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An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known
feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No
feedback signal needs to be recorded. The overall dosed-loop system dynamics is first identified. Then a recursive

formulation is derived to compute the open.loop plant dynamics from the identified rinsed-loop system dynamics
and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback
controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are
presented to demonstrate the feasibility of this indirect identification method.

Introduction

YSTEM identification is the process of constructing a mathe-
matical model from input and output data for a dynamic system

under testing and characterizing the system behaviors. This tech-

nique is important in many disciplines such as economics, commu-
nication, system dynamics, and control. In the past few decades,
a great variety of system identification methods have been studied
extensively. 1-3 The choice of an identification method depends on
the nature of the system and the purpose of identification. Most exist-

ing system identification methods apply for stable systems without

requiring feedback terms for identification purpose. For identifying
marginally stable or unstable systems, however, feedback control is
required to ensure overall system stability. In many cases, a system,

although stable, may be operated in closed loop and it is impossible
to remove the existing feedback controller for security or production
reasons. In other cases, such as economic and biological systems,

the feedback effect may be inherent. Consequently, identification
has to be performed on a system operating in closed loop. Previous
studies 3 showed that accuracy of identification is not necessarily

worse in the presence of feedback; in fact, optimal inputs may very
well require feedback terms.

For systems operating in closed loop, there are generally three

ways to apply the identification methods. 3,4 One way that can al-
ways be applied is to treat the bounded plant input/output data ex-

actly as if they were obtained from an open-loop experiment. This
procedure is called direct identification. Another way is to treat the

closed-loop system as a whole, and its dynamics can first be iden-
tified by some method. Then the open-loop plant dynamics may be
determined from the identified closed-loop system dynamics using
the knowledge of the feedback controller. This approach is called in-
direct identification. Further, in some cases, the feedback controller

may be considered as part of what is to be identified and then the
input and output are considered as a joint process and the output
of a system driven by noise only. This approach is called jointly
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input-output identification, s In this paper, an indirect identification

algorithm is presented.

Recently, a method 6 was introduced to identify a state-space

model from closed-loop test data by using direct identification. For

direct identification, because the input to the plant is partly deter-

mined from the feedback, it is difficult to ensure that the input has

sufficient frequency richness to excite all of the system's dynam-

ics. It is also found that there is no clear advantage to include the

feedback signal in the identification process. 7

On the other hand, a method s was also introduced to identify

a state-space model for open-loop system from a finite difference

model. The difference model, called the autoregressive with exo-

geneous input (ARX) model, is derived through Kalman filter the-

ory. Another method 9 is derived to obtain a state-space model from
open-loop input/output data using the notion of state observers. This

approach can use an ARX model with an order much smaller than

that derived through the Kalman filter, but the derivation is based

on a deterministic approach. Then projection filters, which were

originally derived for deterministic systems, m are developed for

identification of linear open-loop stochastic systems. H.j2 The re-

lationship between the state-space model and the ARX model is

derived based on optimal estimation theory. In this paper, this rela-

tionship is derived in a much simpler way through z transform of the

ARX model and is applied for closed-loop stochastic systems. The

computational efficiency for determining the ARX model depends
on the choice of the least-squares algorithms. 2.13.14 ,,.

For modeling accuracy, one may use three-stage least-squares
algorithm to get improved estimates, is but the result will be sta-

tistically suboptimal. This suboptimality should become evident

in the identification results if the noise-to-signal ratio is increased

and interval estimates are computed. In this paper, after obtaining
the finite-order ARX model, two recursive formulas are derived.

The first one calculates the closed-loop system Markov parameters
(pulse response) from the estimated coefficient matrices of the ARX

model. For open-loop systems, this recursive form provides the ex-
act solution for deterministic system 2.9 and the optimal solution

for stochastic systems._ Ln The second one computes the open-loop
system Markov parameters from the calculated closed-loop Markov

parameters and known controller dynamics. For closed-loop sys-
tems, these recursive forms derived by using z transform provide
the optimal solution instead of the least-squares solution. This is

the main contribution of this paper. The proposed indirect identifi-

cation algorithm can be applied for any dynamic or constant-gain
feedback controller. The method is also derived in the stochastic
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framework, taking into account the effects of process noise as well
as measurement noise.

A similar indirect identification approach was also presented in

Refs. 16 and 17. However, they applied to deterministic systems

only, and thus the optimal Kalman filter gain used for an estima-
tor could not be identified. Furthermore, in Ref. 16, no recursive

form was derived for computing open-loop system dynamics. In

Ref. 17, the approach is-based on system pulse response. In this

paper, a recursive form for computing the open-loop system and

Kalman filter Markov parameters is derived for stochastic systems
with random excitation. The method can also estimate the Kalman

filter gain directly without estimating noise covariances. Like other

direct approaches,/8 it is simple in theory, has fewer parameters to

estimate, and can prevent the problem of nonuniqueness in estimat-
ing process noise covariance.

In the following sections, an indirect identification algorithm is
first presented for systems with dynamic feedback controller. Then

a special case with constant-gain full-state feedback controller is

studied. A simpler identification procedure is described. A matrix is

also mentioned to transform the identified state-space model from
any arbitrary coordinate to the physical coordinate so that the iden-

tified system parameters can be compared to the analytical one.

Finally, an example of identifying an unstable large-gap magnetic
suspension system is provided with numerical simulations and ex-

perimental test data to illustrate the proposed indirect identification
method.

Closed-Loop State-Space and ARX Models Relationship

In this section, the relation between a closed-loop state-space
and an ARX model is derived by using z transforms. A finite-

dimensional, linear, discrete-time, time-invariant system can be
modeled as

xt+j =Axk+Bu,+wt (1)

Yt = Cxt + v, (2)

where x E R" x i u E R" x 1,y _ R m ×, are state, input, and output
vectors, respectively; wt is the process noise and vk is the mea-
surement noise; and [A, B. C] are the state-space parameters. Se-

quences wt and v, are assumed Gaussian, white, zero mean, and

stationary with covariance matrices Q and R, respectively. One can
derive a steady-state filter innovation model14:

_ct+l = Axk + But + AKct (3)

Yt = C._, + ek (4)

whereat is the a priori estimated state, K is the steady-state Kalman

filter gain, and E, is the residual after filtering: _k = Y, - Ci,. The
existence of K is guaranteed if the system is detectable and (A, Q'/2)
is stabilizable.19

On the other hand. any kind of dynamic output feedback controller
can be modeled as

Pt+l = Aapt + Bayt (5)

u, = Capt + Dayk + r_ (6)

where Aa, Ba, Ca, and D,t are the system matrices of the dynamic
output feedback controller, P, is the controller state, and rk is the

reference input to the closed-loop system. Combining Eqs. (3-6),
the augmented closed-loop system dynamics becomes

tlk+l = Acrlk+ B, rk + A_Kce, (7)

Yk = C:I, + ek (8)

where

[it] IA+BDaC BCal [B 1
= , Ac = , B, =

rlk Pk BdC Aa j

A,.K_= [ AK + BDa I (9)B_ , c_ = [c o]

Kc can be considered as the Kalman filter gain for the dosed-loop

sysmm and the existence of the steady-state Kc is guaranteed when

the closed-loop system matrix Ac is nonsingular. Substituting Eq.
(8) into Eq. (7) yields

rlk+, = Arh + B_rt + A_K_y, (I0)

where A = A¢ - A_K¢C_ and is guaranteed to be asymptotically

stable because the steady-state Kalman filter gain K_ exists. The z
transform of Eqs. (10) and (8) yields

rl(z) = (z - fiO-'[A¢K_y(z) + B¢r(z)] (11)

y(z) = Ccrl(z) + e(z) (12)

Substituting Eq. (11) into Eq. (12), one has

y(z) = Cc(z - P,)-l[acKcy(z) + Bcr(z)] + 6(z) (13)

The inverse z transform of Eq. (13) with

oo

(z - _)-1 = _ _,_ lz__
i=1

yields

Yt: = Z CeAi-lAcKcyk-i + Z CcAi-IBcrk_i +e k (14)
ira' i=1

Since ,4 is asymptotically stable, _i _ 0 if i > q for a sufficient
large number q (discussed in Ref. 12). Thus Eq. (14) becomes

q q

Yt _" Z aiY,-i + Z birt-i + _k (15)
i=1 i=1

where

ai = Ccfi_i-'A¢Kc, b_ = CcA, I-IB, (16)

The model described by Eq. (15) is the ARX model, which di-

rectly represents the relationship between the input and output of the
closed-loopsystem. The coefficient matrices a_and b_can be esti-
mated through least-squares methods from random excitation input

rk and the corresponding outpntyk. For a number of data points 1,
the batch least-square solution is

0 = (e_re_)-'e_r_ (17)

where

Yq 4 r 4-, Ylr rrYq-i '''

T 4+ I r yrYq+l yq r_q ... 2 r_

(_ .... . o .

.yL, 4-i g_2 6-2 .--yf_,

=[Yq+l Yq+2 "'" Yl]r _"

O=[al bi a2 b2 ... aq bq] r

Markov Parameters and State-Space Realization
In this section, the closed-loop system and Kalman filter Markov

parameters are first calculated from the estimated coefficient matri-

ces of the ARX model. Then the open-loop system and Kalman

filter Markov parameters are derived from the closed-loop sys-

tem and Kalman filter Markov parameters, and known controller

Markov parameters. The open-loop state--space model is realized

by using singular-value decomposition for a Hankel matrix formed

by the open-loop system Markov parameters. Finally, an open-

loop Kalman filter gain is calculated from the realized state-space

model and open-loop Kalrnan filter Markov parameters through least
squares.

The z transform of the open-loep state-space model (3) yields

5c(z) = (z - A)-I[Bu(z) + AK¢(z)] (18)
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Substituting Eq. (18) to the z transform of Eq. (4), one has

y(z) = C(z - A)-t[Bu(z) + AK_(z)] + e(z)

= E Y(k)z-_u(z) + E N(k)z-ke(z) (19)
k=l km(}

where Y(k) = CA k-' B is the open-loop system Markov parameter;

N(k) = CAk-IAK, the open-loop Kalman filter Markov parame-
ten and N(0) = I, which is an identity matrix. Similarly, for the

dynamic output feedback controller (5) and (6) and the closed-loop

state-space model (7) and (8), one can derive

o_

u(z) = E Yd(k)z-kY(Z) + r(z) (20)
k=0

y(z) = Yc(k)z-_:r(z) + E Nc(k)z-ke(z)
k= I km{}

(21)

where Yd(k) = CdA_-IBd is the controller Markov parameter,

Y¢(k ) = CcA_ -t B_. the closed-loop system Markov parameter, and

N,.(k) = CcA_-; AcKc the closed-loop Kalman filter Markov pa-

rameters. Also note that Yd(O) = Dd and Nc(O) = I.

Closed-Loop System and Kalman Filter Markov Parameters

The z transform of the ARX model (15) yields

Applying long division to F___I. (22), one has

y(z) = {blz -I + (b2 +atbl)z -2 + [b3 + aj(b2 +albl)

+ a.,bt]z -3 +... }r(z)+ {1 + alz -1 + (atal + a2)z -2

+ [at(alal +a2) + a2al + aa]z -3 +'" }g(z)

After comparing with Eq. (21), the closed-loop system and Kalman

filter Markov parameters can be recursively calculated from the
estimated coefficient matrices of the ARX model:

k

Yc(k) = bk + _ al Y_(k i) (23)

i=1

k

aiNc(k -- i) (24)N¢(k)

i=l

Note that Y_(0) = 0, N¢(0) = 1, and ai = bi = 0, when i > q.

One may obtain F_,qs. (23) and (24) from Eq. (16) and the definition

of the Markov parameters. 9 However, the derivation is much more

complex.

Open-Loop System and Kalman Filter Markov Parameters
Substituting Eq. (20) into Eq. (19) yields

+ r(k)z-kr(z) + E N(k)z-_(Z) = E Otkz-kY(Z)
k= I k=O k=l

+ Y(k)z-t'r(z) + E N(k)z-I'e(z)
k_ I k_O

where

k

a_ = E Y(i)Yd(k -- i)
i=l

(25)

Rearranging Eq. (25), one has

/ eI -- cqZ -I' y(z) = Y(k)z-kr(z) + N(k)z-_e(z)

k=l / k=l k=O

(26)

Similarly, one can apply long division to Eq. (26), and then compare

it with Eq. (21), to describe the closed-loop system Markov param-

eters recursively in terms of the open-loop system and controller

Markov para meters Ya (k) = Cd A kd-i Bd:

J

Yc(j) = Y(j) + ) "t_kY¢(j k) Y (j)

k=l

j k

+ E E Y(i)Yd(k - i)Yc(j --k) (27)
k=l iffil

And the closed-loop Kalman filter Markov parameters can be re-

cursively expressed in terms of the open-loop system and Kalman

filter Markov parameters, and controller Markov parameters:

J

Nc(j) = N(j) + y'] _N_.(j - k) = N(j)
k=l

j k

+ EE Y(i)Yd(k - i)Nc(j - k)
k=l i=1

Rearranging Eqs. (27) and (28), one has

(28)

j k

Y(J) = Y¢(J) - E E Y(i)Ya(k -- i)Y_(j - k) (29)
k=li=l

j k

N (j) = N,(j) - E E Y (i) _(k - i)Nc(j - k)
k=li=l

(30)

Note that Y,.(0) = 0 and N_(0) = I. One can easily verify Eqs. (29)

and (30) from Eq. (9), and also from the definition of the Markov

parameters.

The open-loop state-space model can be realized by using
singular-value decomposition for a Hankel matrix formed by the

open-loop system Markov parameters. 2.2° Once the open-loop A

and C are obtained, one can easily calculate the open-loop Kalman

filter gain from the open-loop Kalman filter Markov parameters
N(k) = CAkK in a least-squares sense as follows:

K = (OrO)-lor N(l)

N(k)
[c!lwhere O= (31)

C k

Identification with Output Feedback "

In this section, we summarize the procedure of indirect identifi-
cation algorithm.

1) Estimate the coefficient matrices of the ARX model from

closed-loop input/output data by using Eq. (I 7).
2) Compute the dosed-loop system and Kalman filter Markov pa-

rameters from the estimated coefficient matrices of the ARX model

by using Eqs. (23) and (24), respectively.
3) Compute the open-loop system and Kalman filter Markov pa-

rameters from the closed-loop system and Kalman filter Markov
parameters, and controller Markov parameters calculated from the

known controller dynamics, by using Eqs. (29) and (30), respec-

tively.
4) Realize the open-loop system mam.'ces from the open-loop sys-

tem Markov parameters by using the singular-value decomposition
method. 2.2°

5) Estimate the open-loop Kalman filter gain from the open-loop

Kalman filter Markov parameters and the realized system matrices

by using Eq. (31).
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Identification with Full-State Feedback

In this section, the preceding indirect identification problem is
considered for a particular case. If a constant-gain full-state feed-

back controller is used, the open-loop system can be identified by

following a simpler procedure. An open-loop system with a full-

state sensor and a constant gain full-state feedback controller can
be modeled as

xk + l -- Axk + Bu_ + wt (32)

Yk ---_Xk -1-Vt (33)

Uk = -- Fyk + rk (34)

where F is the known constant feedback gain and rk is the reference

input to the closed-loop system. After applying filter innovation

model _4 to the open-loop system and eliminating control input u_,
the closed-loop system becomes

_ck+ i = (A - B F)$:k + Brk + (AK -- B F)ek (35)

Yk = -_k + _k (36)

Comparing Eqs. (35) and (36) with F_,qs. (7) and (8), one can have

rlk = _c_, Ac = A- B F, Bc = B, AcKc = AK - B F, and Cc = I.

Then one can use Eqs. (17), (23), (24), and (31) to identify the

closed-loop system matrices and Kalman filter gain. If the identified

closed-loop system matrices and Kalman filter gain are described
^ ^ ^ A

by a quadruplet, [Ac, Be, Co, Ac Kc], one needs to transform it to the

same coordinate used in Eqs. (35) and (36), so that the controller

dynamics can be removed from the closed-loop system. Since full-

state feedback is used, the identified output matrix C_ is a square

matrix and is generally invertible. Then one may use _,_-I as the

transformation matrix to transform the identified quadruplet to be

[_. ,_,_-i, _._, 1, C_,_,c/_'c], where I is an identity matrix. Com-
paring the transformed quadruplet with Eqs. (37) and (38), one can
easily obtain

A - BF = Cc,_C; "l, S = CcBc

AK- BF=C_A_K_

(37)

The identified open-loop system matrices and Kalman filter gain
become

A = _- /_,_-1 + C'_/_cF, B =- 6"_B_

C = I, K = A-l(C_AcI(c + BF)

(38)

If sensors are available to provide all of the state information,

one can choose a constant-gain controller [e.g., a pole-placement

controller or a linear quadratic regulator (LQR)] so that the closed-

loop system has the same dimension as the open-loop system. This

controller can be designed (e.g., by adjusting the weighting matrices

in the LQR controller) so that the closed-loop system is very easy

to identify. For example, a closed-loop system with poles located

evenly within a desired frequency range with similar damping ratios
between 0.4 to 0.7 may be easily identified.

Coordinate Transformation

For any dynamic system, although its system Markov parameteris

unique, the realized state-space model is not unique. If one needs to

compare the identified state-space model with the analytical model,

both models have to be in the same coordinate. In Ref. 7, a unique

transformation matrix is derived to transform any realized state-

space model to be in a form usually used for a structural dynamic

system, so that any identified system parameter can be compared

with the corresponding analytical one. This unique transformation

matrix exists only when one-half of the states can be measured di-

rectly. If this condition is not satisfied, other transformation matrices

may exist, but they usually are not unique.

Numerical and Test Example

An example is provided, which consists of numerical simula-
tions and actual hardware tests to validate the feasibility of the pro-

posed closed-loop identification method. The large-angle magnetic
suspension test facility (LAMSTF), 21"zza laboratory-scale research

project to demonstrate the magnetic suspension of objects over wide

ranges of attitudes, has been developed in NASA Langley Research

Center (see Hg. 1). This system represents a scaled model of a

planned large-gap magnetic suspension system. The LAMSTF sys-

tem consists of a planar array of five copper electromagnets, which

actively suspend a small cylinder with a permanent magnet core. The

cylinder is a rigid body and has six independent degrees of freedom,

namely, three displacements (x, y, and z) and three rotations (pitch,

yaw, and roll). The roll of the cylinder is uncontrollable and is as-

sumed to be motionless. Five pairs of the light-emitting diodes and
light receivers are used to indirectly sense the pitch and yaw angles

and the three displacements of the cylinder's centroid. Therefore,

the control inputs consist of five currents sent into five electromag-

nets, and the system outputs are five voltage signals measured from

five receivers. The currents in the electromagnets generate a mag-

netic field, which produces a net force and torque on the suspended

cylinder. The motion of the suspended cylinder is, in general, non-

linear. Therefore, only the linear time-invariant perturbed motion

about an equilibrium state is considered. Because it is difficult to

accurately model the magnetic field and its gradients, the analytical

model needs to be improved through identification from experimen-
tal data.

The analytical model of the LAMSTF system includes four highly

unstable real poles (about 10 Hz) and two low-frequency flexible
modes (about 1.27 and 0.16 Hz) (see Table 1). The sampling rate is
first chosen to be 10 times the highest frequency (about 10 Hz) of the

system to avoid the aliasing problem. However, the identified result

shows that the values of the identified system Markov parameters

increase too fast because of the unstable poles in the system. The

Hankel matrix formed by these limited numbers of system Markov

parameters becomes ill conditioned, and an accurate state-space
model cannot be realized. Therefore, the sampling rate is increased
up to 250 Hz to reduce the increasing speed of the system Markov

parameters. The recorded data length is 24 s. The order of the ARX

model is chosen (about 13) so that the eigenvalues of the identified

model coverage to certain values:

Numerical simulations are performed for a constant-gain full-

state feedback controller. The system is stabilized by using a

constant-gain full-state feedback LQR designed by using the an-
alytical mode. z2 The open-loop system matrices of the analytical

model and the designed weighting matrices Q and R are shown

in the Appendix. The standard deviation of the system disturbance

and measurement noise is about 1 or 10% of the corresponding

Table 1 Comparison of eigenvalues of continuous-time
analytical and identified model

Simulation Simulation Testing
Analytical (1% noise) (10% noise) output output
model full-state feedback full-state feedback feedback

4- 58.78 58.79, --57.77 54.10, -64.93 62.78, --62.07
4-57.81 57.76, --56.69 53.80, -39.72 61.23, -60.20
4-9.78 9.66, --9.61 ' -0.59 4- 15.95i 9.84, --16.05
4-7.97i 0.34 4- 10.07i -1.98 4- 12.06i 1.06 4- 8.02/
4-0.96/ 0.17 4- 1.78i -2.24 4- 4.14i 0.21 4- 1.64i

,z
the eylind_

Fig.1 LAMSTFconfigu-
ration.
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Fig. 2 Identified open-loop system and Kaiman filter Markov param.
eters: the (1, 1) element.
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Fig. 3 Comparison of pitch step response (top) and control torque
(bottom).

input and output signal. The reference inputs contain five uncor-
related random signals. Most of the eigenvalues of the identified

model are close to the theoretical values for the 1% noise case (see

Table I). The results also show that the identified state-space model
is very close to the analytical one. For the 10% noise case, the first

two dominant unstable poles are still fairly close to the theoretical
values.

Experiments are also performed for closed-loop identification
with a known dynamic output feedback controller. The same
constant-gain full-state feedback LQR is used. However, because

the rate sensors are not available, the rate information is obtained

by calculating the back difference of the sensed position signals.
Since the estimation of the rate information is used, the feedback

LQR controller becomes a dynamic controller. Therefore, the iden-

tification procedure based on dynamic output feedback controller

already described is followed. Table 1 compares the eigenvalues

of the identified model from experimental data with the analyti-
cal model. The system matrices of the identified continuous-time

model and the identified discrete-time Kalman gain are shown in

the Appendix. Figure 2 shows the identified open-loop system and
Kalman filter Markov parameters.

To evaluate the identified model from experimental data, the sim-

ulated step responses with the LQR controller are compared with

test data. Figure 3 shows the measured step response and the cor-

responding control torque in pitch, and computed responses using

the analytical model and identified model. The experimental results

demonstrate that the experimentally identified model is fairly accu-

rate in predicting the step responses, whereas the analytical model
has a deficiency in the pitch axis.

Concluding Remarks

For a stochastic system operating under closed-loop conditions,

a method has been introduced to indirectly identify an open-loop

state-space model from the closed-loop input/output data without
recording the feedback signals. The main contribution is that a re-

cursive form for computing the open-loop system and Kalman filter

Markov parameters is derived for stochastic systems with random

excitation. This method also estimates the Kalman filter gain directly

from the closed-loop input/output data without estimating noise co-

variances. The identified open-loop state-space model and Kalman
filter gain can be used directly for further estimator/controller de-

sign.
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Appendix: Analytical and Identified Model

The analytical model of the large-angle magnetic suspension test
facility is

where

= A,,,x + B,,,u + w (A1)

y = C,,,x + v (A2)

e. ' LA21 A22.J

= [Os,,5"]
B_ t B_ j' cm=[/sx5 05x5]

The state variable xp includes pitch and yaw angles and three linear

displacements of the cylinder's centroid. The matrices A2_, Az2, and
B2 are

m21

I 3341.5 0 -39,392 0.0000 0.0000 "]

0 33415 --00000 00000 -00000!

--9.8070 -0.0000 49.937 0.0000 -0.0251[

--0.0000 0.0000 0.0000 95.577 -0.0000 1

--0.0000 --0.0000 -0.0251 -0.000 -0.91321

A z2 ----05 xs

B2 -

38.370 38.370 38.370 38.370 38.370

0 89.802 55.514 -55.514 -89.802

0.2214 -0.1527 0.0785 0.0785 -0.1527

0 0.1215 -0.1967 -0.1967 -0.1215

-0.2767 -0.0855 0.2239 0.2239 -0.0855

The weighting matrices used for LQR control are

Q=diag[le3,1e3,2eS, 2eS, 2e8,0.1,0.1,2e4,2e4,2e4]

and

R = ]5×5
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The corresponding matrices of the identified system from exper-
imental data are

m21

3766.6 70.325 -75,117 1924.3 -27,136 q

-117.61 3923.4 -1077.2 -29312 -3690.0/

-3.2179 5.7394 136.28 -22.192 64.823 /

-0.9768 12.871 -11.237 -88.650 7.9619 /

9.8282 0.1383 51.006 -7.8415 -66.471J

A22 --

-0.3676 0.2909 -149.27 -6.4746 -82.993 7

[1.8430 1.5609 176.17 9.8511 66.933

-0.0034 0.0042 -5.1229 -0.4162 -0.5839

0.0075 0.0084 0.0980 -0.1222 -0.0837 |
/

-0.0317 0.0083 -3.7143 0.1091 -2.1338J

n 2 ._.

65.913 47.979 61.979 71.050 56.621 q

0.0156 106.93 69.132 -73.363 -116.88/

0.2137 0.0706 0.2005 -0.0056 -0.2459/

0.0074 0.4595 0.0311 -0.0398 -0.5191/

-0.2163 0.0157 0.4482 0.4931 0.0137

The identified open-loop Kalman filter gain K in the discrete-time

domain from test data is

0.2406 -0.0343 -0.4772 -3.0053 4.3355

-3.3760 0.7401 4.5882 -0.3932 0.5876

-6.2835 -0.6517 -5.7352 0.3747 0.0586

0.2171 -0.1556 0.4695 6.9133 3.8937

'0.4699 6.4395 -2.2154 0.0252 0.5621

4.9020 -0.8834 5.2593 -0.0552 -0.3753

-0.2149 0.2539 -0.2921 0.8056 -4.2704

-3.1995 -1.1073 2.8743 0.2870 0.2235

0.2149 0.0016 -0.0996 5.5887 2.6125

0.4253 -4.5657 -1.3187 0.2038 -0.2893
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