growth rate for constant $\$$.

This nondiniensional growth rate is shown in Fig. 4(b) for the same series of simulations as above. After the flow develops for a while a roughly constant positive level is reached, which indicates that k is growing exponentially. The growth rate nondimensionalized by the strain rate, ϵ, is highest for the case with the lowest aspect ratio (strongest rotation), which is in agreement with the trend of the linear stability analysis shown in Fig. 3(c). However, at later times the simulations seem to change to a lower growth rate as nonlinear effects become more important. Without carrying the simulations further in time it is difficult to determine whetior they approach a universal growth rate that is independent of aspect ratio.

One concern about the current simulations is that the initial Reynolds number is vary low. In order to use the DNS results for comparisons with high Reynolds number formulations of turbulence models, the nondimensional tarbulent statistics should be independent of Reynolds number. For th. current simulations that is not the case. Figs. 5(a) and (b) show the skewness and the growth rate for the two shear

Figcre 1. (a) Generalized skewness and (b) nondimensional growth rate of the turbulent kinetic energ: for cases e2 (……) e3 (———), e4 (——), and e5 (-) .

Figure 3. (a) Generalized skewness and (b) nondimensional growth rate of the turbulent kinetic pnergy for cases sl (\quad). sla ($-\ldots$).
fiow simulations 51 and sla. Simulation sl is similar to the elliptic streamline flow simulations that are described above. Simulation sla has a higher initial turbulent Reynolds number, as shown in Table 1. The larger grid for case sia is in order to ensure adequate resolution of the small scales. As shown in Fig. 5 there is a significant difference in the skewness and the growth rate for the two runs, which can be attributed to the differences in Reynolds number. The sudden jumps are an artifact of the periodic remeshing process used in the shear flow simulations (see Rogallo 1981). The low Reynolds numbers of the current simulations is caused by having a long period of isotropic decay before the elliptic flow runs are begun. Alternate methods that would allow the initial Reynolds number to be much higher are discussed in section 4.

Most of the simulations in this study have the same initial strain rate. This was done in order to focus on the effect of mean flow rotation. In order to make the study more complete. simulations were also done with a fixed initial mean rotation

Figitre G. Development of the three-dimensional energy spectrum, $E(k)$, for case e2a.
rate, such as cases e2a and sl. However, cases with low aspect ratios and low mean rotation rates are difficult to do. The problem can be seen in Fig. 6, which shows the evolution of the three-dimensional energy spectrum for elliptic flow e2a. The energy in the small scales continually decays while energy in the large scales grows from the instability. The large scales quickly outgrow the computational box as indicated by the spectrum at low wavenumbers. It seems that it would be desirable to simp'y redice the resolution of the small scales and increase the computational domain size. However, this cannot be done without compromising the resolution of the isotropic initial conditions. A simple analysis can be done to explain the behavior seen in Fig. 6. From the viscous analysis of Landman \& Saffman, there is a high wavenumber cut-off beyond which the flow is stable. This wavenumber is given by a critical Ekman number, $\Sigma_{\gamma}(\beta)=2 \pi \nu \kappa_{0}^{2} / \gamma$, where κ_{0} is the magnitude of the critical wavenumber. Using $R \epsilon_{T}=q^{4} /(\varepsilon \nu)$ and $S_{\gamma}^{*}=\gamma k / \varepsilon$, the definition of the critical Ekman number can be rearranged to give

$$
\begin{equation*}
\frac{\kappa_{0}}{\kappa_{p}}=\left(\frac{\varepsilon}{\kappa_{p} q^{3}}\right)\left[\frac{E_{\gamma}(\beta) \operatorname{Re}_{T} S_{\gamma}^{\star}}{\pi}\right]^{1 / 2} \tag{7}
\end{equation*}
$$

where κ_{p} is the peak in the instantaneous energy spectrum. Taking a value of $\varepsilon /\left(\wedge_{p} q^{3}\right)=0.28 .3=0.22$, and $E_{\gamma}(\beta)=0.6$ gives, $\kappa_{0} / \kappa_{p}=1.1$. Therefore, for simulation e2a the viscous cut-off wavenumber is at about the peak in the energy spectrum from the decayed isotropic initial conditions, which seems to correspond roughly to what is observed in Fig. 6.

It is desirable to have a greater fraction of the wavenumbers used in the simulation in the unstable range. In order to perform good quality simulations one needs κ_{0} / κ_{p} to be large (preferably at least 2). Equation (7) shows that this is more difficull for simulations with lower nondimensional rot 2 ion rates, S_{γ}^{*}, and that to achieve this. simulations with higher Reynolds numbers are needed.

Figitre 7. Nondinensional turbulent kinetic energy. k. from the DNS (-), using the LLR modei (- -) , and using the SSG model (----) for (a) case e5 with $E=3.0$ and (b) case e2 with $E=1.25$.

9.4 Comparison with turbulence models

A brief comparison is made between the DNS data for the elliptic streamline flow and two standard Reynolds stress models -- the Launder, Reece and Rodi (1975) model (LRR) and the Speziale, Sarkar and Gatski (1991) model (SSG). It must, however, be borne in mind that the comparison being made is between low Reynolds number DNS data and high Reynolds number formulations of the turbulence models. Figs. 7 (a) and (b) show the comparison for the nondimensional turbulent kinetic energy for cases e5 and e2 with $E=3.0$ and i. 25 respectively. For the case with $E=3.0$, which is not so dominated by strong rotation, the models predict exponential growth. However, the growth rate is substantially lower than that seen in the DNS. The LLR model gives a higher growth rate than the SSG model because the SSG model is sensitized to rotation and reduces the growth rate for strong rotation. Based on the growth rates seen at later times in Fig. 4(b). DNS at higher Reynolds numbers may give lower growth rates, which would be closer to those of the models.
In Fig. 7(b) the comparison is made for the case with $E=1.25$, which is more rotation dominated. For this case both models predict decay while the DNS shows exponential growth. Here the models are seen to give the wrong qualitative behavior. Speziale et al. (1996) have pointed out the need for turbulence models to predict growth for flows that are linearly unstable. Clearly standard Reynolds stress models fail for strongly rotating flows, and there is a need for model improvement.

4. Conclusions and suggestions for future work

The study of the elliptic streamline flow begun by Blaisdell \& Shariff (1994) has been continued by performing simulations over a range of parameters. The elliptic streamline fow is a homogeneous turbulent flow that combines solid body rotation and strain. It is an important flow for understanding the effects of rotati a on engineering turbulent flows.

For short times the imposition of the mean flow suppresses the nonlinear cascade, but at later times nonlinearity is reestablished. As evidenced by the skewness, the growth rate of the turbulent kinetic energy, and other stat: : ; ; the turbulence seems to develop toward an asymptotic state that is indeper at of the tatio of mean rotaiton to mean strain

A comparison with standard Reynolds stress models shows that the models fail to give the correct qualitative behavior for large rotation rates. However, the current simulations have a very low initial turbulent Reynolds number ane., herefore. meaningful quantitative comparisons with the models cannot be madt.
Future simulations should be done at higher Reynolds numbers. One reason for the low Reynolds numbers of the current simulations is the method of generating initial conditions. The initial conditions for the elliptic flow simulations are takeu from fully developed decaying isotropic turbulence. During the isotropic decay the Reynolds number falls to very low values. One approach to over ome this is to not have any isotropic decay period, similar to the shear flow simulations of Rogers et al. (1986). The mean flow would be turned on with randomly generated initial conditions. A disadvantage of this method is that turbulence models cannot be expected to follow the unphysical development at early time; however, comparisons ran be made with turbilence models by starting the initial conditions fu: the model calculations using the DNS data at some time after the flow has developed. A second method to produce higher Reynolds number isotropic initial conditions is to artificially keep the turbulent Reynolds number fixed at a high value by changing the viscosity before allowing the turbulence to decay. This was done by Blaisdell et al. (1991) and produces developed isotropic turbulence at a relatively high Reync'ds number. Both approaches are being pursued.

Acknowledgements

The authors thank Dr. R. S. Rogallo for use of his program. Also, discussions with Dr. A. A. Wray and Professors W. C. Reynolds and C. G. Speziale were very helpfui.

REFERENCES

Bayly, B. J. 1986 Three dimensional instability of elliptic flow. Phys. Rcv. Lett. 57, 2160-2171.
Bevolt, J.-P. 1992 Etude expérimentale et théorique d'une turl:ce homogéne soumise à des effets couplés de rotation et de déformation plaı... Ph.D. thesis, L'Ecole Central de Lyon, France.
Blaisdeli. G. A., Mansour, N. N. \& Reynolds, W. C. 1991 Numerical simulation of compressible homogeneous turbulence. Thermosciences Division Report TF-50. Stanford University, Stanford, Caiifornia.
Cambon. C. Benott, J. P., Shao, L. \& Jacquin, L. 1994 Stability analysis and large-eddy simulation of rotating turbulence with organized eddies. J. Fluid Mech. 278, 175.

Cambon. C. Telssedre. C. \& Jeandel. D. 1985 Etude d'fffets couplés de deformation et de rotation sur une turbulna:re homogéne. J. Méc. Théo. Appl. 4, 629 .
Lavpman. M. J. S. Saffman. F G 195i The 3 Dinstability of strained vortices in a visrous fluid Phys. Flaids 30, 2339-2342
Lainder. B. E.. Refie. G. \& Rodi, W. 1975 Frogress in the development of a Reynolds strew turbulence ckosure. J. Fiuid Mech 68, 337.
Leviximex. T. S. A Mansolv, N. X. 1996 Transition to turbulencr in an elliptic vortex. J. Flund Mech. 307, 43-6?
Malhts. W. V. R. 1089 An experimental study of global instabilities due to the tidal (elliptical) distortion of a rorating elastic eylinder. Geophys. Astrophys. Flurd Dyn. 48, 123-134.
Matkis. W. V. S Berry. M. E. 1988 Order and disorder in planetary dynamos. Summer Study Proorem in Geophysical Fluid Dynemics, (eds. W. V. Malkus and M. E. Berry).
Mavsour. N. N. Caybon. C. \& Spezlale. C. G. 1991 Single point modeling of initially isotropic turbulence under uniform rotation. Center for Turbulence Resparch. Annual Research Briefs. NaSA Ames/Stanford Univ.
Pierrehembert. R T. 1986 Cnitersal short-wave instability of ao-dimensional eddies in an inciscid fluid. Phys. Rev. Lett. 57, Xo. 17. 2157-2159.
Rogiallo. R. S. :981 Numerical experiments in homogeneous turbulence. NASA Technical Memertaudum 81315
Rocits. M. il. Mgix P. \& Reynolins. W. C. 1986 The structure and modeling of the hydrodynamic and passive scalar fields in homogeneous turbukent shear flow. Thermosimers Division Report TF-25. Stanford Eniversity. Stanford. Califormia.
Spebiale. C. G.. Abib. R. \& Blaisdell. G. A. 1996 On the consisteacy of Reynold e eress marbulence closures with hydrodynamic stability theory: Physics Fluds. 8, isl iss
Sffalale. C. G.. Sahmar, S. de Gatski T. B. Modeling i've pressure-strain correlation of turli.ilence: An invariant dynamical systems approach J. Fluid Mech 227. 245.
Wileffe, E. 1900 The three-dimensional :astability of strained wrtices. Phys. Fluid. A. 2, ic so.
Widnall. S. E.. B'ins. D. B.. de Tsat, C.-Y. 1974 The :msability of short waves on a vertex ring. J. Fluid Mech. 66, 354 4.

NEXT DOCUMENT

Drag reduction in turbulent MHD pipe flows

By P. Orlandi'

This is a preliminary study devoted to verifying whether or not direct simulitions of turbulent MHD flows in liquid metals reproduce experimental observations of drag reduction. Two different cases have been simulated by a finite difference scheme which is second order accurate in space and time. In the first casc, an external azimuthal magnetic field is imposed. In this case. the magnetic field acts on the mean axial velocity and complete laminarization of the flow at $H a=\mathbf{3 0}$ has been ach: ved. In the second case, an axial magnetic field is imposed which affects only fluctuating relocities, and thus the action is less efficient. This second case is more practical. but comparison between numerical and experimental results is only qualitative.

1. Introduction

Magreto-Hydro-Dynamic (MHD) flows received much attention in the sixties and. after a period of loss of interest, there is a renewal of interest shown in this activity. Attempts, for example, haw been recently done in laboratory experiments (Henoch \&. Stace 1995) to use MHD effects as an efficient way to reduce the drag of bluff bories in sea water. The present study is devoted to showing that some of the experimental observations in liquid metals can be qualitatively described by a coarse direct simulation of the full system of Navier-Stokes equations and magnetic field equations without any low magnetic Reynolds nuraber approxination. For liquid metals such as sodium or metcury, the Reynolds numbers are in a range affordable by direct similations. Direct simulation can then be used as a design tool in practical applications. In liquid metals experiments. it is almost impossible to perform fiow visualizations, and measurements of turbulent quantities are complex and dificult. Direct simulations provide these desired turbulent velocity protiles.

The previous direct simulations of MHD flows were, fo the major part. devoted to isotropic turbulence (Kida et el. 1991) and, to my suowledge, there was only one devoted to LES of flows in the presence of solid boundaries. Shimomura (1991) considered the rase of a magnetic field perpendicular to the wall and, in this case. the drag increased as observed in the experiment of Reed \& Likoudis (1978). On the other hand, drag reduction occurs when the magnetic field is directed in the streamwise or spanwise directions. The realization in the laboratory of the serond case is easy to observe for a plane channel with a reasonabie aspect ratio. but the Hartmann boundary layers on the side walls can play a role. In a circular pipe

[^17]Onc way :o assign the external azimuthal magnetic field is by an electrical wire as thin as possible lorated at the center of the pipe; this set-up is difficult to realize and could influence the flow-field. This is why, for the case of spanwise external magnetic fields. there are a large number of experiments only for plane geometries. and some of these are listed in the review papers 1:y Moffatt and Tsinober (1992) and by Tsinober (1990).

The realizations of an axial magnetic field inside a circular pipe is easier to set up. and two well ducumented experiments by Fraim dr Heiser (1968) and by Krasil'nikov et el. (1973) are available. The friction coefficient neduction was measured at different $R f$ and intensities of the externally applied magnetic field. The main difference between the cases of asymuthal and axial fieids is that, in the case of an azimuthal field, the Lorenz force acts on the mean streamwise velocity profile, reducing the unean shear and thus the production of turbulent energy: In the presence of an axial feld. the Lorenz force acrs on the fluctuating components, and thus is less effective.

In both cases, without the use of superconducting materials, the efficzency, that is. the ratio betwren the input power and the power saved by the skin friction reduction. is very low. Thus. this approach is useful only in applications for which efficiency is not important. but it is important to reach a drag-free state. This, for exampie, occurs in nuclear reactors employing liquid sodium as cooling system and in son : stainkess steel production stages.

Deaing with liquid metals, the low mag.entir Prandll number approximation is valid. In this case. the current density car e calcuiated by solving one eiliptic equation for the electrical potential instead of solving the full systems of Maxwell equations. This approximation was used by Shimonura (1991) and Tsinober (personal communication) in a pipe with an azimuthal external magnetic field. I made an attempt to follow this direction, but encountered numerical difficulties. Thus, I derided to solve the full system of Maxwell equations. which are straightforward to add to a code in which the Navier-Stokes equations are solved. The full solition can be used to test the solutions with the simplified equation.

2. Physical and numerical model

The dinensionless Vavier-Stokes equations when a conducting fluid is subjected io a magnetic field are

$$
\frac{D U}{D t}=-\nabla p+\frac{1}{R c} \nabla^{2} \mathrm{U}+\frac{H a^{2}}{R \epsilon^{2} P_{m}} \nabla \times \mathbf{B} \times \mathbf{B}
$$

where in the Lorenz force the relationship between the current density. J. and the magnetic field, $B, J=\Gamma \times B$ was used. \mathbf{B} is calculated by

$$
\frac{D B}{D t}=\frac{1}{\operatorname{Re} P_{m}} \nabla^{2} \mathbf{B}+(\mathbf{B} \cdot \nabla) \mathrm{U}
$$

The dimensionless equations have been obtained by using the pipe radius R as reference length. the laminar Poiseuille velocity U_{P} as velocity scale, ind the magnitude of the externally applied magnetic field B_{0}. Together with the fluid properties.
ν the kinematic viscosity, μ the magnetic permeability, and σ the electrical conductivity, the dimensionless nunbers are: $E e=U_{b} D / \nu=U_{P} R / \nu$ is the Reynolds number. $P_{m}=\nu \mu \sigma$ is the magnetic Prandtl number, and $H a=B_{0} R \sqrt{\sigma / \rho} \cdot$ is the Hartmann number.

These equations can be solved once the appropriate boundary coaditions are assigned. This paper deals with flows inside a circular pipe, hence the usial no-slip conditions are assumed on the wall. Being interested oaly in the fully developed statistical stcady state, periodicity is assumed in the streamwise direction. The components of the mean velocity U are $U_{r}=U_{0}=0$ and $U_{a}(r) \neq 0$; if we assume the condition that the external magnetic field is only azimuthal, the mean magnetic field is $B_{0}=B_{0} r$. On the other hand, if there is only an axial field, it must be $B_{z}=B_{0}$. By these boundary conditions, in the B_{0} case, the result is that on the pipe wall there is a strong current density. In the $B_{\mathbf{z}}$ case the current density is tow.

From a physical point of view it is interesting to compare the action of the Lorenz for the two cases, and the low Reynolds number approximation facilitates this analy sis. With this approximation, the equations of the magnetic field are replaced by the equation for the potential of the electric field $\$$ which is related to the current density by $J=-\nabla \$+\mathbf{U} \times \mathbf{B}$. $\boldsymbol{\Psi}$ can be calculated by the equation

$$
\nabla^{2}=\nabla \cdot U \times B
$$

which is obtained by imposing $\nabla \cdot \mathbf{J}=\mathbf{0}$. The components of the Lorenz force for $B_{e}=B_{0} r$ are

$$
\begin{aligned}
& \frac{\partial q_{r}}{\partial t} \approx \frac{H a^{2}}{R e}\left[-\frac{r \partial \Phi}{\partial r}-q_{r} B_{c}\right] B_{e} \\
& \frac{\partial q_{r}}{\partial t} \approx \frac{H a^{2}}{R e}\left|-\frac{\partial}{\partial r}-q_{r} B_{e}\right| B_{e}
\end{aligned}
$$

and for $B_{r}=B_{0}$

$$
\begin{aligned}
& \frac{\partial q_{r}}{\partial t} \approx \frac{H a^{2}}{R e}\left[-\frac{r \partial t}{\partial \theta}-g_{r} B_{z}\right] B_{z} \\
& \frac{\partial q_{e}}{\partial t} \approx \frac{H a^{2}}{R e}\left[-\frac{r \partial \Phi}{\partial r}-g_{e} B_{z}\right] B_{z} .
\end{aligned}
$$

The result is that in the first case the external magnetic field decreases the mean axial velocity. $\boldsymbol{U}_{:}$, and thus the reduction of turbulence is more effective since the mean shear is reduced. In the second case the magnetic field acts only or the fluctuating components.

An attempt has been made to solve this simplified set of equations, but the results were not satisfactory. An initial explanation is that, to maintain a constant flow rate. the pressure gradient has to account for the part of the Lorenz force proportional to B_{f}^{2}, and since this term at high $H a$ is greater than the friction lowses. the evaluation of the skin friction is not accurate. Deaiing with the full
system of equations. the contribution of Loremz force to the mean pressure gradient is zero.

The second order steggered mesh finite difference scheme in space and tine develconed by Verzicco \& Orlandi (1996) that has been tested for several laminar flows, and five rotating and non-rotating turbulent pipes (Oriandi \& Eatica 1996), was adapted w solve the magnetic equations. To deal with the axis of symmetry, the quantities $h_{r}=r b_{r}, h_{v}=r b_{0}, h_{z}=b_{z}$ have been used, as was done for the velocity components ($q_{r}=r v_{r}, q_{p}=r v_{0}, q_{x}=v_{r}$). The B and \dot{U} compousents are located at the center of the face of the cell. The fractional step mpthod used for the velocity field was used for the magnetic field.

Figuae 1. Profiles of im. verticity fluc:uations in wail units, a) lines, present $65 \times 65 \times 6.5$ b) cinsed symbols present $129 \times 97 \times 129$ r) upen symbols Eggels et al. $257 \times 129 \times 129!-$, C. $\left.r_{8}^{\prime}\right),\left(\cdots, \ldots, \Delta, r_{r}^{\prime}\right),\left(\cdots \cdots, \bullet .0, r_{r}^{\prime}\right)$.

3. Resuits

Without the magnetic ficid. the turbulence inteasities are higher; therefore, the validation of the rid adequacy has been performed tor $H a=0$. The simulation with the magnetic הild requires more momory and longer CPI tine because of three more parabolic equations. This sudy is limited to the investigation of whether or not direct simulations reproduce the drag reduction observed in the experiments. With this in mind, the strategy for the choice of the grid lias been that the grid is kept as small as possible such as to give satisfactory results for the second order sta-istjcs. Fig. 1 shows that a grid with $65 \times 65 \times 65$ mesh joints gives normal stresses profiles in wall units in good agreement with these by more refined simulations $(129 \times 97 \times 129)$ and with that by Eggels et al. (1994) with a more refined grid in x. A coarse simulation does not resolve the velocity gradients, and this afferts the rms profiles in a different manner. From previons simulati-ns (Orlandi \& Fatica 1906). at $H a=0$ it has bern observed that insufficient resolution in θ and r produces a
reduction in the level of v_{r}^{\prime} and v_{f}^{\prime} while that in r affects v_{x}^{\prime}. This explains w wh the preseat coutse $\mathrm{i}_{\mathrm{r}, \mathrm{cm}}$ profile near tie wall agrees with that by Efgels et al. (1994), which was obtaired $b \cdot$ a uniform grid in r. 97 equidistant points in r located ouly 7 points withir $y^{+} \because 15$. while the present nonuniform grid located 18 points in the same cistanct. Fie differences are not very pronounced, thus this resolution is satisfartory fon a nteiiminary understanding of MHD drag reciuction.

Figire 2. Time evoiution of u_{r} for external $B_{e}(-H a=0),(\cdots \cdots H a=30)$. $(\cdots-H a=28) .(-\quad-H a=30),(--H a=32)$.

The simulations of an external azimuthal magnetic field have been perfor:ned for $H a=20,28.30$. and 32. starting from the field at $t=350$ of $H a=0$ and advancing for $\mathbf{i 5 0}$ dimensionless time units. The statistics were computed from 50 fields 10 time units apart. The evolution within the first 250 time units was discarded since in this period the flow adjusts to the abrupt effects of the magaetic fieid. The u_{r} tinie evolution in Fig. 2 shows that this transitory perict is long eurugh even for the ligh $H a$ number. Fig. 2 furthermore shows that the magnetir field reduces the high frequercy osciliations, and that for high Hartmann numbers ($\mathrm{Ha} \geq \mathbf{3 0}$) the flow becones larainar. In the experiment by Branovir et ai. (1966). in a plane channe! with an aspect ratio $b / a=0.067$, the Hartman layers on the vertical wall do not piay a substantial role. Thus the results could be considered for comparison with the present simulations. However also in absence of a magnetic field, the pipe and the two-dimensional channel differ, as for example shown by Durst et al. (1995). thus differences should be expected in the presence of the magnetic field. In the experiment $\lambda=C_{f H_{0}} / C_{f 0}$, that is, the ratio between the C_{f} with and without magnetic field depends on the Reynolds number. At $R \epsilon=U_{s} D / \nu=7600$ for $H a=20$ and 28 . λ is respectively equal to 0.82 and 0.62 . In the pipe it was found to be 0.56 and 0.77 , ar ! at approximately $H a=30$ a laminar state was achieved. Recail that. at $P_{r}=186$ in the channel, the corresponding Reynolds number based mi full width and center:ine velocity is $R_{e}=C_{i} 2 \lambda / v=3600$: at this Reynolds
number the experiments of Branover et al. (1966) show a laminar state, and the present simulations differ more from the experiments.

The same initial conditions were used: to andve the case of an axial magnetic field. Fig 3 shows that u, does not change considerably going from $H a=20$ to 00 . The experiment by Fraim \&: Heiser for $\mathrm{Rc}=4900$ at $\mathrm{Ha} / \mathrm{Re}=0.122$ gives for the friction factor $\lambda=0.0305$, a value smaller than 0.035 found in the present simulation. The experimental and the mumerical simulations proluce a whe of 0.385 for $\mathrm{Ha}=\mathbf{0}$. Attempts were done to perform simulations at higher Hatmain numbers to investigate whether the numerical simulation in this case aloo reproxtuces a laminar state. The mumerical sinulation after the initial u_{r} drop showed an increase of drag. associated with larger turbulent intensities near the center, and the calculation diverged. Different initiai ronditions such as the field for $H a=60$ at $!=1000$ have also been trice! without any success.

Figtre 3. Time evolution of u_{+}for external $B_{x}(-H a=0),(\cdots \cdots \cdot H a=20)$. $\cdots-{ }^{-\cdots}=60$).

Before discassing the veiocity and rms velocity profiles. it is interesting :o iurterstand why in these conditions the efficiency is very low The efficiensy is defined as the ratio between the energy saved by skin friction reduction and the input energy neressary to generate the maguetic firld. It is $\epsilon=(1 .-\lambda) R e R_{r}^{2} P_{m} / H^{2} n^{2}$. Since for liquid metals the magnetic srandth nomber is $O\left(10^{-7}\right)$ it is clear why the efficienry i. very low.

In spite of these difficultics it is interesting to make a comparison between the two cases. $H_{a}=28$ and $H_{a}=60$. Recall that, in presence of B_{0}. the Lorenz force effets the meana velority. Fie. 4 shows that the velocity profile no longer has the log law and that the profile is grtting close to a laminar profile. On the contraty, the raws with B_{x} has a well defined lay law shifted upuards. reminiscent of other flows with hag reduction.

Ficiar 4. Radial strehmwisr velority profile in wall units (-- log baw).

Figere 5. rms velocity profiles in wall units $(\cdots \cdots \cdot H a=0),\left(\bullet H a=28, B_{0}\right)$. ($0 H a=60, B_{z}$).

The fields from direct simulations were used to expiain through the profiles and the spectra of the normal turbulent stresses that the effects of the maynetic field are different in the two cases. The profiles of v_{2}^{\prime} and v_{r}^{\prime} in Figs. 5a-b show that B_{0} re. duces both the streamwise and the azinuthal fluctuation everywhere B_{f} has a more complex effect In fact. while the axial stress increases everywhere, v_{0}^{\prime} is reduced in the betfer region and increases at the center. For B_{θ} the drag reduction is associaterd with a $=+$ lection of turbulent intensity. On the other hand, for B_{s} the reduction is ass-mated with modifications of the vortical structures. One-dinuensional azimutha! energy spectrit detect the size of the energy containing eddies, which near the wall are those resmonsible for the wall friction. These spectra are shoun for the avial and azimuthai components at $y^{+} \approx 10$, the location of high turbuience preductjon.

In disenssing the spectra in Figs. Ga-b, keep in mind contour plots of fluctuating velocity even if these plots are not presented. The spectra show that B_{0} redures the energy level at the small scales and there is a transfer of energy to the large scates. The spertrum for the B_{z} case shows that the comtaining energy scale of the x_{s}^{\prime} components are larger than those without magnetic field. These then are located at a greater distance from the wall. and thus the friction decreases. For the azimuthal stresses. B_{s} produces a similar transfer at the large scales, but in this case the energy level is atso reduced at each wave mumber.

Figure G. One-dimensional energy spectra: Left: azimuthal. Right: axial directions. ($\cdots \cdots \cdots a=0$). ($\left.\bullet H a=28 . B_{e}\right)$. $\left(0 H a=60 . B_{r}\right)$.

3. Conclusions

The present study has shown that the numerical smulation of MHD flows for liquid metal is feasible and that they can qualitatively reproduce experimental ob servations. It has been shown that for these fluids the drag reduction is inefficient: that is. that a large amount of electrical power nust be furnished to achieve the desired goal. The reduction of the turbulent levels rould be of great interest in sweral applications where the energy saving is not important. Thene direct simulations. moreover. have great interest per se in the study of turbulence physics when the thrbulence is subjected to external forces. There are in fact, similaritios between MHD turbulcuce and turbuleuce subjected to harkground rotation as was claimed by Tsinuter (1990). In beoth cases a drag reduction is achiesed. but the anechanism is different. In a previous study (Orlandi 1995), it was found that background rotation breaks the symmetry of righ-and left handed ventical structures by increasing the helecity density near the wall. Thus the vortical structures have a greater degree of order leading to a reduction of prodic tion and dissipation near the watl. In the race of MHD flows the helicity density was null across the pipe
as for $H a=0$. and so the decrease of production and dissipation are due to the redurtion of turbulence intensities. The effect is greater at the smaller scales. Thus, under the MHD effects, the small scale structures near the wall disappear and the large scales remain. producing less intense bursting events. However. the amount of disorder near the wall for MHD flows remains unchanged with respect to that of a non-rotating pipe.

It should be stressed that while these preliminary coarse direct simulations have reproduced the differences between the efferts of an azimuthal and an axial magnetic field. the quantitative comparison between experimental and numeric results was poor. This needs to be explained and it requires a much longer time than that available during the summer program. All the mandatory grid resolution checks should be performed.

Acknowledgments

The author is sincerely grateful to the stimulating discussions with Prof. H. Choi during the summer school and to the private communication by Prof. A. Tsinober. The research was partially supported by MURST grants.

REFERENCES

Branover. G. G.. Gelifat. Yu., M.. \& Thinober, A.. 1966 Turbulent magnetohydroiynamic flows in prismatic and cylindrical ducts. Magnetohydrody. namics. 2, 3-21.

Derst , F., Jowanovic*, J. \& Sevder. J. 1995 LDA measurements in the nearwall region of a turbulent pipe flow. J. Fluid Mech. 295, 305-335.
Kida, S., Yanase, S., \& Mizteshima. J. 1901 Statistical properties of MHD turbulence and turbulent dynamo. Phys. Fluids A. 3, 457-465.

Eggeis, J. G. M., Unger. F.. Weiss, M. H., Westerwfel. J., Adrian, R. J. . Fhifdrich, R. \& Nievwstadt. F. T. M. 1994 Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J. Fluid Mech. 268, 175 209.

Fraim, F. W. \& Heiser, W. H. 1968 The effect of a strong longitudinal mag. netic field on the flow of mercury in a circular tube. J. Flutd Mech. 33, 397-413.

Henoch. C. \& Stare. J. 1995 Experimental investigation of a salt water turbulent boundary layer modified by an apllied streamwise magnetohydrodynamic body force. Phys. Fluids A. 7, 1371-1383.

Krasil. Nikov, E., Yy. Leshchick, V. G., Nikolaenho, V. S. \& Panevin, I. G. 1970 Experimental study of the How of an electrically conducting liguid in a circular tube in an axial magnetic field. Fluid Dynamers. 6, 317-320.

Moffatt. H. Ki. de Tsmohfr. A. 1992 Helicity in laminar and turnulent flow. Annu. Rev. Fluid. Mech. 24, 281-312.

Orlandi, P. 1995 Helirity fluctuations and turbulent energy production in rotating and non-rotating pipes. Annual Kesearch Brief of CTR, Center for Turbulence Research. NASA Ames/Stanford Univ.. 198-208.
Oriandi, P. \& Fatica. M. 1996 Direct simulations of a turbulent pipe rotating along the axis. In the review process for J. Fluid Mech.
Ref.d. C. B. \& Likotdis, P. S. 1978 The effect of a transverse magnetic field on shear turbulence. J. Fluid Mech. 89, 147-1i1.
Shmomira, Y. 1991 Large eddy smalation of magnetohydrodynamic turbulent chamel flows under a uniform magnetic field. Phys. Fluids A. 3, 3098-3106.
Tsinober, A. 1990 MHD flow drag reduction. Viscous drag reduction in boundary layers Edited by D. M. Bushmell \& J. N. Hefner Progress in Astronautics and Aeronautics. 123, 327-349.
Tsinobf. A., 1990 Turbulent Drag Reduction Virsus Structure of Turbulence. Structure of Turbulence and Drag Reduction. Ed. A. Gyr. Berlin: Springer Verlag. 313-340.
Verzicco. R. A Orlandi. P. 1996 A finite difference scheme for direct simulation in cylindrical coordinates. J. Comp. Phys. 123, 402-414.

[^0]: 1 Aquasions Ine Canaan NH
 2 Conter for Turbulence Resparch

[^1]: Elertrictí de France, DFR, Lab. Nat. d'Hydraulique, 6 quai Watier, $\mathbf{7 8 4 0 0}$ Chatou, France

[^2]: Center for Turbulence Research
 School of Aeronautics, U. Politécnica, Madrid
 NASA Ames Research Center

[^3]: CFRC:A, Université de Montréal
 Center for Turbulence Research
 Stanford I'niversity

[^4]: Renault. Research Division. France
 Eniversity of Southern California, Department of Mechanical Engineering
 Stanford University

[^5]: E T.S. Ingenieros Aeronaiuticos, IPM, Madrid
 2 Center for Turtmilence Research

[^6]: 1 Sandia Viatumal Latoratornes

[^7]: 1 Université Libre de Bruxelles
 2 NaSA Ames Research Center
 3 Center for Turbulence Research

[^8]: 1 The Johns Hophins University
 2 Centet for Turbulence Restarrh

[^9]: 1 Department of Mathematics, Penn State University, University Park, PA 16802
 2 Department of Mechanical Engineering. Seoul National University. Seoul 151-742, Korea
 3 Lab. de Mathénatiques Appliquées, Univ. Blaise Pascal \& CNRS, 631 ĩ Aubière, France
 1 Lab. dAnalyse Numérique. Universite de Paris-Sud, 91405 Orsay. France; and Institute of Scientifir Computing and Applied Matlematics, Indiana University, Bloomington, IN 47405

[^10]: 1 Dept. of Mechanical Engineering, Université catholique de Louvain, Belgrum
 2 Conter for Turbulence Research
 3 Dept. of Statistical Physics, Liniversité libre de Bruxelles. Belgium
 4 NASA Ames Research Center

[^11]: 1 CFD Technology Center. Rorketdyne Division, Rockwell International Corporation
 2 Comter for Turbulence Research

[^12]: 1 Graduate Aeronautical Laboratory. Califorme Institute of Technology Pasadena CA 91125
 2 Center for Turbulence Research

[^13]: David Taylor Modei Basin. NSWC/CD
 University of Illinois at Uirbana Champaign
 Center for Turbulence Research

[^14]: 1 Iepartment of Mechanical and Manufacturing Engineering, University of Melbourne.
 2 Department of Mechanical Engineering, Monash University.
 3 Dhpartment of Mechanical Engineering, Stanford University.
 4 Drpartment of Theoretical and Applied Mechanics, Univ. of Illinois at Urhana-Champaign

 - Inpartment of Aeronautics and Astronantics. Stanford University.

[^15]: 1 Mechanical Engineering Department, Stanford Universily
 2 Aerospare Engineering Department. Wirhita State University

[^16]: Purder I unerity
 2 NASA Ame Hemearch Center

[^17]: 1 Iniversifia di Roma "La Sapienza" Dipartimento di Mercanica e Aeronautica. via Fiudossiana
 in 00int Roma. Italy

