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Abstract

An efficient implementation of Generalized Predictive Control using a multi-layer

feedforward neural network as the plant's nonlinear model is presented. In using

Newton-Raphson as the optimization algorithm, the number of iterations needed for

convergence is significantly reduced from other techniques. The main cost of the

Newton-Raphson algorithm is in the calculation of the Hessian, but even with this

overhead the low iteration numbers make Newton-Raphson faster than other techniques

and a viable algorithm for real-time control. This paper presents a detailed derivation of

the Neural Generalized Predictive Control algorithm with Newton-Raphson as the

minimization algorithm. Simulation results show convergence to a good solution within

two iterations and timing data show that real-time control is possible. Comments about

the algorithm's implementation are also included.

Introduction

Generalized Predictive Control (GPC), introduced by Clarke and his coworkers in

1987, belongs to a class of digital control methods called Model-Based Predictive Control

(MBPC) [4][5][14]. MBPC techniques have been analyzed and implemented successfully

in process control industries since the end of the 1970's and continue to be used because

they can systematically take into account real plant constraints in real-time. GPC is

known to control non-minimum phase plants, open-loop unstable plants and plants with

variable or unknown dead time. It is also robust with respect to modeling errors, over and

under parameterization, and sensor noise [4]. GPC had been originally developed with

linear plant predictor models which leads to a formulation that can be solved analytically.

If a nonlinear model is used a nonlinear optimization algorithm is necessary. This affects

the computational efficiency and performance by which the control inputs are determined.

For nonlinear plants, the ability of the GPC to make accurate predictions can be enhanced

if a neural network is used to learn the dynamics of the plant instead of standard nonlinear

modeling techniques. The selection of the minimization algorithm affects the



computational efficiency of the algorithm. In using Newton-Raphsonasthe optimization
algorithm, the number of iterations to convergence is significantly reduced from other

techniques. The main cost of the Newton-Raphson algorithm is in the calculation of the

Hessian, but even with this overhead the low iteration numbers make Newton-Raphson a

faster algorithm for real-time control.

The Neural Generalized Predictive Control (NGPC) system can be seen in Figure 1. It

consists of four components, the plant to be controlled, a reference model that specifies

the desired performance of the plant, a neural network that models the plant, and the Cost

Function Minimization (CFM) algorithm that determines the input needed to produce the

plant's desired performance. The NGPC algorithm consists of the CFM block and the
neural net block.

r(n) -_ ModelReference

ym(n):

Cost Function
Minimization

(CFM)

Figure 1. Block diagram of the NGPC system and algorithm

The NGPC system starts with the input signal, r(n), which is presented to the reference

model. This model produces a tracking reference signal, ym(n), that is used as an input to

the CFM block. The CFM algorithm produces an output which is either used as an input

to the plant or the plant's model. The double pole double throw switch, S, is set to the

plant when the CFM algorithm has solved for the best input, u(n), that will minimize a

specified cost function. Between samples, the switch is set to the plant's model where the

CFM algorithm uses this model to calculate the next control input, u(n+l), from

predictions of the response from the plant's model. Once the cost function is minimized,

this input is passed to the plant. This algorithm is outlined below.

The NGPC algorithm has the following important steps.

1) Generate a reference trajectory. If the future trajectory ofym(n) is unknown, keep

ym(n) constant for the future trajectory.

2) Start with the previous calculated control input vector, and predict the

performance of the plant using the model.



3)
4)
5)
6)

Calculate a new control input that minimizes the cost function,

Repeat steps 2 and 3 until desired minimization is achieved,

Send the first control input, to the plant,

Repeat entire process for each time step.

The computational performance of a GPC implementation is largely based on the

minimization algorithm chosen for the CFM block. There are several minimization

algorithms that have been implemented in GPC such as Non-gradient [11], Simplex [13],

and Successive Quadratic Programming [10],[12]. The selection of a minimization method

can be based on several criteria such as; number of iterations to a solution, computational

costs and accuracy of the solution. In general these approaches are iteration intensive

thus making real-time control difficult. Very few papers address real-time

implementation or the papers use plants that have a large time constant [16],[17]. To

improve the usability, a faster optimization algorithm is needed. None of the previous

implementations use Newton-Raphson as an optimization technique. Newton-Raphson is

a quadratically converging algorithm while the others have less than a quadratic

convergence. The improved convergence rate of Newton-Raphson is computationally

costly, but is justified by the high convergence rate of Newton-Raphson

The quality of the plant's model affects the accuracy of a prediction. A reasonable model

of the plant is required to implement GPC. With a linear plant there are tools and

techniques available to make modeling easier, but when the plant is nonlinear this task is

more difficult. Currently there are two techniques used to model nonlinear plants. One is

to linearize the plant about a set of operating points. If the plant is highly nonlinear the

set of operating points can be very large. The second technique involves developing a

nonlinear model which depends on making assumptions about the dynamics of the

nonlinear plant. If these assumptions are incorrect the accuracy of the model will be

reduced. Models using neural networks have been shown to have the capability to

capture nonlinear dynamics [3]. For nonlinear plants, the ability of the GPC to make

accurate predictions can be enhanced if a neural network is used to learn the dynamics of

the plant instead of standard modeling techniques. Improved predictions affect rise time,

over-shoot, and the energy content of the control signal

This paper is divided into nine sections with the introduction being the first section. The

second section begins by describing the cost function that the GPC algorithm uses to

compute the control input. This cost function is minimized by Newton-Rhapson to obtain

a solution. Newton-Rhapson, the cost function minimization algorithm, is derived in

section three. The NGPC algorithm uses a trained neural network as the plant's model.

The network equations are found in section four and prediction using a neural network is

described in section five. The sixth section derives the derivative equations of the

network needed for the CFM. The sixth section shows simulation results followed by

section seven, timing specifications. The eighth section gives further optimizations that

were taken advantage of during implementation that significantly improved the

computational overhead. Finally, the last section, section nine concludes the paper.



The Cost Function

As mentioned earlier, the NGPC algorithm is based on minimizing a cost function

over a finite prediction horizon. The cost function of interest to this application is

N2 Nu

J: ___,[ym(n+ j)- yn(n+ j)]2+ __,a,(j)[au(n+ j)]2
j=N 1 j=l

 I-u n 4jNu S S --7
-t- ]

+ J)+2 -b r+b-u(n+2 j)

(1)

where

N1 is the minimum costing horizon,

N2 is the maximum costing horizon,

Nu is the control horizon,

ym is a reference trajectory,

yn is the predicted output of the neural network,

_, is the control input weighting factor,

Au(n + j)is the change in u and is defined as u(n + j)- u(n + j - 1),

s is the sharpness of the corners of the constraint function,

r is the range of the constraint, and

b is an offset to the range.

This cost function minimizes not only the mean squared error between the reference

signal and the plant's model, but also the weighted squared rate of change of the control

input with it's constraints.

When this cost function is minimized, a control input that meets the constraints is

generated that allows the plant to track the reference trajectory within some tolerance.

There are four tuning parameters in the cost function, N1, N2, Nu, and A. The predictions

of the plant will run from N1 to N2 future time steps. The bound on the control horizon is

NE. The only constraint on the values of Nu and N_ is that these bounds must be less than

or equal to N2. The second summation contains a weighting factor, A, that is introduced

to control the balance between the first two summations. The weighting factor acts as a

damper on the predicted u(n+l). The third summation of J defines constraints placed on

the control input. The parameters s, r, and b characterize the sharpness, range, and offset

of the input constraint function respectively. The sharpness, s, controls the shape of the

constraint function. When plotted, the constraint function looks like the letter 13. The

smaller the value of s, the sharper the corners get. In practice, s is set to a very small

number, for example 10 -20 .
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The Cost Function Minimization Algorithm

The objective of the CFM algorithm is to minimize J in (1) with respect to

[u(n+l), u(n+2), ...,u(n+Nu)] T, denoted U. This is accomplished by setting the Jacobian of

(1) to zero and solving for U. With Newton-Rhapson used as the CFM algorithm, J is

minimized iteratively to determine the best U. An iterative process yields intermediate

values for J denoted J(k). For each iteration of J(k) an intermediate control input vector is

also generated and is denoted as

I u(n+l) ]

U(k)_l u(n? 2) I ,k= 1,...,#iterations.

I.(n+ Nu).J

The Newton-Raphson update rule for U(k+ 1) is

1-13 J o3J

U(k + 1)= U(k)- _-5-(k) _-_(k),

where the [acobian is denoted as

3J

3u(n + 1)0J
o_U (k)- gj

3u(n + N. )

and the Hessian as

3zj
..o

32 J 3u(n + 1)2 .

(k) - c9_ J ""3U 2
...

o3u(n+ N_)3uk(n+ 1)

_2j

3u(n+ 1)3u(n+ Nu)

cg_J

0.(,,+

(2)

Solving Equation (2) directly requires the inverse of the Hessian matrix. This processes

could be computationally expensive. One technique to avoid the use of a matrix inverse

is to use LU decomposition [7] to solve for the control input vector U(k+l). This is

accomplished by rewriting Equation (2) in the form of a system of linear equations,

Ax = b. This results in

c92J ÙJ (3)
3U z (k)(U(k + 1) -U(k)) = -_-_-(k),

where

2j
OU2 (k) =A,



_s (k)-. and
OU

U(k + 1) - U(k) = x.

In this form Equation (2) can be solved with two routines supplied in [7], the LU

decomposition routine, ludcmp, and the system of linear equations solver, lubksb.

After x is calculated, U(k+l) is solved by evaluating U(k + 1) = x + U(k). This procedure

is repeated until the percent change in each element of U(k+l) is less than some e. When

solving for x, calculation of each element of the Jacobian and Hessian is needed for each

Newton Rhapson iteration. The h th element of the Jacobian is

0J

,_u(,,+h)
_ _A,,(,,+j)

-2 Z[ym(n+ j) yn(n+ j)]cgyn(n+ j) N.
- - ¢-2___(j)[Au(n+j)] Ou(n+h)j=_, al,(n+ h) j__

I-

NIl . _ --S S

j=l Llu(n+ j)+2_b ) (2+b_u(n + j))

,h=l ..... N u.

The O Au(n + j) when expanded
O u(n + h)

Kronecker Delta function a,

and evaluated can be rewritten in terms of

Ou(n+j) cgu(n-l+j)=,3(h,j)-_3(h,j-1).
_u(,,+h) _u(,,+h)

The mth, h th element of the Hessian is

c92J

Ou(n+m)Ou(n+h) _._yn(n+j) cgyn(n+j) °°2yn(n+J) [ym(n+j)-yn(n+j)]}= 2j___,L c_u(n+m) oOu(n+h) _u(n+m)Ou(n+h)

,_-_ _, .,[ cgAu(n + j) ,gAu(n+ j) ., OZAu(n + j) ]

au(n+m)au(n+h)

+ Z _(h, j),3(m, j) 3 ¢ 3"

r-b) (2+b-u(n+j)_°' u(.+j)+-_
,m = I....,N.

the

1 ifh=j1The Kronecker Delta function is defined as _(h, j) = 0 if h ¢ j
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Again, the delta notation can be used to express

 au(n+j)  au(n+s)
o3u(n + h) ,gu(n + m) = (S(h, j)-_(h, j-1))(_(m, j)-S(m, j-1)) .

The 02Au(n + j) always evaluates to zero.

o_u(n + m)o3u(n + h )

The last component needed to evaluate U(k+l) is the calculation of the output of the

plant, yn(n+j), and it's derivatives. The next three sections define the equations of a

multi-layer feedforward neural network, describe the prediction process using a neural

network, and define the derivative equations of the neural network.

Neural Network Architecture

In NGPC the model of the plant is a neural network. The initial training of the

neural network is typically done off-line before control is attempted. The block

configuration for training a neural network to model the plant is shown in Figure 2. The

network and the plant receive the same input, u(n). The network has an additional input

that either comes from the output of the plant, y(n), or the network, yn(n). The one that is

selected depends on the plant and the application [9]. This input assists the network with

capturing the plant's dynamics and stabilization of unstable systems. To train the

network, its weights are adjusted such that a set of inputs produces the desired set of

outputs. An error is formed between the responses of the network, yn(n), and the plant,

y(n). This error is then used to update the weights of the network through gradient

descent learning [2]. This process is repeated until the error is reduced to an acceptable

level.

u(n) _" Plant > y(n)

NeuralNetIvo<o l
Model of _'_'--_..

Plant

\

)
e(n)

Figure 2. Block diagram of off-line neural network training

Since a neural network will be used to model the plant, the configuration of the network

architecture should be considered [3]. A neural network can be configured for either



input/output or state space modeling. This implementation of NGPC adopts input/output

models since state space modeling requires measurements of the plant's states that are not

always available. The diagram below, Figure 3, depicts a multi-layer feedforward neural

network with a time delayed structure. For this example, the inputs to this network

consists of external inputs, u(n) and y(n-1), and their corresponding delay nodes, u(n-1),

.... u(n-na), and y(n-2) ..... y(n-d_). The parameters nd and dd represent the number of delay

nodes associated with their respective input node. The second input could instead have

been yn(n-1) and it's delayed values. The network has one hidden layer containing

several hidden nodes that use a general output function, fj (.). The output node uses a

linear output function with a slope of one for scaling the output.

u(n) u(n-1) u(n-na) y(n-1) y(_2) y(n-da)

yn(n)

Figure 3. Multi-layer feedforward neural network with a time delayed structure

The equations for this network architecture is:

and

hid

yn(n)= _ wj f :(netj(n))+b (4)
j=l

nd dd

net:(n) = 2 WJ, i+l u(n-i)+ _ Wj,nd+i+l y(n-i)+b:
i=0 i=1

(5)

where

yn(n) is the output of the neural network,

fj (-) is the output function for the jth node of the hidden layer,

netj(n) is the activation level of the jth node's output function,

hid is the number of hidden nodes in the hidden layer,

nd is the number of input nodes associated with u(.) not counting u(n),

dd is the number of input nodes associated with y(-),

wj the weight connecting the jth hidden node to the output node,



wj, i the weight connecting the i th input node to the jth hidden node,

y(n-i) is the delayed output of the plant used as an input to the network,

u(n-i) is the input to the network and its delays,

bj the bias on the jth hidden node,

b the bias on the output node.

Prediction Using A Neural Network

The NGPC algorithm uses the output of the plant's model to predict the plant's

dynamics to an arbitrary input from the current time, n, to some future time, n+k. This is

accomplished by time shifting equations (4) and (5) by k, resulting in

hid

yn(n+k)=Z{wjfj(netj(n+k))}+b,
j=l

and

,d fu(n+k-i) ,k-U u <i

netj(n+ k)= Zi=0Wj'i+llu(IT-t- N,) ,k- N u _>i

min( k,d d )

+ ___ (wj,._+_+_yn(n+k-i))+ _(wj,_+_+_y(n+k-i)). (7)
i=I i=k+l

(6)

The complexity of (7) arises when we take into account the cost function, J, and the

recursive nature of the prediction. The first summation of (7) breaks the input into two

parts represented by the conditional. The condition where k-N,<i handles the previous

future values of u up to u(n+N,-1). The condition where k-Nu>i sets the inputs from

u(n+Nu) to u(n+k) equal to u(n+N,). The second condition will only occur if Ne>Nu. The

next summations of (7) handles the recursive part of prediction. This feeds back the

network output, yn, for k or d_ times, which ever is smaller. The last summation of (7)

handles the previous values of y. The following example pictorially represents prediction

using a neural network.

Example

Consider a network with two hidden nodes (hd=2), one output node, and input consisting

of u(n) and two previous inputs (rid=2), and of three previous outputs (dd=3). Suppose

that a 2-step prediction needs to be found, that is, the network needs to predict the output

at times n+l and n+2. The information required by the neural network at each time

instant is conveyed in Figure 4.

The example below depicts a prediction of the plant for k=2. To produce the output

yn(n+2), inputs u(n+l) and u(n+2) are needed. The prediction process is started at time n,

with the initial conditions of [u(n) u(n-1)] and [y(n) y(n-1) y(n-2)] and the estimated input

u(n+l). The output of this process is yn(n+l), which is fed back to the network and the

9



process is repeated to produce the predicted plant's output yn(n+2). This process is

shown in Figure 4. The network feedback is displayed as one network feeding another.

This example shows the recursive nature of prediction.

na =2 dd =3

uin+l) u_) uin-1) y(i ) y(n-1) y(ni2 )

d=2

1st predicted output

u(n+2) u(n+l) u(n) yn(n+l) y(n) y(n-1)

; _ 2napredicted output

yn( n+ 2)

Figure 4. Network Prediction for k=2

Neural Network Derivative Equations

To minimize a cost function with a gradient based iterative solution in real-time, a

computationally efficient derivation of the neural network's gradient is desired. The

following is a derivation of the network' s gradient equations.

To evaluate the Jacobian and the Hessian, the network's first and second derivative with

respect to the control input vector are needed. The elements of the Jacobian are obtained

by differentiating yn(n+k) in Equation (6) with respect to u(n+h) resulting in

onyn(n+k) hid Ofj(netj(n+k))

O.(n+h)
Applying the chain rule to o3fj(netj(n + k))/onu(n + h) results in

(8)

lO



o_u(n+h) o_netj(n+k) o_u(n+h) '

where o_fj(netj(n + k))/a_neti(n + k) is the output function's derivative and

(9)

Onetj(n+k) "_ _fi(k-i,h) ,k-N. <i

+h) =Z ,k-N,, > i
/=o (10)

mi.(k,a_) Oyn(n+k-i) _,(k-i-1)+ Z;=, au( +h)
Note that in the last summation of (10) the step function, &, was introduced. This was

added to point out that this summation evaluates to zero for k-i<l, thus the partial does

not need to be calculated for this condition. The elements of the Hessian are obtained by

differentiating Equations (8),(9), and (10) by u(n+m), resulting in

c92yn(n+k) hie 02fj(net,(n+k))

Ou(n + h)Ou(n + m) = _./=lw j Ou(n + h)Ou(n + m) ' (11)

a2f j(net,(n+k))
Ou(n+h)Ou(n+m)

and

32net,(n+ k)

Ou(n + h )Ou(n + m)

_o3fj(net,(n+k)) a2net,(n+k)

o_et,(n+k) Ou(n+h)Ou(n+m)

O2f j(netj(n+ k)) Onetj(n + k) Onetj(n+ k)'
q

Oneta(n+k) 2 Ou(n+h) Ou(n+m)

32yn(n+k_i) 51(k-i-1)
= Ou(n+h)° u(n+m)

(12)

Note that Equation (12) is the result of also applying the chain rule twice.

Simulation Results

Many physical plants exhibit nonlinear behavior. These relationships may be

approximated by linear models, but often a nonlinear model would be more desirable.

Nonlinear systems exhibit many phenomena that are not seen in linear systems such as an

asymmetry between a step increase and decrease and the law of superposition does not

hold. This section discusses the results from training a neural network to model a

nonlinear plant and then using this model for NGPC. Later a comparison is made

between control using the nonlinear model and a linear model.

Duffing's equation is a well studied nonlinear system. It can be thought of as

representing the relationships between a mass, damper, and a stiffening spring. In

11



Equation (13), a non-minimum phasezero is addedto demonstrateNGPC's capability to
control a non-minimum phaseplant,

_(t) + :_(t)+ y(t) + y3 (t) = 2u(t) - _(t) (13)

This plant was simulated using Runga-Kutta 4th order integration algorithm with a step

size of 0.01 seconds and a sampling rate of 0.1 seconds/sample. Below, Figure 5 and

Figure 6 show a series of pulses with increasing amplitude and the response of the plant

due to this pulse train. The nonlinearity of this plant can be observed by noting that a

linear increase in input amplitude does not result in a proportional increase in the output

amplitude and that a frequency shift is also produced.

1 1.5

0.5

_.o
_c

-0.5

2 D-0 - ^ v

j J
-1

........... i ........
-1.5

.... I ............
m

0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180

Time (sec) Time (sec)

Figure 5. Pulse train used as the input Figure 6. Response of plant due to

to the plant pulse train input

200

The neural network was trained to model the plant using the same pulse train. The

network architecture contains a single hidden layer with four hidden nodes and a single

output node. The input layer is composed of two inputs, one that is externally fed with

four time delayed nodes and the other is fed back from the output of the plant with four

time delayed nodes. The hidden layer's nodes use the hyperbolic tangent as an activation

function and the output is scaled linearly. Normalized Root Mean Squared error (NRMS)

and Max error were used to measure training of the network. Equation (14) is the NRMS

error measure, where T is the desired target output, O is the output of the network, p is

the training pattem, and n is the output node. In this example, n is 1 and p is 2000 (200

time steps sampled at 0.1 seconds).

Max error is the measure of the maximum error between T and O for each cycle. A cycle

is defined as all of the input/output relations that form the entire pulse train. The NRMS

error and the Max error for 10,000 cycles of network training are shown in Figure 7 and

Figure 8.

12



1 1.6

0.8
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Z

0.3 _ _ 0.6

o.2 _ :S

o.4

o.1 _ 0.2

o ........... ' .................... 0
1 10 10o 1000 10000

Training Cycles

Figure 7. NRMS Error

10 100 1000 10000

Training Cycles

Figure 8. Max Error

The response of the plant is compared to the response of the trained network in Figure 9.

The corresponding error between the plant and the network is shown in Figure 10.

1.5

-- Plant I

0 _ ,, , _, -_ t,,

-1.5 ........... I ................. , ....

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

Figure 9. Response of the plant and

network to pulse train input

o

0.1

o.06i I !
!

0.06 i

o.04 , _i
II

-0o I/ ::
-0.04 I _ ]l

-0.06

-006 I i !
-o.1 ................

0 20 40 60 e0 100 120 140 160 180

Time (sec)

Figure 10. Error between plant and
trained network

200

The nonlinear model of the plant was placed into the NGPC control-loop where the

reference model is the pulse train filtered with a third order system with repeated poles at

0.3 rad/sec. The system was tuned by varying N1, N2, N,, and 7, to produce a desirable

response. No input constraints were used in this example. The final tuning resulted in

NI=I, N2=17, N,=I, and _=0. The controlled response of the plant tracking the filtered

pulse train is shown in Figure 11. The corresponding error between the plant and the

reference model is shown in Figure 12.

1.5

1

0.5

0

-0.5

-1

-1.5

0.4

: -- Roe M_el

i ....... Plant 0.3

Pi 0.2 O-'o
-0.2

_ -0.3

-0.4

20 40 60 80 100 120 140 160 180 200

Time (sec)

Figure 11. Plant tracking using the
neural network as the

plant' s model

I I

20 40 60 80 100 120 140 160 180

Time (sec)

Figure 12. Error between reference

model and plant
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To compare these results to results where the model is linear, equation (13) was

linearized about zero. Discretizing with a sample time of 0.1 seconds using the step

invariant transform produces

y(n) - 1.895y(n - 1) + 0.9048y(n - 2) = -0.0853u(n - 1) + 0.1044u(n - 2). (15)

Equation (15) replaced the neural network as the plant estimator. Figure 13 shows the

controlled response of the plant with the linear plant as the model. The corresponding

tracking error is shown in Figure 14. Comparing results shown in Figure 11 and

Figure 13 we see that the linear model controller had significantly higher steady state

error, thus demonstrating the benefit in using a neural network for the plant estimator.

1.5

1

0.5

0

-0.5

-1

-1.5

0.4
-- Ref Model

.... Plant 0.3

 o.1
0

-0.2 j

180 21111

-0.3 _j
............ I ................... -0.4 ............... ' ........................

20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160 180 200

Time (sec) Time (sec)

Figure 13. Plant tracking the reference Figure 14. Error between reference

model that used linear model and plant

model of the plant

Algorithm Comments

Nonlinear optimizations are computationally expensive processes. The use of

Newton-Raphson is intended to produce a computationally efficient process. There are

many factors that affect the speed of a process, such as algorithm, implementation, rate of

convergence, computer, compiler, and problem size. Here we discuss the various

parameters that determine the process speed for NGPC.

The algorithm, in conjunction with the complexity of the plant, determines the rate of

convergence. In this paper the Newton-Raphson optimization has been implemented and

for various plants it has been found to converge to a good result within two iteratiorl's 2.

The plants all have been modeled with a single hidden layer with three to six hidden

nodes, two to four delay nodes on the control input u(n), and three to five delay nodes on

the plant input y(n- 1).

For any algorithm, care must be taken to produce efficient code. In this implementation

all values that have been calculated in one routine are passed to other routines to avoid

recalculation. The most critical portion of the code is the calculation of the Hessian.

2A good result is defined here to be less then a 2% change in the control input between interations.
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Two variables, Onet,(n+k)/olu(n+h) and Oyn(n+k)/onu(n+h), that are calculated in

the Jacobian are also used in the calculation of the Hessian. These are passed to the

Hessian when it is calculated. Since the Hessian is symmetric, only the upper triangular

portion of the matrix needs to be calculated. The use of these two points will save a
considerable amount of CPU time.

Another component of process speed is the computer's performance. To ensure optimal

speed the computer, compiler, and floating point data types were all 32 bit. A Pentium

Pro 150 MHz PC, with Microsoft Visual C++ version 2.0 using full optimization,

Pentium specific compiling and in-lining whenever possible was used. In-lining is

instrumental for speed and readability of the module code.

Timing Specifications

The previous section outlined many factors that determine the process speed. To

demonstrate the servo rates that one might expect to get with this algorithm and the

optimizations, timing data was collected using a simulated plant for different values of N2

and Nu. The neural network had two inputs with four and five delays on the first and

second input respectively, six hidden nodes and one output node. The data shown in

Table 1 represents servo rates in Hertz where the number of iterations taken to produce a

solution was set to two. This would be a typical setting for real-time applications. The

values for N2 ranged from 1 to 20 and the values for Nu varied from 1 to 10. Note that the

Table 1 is lower triangular because Nu cannot be larger than N2.

N2

Su

1 2 3 4 5 6 7 8
1 8596

2 5579 4378
3 4104 3138 2589

4 3238 2405 1900 1597
5 2655 1936 1487 1211 1035

6 2232 1609 1210 964 801 695

7 1920 1366 1010 789 643 544 482
8 1692 1188 870 670 537 448 388 350

9 1511 1052 762 583 463 380 325 288

10 1366 945 683 516 407 331 279 243

11 1246 857 615 462 362 292 244 211
12 1145 783 558 418 325 262 218 187

13 1058 720 511 382 297 237 197 168

14 984 667 472 351 272 218 180 153
15 920 622 440 326 252 201 165 140

16 865 582 411 304 234 186 152 129
17 815 548 386 284 219 173 142 120

18 771 517 364 268 206 163 133 112
19 731 490 344 253 194 153 125 104

20 695 465 326 239 184 145 118 98

9 10

262

218 201

187 170
164 148
147 131

133 117
121 107

111 98

103 90
95 83

89 77
83 72

Table 1. Timing Data for NGPC where N2 and Nu are varied

15



The cost of the NGPC algorithm can be broken down into five separatecost. The
Jacobian, Hessian, plant prediction, LU decomposition, and other miscellaneous over

head are calculated based on a percentage of computational cost. The case where both N2

and Nu are five is presented in Table 2.

Routine Percent Time

0J / 0U 37.48

cgj z / o32U 32.72

Prediction 21.89

Solution 6.19

Misc. 1.72

Table 2. Percentage of Time for Key Routines where N2=5 and Nu=5

Since the cost of the Hessian would not be included in a first order gradient technique,

this time can be eliminated when comparing this Newton-Raphson implementation to the

gradient technique found in [15]. The calculation of the Hessian takes 32.72% of the CPU

time. Without the Hessian calculations and the LU decomposition, the percent CPU time

used for an iteration is 61.09%. Using this percent time, the gradient algorithm would be

able to calculate 1.64 iterations for the same CPU time. Since the gradient algorithm in

[15] takes 10 to 20 iterations, the Newton-Raphson algorithm runs 6.1 to 12.2 times faster.

Conclusions

This paper has developed a computationally efficient Neural Generalized

Predictive Controller utilizing Newton-Raphson optimization algorithm to minimize the

GPC cost function with input constraints. The simulation results showed NGPC

improved control performance over GPC with a linear model. The real-time capability of

this algorithm was demonstrated by presenting timing data from a case study that showed

that a typical servo rate of 1000 Hz is attainable with a Pentium Pro 150 MHz PC.
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