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Abstract

This document is a manual describing how to use the Volume Grid Manipulation (VGM)

software. The code is specifically designed to alter or manipulate existing surface and volume

grids to improve grid quality through the reduction of grid line skewness, removal of negative

volumes, and adaption of surface and volume grids to flow field gradients. The software uses a.

command language to perform all manipulations thereby offering the ca.pability of executing

multiple lnanipula.tions on a single grid during an execution of the code. The command

language can be input to the VGM code by a UNIX style redirected file, or interactively

while the code is executing.

This code has been written with ANSI FORTRAN TT and C, offering portability to a. wide

variety of computer pla.tforms. Since most grid generation codes require Silicon Graphics

machines, this code has been thoroughly tested on such machines; though the code has been

successfully ported to the Sun architecture. To use this code it is recommended that grid

visualization software be used. The Flow Analysis Software Toolkit (FAST) works well, but

any good visualizer can be effectively applied. The visualization software is required to view

the surface and volume grids resulting from the manipulations performed.

The manual consists of 14 sections. The first is an introduction to grid manipulation;

where it is most applicable and where the strengths of such software can be utilized. The

next two sections describe the memory management a.nd the manipulation command lan-

guage. The following 8 sections describe simple and complex manipula.tions tha.t can be

used in conjunction with one another to smooth, adapt, and reuse existing grids for \;arious

computations. These are accompanied by a tutorial section that describes how to use the

commands and ma.nipulations to solve actual grid generation problems. The last two sections

are a command reference guide and trouble shooting sections to aid in the use of the code

as well as describe problems associated with generated scripts for manipula.tion control.
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Chapter 1

Introduction

Current methods of generating domain discretizations for computational fluid dynamics use

the solution of algebraic and partial differential equations (PDE). 1-4 These methods usually

offer a variety of options to control grid line incidence a.t a boundary, cell spacings at a

boundary and grid line skewness. These controls usually produce usable grids, but not

always. There ma.y be several instances that require an iterative approach to determine the

best controls for the algebraic and PDE solvers to obtain a usable surface or volume grid. A

few of these instances are:

• conflicting PDE controls for grid-line incidence angle at a boundary;

• improper point spacing a,t a, boundary or in a region;

• poor grid a.daptions based on flow field gradients.

Throughout the Computational Fluid Dynamic (CFD) simulation process, there is a. need

to reduce grid generation time by reuseing existing surface and volume grids. Solne of the

procedures that can be used to take advantage of existing grids are:

• conversion of inviscid volume grids to viscous grids, and vice versa;

• expansion of grids to guarantee flow field capture;

• changing of vehicle shapes to evaluate favorable aerodynamic cha.ra.cteristic trends (i.e.

parametric studies);

• single and multi-faceted grid adaption without the formation of skewed grid lines:

• topological cha.nges to improve flow solver modeling capacity.

The VCM code has been designed to meet all these needs, as well a,s other grid ma-

nipulations. The VGM code is comprised of 11 comlnands that when combined, provide

a powerful tool to ma,nipula,te existing surface and volume grids. This ma,nual explains in

detail how these commands work and how to use them in conjunction with one another to

perform all the lna.nipula,tions mentioned above and more. This manual has been written to

explain the uses of the VGM commands a,s opposed to describing each command separately.
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Each chapter highlights a specific set of manipulations that can be used to augment grid

generation, grid adaption, and other grid related issues. Due to the fact that VGM is a

language, the commands have multiple uses among the manipulations described; hence the

capabilities of each command is spread throughout the manual.

The manual is comprised of 14 sections. The two sections following this introduction

describe the memory management and the manipulation command language. The next 8

sections describe simple and complex manipulations that can be used to smooth, adapt, gen-

era.te, and reuse existing grids for various CFD computations. Each of these manipulations

can be used alone or in combination to change an existing grid to fit the users' needs. These

sections are accompanied by a tutorial section that explains how to use the commands to

solve actual grid generation problems. The last two sections comprise a command reference

guide and a trouble shooting section to aid in the use of the code.

Throughout this manual, when commands, command arguments, and VGM structures

are described, bold face lettering is used to identify actual commands, italicized lettering

identifies COlmnand arguments, {}'s identify optional command arguments, and []'s identify

limits of operation for a given array variable or volume grid.

14



Chapter 2

Memory Management

2.1 Grid Blocks

The VGM command language is built around a single data structure that represents the

dimensions of a volmne grid. The code assumes that all subsequent grid types, including

surfaces, curves, and points, are a subset of a volume grid. The data structure for all grids

is: (in command like form)

XYZ[ngsys,nblk,I-limits,J-limits,K-limits] )

where,

ngsys Grid System Number -

This number represents a group of blocks read in or created within VGM

using the combine, or redist COlmnands. Every time a new block or set

of blocks is generated the ngsys maximum value increases and the data

is stored in the appropriate a.rras_ with the ngsys denoting the beginning

pointer to the data (grid or array variable).

nblk Block Number-

Each grid system has to have at least one block. The nblk variable identifies

this block and any other block in a specific grid system. For some commands

the nblk variable can be represented by the "limit" format, discussed below,

for identifying a range of blocks.

I-limits First Computa.tional Index Limit

,]-limits Second C,omputational Index Limit

K-limits Third Computational Index Limit

The limits specification is a.s follows:

vb-ve :vc)

or beginning index (vb) to ending index (re) by an increment (vc). All computational index

limits used in the commands use this construct. Some commands also allow the use of the

15



limits on the block numbersto beoperatedon. Eachof the valuescanbe either a 1 denoting
the minimum value, a 0 denoting the maximum value or an actual nunaberbetween the
minimum and maximum limits for a specifiedgrid block or arras,variable.

The various grid types that are representable occur when one or more of the index limits

are single valued. The representation of a surface has one index limit that is single valued,

a grid curve has two index limits that are single valued, and a grid point has all three index

limits as single valued. There are several rules that must be followed when using the xyz[...]

construct. These are:

1. If an); limit is missing, the entire range with (vc=l) is assumed.

2. If the beginning or increment value is missing, they are assumed to have the value of

1.

3. If the ending value is missing, it is assmned to be the maximum value possible for a

specified grid block or array variable.

4. If only one number is available for the entire range, the minimum and maximum value

is that number, with the increment set to 1.

5. If the increment value (vc) is 0, the actual value is the maximuln value subtracted from

the minimum value.

For exan]ple:

xyz [1,1,1-0,1-5,3-22:4]_

results in a volume being defined with the following characteristics:

_9sgs = 1
_blk = 1

/-limits = Imin to Imax ])\7 ]

J-limits = Jmin to .5 by 1

I(-limits = :3 to 22 by 4

and,

xyz [5,4,3,0,10] 1

results in a point 1)eing defined as:

7_,bl];= 4

I-limits = 3 only

J-limi_._ = Jm_x only

K-limits = 10 only

16



2.2 Internal Variables

The VGM code also has internal variables that can be used for input to various commands.

There are two types, core or array, and tem, porary constant variables. The core variables are

genera.ted with an allocate command and are referenced similarly to the grid blocks. For

example:

(dsjl [1-0,, 1-91:0]

results in the following values being assigned:

core variable = dsjl (which may be a computed arclength in the J-direction

I-limits = Imin to Im_x by 1

J-limits = Jmin to Jmax by 1

K-limits = I{min to 91 by 90

Constant variables (i.e. temporary) are single valued, a.s compared to the core varial)les.

2.3 Memory Limits

The \ GM COlmnand language has several limits with respect to command arguments and,

grid size and a.rra.y space. These limits include:

Number of Grid Systems = 100

Number of Grid Blocks = 200

Number of Grid Points = 8,000,000

Number of Array \;ariables = 40

Number of Array Data Points = 8.000,000
Number of Constant Variables = 40

Number of Command Arguments = 40

Number of Consecutive Command Lines = 1,000

Table 2.1: VGM Memory limits; both computer a.nd language.

\Tiolation of these limits usually results in an error. If a.n error occurs, the code will stop

execution in a. batch mode and stop processing a command in the interactive mode.
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Chapter 3

Language Specifics

As with any computer language there are specific characteristics to the command structures

and how they can be used together to operate on data. The VGM code is no different.

Special attention has been paid to ensure this language is as consistent as possible and as

general as possible without sacrificing flexibility. Also, each of the a,rguments are descriptions

of the flags they are setting, thereby making an input deck or script easy to read. Both the

command key words and the arguments do not need to be capitalized, as they will be
converted to the lower case.

3.1 Command Argument Ordering

Each comnl_and in the VGM code starts with a key word. This key word tells VGM which
command is to be issued. The commands and their uses are:

Colnmand Description

allocate

blend

combine

copydist

quit
read

redist

set

sl-nooth

tfi

write

Create a new block or array variable

Interpolate between existing points in a variable

Regroup volume grids into a single grid system

Copy a distribution fl"om one grid line to another
End execution

Input data

Redistribute a grid line based on a, function

Equate variables and data or compute data

Smooth a grid with algebraic or PDE solvers

Perform Trans-Finite Interpolation on a region/zone

Output data

Table 3.1: VGM command summary.

After each command there are any number of argulnents. The order of the arguments is

_).ot fixed. As long as all the arguments are available in the command line, VGM only requires

that the arguments come after the key word. There are two exceptions. The copydist

command requires a source and destination grid for the copying of grid-line distributions froln

19



onegrid to another. The order of thesetwo grids is important, asexplainedin chapter 7. The
combine commandrequiresa list of blocksto be combinedto for a multiple block data set,
wherethe order of theseblock is basedon the order of the block identifiers. In addition, the
set commandhasa sourceand destination for data which is order dependent,asexplainedin
chapter 9. The copydist combine and set commandsare the only co:n:nands that require

order specific arguments.

3.2 Script Readability

The VGM scripts or input decks have several features that in:prove readability. First, as

mentioned above, the commands and the arguments need not be capitalized because they

will be converted to the lower case. File names containing a mixture of upper and lower case

letters will be read as specified. Internally generated variables will be converted to lowercase,

so uppercase characters in variables will have no effect.

Second, the language allows for the continuation of a comn:and and its arguments onto

multiple consecutive lines by appending a \ to the end of each line. Beware, the number of

arguments in a command line are limited. The limits are discussed in chapter 2 section 2.:3.

VGM does not allow partial arguments to be on separate lines.

Third, the language Mlows blank lines and indentation of command lines. Whether the

command is entered in batch or interactively, the blank lines ha.re no effect on the final grid

:nanipulations. However, if more than 9 consecutive blank lines are in a file, the code will

stop, because it mas' have encountered a file with no ending command.

Fourth, the language has comment lines to explain the manipulations about to be done.

It is strongly reco'mmcnded that the con:ment lines be used in batch operated scripts because

the commands ca.:: be used over and over again in a series, resulting in serious confusion on

the manipulations being performed. The comment line is marked by placing a # as the first

character of the line. The # can not be indented, but the following text ca:: be spaced at
the users' discretion.

All of these attributes are designed to make the scripting language more readable and

understandable. They are not intended to confuse the reader of the scripts, they are only

available to make the script "legible". Thus, use of the last two capabilities is recommended

for easy explanation of n:anipulations to be done on a surface or volume grid.

3.3 Script Progress and Results

Due to the nature of this code and the language, results of a. manipulation is output to the

user. Each command will generate a set of information that should be used to identify grid

system numbers, block numbers and limits of any manipulation. It is recom'me:nde:d that

the user read the output and save it, if possible, for trouble shooting. The output from

each command is printed to the standard output device in [:NIX, and is a.ugmented 1)3' the

debugging file produced from each execution of the \TGM code a.s explained in chapter 14.
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Chapter 4

Input and Output

4.1 Commands

In order to manipulate existing grid data, a method of inputting and outputting grids is

needed. The VGM code ma.kes use of two simple commands read a_nd write to input and

output data Dora various computer software, including LAURA, 5 GRIDGEN, 2 Tecplot, 6 and

PLOT3D. 7 The VGM command syntax for read and write is as follows:

(read .filename {type} {style) {format} {dimensio_} ]

where,

.fih:nam, c is the file name of the data to be read. The file name rules are as

follows:

1. Limited to 60 characters in length;

:2. C,an not be identica.1 to read arguments;

3. Can not contain ['s, ]'s, \' S_ or CO1111_as;

4. Are ca.se sensitive;

5. May contain directory placement characters (./, ../a.nd _)

format is the data format, ASCII, unformatted, or binary. <default=unformatted>

style is the style the file is in: gridgen, plot3d, laura, or tecplot TM. <default=plot3d>

type: is the type of data in the file; gridonly, solution(ngsy.s) , or curve.

<defa.ult=gridonly>

NOTE: The solution(ngsys) option requires a grid system number

to attach the data to, to ensure there is one value for each grid

point in each block. The varia.bles loa.ded in this manner will have

variable names of the form:

(varna'm.e_nNN_blkBBB)

where the NN represents the Grid System num})er and the BBB

represents the block number.
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dimension represents the number of blocks in the grid set, single or multiple.

<default=single>

[write file_,ame {type} {style} {format} { dimension} xyz[. . ,] {orientation} t

where,

fiIename is the file name of the data to be written. The file name rules are
identical to the readcommand.

format is the data format, ascii, unformatted, or binary. <default=unformatted>

style is the style the file is in; gridgen, plot3d_ laura or tecplot(var'iables).

<default=plot3d>

NOTE: The variables specifiable in the t ecplot (variables) option

include the physical coordinates (X, Y, and Z), the computational

coordinates (I, J, and K), and array and constant variables in the
form:

tecplot(x, ,z,i,j,k,dsjl))Y

type is the type of data. in the file; gridonly, solution(ng._y._), or curve.

<default=gridonly>

NOTE: The solution(variables) option requires a set of variables,

similar to the tecplot(...) argument.

dimensio_ represents the number of blocks in the grid set, single or multiple.

<default=single>

xyz[...] is the block or region or set of blocks to be written as a. data set.

NOTE: The block limits may be used in this command to select

a range.

orie_tatio_ is the physical and computational orientation of the grid. It is

specified with the following argulnent:

(switch(x,y,z,i,j ,k))

where the physical coordinates are specified in the order to be written, and

same with the computational coordinates.

NOTE: The orientation basically changes the entire reference

frame of the grid written. Beware, no check is done to determine if

a left. handed coordinate syst.em is written.

As stated in the introductiom the arguments in the { }'s are optional. The default values

for these optional arguments are given, but the write command does not use code initialized

defaults for grid systems that were read. The input settings used to read in the grid systems

is used as the defaults for the same grid systems when written. These can be overridden b,'

speci_dng the arguments on the command line.
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4.2. READ and WRITE Usage

4.2.1 PLOT3D

The following is an example illustrating the use of the read and write commands: These

read shuttle.g plot3d single unformatted grid

write tail.vol single unformatted grid plot3d xyz[l, I,121-0,1-153 1
Script 4.1: External grid extraction.

commands read a grid frolll the file named "shuttle.g" using the PLOT3D style, single block

dimension, unformatted format, and write a grid volume encompassed by 1-121 to Im_x,

J-1 to 15 and all I( points. By using the defaults, the VGM script 4.1 can be reduced to:

[ read shuttle.g
write tail.vol [I,I,121-0,i-15]

because tile file is a PLOT3D style, unformatted format, single-block dimension grid. As

stated in the previous chapter, there is no order to the arguments of these comlnands.

If the file was multiple block and/or in ascii, the defaults would no longer hold on the read

comma.nd. But if the output file was to be identical, the defaults on the write command

would be those set by the read command. For example:

[ read shuttle-MULTI.g multiple ascii
write tail.vol [1,3]

would result in tail.vol being a PLOT3D style, ascii format, multiple-block dimension

grid, only containing one block. The PLOT3D style is the default on the read so it would

also be default on the write in this case only.
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4.2.2 GRIDGEN

As most of the PLOT3D formats are supported, so to are the GRIDGEN surface and curve

formats. To load in a *.mlga file that contains 6 surfaces per grid block, use the following:

[ read shuttle.mlga multiple ascii gridgen

Tile surfaces are then loaded as a series of 6 surfaces, each with I and J indices. The K-index

faces are not recognized because the style only has two index maxima. Likewise. to load in

a. single surface (%grda) just omit the multiple argument because the single block grid
dimension is the default.

To load in a GRIDGEN curve, use:

[ read edgel.dat ascii gridgen curve

Again. since there is onh, one computational index, the curve is loaded as an I-varying grid
line.

Similarly on output, the following can be used to output a *.mlga file and a curve,

respectively: The curve that is written in this case is from grid system number 1, block 5,

write shuttle.mlga multiple ascii gridgen xyz[l,l-6]

write edge3.dat ascii gridgen xyz[l,5,6,15,2-57]

Script 4.2: Gridgen face and curve extraction.

with 1=6, 3=15, and K varying from 2 to 57. VGM will look for the index that is varying

and only output that curve. The curve argument is not needed on the output because the

xyz [-...] has only one varying index, and the style is GRIDGEN.

4.2.3 Solution

If a volume grid has already been read into VGM. a solution can be read from various types

of input and attached to the grid points. This is done by using the solution(ngsys) option of
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the read command:

[ read shuttle.q solution(1) plotgd

write tail.q solution(1) xyz[l,3]

Script 4.3: Solution I/0 manipulation.

instructs VGM to read in the solution file shuttle, q for an existing volume grid. and a.ttach

it to grid svst.em number 1. This file is expected to be the standard PLOT3D solution style

for a. "'Q"file. When the data is referenced on the output., the grid system number is 1 in the

solution(i) argument and block 3 of grid system 1 is to be written. Although the 1 in the

so lut ion (1) argument is redundant, it is specified fbr consistency.

There are other ways to write the solution for a grid. besides using the grid system

number in the solution(i) argument of the write command. The solution() a.rgumem

may also contain va.riable names. For example:

[ write tail.q solution(rho,u,v,w,e) xyz[1,3]

Script 4.4: \:ariable specific solution output for PLOT3D style.

is acceptable providing that the variables rho_ul_b3, u_nl_b3, vml_b3, w_nl_b3, and

e_nl_b3 are defined and have the same I-, J-, and I(-dimensions as the xyz [1,3] grid block.

Assuming the PLOT3D style, the da.ta will be written as a PLOT3D solution file. If too few

or too manv variables are selected in the solution() argument, the code will not write the
file and an error will result.
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4.2.4 TECPLOT TM

Another way to read and write data is using the tecplot(variablel,variable2,...)

argument. The tecplot() argument allows for the input of TECPLOT TM ascii data. sets

and the writing of data in the TECPLOT TM block format. For example:

I read shuttle.dat tecplot ascii
write tail. q ascii tecplot (rho_ul_bl,u_nl_bl,v_nl_bl,w_nl_bl,enal_bl) xyz [ 1,3]

Script 4.5: Variable specific solution output for TECPLOT style.

wilt read a TECPLOT TM file and assign the physical coordinates to an xyz[...] grid block.

and the other variables based on the solution(ngsys) algorithm described above. On

output, the tecplot () command must contain those variables to be written. The physical

coordinates X. Y. and Z. and the computational coordinates I. J. and N are plain letters

in the variable list. Other variables have _o be named exactly. In this case. since the data

was read in as a TECPLOT TM data set. the density trho), the three velocity vectors/u, v,

and w) and the energy (e) are specified with their respective grid system and block numbers

used in the reading process to generate the variahle names.

NOTE: The variables listed in the output are not used in the input because

they already reside in the file. Also. on output, all variables and coordinates have

to have the same dimension or the data can not be written.

4.2.5 Re-orienting Coordinates

The switch (x, y, z, i, j ,k) argument is a powerful tool to change the orientation of a grid.

.As explained above, the switch() argument allows for the re-orientatio11 of a. volulne grid

by changing the physical and computational coordinates through the writing of them in

succession. VGM assumes that X, Y, and Z are written in I, J, a.nd K computational

coordinates, but the orientation can be changed to anything, provided that all 6 coordinates

are written and not repeated. If any of the physical coordinates has a "-'; in front, the sign

of the coordinate is reversed. Likewise, if the computational coordinate has a "-" in front,

that index will be written in reverse order. For example:

(swiZch(y,-z,x,k,-i, j)]

instructs VGM to write the Y-coordinate first, then the reversed Z-coordinate, then the X-

coordinate. The computational order of the data will be the current I(-index first, then the

I-index in reverse order, and finally the J-index.

The switch argument can be used with any of the styles, as the orientation only affects

the reference frame of the grid data.
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4.3 Manipulative Capabilities

The read command has no manipulative capability. It is specifically designed to input data.

But the write command has many manipulative capabilities. These include:

1. Converting grid data froln one style and format to another.

2. Coarsening an existing volume grid for grid convergence studies.

3. Extracting surface and curve grid da.ta from volume grids.

4. Re-orienting a surface grid from a GRIDGEN *.mlga file to use in the generation of a

volume grid.

5. Evaluating grid data by printing selected quantities.

4.3.1 Converting Grid Styles

In dealing with multiple grid generation codes such as GRIDGEN, 2 3DGRAPE/AL' s and

3DMAGGS: 1 CFD codes such as LAURA, _ GASP 9 and TLNS3D; 1° and visualization tools

such as FAST 11 and TECPLOTTM, 6 each require a surface or volume grid. The style used by

each may he different, but the data is all the sa.me. The VGM code can a.ccommodate most

codes requiring surface and volume grids through the PLOT3D, GRIDGEN, TECPLOT and

LAURA grid data styles. Reading with one style and writing with another is trivial. The

only complexity that arises is when using surface and curve grids in volume grid styles and
vice versa.

When GRIDGEN styled data file is read, it only has I and J maxima. To get the I<-

dimension, the VGM code assumes it. to be 1. This is significant when writing data to be

used in PLOT3D style beca.use the GRIDGEN surface may indeed have a K-dimension but

VGM does not know this. To ensure the I(-dimension is written, the switch() command

can be used:

[ read shuttle.mlga gridgen multiple ascii

write face3.g plot3d single binary xyz[l,S] switch(x,y,z,j ,k,i) 1
Script 4.6: Coordmat_ transformation manipulation.

The above command reads a *.mlga file containing a.t least 6 surfaces. Using the TEAM 12

nomenclature, face 3 is a constant J face, and when written in the PLOT3D style, the face

will have an I and I( maxima while the J maxima wilt be one because the "k" in the

switch(x,y,z,j ,k,i) command is 1.

27



When converting to and frolT,_ the TECPLOT TM style, the grid dimension (single or

multiple) is not specified. Rather it is located in the data. file. If this type of file is read,

the user must beware of the dimensionality of the hlock so as to prevent confusion on the

computational coordina.te limits.

4.3.2 Coarsening Grids

In the evolution of CFD simula.tions the necessity to do grid convergence studies usually

arises. Or to start a. CFD simulation, it may he simpler to establish a. flow field about a.

configuration using a coarse mesh of the the discretized doma.in. In either case, the volume

grid can be coarsened in any of the computational coordinate directions by simply using a

non unity increment for the grid block to be written. For example:

read shuttle.g

write shuttle_c8.g xyz[i,i,1-0:8,i-0:8,1-0:8]

will read a volume grid frolTl the shuttle.g file in PLOT3D style and write out a volume

grid skipping 8 points in all three computa.tional directions. If the grid is "multigridable" 1)5;

:3 levels, 1 subtracted from the computational dimension limits will be divisible 1)5' 8. If this

is not the case, the last point in the direction that is not divisible by 8 will not be written.

For example, if the computational limits a.re (161 X 1:3:3 X 65), with the skipping of every 8

points, the new dimension wilt be (21 X 17 X 9) beca.use:

161 - 1
Idim -- -- + 1 = 2t.0 = 21 points

8

133 -- 1
Jdim -- -- + 1 = 17.5 = 17 points

8

65-- 1
Kdim -- + 1 = 9.0 = 9 points

8

In actuality, the limits should he (21 X 18 X 9) to get the last point. With the full dimensions,

the 17 point would correspond to the J=129 which is 4 points shy of the limit at 133. But the

manipulation is a simple one and can be used over and over again for successive coarsening.

4.3.3 Surface and Curve Extraction

In the improvement an existing grid it becomes necessary to change defining grid block

surfaces. To change these surfaces, VGM can be used, but other tools such as GRIDGEN

and GRIDTOOL 13 are viable for capabilities not in VGM, such as elliptic solving and surface

projection, respectively. To improve or change a surface in a volume grid, the VGM code

can be used to extract the surface 1)5' using the xyz [...I argument in conjunction with the

GRIDGEN style. For example:
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[ read shuttle.g

write face4.grdb gridgen binary xyz [I,I,,0] switch (x,y,z ,k,j,i)

will read in a volume grid representing the shuttle and write out a surface in GRIDGEN

style in K.I varying indices. Though these indices can be I.J or any other pair. in the TEAM

nomenclature, face 4 is a J-constant face with K.I varying indices. The VGM code will detect

the switch in coordinates and write out, a surface grid for further manipulation, because the

0 in the xyz F:t, 1,, 0] specifies the maximum J index and the missing I and K ranges specify

the entire I and K index limits.
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4.3.4 Re-orienting Grid Data to Generate Volume Grids

The GRIDGEN3D, 3DGRAPE/AL, and 3DMAGGS codes can all generate volume grids

based on the algebraic solution of Trans-Finite Interpolation (TFI). VGM can do the same,

but only requires the *.mlga file from GRIDGEN or GRIDGEN2D. To generate the volume

grid, the surfaces in the *.mlga file need to be oriented in the computational domain to be

properly placed in the volume grid block definition. To do this, the switch(x,y,z,i,j ,k)

command is used to take the assumed I-J varying faces into I-J, J-K, and I-K faces using

the following commands:

#

# Extract individual faces from a GridGen *.mlga file and re-orient

# them to fit within a PLOT3D grid block:

#

read

write

write face2.g

write face3.g

write face4.g

write faceS, g

write face6.g

#

# Read in the

#

read facel .g

read face2.g

read face3.g

read face4.g

read faceS.g

read face6.g

shuttle.mlga grid I

facel.g plot3d binary

plot3d binary

plot3d binary

plot3d binary

plot3d binary

plot3d binary

en ascii

slngle

szngle

slngle

szngle

szngle

szngle

multiple

xyz [i,3] switch(x,y,z,k,i, j)

xyz [i,3] switch(x,y,z,k,i,j)

xyz [i,3] switch(x,y,z,j ,k,i)

xyz [1,3] switch(x,y,z,j ,k,i)

xyz [1,3]

xyz [1,3]

new faces:

-%

Script 4.7: GRIDGEN faces to PLOT3D block conversion.

After executing this sequence, the VGM code will have six new surfaces ready for assign-

ing to a grid block definition:

xyz [2],

xyz [4] ,

xyz [6] ,

xyz [3] are constant I faces;

xyz [5] are constant J faces;

xyz [73 are constant I( faces.

[Tsing the set command as explained in chapter 11, the volume grid can easily be built with

VGM via 3DTFI.
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Chapter 5

Grid Based Parameters for

Manipulations

One of the most powerful capabilities of the VGM code is the computation of grid related

parameters. Grid related parameters can be used to perform various manipulations, including

the generation of distribution functions upon which smoothing can be done or transition from

one grid to another in a blending type operation. These internally computed parameters form

the basis for most of the complex grid manipulations that VGM is capable of doing.

The grid related parameters a.re primarily arclength and normalized arclength parame-

ters, based on a computational direction of a surface or volume grid. The six possible grid

parameters or intrinsics are listed in table 5.1:

dsJa -_-

dsja =

dska -----

dsin ----

dsjn =

dskn ----

Arclength function in I-direction

Arclength function in J-direction

Arctength function in I,_-direction

Normalized arctength function in I-direction

Normalized arclength function in J-direction

Norma.lized arclength function in It-direction

Table 5.1" VGM grid parameters (intrinsics).

The difference between the normalized arclength and the standard arclength is the nor-

malized arclength varies froln 0.0 to 1.0 in the computed direction (see fig. 5.1). The

normalized arclengths a.re typically used to redistribute a grid within its physical limits, and

the standard arclengths are used to change the physical limits of a grid.

These parameters are based on surface and volume grids through the following syntax:

dska(xyz [...])1

where the xyz [... ] is the region of a grid block to be used.
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Figure 5.1: Arclength parameter space differences.

5.1 Computing Grid Parameters

Prior to computing these grid p_rameters, a varia.ble a.rray has to be created to store them

for la.ter use. To create a varriable array the allocate command is used:

[allocate var_),am, e[I-Zim, it,.]-limit.I£-lim, it] ]

whel'e,

t,ar_a'me is the a.rray varia.ble name to store computed grid parameters. The

array varia.ble name rules are a.s follows:
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1. Limited to 60 characters in length;

2. Can not be identical to grid parameters (intrinsics);

3. Can not contain ['s, ]'s, \'s, or commas;

4. Are not case sensitive;

5. Computational limits may not exceed the grid-point limits of VGM.

I-limits First Computational Index Limit

J-limits Second Computational Index Limit

K-limits Third Computational Index Limit

The allocate command reserves memory for a computed intrinsic. It can also be used

to allocate a new grid block (see chapter 6). Once the variable has been created, the set

command is used to compute and assign the results of the computa.tion to the variable:

set 'varTmme l [I-limit, J-Iimit, K-limit] = var_.ame:2[I-limit J-limit, K-limit] ]

-or-

set var_zame l [I-limit, J-limit, K-limit] = ds* (xyz[n, gsys. nblt: l'limit J-limit. K-limi@

where,

var_amel is the destination array variable name to store computed grid param-
eters or other variables.

var_ame.:2 is the source array variable or intrinsic (ds*) to be equated or com-

puted, respectively. The only rule that must be followed is the computa-

tional region of each variable or intrinsic in the equate must be the same.

I-limits First Computational Index Limit of region to be set

J-limits Second Computational Index Limit of region to be set

A*-limits Third Computational Index Limit of region to be set

NOTE: The set command has many other capabilities that will be discussed

later.

The capabilities of the set command also include:

• Extract grid data (see chapter/section 6.1);

• Insert grid data (see chapter/section 6.1);

• Merge grid data (see chapter/section 6.2); and

• Shift grid data (see chapter/section 11.2);
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Once computed, these arclength parameters can be used as input into various VGM
commandsfor controlling cell sizing, grid-point distribution, and grid smoothness. All of
these functions are described in more detail in chapters 8 and 9. For grids that are
to remain within the samephysical limits, the normalized arclength is the best choiceas
it can be used to changea grid distribution without changingthe length of the grid-line
being altered. Standard arclengthsshould be usedfor grids that are to be changedin both
distribution and grid-line length.

5.2 SET and ALLOCATE Usage

With the allocate and set commands, various grid parameters can be computed. For

example, to compute the distribution function in the I-direction of a volume grid with every

other point in the J-direction, use the following:

allocate dsil [161,33,33J

set dsil = dsia(xyz[2,4,11-171,57-121:2,1-33])

Script 5.1: Computation of I-direction based arclength parameter.

Or, to compute the normalized arclengths in separate regions of a volmne grid, use:

allocate dsi2 [129,197,66]

set dsi2[,1-17] = dsin(xyz[1,1, ,1-17] )

set dsi2 [,41-73] = dsin(xyz [1,1, ,67-89] )

set dsi2 [, 101-121] = dsin(xyz [1,1,, 141-161] )

Script 5.2: Computation of I-direction based normalized arclength parameter.

Tile last example may be tile matching of interfaces from one grid to another. At these in-

terfaces, the grid may require smoothing or improved interfacing, so the normalized arclength

function may be manipulated (see chapter 9). Regardless of the reason, grid parameters can

be computed by VGM for further processing.

Some of the inputs that can be generated from the allocate and set COlnmallds for grid

manipulations are cell heights. To compute cell heights, the following can be used to generate
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a surfacevariablecontaining cell sizesto be usedfor re-distributing:

"l

allocate dsi2 [129,197,2]

allocate dsi2a[129,197,1]

allocate dsi2b [129,197,1]

set dsi2 = dsia(xyz[l,l,,,l-3:2])

set dsi2a = dsi2[,,2]

set dsi2 = dsia(xyz[l,i,,,32-33])

set dsi2b = dsi2[,,2]

Script 5.3: Endpoint cell sizes for a region in the I-direction.

These computations store the distance from the I(-1 boundary to the K-3 boundary

a,s the cell heights in variable dsi2a and the c_l.r_'eT_lcell heights at Km_x in varia,ble dsi2b.

This information can be very valuable for Vinokur's 14 flmction used in a re-distribution (see

cha,pter 8).
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Chapter 6

Extracting, Inserting, Merging and

Combining Grids and Grid
Parameters

One of the most important aspects of grid generation is topology. The topology determines

what a grid will look like as well as how well it can model a flow field about a complex

aerodynamic configuration. In the evolution of a volume grid, it usually becomes necessary

to consider blocking strategies that may or may not fit within the chosen topology. These

different blocking strategies may be used to improve parallel processing load balancing, im-

proving grid smoothness across grid block boundaries, and even change the overall topology.

Modification of existing volume grids to reflect changes in blocking strategies can be difficult

and time consmning.

However, using the VGM code to change blocking strategies significantly reduces the

complexity by using the allocate and set commands repetitively. The syntax for these
forms of the allocate and set commands are:

(allocate xyz/I-lim.it, J-timit.I{-limit] ]

where,

xyz is a volume grid block, using the standard data structure.

I-limits First Computational Index Limit

J-limits Second Computational Index Limit

K-limits Third Computational Index Limit

NOTE: The grid system number and block number are not included in the

allocation of the new grid block; only the conaputational limits are required.

Also, this command will cause the grid system maximum to increase 1)3' 1 each

time it is used.

and,

set xyz[ngsys. _blk, I-limit..J-limit. K-limit] = xyz[ngsys, nblk, I-limit, J-limit, K-limit] ]

where,
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xyz on the left hand side is the destination block to store the results from

extracting or merging grid blocks.

xyz on the right hand side is the source block to be extracted or merged. The

only rule that must be followed is the computational region of each grid

block in the equate must be the same.

I-limits First Computational Index Limit of region to be set

d-limits Second Computational Index Limit of region to be set

K-limits Third Computational Index Limit of region to be set

NOTE: The set command has many other capabilities that are discussed in

chapters 5 and 11.

The extraction, insertion and merging of grid blocks are easily accomplished with these

commands. But in some cases, it may be necessary to regroup a series of blocks into a single ...............

grid system. This can be done using the combine command:

where,

[combine xyz[7zgsysl,_blki] xyz['_gsys2,_blk2] ... 1

xyz is a source grid block. Subsequent zyz's are other blocks to be added. There

are some rules that can be used to govern which grid blocks are used:

1. xyz [ngsysl will get all the blocks in grid system ngsys

2. xyz [ngsys, nblk_begin-nblk_end : nblk_increment-1 will get those blocks

that are referenced in the range from nblk_begin to nblk_end 1)3.'nblk_increment

NOTE: This command will cause the increasing of the grid system maximum

by 1 each time it is used.

When using the combine COmlnand, the computational limits are not used. If a portion

of a grid block is to be used in the regrouping, an extraction should be done prior to the

combine. The order of the blocks is significant in this command as the order determines

which is the first block to the last. Also, the maximum number of argmnents on a command

line is 40. so if the number of arguments needed to generate a multiple block decomposition

is larger than 40. multiple combine commands can be used to build up the final set of grid
blocks.
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6.1 Extracting and Inserting

To extra.ct a grid block, the following is used:

allocate xyz[ll, 17,65]

set xyz[2] = xyz[1,4,21-31,1-17]

Script 6.1: Internal grid extraction.

The grid block dimensions of the source would have to be at least (31 X 17 X 65J because

these are the maximum limits in the right hand side xyz [...1 term.

To insert a grid block, the following is used:

set xyz[1,4,21-31,17-35] = xyz[2]

The limits are similar co the extraction, but these comnlands in succession would produce a

copy of the exact same grid in the exact same physical location but different COlnputa.tional
locations.

}

6.2 Merging Grid Blocks

As stated above, some times it is necessary to merge multiple blocks into a single block

for topological changes. To merge multiple blocks into a single block, a single grid block

with large enough dimensions needs to be created to accommodate the source blocks. For

example, the following is a listing blocks to be combined for a NASA proposed SSTO: 15

Block C,omputationa] Block Computational

Number Limits Number Limits

(81 X 65 X 33)

(81 x 6.5x :3:3)
(41 X 21 X :33)

(41 X 45 X 33)
(41 x .st x :3:3)
(41 x .9x 88)

I

8

9

10

11

12

(41 X 21 X 33)

(41 x 2:3x 88)
(41 X 2:3 X 83)

(41 x :30x 8:3)
(41 x 28 x :38)
(41 x .9x 8:3)

Table 6.1: Initial blocking strategy for NASA proposed SSTO.
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These blocks are arranged, both computa.tionally and physically in Fig. 6.1. To generate

a single block volume grid from this set of blocks, the dimensions in each series of blocks in

each computational direction need to be summed. The series in the &direction are blocks

1-2, 3-6, and 7-12; and in the I-direction the blocks are the same sets or 1, 3, and 7. Since

the K-direction is constant at 33 points, the computational limits are computed by:

L, ax = (s1+41-1)+41-1=161
Jma,: = 65+65-1

= ((21 + 45- 1) + 57- 1) + 9- 1
= ((((0.1 + 23- 1) + 23- 1) + 30 1) + 2S- 1)9- 1 = 129

A'm_x = 33

To generate the single block volume grid the following commands are used:

allocate xyz [161,129,33]

set xyz[2,1,1-81,1-65] = xyz[1,1]

set xyz[2,1,1-81,65-O] = xyz[1,2]

set xyz[2,1,81-121,1-21] = xyz[1,3]

set xyz[2,1,81-121,21-65] = xyz[1,4]

set xyz[2,1,81-121,65-121] = xyz[1,5]

set xyz[2,1,81-121,121-O] = xyz[1,6]

set xyz[2,1,121-0,1-21] = xyz[1,Y]

set xyz[2,1,121-0,21-43] = xyz[1,8]

set xyz[2,1,121-0,43-65] = xyz[1,9]

set xyz [2,1,121-0,65-94] = xyz [1,10]

set xyz[2,1,121-0,94-121] = xyz[1,11]

set xyz[2,1,121-O,121-O] = xyz[1,12]

/

Script 6.2: Grid block merging.

Now that the volume grid is a single block, the grid can be modified a.s needed. If the

blocking strategy is to relna.in the same, the extraction and insertion principals can be used

to decompose the modified single block volume grid into the original multiple block tbrmat.
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Figure 6.1:Initia,1 multiple block decomposit, ion of NASA proposed SSTO.
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6.3 Combining Grid Blocks

If a different blocking strategy is to be used for the above merging example, the grid can

be decomposed by using the extraction and insertion methods, then using the combine

command to generate a new block set. For example, if the New blocking strategy is the

following:

Block

Number

1

2

3

4

Computational

Limits

(161X 33 X 33)

(_G_x 33 x 33)
(_G1x 33 x 33)
(_61x 33 x 33)

Table 6.2: New blocking strategy.

The commands to decompose the single block into this multiple block decomposition are:

allocate xyz [161,33,33]

allocate xyz[161,33,33]

allocate xyz[161,33,33J

allocate xyz [161,33,33]

It

ItDecompose single block:

It

set xyz [3,13

set xyz [4, lJ

set xyz [5,iJ

set xyz[6,i]

= xyz[2,1,, 1-33]

= xyz[2,1,,33-65]

= xyz[2,1,,65-97]

= xyz[2,1, ,97-0]

It

ItRegroup new blocks into single grid system:

It

combine xyz[33 xyz[43 xyz[5] xyz[6]

Script 6.3: Domain decomposition through block splitting.
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The results of these commands will generate xyz [7] which will contain 4 blocks where each

is then referencable as part of the grid system number 7.
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Chapter 7

Copying Grids

In the analysis process of evaluating aerodynamic trends in the configuration design pro-

cess, va.rious changes are made to the configuration to improve vehicle performance. These

changes, usually accomplished through parametric design studies, produce volume grids that

are very similar both in physical and computational limits. Reuse of a previous computation

can reduce the time to compute a new flow field about a. modified vehicle definition.

Generating the grid about the new configuration can be difficult. One method is to use a

zonal a pproa.ch l_s which uses various re-distribution techniques to incorporate an elliptically

generated parametric design change. Instead of using the various re-distribution techniques

explained in ref. 11, copying the original grid spacings into the new elliptically" generated grid

can accomplish the same task if the parametric design change represents only an incremental

modification of the original configuration, as shown in Fig. 7.1.

To copy the grid spacings h'om one grid into another, use the copydist command:

copydist inte,rpolant basis direction xyzl[...] xyz2[...] ]

where,

intcrpolant is the para.meterization to be used for the copy. The possible values

for the argument are arclength or normarc.

basi,_ is the interpolation basis to be used. The possible values can he tinear

or spline.

direction is the direction to copy the grid-point distributions, one for each com-

puta.tional index. TILe possible va.lues are I-direction, J-direction, or

K-direction.

zyzl[...] is the source grid block to get the grid-point distrihutions.

x:gz:2[...] is the destination grid block containing the grid-lines to he modified.

The copydist command does require the number of grid-lines in the first xyz[...]

to match tile grid-lines in the second xyz[...] in the two cross-computational directions

(i.e. the ones not identified by the direction argulnent). But the number of points in the

computational index referenced by the directim_ argument can differ.
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Figure 7.1: Effects of the copydist command in normalized a.rclength domain.

The spline basis function is recommended for most of the copydist command execu-

tions, but the spline function is unclamped which can lead to the generation of negative

volumes because of interpolated line over shoot. This occurs because of the way the copying

is done. This command copies one grid to another by computing the function of the physical

coordinates with respect to the arclength-point distribution on the source and using it as

the distribution on the destination grid, as shown in Fig. 7.2. To correct this problem, VGM

checks to make sure the arclength function resulting from the spline interpolation is never

negative. If a region is negative the region is isolated and a linea.r interpolation is placed

between the positive arclengths.

Also in Fig. 7.2. the differences between linear and spline basis interpolation are also

illustrated. In the plot. of the physical coordinates, the dashed line is straight between the

original grid points while the spline is curved. The effect the spline has on the grid is

very different than the linear basis, because the spline has a tendency to improve grid line

orthogonality at a boundary where that type of PDE solver boundary condition was active.

Adapting with spline interpolation on a coarse basis grid can improve the orthogonatity a.t

a boundary. The spline basis is recommended because it. usually results in the least amount

of change along the grid line from manipulation to manipulation.
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7.1 COPYDIST Usage

As stated earlier, one use of the copydist command is to insert a vehicle design parametric

into an existing volume grid for parametric design studies. To do this. use the following:

I copydist normarc spline k-direction xyz[1,1,81-0,17-65] xyz[2]
set xyz[l,l,81-O,i7-65] = xyz[2]

Script 7.1: Insertion of design change for parametric studies.

This command copies the distributions from grid system nmnber 2 in the k-direction to the

design paralnetric in the volume grid of grid svstem number 1. Then the set command inserts

the adapted vehicle parametric into the original grid t:o change the vehicle configuration. The

results of this copy were shown in Fig. 7.1.

7.2 Manipulative Capabilities of COPYDIST

Besides using copydist to a.ugment grid generation processes of parametric design studies,

the comlnand finds uses in adapting new grids based on old ones. As stated previously,

reusing a previous solution to a similar vehicle or flow conditions a.s the starting point for

another solution can reduce CFD simulation time. The copydist command can be used

to adapt a new grid based on an old grid. There are two types of adaption that can be

done. The first is adaption of a volume grid to change the outer boundary and cluster points

based on an old grid. This is accomplished by performing the copydist in the arclength

parameter space:

[ copydist arclength spline k-direction xyz[l] xyz[2]

Script 7.2: Utilizing old grid data to adapt a new grid.

The effects of this type of command is illustrated in Fig. 7.3.

The second type of adaption is one based on clustering only. This is done using the

normalized arclength (normarc) parameter space, and was both explained and illustrated in

section T.1.
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Figure 7.3: Effects of arclength parameter used for grid ada ption.
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Chapter 8

Redistributing Grids

Utilizing the copydist command is one method for employing grid reusability techniques.

A second technique is to use grid-point redistribution in a computational direction for a

group of grid lines. Redistributing a grid line or set of grid lines in a computational direction

retains the original grid line along the specified direction, but alters the point distribution.

If the grid lines in the redistribution direction have relatively smooth characteristics, the

other computational direction grid lines can be modified to improve smoothness or remove

poor quality cells and volumes. All redistributing in the \/GM code is controlled with the

redist command. The syntax of this command is:

redist domain basi._ dir'ectio_ inter'polants points=_ distribution_function newbloct= xyz[...] )

where,

domain is the physical or computational domain to be used for the redistribu-

tion. The possible values for the argument can be physical or parametric.

basis is the interpolation basis to be used. The possible values can be linear

or spline.

dircctioT) is the direction to redistribute the grid-point distributions, one for each

computational index. The possible values are I-direct iota J-direction,
or K-direction.

intcrpolant.s is the type of parameterization to be used. The possible values are

arclength and normarc (i.e. normalized arclength).

poi_t.s=# is the number of points to be generated as a result of the redistribu-
tion.

distributioT__functio_ this is the function to be used for the redistribution. The

functions possible are:

1. equal

2. vinokurl4( :__Sb_gi_.,___S_nd)

3. cub i c ( :k.s be_/_,/k.% _.d)

4. vin2cub(/ksb_gi.,_,Lks_,_d,ra.tio)
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•5. sin

6. -sin

7. COS

8. laura( /k_begin_Smax_fstr_epO_fsh )

9. func(filename) or func(array_variablc)

newblock= specifies if the results of the redistribution are to be stored in a new

grid system and grid block. Possible values are yes or no.

xyz[...] is the region of a grid block to be redistributed distributions.

The capabilities of the red±st command are numerous, as this command performs the

basis of many types of manipulations, including:

• Copying distributions from one grid to another;

• Adapting grids from a solution adapted grid to a non-adapted grid (see chapter/section 10.1);

• Smoothing grids based on a technique called parametric re-mapping (see chapter/section 9.1);

• Smoothing grids based on retaining cells at limits and placing a smooth distribution

function between the fixed cells;

• Converting inviscid grids to viscous grids (see chapter/section 12.4);

• Altering the dimensional limits of a. grid while preserving grid quality;

• Improving grid resolution to capture flow field gradients (see chapter/section 10.2);
and

• Generating straight line segments (see chapter/section 11.:3).

8.1 REDIST Usage

All of the redistributions done with the red±st command require a distribution %nction. The

VGM code supports eight basic internal functions, and one general function. The internal

functions of equal, sin, -sin. and cos are based on the grid data at hand. The equal

function redistributes a grid line to be of equal spacing, while the other three are based on

sinusoidat functions. The sin function generates a distribution based on the equation:

where, _ is the computational coordinate of a point in the direction of the redistribution.

The -sin and cos functions use the following equations, respectively, for generating a dis-
tribution:
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Equal Sine -Sine Cosine
Spacing Spacing Spacing Spacing

Figure S.l: Effects of equal, sin, -sin, and cos spacing functions.

_1)]}
The effects of these distributions are shown in Fig. 8.1.

NOTE: \¥ith all grid-lines originating from the I(min boundary near the center,

the sin function clusters points to the I(max, the -sin function clusters points

to the I<mi,, and the cos function clusters points at both ends of a grid line.

Illustrated in Fig. 8.2, the cells produced along a. computational direction are inversely

dependent on the distribution function used (i.e. the sin distribution looks like a reversed

sine curve from rr/2 to 0). The regions of high curvature on the sine waves produce the

smallest change in celt size at the opposite ends to which they are applied. Likewise, the cos

distribution function produces the smallest cells and largest cell to cell scaling a.t the end

points with near equal spacing on the interior.

Each of these distribution functions find use in computational fluid dynamics by clustering

points near a wall for capturing various gradients in a boundary layer with the -sin function

to improving continuity in grid spacings along a computational direction using the cos

function. The strength of these distribution functions is that they are not dependent on cell

size conditions at the ends of a grid line; they can 1)e used to eliminate such dependency and

foster grid quality through such independence.

In some instances, dependency on cell sizes at the ends of grid lines is necessary to

promote improved grid quality. The interna.1 fnnctions of vinokur, cubic, vin2cub, and

laura provide this dependency by requiring input pa.rameters to control the distribution

function. The first three require the cell spacings a.t the beginning a.nd end of a grid line,

-X,Sb_,gi,, and A,s_,,.d respectively, while the vin2cub requires a ratio. The ratio is a blending
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Figure 8.2: (',ell to cell scaling effects of sin, -sin, and cos distribution functions.

factor between the v±nokur and cubic functions, using the following equation:

_-_ = (r'atio)_Svinokur _- (1 - ral_io)c_,Scubi_.

The last internal function generates a. distribution based on the ALIGN SHoCt( "_function

in the LAIJRA code, which is used to adapt volume grids based on flow field parameters.

The adaption is usually done in the body to shock (outer domain) direction. This func-

tion requires the beginning cell height, which is used to obtain a local Reynolds number of

approxiznately 1, a.n ending total arclength to the bow shock, and three control parameters:

1. ,fsh" is the percentage of cells to be placed between the body and the outer bow shock,

located at Sm_.

2. cpO controls the amount of clustering at the bow shock (no clustering if this value is

zero).

3. f.st_ controls where the bow shock, located at Sm_x, will be with respect to the distance

along the grid line from the body to the outer domain.

The effects of these distributions are shown in Fig. 8.3. The input• cell sizes were:

a-_,Sbegin = 0.._

i/%Send = 0.5

ratio = 0.5
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Figure 8.3: Effects of vinokur, cubic, vin2cub, and laura spa.cing functions.

epO = 0.0

fsh = 0.0

Each of these spacing dependent functions provide different grid characteristics by the cell

to cell scaling of the resulting distibution. Illustrated in Fig. 8.4, the vinokur distribution

provides nearly equally spaced cell sizes at the end points with considerable stretching on the

interior, while the cubic distribution exhibits a more subtle stretching on the entire grid line

with large changes in cell sizes at the ends. The vin2cub distribution blends the character-

istics of both the vinokur and cubic to produce a hybrid of stretching characteristics with

reduced cell to cell scaling changes at the ends of the grid line and a moderate stretching on

the interior. The vinokur distribution is primarily used to provide grid point densities near

the wall of a configuration for proper boundary layer modeling and the vin2cub function is

used to smooth grid lines with poor distributions or la.rge cell to cell scalings that can reduce

CFD solver accura.cy. 17
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Figure 8.4: Cell to cell scaling effects of vinokur, cubic, and vin2cub distribution functions.
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The input values for the internal functions can be constants specified in the distribution

function argument, but these values can also be internal constants, array variables or file

names. Using the set command, constant variables can be extracted from VGM intrinsics

to generate the input, co the distribution function arguments. For exalnple, to redistribute

a grid line using a vinokur function but retain the current cell sizes at the end points, the

following can be used:

allocate dsi 1 [2,1,1]

set dsil = dsia[1,1,45-46,1,03

set dsila = dsil[2]

set dsil = dsia[1,1,60-61,1,O]

set dsilb = dsil[2]

redist i-direction spline arclength physical points=iY vinokur(dsila,dsilb)

xyz[1,1,45-61,1,O] newblock=no

Script, 8.1: Grid-line smoothing bv fixing endpoints for redistribution.

This set. of commands will redistribute a grid line from 1-45 t,o 1-61 using the current

point spacings at the ends. but place a vlnokur distribution between the beginning and

ending grid points. This is a common manipulatiozl in VGM for smoothing grids, a.s will be

explained in chapter 9. An added feature is the capacity t,o use array variables t.o do the

same manipulation, but on several cross-direction paired grid lines. /J,KI indexed lines in

this case. To do this type, simply replace the dsila a_nd dsitb with arrays:

allocate dsil [2,31,65]

allocate dsila[1,31,65]

allocate dsi lb [1,31,65]

set dsil = dsia[1,1,45-46]

set dsila = dsil[2]

set dsil = dsia[l,l,60-61]

set dsilb = dsil[2]

redlst i-direction spline arclength physical points=lY vinokur(dsila,dsilb) \

xyz [I, 1,45-61] newblock=no

Script 8.2: Grid-zone smoothing bv fixing endpoints for redistribution.
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Naturally, these cornmand lines assume the J and K limits are 31 and 65, respectively. These

command lines are used to smooth a grid, illustrated in Fig. 8.5, where the thick solid grid

lines represent fixed cell size boundaries.

K

Redistributed

Figure 8.5: Effects of redist smoothing of a grid by retaining existing cell sizes.

NOTE: When using array variables as input to the vinokur, cubic, vin2cub,

and laura distribution i\mctions, the number of cross-direction paired grid lines

identified by tile xyz [...] argument m_tsf match the limits of each array vari-

able.

One more internal flmction is available for the redist command. This is the func () argu-

ment. The func () a.rgument allows for any distribution function to be used, both internally

and externally generated. For an externally generated distribution function, the func()

requires a file name containing a single function curve in either arclength or normalized ar-

clength, a.s indicated by the domaiT) type in the redist COlmnand arguments. An example

file is shown in table 8.1. The first line indicates the number of points in the function, and

the rest of the data is the function in listed form. This format is only used for single line

function data. If a surface of data is to be used, it has to be generated internally to VGM.

The func() a.rgument can also take an internally generated function. Since the redist

command redistributed based on a grid line, the function used for the redistribution can be
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11
0.0000
0.1000
0.2100
0.3200
0.4500
0.6000
0.7300
0.8200
0.9100
0.9500
0.9750
1.0000

an arclength parameter. The genera.tionof this type of function is donein chapter 9 because
this function is primarily usedfor smoothinggrids.

The argumentsin the redist commandarenumerousbecausethis commandis the back-
bone of lnany possiblegrid manipulations in VGM. The interpolants, are identical to those

explained for the copydist comma.hal in chapter 7. But a.n a.dded twist to the redist com-

mand is the use of different dolnains to perform the redistribution. The physical domain

instructs VGM that a.ll parameters used in the distribution function are based on physical

grid related values, just as used in the copydist command. But; the parametric domain

tells VGM that the distribution function parameters are based on computationa.1 domain

va.lues, not the physical coordinates. For example, in the physical doma.in to keep the cur-

rent values of cell sizes at the end points of a. grid line to be redistributed with a vinokur()

function, the cell sizes have to be computed using a. grid intrinsic. But to specify the same

cell size a.t an end point in the parametric domain, the value of 1.0 is used beca.use there

is one cell between the end point and the next point onto the interior of the grid line be-

ing redistributed. Specifying unity at both end points of the vinokur() function in the

parametric domain will have very little effect because the distribution will be nearly equal

in the parametric domain.

To ha.rness the power of the parametric doma.in redistribution, a non-unity value at an

end point will change the parametricity of the doma.in being used for redistribution, but will

not significantly cha.nge the overall distribution. Only the density of the grid points at a.n

end will change. For exalnple, a. grid can be adapted so that the overall grid line character

remains the same but the clustering or grid point density is increased at one end in a flow

field. For instance, at the wall of a configuration. The effects of specifying physical and

parametric domains is illustrated in Fig. 8.6.

Notice tha.t the parametric grid retains the same grid line character in the cross-sectional

direction, but the points are more clustered at the wa.ll of the configuration. The physical

domain redistribution changed the distribution function and the point densities to be equal

a.t a.ll beginning a.nd ending points. Also notice tha.t the grid line curvature in the J-direction

in the physical domain redistribution is more discontinuous tha.n the parametric. [itilizing

parametric doma,in redistribution in the K-direction retains the grid-line curva.ture in the

cross-directions thereby only modifying grid-point densities in the redistribution direction.
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Figure 8.6: Effects of parametric and physical doma.in redistributions for grid adaption.

This example illustrates the strength of the parametric redistribution. These redistributions

were produced by using the following VGM cotnmands:

redist j-direction spline arclength physical points=31 vinokur(.25,1.) \

xyz [I] newblock=yes

redisfi j-direction spline arclength parametric points=31 vinokur(.25,1.)

xyz [I] newblock=yes

This discussion describes the ha.sic manipula.tive ca.pa.bilities of the redist comma.nd.

More powerful ca.pahilities are incorporated into separa.te sections in the chapters on smooth-

ing (chapter 9), and grid adaption (chapter 10).
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Chapter 9

Smoothing Grids

The VGM code was initia.lly designed to do the insertion of design parametrics into existing

volume grids for parametric design studies. During this process, a. zone is inserted and

blended into the original volume grid that was used to define the region to be modified. In

so doing, there are many insta.nces in which grid smoothing is required, especially to resolve

grid point spacing mismatches that may have been generated in the development of a design

parametric volume grid.

There axe other insta.nces where grid smoothing may be necessary, including:

• Highly oscillatory grid lines in one direction resulting from poor elliptic solver boundary

conditions;

• Open volumetric spaces due to inadequately defined definition boundaries:

• Previous lnalfipula.tions correct one problem but create another;

• Kinked grids resulting from poor adaptions to flow gradients: and

• General improvement of existing grids.

Since VGM is a manipulation language tha.t contains numerous commands, there a.re mal:_y

different methods available for smoothing volume grids. The types of grid smoothing that

will be explained in this chapter include:

• Pa.ra.lnetric Re-mapping - changing of the arclength parameter space with dependent

or directionalty dependent functions;

• Tra.ns-Finite Interpolation

• \_%ctor Interpola.tion - interpolates vectors computed from derivatives derived from

existing grid lines.

9.1 Parametric Re-mapping

The underlying technique that will be exploited for Para.lnetric Re-mapl)ing, is the notion

of using the arclength parameter as a distribution function for manipulating the loca.tion of
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grid points. This is done by computing the arclength function in a computational direction
using equation 9.1:

ASi,j = 1/Ax_,j + Ayi2,j + Azi2,j (9.1)

where,

z2kXi,j = Xi,j -- Xi,j-1

AYi,j = Yi,j -- Yi,j-1

AZi,j = Zi,j -- Zi,j-1

if the direction of the arclength is J. The initial function, when mapped to the physical

domain, locates the grid points in their original positions but creates a bridge between the

coordinates. This will be referred to as the basis function. By changing the distribution

function for the length of the curve that passes through the grid points in the said com-

putational direction, the grid point locations along the basis function (i.e. curve) will be

changed. The arclength parameter is one dimensional, which offers a simple link to the three

dimensional physical domain. By grouping a series of arclengths to form a region (i.e. zone)

the new distributions used for the arclengths in a computational direction can be created

with a single function or multiple dependent functions. The modification of the arclength

parametric domain through the use of single or multiply dependent functions to create new

distribution functions, is termed parametric re-lnapping.

The copydist and redist commands, by virtue of their arguments and implementation,

change the distribution of grid points with single functions. But the redist colnlnand has an

added feature, the func() argument. This argument can take a computational zone of ar-

clength parameters in a single direction to define the new distribution functions to be applied

to a surface or volume grid. To generate the computational zone of arclength parameters,

an initial domain needs to be defined using the allocate command. Then, using one of

the intrinsics in table 5.1, an arclength parameter is computed in a computational direction

for the allocated region. Now a new command is used to develop a dependent function

across the region in one or both directions Colnputationally orthogonal to the direction used

to compute the arclength parameter. This command is called blend and the syntax is as

follows:

[blend var'name[I-limit,J-limit, K-limit] direction dimension domai_ interpolation= {xyz[...]}

where,

varnam_: is the core variable containing an arclength parameter to be blended

for smoothing a grid.

direction is the direction to blend the a rclength parameters. The possible values

are I-direction, J-direction, or K-direction.

di'm_:nsion is the dimension of the blend. This can be either:

]. id- single dimension

2. 2d - two dimensions

:3. 3dp - two dimensions but planar by stepping through the third dimen-
sion
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4. 3dw- three dimensions

domain is the physical or computational domain to be used for the blending.

The possible values for the argument can be physical or parametric.

NOTE: If the parametric domain is used, the parameterization

of the domain being blended is based on the computational coor-

dinates, and the xyz [...3 need not be specified. Conversely, if the

physical domain is to be used, the xyz[...] argument must be

present and must have the same dimensions of the variable being
blended.

interpolation= this is the interpolation scheme to be used to blend from one

know index to another. The schemes possible are:

1. linear

9.. elliptic 18

3. spline

4. tfi

5. larcs(#,#,#) 19

NOTE: The linear, elliptic, and spline interpo]ationschemes

are only availab]ein one dimensiona] interpolationIthe ]asttwo are

for 2d, 3dp and 3dw interpolation.

,_:yz[...]isthe region of a grid])lockto be used forcomputing arclength blending

functions ifthe domah_ isphysical.

The capabilities of the blend command include:

• Iterative grid smoothing through the altering of basis distribution functions;

• Grid smoothing through the use of pa.rametric re-mapping;

• Blending from a solution adapted grid to a non-adapted grid; and

• Adapting grids based on a solution adapted grid (see chapter/section 10.1).

9.1.1 One-Dimensional Parametric Re-mapping

This command operates on a single grid based quantity, such as the internal intrinsics.

The command performs the blending 1)3' using the intcrpolation scheme to blend between

boundaries of known data. For example, to linea.rlv interpolate an outer boundary of a

volume grid, the arclength function on a specified region is computed using the dska intrinsic,

in the wall to outer domain direction in Fig. 9.1.

As shown in Fig. 9.1, the forebody grid has been a.da.1)ted using sonle unknown scheme.

The aftbodv is not- adapted because it has not been computed, but the interface between

the fore- and a.ftbodies is highly discontinuous. To correct this problem and blend between

the adapted and non-adapted grids, a blending region is identified, and the arclength pa-

rameter in the wall to outer domain direction is computed. To blend between the adapted
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Figure 9.1: Initial outer domainof an adaptedand non-adaptedgrid.

and non-adaptedgrids, the endpoints of the region are fixed in the streamwisedirection
(i-direction) and blendingoccurson the K-direction basedarclengthsin the i-direction.
Two types of domain dependentblendingsare available,computational and physical. The
blending is done by fixing the endpoints at the I-limits. and linearly blending betweenthe
endpointsto determine (i.e. compute)the interior K-direction baseda.rclengths.This is done
by specifying the limits in the t,arT).am@..] as 1-0:0 for the I-direction. The new K-direction

based arclengths are used to alter the existing volume grid using the func() argument of the

redist command because the new arclengths are the new dependent distribution functions

for the identified region in the K-direction. To apply these new arclengths, the following

VGM commands were used for the physical domain blending:
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allocate dskl [33,91,33]

set dskl = dska(xyz[1,1,41-71])

blend dskl[l-O:0] Id i-direction physical interpolation=linear \

xyz[l,l,41-71:0]

redist k-direction spline arclength physical points=33 func(dskl)

xyz[l,l,41-71:0] newblock=no

Script 9.1: Physical domain based grid smoothing by parametric re-mapping in 1D.

and for the computational domain based blending:

allocate dskl [33,91,33]

set dskl = dska(xyz[1,1.,41-71])

blend dskl[l-0:0] ld i-direction parametric interpolation=linear \

xyz [1,1,41-71:03

redist k-direction spline arclength physical points=33 func(dskl) \

xyz [1,1,41-71 : O] newblock=no

Script. 9.2: ('omputational domain based grid smoothing by parametric re-mapping in 1D.

Illustrated in Fig. 9.2 are the results of both domain interpola.nt types. Though not clear

in this example, there is a difference between computational and physical domain based

interpolants. Tile computational domain interpohnts are best when the grid is uniformly

spaced, as in Fig. 9.2. If the grid is non-uniform in the direction of the blend the com-

puta.tiona.1 based interpolants will cause dramatic changes in the blending because of the

missing dependency on the grid. On the other ha.nd, the physically based interpolants are

well suited for both non-uniform and mfiform spacing because of the added dependency on

the grid physical coordinates. For example, if the blending region of a. grid is that of Fig. $.5,

and the region is blended from the wall to the outer boundary (i.e. k-direction)_ the results

are shown in Fig. 9.3.

C,learly, the physically based a.rclengths are best suited to this problem, but only because

the cell spacings in the N-direction are non-uniform. Uniform spacing in the blending direc-

tion should result in nearly identical results to the computational domain based interpolants,

as shown earlier. This described process is known as parametric re-mapping because the I(-

direction based arctengths were re-computed using a blending function that inherently makes
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Original Computational Domain Physical Domain

Figure 9.2: Domain based blending for smoothing/adapting a grid.

all the grid lines dependent upon one another; thereby re-mapping the arclength parameter.

The paranletric re-mapping process is not limited to linearly based interpolation. Fox"

the above example., an elliptic blending function could also be used. Illustrated in Fig. 9.4,

are the differences between linear and elliptic interpolation schemes. Notice that the

elliptic scheme has 1-nore continuous grid lines in the blending direction than the linear.

This is primarily due to the elliptic function having C-I and C-II continuous derivatives at

the endpoints.

Tills effect of continuous derivatives at the endpoints can be further exploited for smooth-

ing grids. For example, in Fig. 9.5, the grid lines in the surface grid are highly oscillatory

(i.e. kinked).

Smoothing this grid by simply applying the elliptic scheme of the blend command on

a region encompassing the poor grid line characteristics should be sufficient. Note that K-

direction grid lines are fairly straight with respect to the I-direction. Due to the straightness

of the K-direction lines, these lines will be used to compute the arclength para.meters for

smoothing, and the blending will be done in the I-direction. To do this, the following \TGM
commands are used:
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Computational Domain Physical Domain

Figure 9.3: Domain based blending for blending a grid.

allocate dskl [7,1,61]

set dskl = dskn(xyz[1,1,28-34,1])

blend dskl[:0] ld j-direction parametric interpolation=elliptic

redlst k-direction spline normarc physical points=61 func(dskl) \

xyz [I, I, 28-34, I] newblock=no

Script 9.3: Algebra,ic grid smoothing with elliptic coefficients in 1D.
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Figure 9.4: Linear and elliptic interpolation for smoothing/adal)til_g a grid.
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Figure 9.5: Kinked grid lines from poor a,da,pt, ion parameters.
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The resulting smoothed grid is shown in Fig. 9.6.

2

K

1
I _ Smoothed

Original Region

Figure 9.6: Elliptic blending function used to smooth kinked grid lines in a specific region.

The increment on the limits do not always have to be the maximum. If a surface is to

be broken into multiple regions, tile increment can be less than the 1naxin_lUl!l. If multiple

regions are used, the spltne scheme can be used to smooth surface and volume grids, by

simply fixing intermedia.te curves or surfaces to be used in the control of the blending. For

the above grid, if the increment is set to 5, the smoothed grid appears as shown in Fig. 9.7.

I
Original Smoothed

Figure 9.T: Spline blending function used to smooth kinked grid lines in the entire grid.

Although this grid is smoother than the original grid, it still exhibits some grid dis-

continuities on the interior. These can be removed by iteratively applying the parametric

re-mapping, because each time the grid is redistributed the basis functions will be differ-

ent. IJsually 2 or :_ passes is adequate. For the above example_ two passes of the spline

interpolation with multiple regions were done, resulting in the grid shown in Fig. 9.8.
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Figure 9.8: Iterative smoothing of kinked grid lines with the spline blending %nction.

The \..;(_M commands used to itera.tively smooth this grid were:

allocate dskl[101,1,61]

# Iteration 1:

set dski = dskn(xyz [i])

blend dskl[:5] id i-direction physical interpolation=spline \

xyz[1,1, :5,1]

redist k-direction spline normarc physical points=61 func(dskl) \

xyz [1] newblock=no

# Iteration 2:

set dskl = dskn(xyz[l])

blend dskl[:5] id i-direction physical interpolation=spline \

xyz[l,l,:5,1]

redist k-direction spline normarc physical points=61 func(dskl) \

xyz[l] newblock=no

Script. 9.4: Itera.tive algebraic smoothing via basis function maniputa.tion in 1D.

A secondary reason this iterative method works is that the spline function creates a.

dependency on each zone, as identified by the non-maximum increment in the I-direction.

Other nmttiple zonal approaches will be discussed, but they do create a. dependency from
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zone to zone, and are therefore not worth applying to iteratively smooth a grid.

9.1.2 Two-Dimensional Parametric Re-mapping

Another scheme could have been used to smooth these kinked grid lines, the two dimension

_rans-finite interpolation, as detailed in the following VGM commands:

allocate dski [101,1,6i]

set dskl = dskn(xyz[1,i,,l])

blend dskl [: 5,, : 0] 2d j-directi0n physical interpolation=tfi /,

xyz[1,1, :5,1, :0]

redist k-direction spline normarc physical points=6i func(dskl)

xyz [i,I, ,I] newblock=no

Script 9.5: TFI smoothing of distribution functions in 2D.

or through the use of LARCS interpolation:

allocate dskl[101,1,61]

set dskl = dskn(xyz[1,1,,1])

blend dskl [:5, , :0] 2d j-direction physical interpolation=larcs(2,2,2) \

xyz[1,1, :5,1, :0]

redist k-direction spline normarc physical points=61 func(dski) \

xyz[1,1,,1] newblock=no.

Script 9.6: LARCS smoothing of distribution functions in 2D.

NOTE: The direction of interpolation is (J). This is due to the plane being a.

constant J-surfa.ce in a.n existing volume grid. The limits have also changed; the

I- and K-limits are the maximum. These limits tell VGM which varname function

to compute, and which boundaries are to be held fixed. For the two dimensional

interpolation, the specified limits must ha.re two computational directions to be

determined.

The trans-finite scheme is well documented in other literature, but the LARCS usage can

be found in the 3DMAGGS manual. Basicalh; the LA1RCS method uses linear or elliptic
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blendsbetweenopposingedgesand then useseither of the blendsbetweenthe edgesas the
new computedarclengths,or a hyperbolic combinationof both opposingedgepairedblends.
The LARCS schemeis controlled through the 3 numbersin the parentheses:

• Number 1: Linear (1) or Elliptic (2) blendbetweenopposingedgesof the first compu-
tational index in the right handedcoordinate systemof the surfaceto beblended;

• Number 2: Linear (1) or Elliptic (2) blend betweenopposing edgesof the second
computational indexin the right handedcoordinatesystemof the surfaceto beblended;

• Number 3: First opposingpair (1), secondopposingpair (2) or a hyperbolic combina-
tion of both blends (3).

Illustrated in Fig. 9.9 and Fig. 9.10are the resultsof trans-finite and LARCS interpolation,
respectively. The LARCS method usedwas the blendingof arclength parametersbetween

K

T
I

Original TFI Blended

Figure 9.9: TFI blending function used to smooth kinked grid lines in two dimensions.

I-bounded zone edges because that direction was more indicative of they type of smoothing

needed. To use the hyperbolic blend of both would produce unfavorable results as the only

values being blended are 0.0 to 1.0, (i.e. the normalized arclengths). The hyperbolic blending

would take 50% of both blended opposing edge functions at the middle of each boundary

edge, thereby increasing the value of the normalized arclengths in the K-direction and cause

the grid to oscillate more regularly. The blended edges of the first opposing pair, in the

K-direction, would exaggerate the oscillatory grid lines in the I-direction; eliminating its

usage.

Notice the slope continuity in the TFI blended grid versus the LARCS blending. The

TFI algorithm in this case produced a.n acceptable grid, while the LA1RCS did not, because it

still has some kinks. This may be due to the fact that the LAFICS methods do not have the

correcting terms as the TFI met.hods do. Irregardless, the LARCS methods are aa'ailable as

an alternative to TFI. Consecutive iterative manipulations with the TFI or LAR(!S methods

will not improve the grid because there is no dependency from zone to zone. as identified by

the non-maximum increments in the blending direction.
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Figure 9.10: LARCS blending function used to smooth kinked grid lines in two dimensions.

9.1.3 Three-Dimensional Parametric Re-mapping

In most cases, a one-dimensional or two-dimensional blend is adequate for smoothing surface

and volume grids. There are some instances where three-dimensional blends can produce

the most favorable results. Such instances usually occur where slope continuity is a nmst

at multiply bounded regions, as opposed to two or four bounds for the one-dimensional and

two-dimensional blends, respectively. In these rare instances, the 3dp a.nd 3dw interpolation

schemes can be used. For example, the results of running the 3DMAGGS code on a. sphere-

cone are shown in Fig. 9.11. Notice that the wall to outer domain grid lines are relatively

straight, but the J-directional lines are highly curved, just before the frustum. Here, a one-

dimensional blend in the J-direction may not produce the most fa.vorable results because

the grid will no longer be dependent in the I-direction. To ensure a continuous dependency

on the grid, applying a trans-finite interpolation on the K-direction arclengths in the I- and

J-directions tbr each successive plane should be best. To do this type of plane-by-plane

interpolation the 3dp interpolation scheme is used:

allocate dskl [56,363,33]

set dskl = dska(xyz [1,1,1-56])

blend dskl[l-0:0,1-0:0] 3dp k-direction physical interpolation=tfi \

xyz[1,1,1-56, :0, :0"1

redist k-direction spline arclength physical points=33 func(dskl) \

xyz[i,l,1-56] newblock=no

Script. 9.7; TFI smoothing of distribution functions in computationally 3D planes.
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Original

Figure 9.11: Poor elliptic PDE orthogona.1 boundary condition a.t a symmetry pla.ne.

The effects of this interpolation scheme are shown in Fig. 9.12. The resulting volmne

Original TFI-3DP

Figure 9.12: Improved boundary condition at a symmetry pla.ne through the 3dp blending.

grid mainta.ins some consistency between the modified grid and the unmodified grid. a.s well

a.s improving the orthogonality a.t the symmetry planes. Use of this type of ma.nipulation

eliminates the necessity to change the elliptic solver boundary conditions a.nd can significantly

reduce the time required to genera.te a usable volume grid, by reusing good potions of poor

quality grids.
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9.2 Smoothing with Trans-Finite Interpolation

Smoothing surface and volume grids utilizing computational or physical based interpolants
as basis functions is one set of methods that can be used. Another method that is not

as powerful but just as important is the use of trans-finite interpolation (TFI), with the

following syntax:

where,

tfi dimension domain {iterations=} xyz[..,] }

dimension is the dimension of the TFI. This can be either 2d or 3d.

domai_ is the physical or computa.tional domain to be used for the TFI inter-

polants. The possible values for the argument can be physical or parametric.

iterations= this is the number of iterations to be performed to optimize the

interpolants in three-dimensional TFt; 16 is sufficient.

NOTE: This argument is only necessary when three-dimensional

TFI is performed.

xy@..] is the region of a grid block to be regenerated.

Besides grid smoothing, the capabilities of the tfi COlnmand include surfa.ce and volume

grid generation (see chapter/section 11.1).

To employ TFI properly, the defining bounds of a region to be regenerated needs to be

well posed3 ° For example, the defining edges or faces, of a surface or volume, respectively

can not have sharp changes in grid line character. Illustrated in Fig. 9.1:3 are a set of regions

that were chosen to perform TFI for smoothing purposes. The sharp changes in the edges

Original TFled Region.,

Figure 9.13: Poorly chosen boundaries used in the method of TFI for grid smoothing.

of the surface get propagated into the interior of the domain. The lack of orthogonality at

the edges is also propagated onto the edges of the regions regenerated with TFI.
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Conversely,applying the TFI regeneration to more appropriately chosenregions, the
grid qualities at the boundaries that are good can be propagated onto the region. In the
aboveexample,different regionsfor performing TFI arechosenand a better grid results, as
illustrated in Fig. 9.14. If goodboundariesareavailable,TFI smoothing can be very robust.

Original TFled Region;

Figure 9.14: Appropriately chosen boundaries used in the method of TFI for grid smoothing.

But it can also do harm by not maintaining a smooth transition of cell sizes, as shown

in Fig. 9.14. On the top of the configuration, the grid lines look much better. But there

are spacing mismatches in the cross-sectional direction on the bottom. To help reduce the

spacing mismatches., the parametric re-mapping may be needed. Although the TFI methods

are robust and can offer a much easier alternative to parametric re-lnapping, the latter may

still be needed. Together, these methods create a powerful smoothing tool.
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9.3 Vector Interpolation

Parametric re-mapping and TFI/LARCS methods do work well when combined with one

another to do grid smoothing. But these approaches exclusively create smooth grids. The

results will always be smooth, but other constraints such as clustering and grid line orthogo-

nality may be compromised. Because parmnetric re-mapping and the TFI/LARCS methods

are implicit, a more direct (i.e. explicit) method was developed and implemented into VGM.

The explicit method of doing grid smoothing that is in VGM is called hermite vector

interpolation. The method is accessed through the smooth command, with the following

syntax:

smooth dimension direction definition±type order distribution_function xyz[.,,] boundary.condition ]

where,

dimension is the dimension of the smoothing. As implemented, this ca.n only be

:td. The 2d or 3d capa.bilities will he added to VGM in the future for PDE

solving.

dircctio_ is the direction to smooth the grid. The possible va.lues a.re I-direction,

J-direction, or K-direction.

deifinition_type: determines whether the defining grid that describes a surface or

volume retains the current sha.pe or is permitted to change (similar to the

subfa.ce parametric mode of GRIDGEN). The possible values are fixed or

general.

NOTE: Only the general option is implemented.

order is the degree to which the derivatives are computed in a specified direction

of smoothing. It is specified by order=# where #+1 points are used to

construct the necessary derivatives.

distribution<function this is the function to be used for the smoothing. The

functions possible are:

1. equal

9. vinokur14( /--_Sbegi.,_,/k._e.,_d)

3. cubic( /kSbegin,/--_Send)

4. vin2cub(Asv_gi,_,_X_,,_,_,ratio)

5. sin

6. -sin

_. COS

S. iaura( A.Sb_gi,_,Sm,,_-,fstr,ep0,fsh )

9. func(,filenam() or func(array_variablc)

NOTE: To retain the existing distribution or existing cell sizes for

the distribution functions that require control parameters, include

the argument ke:cpc'_rrcnt with the smooth command.
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xyz[...] is the region of a grid block to be smoothed.

boundary_co_ditions are specified as Dirichlet or fixed grid bounda.ry conditions.

The possible values a.re specified by dirichlet=(... ) and the control pa.-

rameters are dependent on the direction of smoothing; if smoothing is to

be done in the I-direction, Dirichlet BC's are possible a.t jmin, jmax, kmin,
and kmax.

NOTE: If one of the Dirichlet BC's is missing, that edge will have

a Neumann boundary condition in which the grid will be smoothed

at that edge.

The smooth comma.nd currently supports one dimensional smoothing. But this type

of smoothing can do two and three dimensional smoothing, implicitly. The smoothing of

grid lines is done by computing the deriva.tives at end points of the bounding region of the

grid to be smoothed, in the direction of the smoothing. These deriva.tives are then used

to interpolate from the beginning index to the ending index in the direction chosen. The

derivatives determine the continuity and precision of smoothness that will result from the

interpola.tion, as shown in Fig. 9.15. Typically, the second order derivatives are sufficient to
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Figure 9.15: Order of derivatives for one dimensiona.1 smoothing.

produce the smoothest grids.

The one dim ensiona.1 smoothing has boundary conditions tha.t control the extent to which

the region is smoothed at the bounda.ries. The method uses a blending of four grid points in

the cross-directional (i.e. directions not including the direction of smoothing) indices from
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, ! the region boundary to the interior. There are two type of boundary conditions that can

be applied, Dirichlet and Neumann. As pertaining to the solution of PDE's, the Dirichlet

boundary condition keeps a boundary fixed thereby using the four point blend to the interior,

while the Neumann boundary condition allows the boundary to move to satisfy a derivative

condition. For one dimensional smoothing, the Neumann derivative condition is slope con-

tinuity from the interior to the boundary edge or surface that is allowed to move from its

original positions. For example, to smooth a surface with kinked grid lines, as illustrated in

Fig. 9.16 the grid lines in the identified region between the darker grid lines needs smoothing.

Clearly, smoothing in the I-direction would lye best because the discontinuity occurs along

Original

I No Dirichlet BC

Smoothed ".,V,, _ y._/"

wilD method __

Figure 9.16: Identified region for one-dimensional smoothing.

the I-varying grid lines. To smooth these grid lines, the following commands can lye used:

# Do not use Dirichlet boundary conditions:

smooth Id i-direction general order=2 keepcurrentequal \

xyz[l,l .... ] dirichlet=()

# Use Dirichlet boundary conditions:

smooth id i-direction general order=2 keepcurrent equal \

xyz[l,l .... ] dirichlet=(jmin,jmax)

Script 9.8:

conditions.
1D smoothing 1)3' vector interpolation with Neumann and Dirichlet boundary
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The effect of this smoothing is illustrated on the right in Fig. 9.16. Notice that the non-

Dirichlet boundary condition does not preserve the cross-directional boundary. This may be

appropriate if the non-Dirichlet applied boundary does not match to another volume grid,

or is not at the wall of a configuration.

Applying the one-dimensional smoothing in three dimensional space can provide a pow-

erful mechanism to recover from parametric re-mapping or TFI type smoothing. As per-

formed earlier, a. blending of the sphere-cone grid in the 3alp portion of the blend command

for smoothing in the K-direction, can be done in the I direction as well. The I-direction

smoothing may result in a better grid in the K-direction because that would be one of the

dependent directions of the TFI. By blending in the K-direction, a decoupling of the redis-

tribution dependency occurs and can produce crossed grid lines in the K-direction because

of the non-dependency. Application of the 3dp blend in the I-direction establishes the de-

pendency in the J- and K-directions and can lead to a grid that may not have crossed grid

lines in the I-direction, but could produce a grid that is kinked at the interface to the undis-

tin'bed grid. This kinked interface could be easily smoothed with 3DTFI and the smooth

command, as performed by the following commands:

# Redistribute region of poor elliptic PDE boundary conditions:

allocate dskl [45,363,33]

set dskl = dska(xyz[l,l,l-45])

blend dskl[1-O:O,l-O:O] 3dp k-direction physical interpolation=tfi \

xyz[1,1,1-45,:O,:O]

redist k-direction spline arclength physical points=33 func(dskl) \

xyz[l,l,i-45] newblock=no

# Improve continuity from corrected grid to original block:

tfi 3d arclength iterations=t6 xyz[l,l,45-51]

s,nooth id i-direction general order=2 keepcurrent equal \

xyz[l,l,43-47] dirichlet=(jmin,jmax,kmin,kmax)

_" eScript 9.9: Smgl direction smoothing applied to 3D.

and illustrated 1)3, Fig. 9.17. As is evident by the smooth grid lines and the improved

orthogona.lity at the symmetry planes on the sphere-cone grid, this blending and smoothing

is an alternative to a K-directionalh" based 3@ blendThis also illustrates one of the strengths

of the VGM language; there is more than one way to solve a problem, given the command

structure and capability.
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Figure 9.17: Three-dimensional smoothing of an improved grid to the original volume grid.

9.4 Summary of Techniques

As identified by the Parametric Re-mapping, TFI, and Herlnite Vector Interpolation schemes

presented, there are numerous ways to smooth surface and volmne grids. The VGM language

supports a. variety of commands that when used in conjunction with one another form the

basis for a powerful set of tools. Each command by itself is unique and simple, but when

combined create tools of increased complexity. This flexibility, when used appropria.tely ca.n

enable the smoothing of poorly defined or otherwise generated surface and volume grids

quickly and efficiently.
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Chapter 10

CFD Adapting

10.1 Coarse Grid to Fine Grid Adaption

One of' tile main purposes of developing the blend command of section 9.1.3, was to imple-

ment a coarse grain to fine grain grid adaption technique for C,omputational Fluid Dynamic

(CFD) simulations. C.FD solutions are often started on coarse grids for computational ef-

ficiency, then interpolated to finer grids for the final analysis. Examples of title and coarse

grids are illustrated in Fig. 10.1. After the flow field is established, the coarse grid is some-

times adapted to some flow field characteristics such as pressure to resolve a shock wave.

The solution is continued with the adapted grid until a. rela.tively converged flow solution is

completed. Then the coarse grid is used a.s a template for adapting the fine grid and the

solution is interpolated onto the adapted fine grid for final analysis.

The grid adaption is accomplished by copying the arclength distributions from tile body

to the outer domain from the coarse grid to the fine grid. Then the blend command is

used to interpolate with a spline blending function in the I-direction holding the copied

K-lines constant and pa.rametrically re-mapping the regions between the K-tines. Then a

similar re-mapping of arclengths is done ill the .J-direction and an a.da.pted grid results. The

commands used to do this adaption are illustrated in script 10.1 a.nd the results are shown

in Fig. 10.2.

This adaption technique can also use tile 3dp blend in the body to outer domain direction

after the distributions from the coarse grid are copied into the fine grid, as illustrated in

script 10.2. This method may produce dependency problems in the K-direction (body to

outer doma.in) and result in crossed grid lines, as explained in section 9.:3 of chapter 9. But

it is a.n alternate and may be necessary, depending on the extent of the adaption.
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Original Fine Grid

Im
Original Coarse Grid

Flow Adapted Coarse
Grid

Figure 10.1: Initial coarse grid of a fine grid used on a McDonnell Douglas proposed X33

eonfiguration.

eopydist k-direction spline arclength xyz [i] xyz [2, i, :4, :43

allocate dskl[161,197,653

set dskl = dska(xyz[2])

blend dskl[:4,:4] ld i-direction physical interpolation=spline \

xyz[l,l, :4, :4]

blend dskl[,:4] Id j-direction physical interpolation=spline \

xyz[i, 1, ,:4]

redist k-direction spline arclength physical points=65 func(dskl) \

xyz [2] newblock=no

Script 10.1: (,oars to fine grid adaption with 1D smoothing.

Both of the above methods can also be used to adapt or blend solution data fron-i the

coarse grid to the fine grid. As discussed in chapter 4 section 4.2.3, the flow field solutions

to a grid can be loaded into VGM and each will be assigne d a unique varial)le. This variable

can be used in place of the grid blocks (xyz[...]) to do the sa.me type of blending as

performed oi1 the grid. The only effect the blending has is on the dimensionality of the
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Figure 10.2: Fine adapted grid based on the CFD solution of a coarse grid.

copydist k-direction spline arclength xyz[1] xyz[2,1, :4, :4]

allocate dskl [161,197,65]

set dskl = dska(xyz[2])

blend dskl[:4, :4] ld i-direction physical interpolation=spline \

xyz[l, i, :4, :43

blend dskl[:4, :43 Id j-direction physical interpolation=spline \

xyz[l, I, :4, :43

blend dskl[:4, :43 3dp k-direction physical interpolation=tfi \

xyz[1,1, :4, :4]

redist k-direction spline arclength physical points=65 func(dskl) \

xyz [23 newblock=no

smooth id i-direction general order=2 keepcurrent equal \

xyz [I, 1,56-59] dirichlet=(jmin,jmax,kmin,kmax)

eScript, 10.2: (,oars, to fine grid a,daption with 3D planar smoothing.
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solution and trends in the data. may not reflect actual phenomenon. Assuming a density (p)

for grid system 3 and block 2. the following commands can be used to interpolate a coarse

grid solution to a fine grid:

#

# In lieu of copydist insert the coarse solution into the fine:

#

allocate rho_n3_b2_fine [161,197,65]

set rho_nS_b2_fine [:4, :4] = rho_n3_blk2

blend rho_n3_b2_fine[:4, :4] id i-direction physical interpolation=spline \

xyz[l, I, :4, :4]

blend rho_n3_b2_fine[, :43 Id j-direction physical interpolation=spline \

xyz[1,1,, :43

Script 10.3: Coarse to fine solution adapt.ion using 1D smoothing.

NOTE: The redist is not needed because the function space is being manipu-

lated not. the grid.

Using the procedure, a coarse grid can be used as a template to adapt a fine grid and the

respective flow solution, in preparation for a complete body CFD silnula.tion.

10.2 Adaption by Changing Grid Densities

A second technique that can be used for adaption is the use of the redist command. If a.

volume grid is adapted with the shock alignment procedure within the LAURA code, the

outer domain (i.e. bow shock) may need improved grid resolution. To improve the resolution,

two separate regions limited by the body to outer domain index (K) can be created such that

the bow shock is isolated at some point close to the outer domain, as illustrated in Fig. 10.:3.
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Figure 10.3: Initially ada.ptedgrid from ALGNSHK in the LAtTRA code.

Then thesetwo regionsca.nbe ada.ptedusing the computational domain, keepingthe wall
cells at the current heights, arid reducingthe bow shockindex cell point.sby 50%,using the
following commands:

redist k-direction spline arclength parametricpoints=57 vinokur(l.,O.5) \

xyz[l,l,,,l-61] newblock=yes

redist k-direction spline arclength parametric points=9 vinokur(0.5,1.) \

xyz[l,l,,,61-O] newblock=yes

# Merge the blocks:

allocate xyz [161,197,65]

set xyz [4,1, ,, 1-573 = xyz [23

set xyz[4,1,,,57-0] = xyz[3]

Script 10.4: Grid a.daption using varying grid densities.
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and is illustrated in Fig. 10.4. Clearly this technique is fast and efficient and can provide

Figure 10.4: Re-adaptedgrid to improve bow shockcapture and modeling.

improvedgrid resolution in the vicinity of the how shock. This method canalso be usedin
other directions to capture wing leading edgebow shockgradients, or any other gradients
requiring improvedgrid resolution.

10.3 Summary of Adaption Techniques

Though the techniques of grid a.daption are limited, each provides a tool not available by

other software. The grid adaption techniques of VGM are also augmented by the rest of the

manipulation language which can offer increa.sed flexibility towards the application of grid

adaption. Poor grid adaptions can be smoothed while new adaptions can be performed in a

completely different manner. Either way, VGM provides a powerful set of tools to do grid

adaption and can be very useful when used properly.
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Chapter 11

Volume Generation

While VGM is inherently designed to do grid manipulations these are a, few methods available

for doing grid generation. These methods include:

• Three-Dimensional Trans-Finite Interpolation (3DTFI);

• 3DTFI coupled with intermediate definition planes;

• Stra.ight line generation for grid repair;

• Coordinate corrections for planar a.ssumptions.

Though the list is not very long, each offers an opportunity to keep the manipulations internal

to VGM (items 1 and :3) or enables complex grid generation not aaTaila.ble via sta.ndard 3DTFI

methods (item 2). Each will be explained in further detail below.

11.1 Three-Dimensional Trans-Finite Interpolation

To generate a volume grid, the six defining faces of tile volume need to be generated, l;sua.lly

a. code such as GRIDGEN is used to generate these faces. The volume is then generated

by porting the faces to a volume grid generator and the code is executed to create the grid

algebraically with 3DTFI. The porting and execution of a large grid generation such as

GRIDGEN3D need not be done, for VGM can do the same generation.

The face definitions of the blocks that are to be generated, in the GRIDGEN format, are

listed by K=constant faces, I=constant faces and J=constant faces, in the *.mlga file. To

use these defining faces to develop a volume grid, each face has to he read in a.s a. GRIDGEN

surface and converted to the PLOT3D format by writing out the surface in that format.

Since the J=constant faces have indices of K by I. these computational directions need to be

switched on the output. The faces are then re-read, assigned to a grid block and the volume

generated in VGM, using the following commands:

89



# Step i: Load the GRIDGEN _.mlga file:

read example.mlga ascii gridgen multiple

# Step 2: Write out each face for each block, switching coordinates where

# appropriate :

write blkl-facel-plt3d.g plot3d xyz[l,3] switch(x,y,z,k,i,j)

write blkl-face2-plt3d.g plot3d xyz[l,4] switch(x,y,z,k,i,j)

write blkl-face3-plt3d, g plot3d xyz [I,5] switch (x, y,z, j,k, i)

write blkl-face4-plt3d.g plot3d xyz[l,6] switch(x,y,z,j,k,i)

write blkl-face5-plt3d.g plot3d xyz[l,l]

write blkl-face6-plt3d.g plotBd xyz [1,23

# Step 3: Read in the new faces:

read blkl-facel-plt3d.g

read blkl-face2-plt3d.g

read blkl-face3-plt3d.g

read blkl-face4-plt3d.g

read blkl-faceS-plt3d.g

read blkl-face6-plt3d.g

# Step 4: Allocate a new block co hold the block:

allocate xyz[lOI,248,65]

# Step 5: Set the faces into the new block:

set xyz[8,1,1] = xyz[2,1]

set xyz[8,1,O] = xyz[3,1]

set xyz [8,1,, 13 = xyz [4,13

set xyz[8,1,,O] = xyz[5,1]

set xyz[8,1,,,l] = xyz[6,1]

set xyz[8,1,,,O] = xyz[7,1]

# Step 6: Perform 3DTFI on the new block:

tfi 3d arclength iterations=f6 xyz[8,1]

# Step Z: Write out the new block:

write examplel.vol plot3d xyz[8,1]

# Step 8: Done

quit

Script 11.1: Volume generation fl'om GR.IDGEN data.,
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Like anyvolumegeneratedwith 3DTFI, with facesthat havediscontinuitiesor encompass
large volumesabout configurations,the grid may not havegrid-line characteristicsthat are
suitable to CFD simulations. There may be a lack of near wall orthogonality or crossed grid

lines creating negative volumes. To improve the quality of such grids, the volume can be

subdivided into multiple blocks after the initial generation with 3DTFI and the interfaces

smoothed with an elliptic PDE solver or VGM. Then these new interfaces can be imported

into the original volume grid from which they came, and the volume grid updated with 3DTFI

between the artificial boundaries created by the insertion of the interfaces. For example, the

sphere-cone grid of the parametric re-mapping exercises is a truncated version of the full

body sphere-cone-flare, illustrated in Fig. 11.1.

Figure 11.1: Full body sphere-cone-flare geometry.
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For the purposes of the explanation of volume grid generation, the I-planes of 21, 101,

241 and 271 will be used to illustrate the effects of the grid being manipulated. These

planes from the initia.1 3DTFI generation of the sphere-cone-flare geometry are illustrated in

Fig. 11.2.

1=21 1=101 1=241 1=271

Figure 11.2: Full body sphere-cone-flare geometry initia.lly generated with 3DTFI.

Close examination of this volume grid reveals that there are less than adequate grid

line characteristics of orthogonality at the wall and negative volumes on the interior near

the flapped portion of the flare. To improve this volume grid the planes of I=51, I=200 and

I=255 were exported to GRIDGEN2D, smoothed and reinserted and the volume regenerated,

using the VGM script above and script 11.2. The resulting grid is illustrated in Fig. 11.3.

Although the grid is by no means ready for CFD computing, the grid exhibits improved

grid qualities because the crossed grid lines in I-plane of 101 are gone, and the orthogonality

near the wall has improved. To further refine this volume grid, the 3DMAGGS code was em-

ployed to generate the nose portion and a flap region to establish better K-lines to use VGM

smoothing techniques. Shown in Fig. 11.4 are the I-planes resulting from these elliptically

generated blocks being inserted into the previous volume grid.

The final grid used for COlnputations, after another set of grid manipulations to insert

the nose and flap regions, a.s well as blend the new grids into the original volume grid, is

illustrated in Fig. 11.5.

NOTE: The extra grid manipulations consisted of the sphere-cone 3dp blending

and a call to the smooth command to improve the grid line slope continuity flom

the 3DMA(4GS generated grid to the original grid from which the zone originated.

9"2



#

# Step 8: (new) Read in the new interfaces and converz them

# to PLOT3D format:

#

read xi51-new.grda gridgen ascii

read xi2OO-new.grda gridgen ascii

read xi255-new.grda gridgen ascii

write xi51-new.g plotSd xyz[9] switch(x,y,z,k,i,j)

write xi2OO-new.g plotSd xyz[lO] switch(x,y,z,k,i,j)

write xi255-new.g plotSd xyz[ll] switch(x,y,z,k,i,j)

read xiS1-new.g

read xi2OO-new.g

read xi255-new.g

#

# Step 9: Insert the new interfaces:

#

set xyz [8,1,51] = xyz [12]

set xyz[8,1,200] = xyz[13]

set xyz [8,1,255] = xyz [14]

#

# Step 10: Regenerate the volume grid:

#

tfi 3d arclength iterations=16 xyz[8,1,1-Si]

tfi Sd arclength iterations=f6 xyz[8,1,51-200]

tfi 3d arclength iterations=16 xyz[8,1,200-255]

tfi 3d arclength iterations=f6 xyz[8,1,255-O]

#

# Step 11: Wrize out the new block:

#

write examplel-intermed.vol plotSd xyz [8, I]

#

# Step 12: Done

#

quit

Script ] 1.2: Zonal regeneration to augment volume generation.
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1=21 I=101 1=241 1=271

J

Figure 11.3: Full body sphere-cone-fla.re geometry, re-genera.ted with 3DTFI a.nd two inter-

mediate fixed surfa.ces to control grid quality.

1=21 I=101 1=241 1=271

Figure 11.4: I-planes being t.ra.cked, after 3DMAGGS genera.tion e_nd VGM insertion of the

nose and fla.p regions.
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1=21 I=101 1=241 1=271

Figure 11.5: Final] full body sphere-cone-fla,re geometry, re-generated with 3DMAGG$ gen-

era,ted zones and VGM smoothing.

95



11.2 Correcting Grid Coordinates

In sonic cases of generating surface a.nd volume grids, regions or entire faces of a. surface or

vohme may be assumed to be flat or planar. During the evolution of a volume grid, these

planar surfaces may be perturbed unintentionally. The VGM code can be used to correct

these surfaces and force them to become planar, by using an extended set of grid intrinsics

coupled with the set colnmand. These extended grid intrinsics include:

• x (xyz [... ] ) to extract the X-coordinate of a grid;

• y(xyz [...] ) to extract the Y-coordinate of a grid; and

• z (xyz [... ] ) to extract the Z-coordinate of a grid.

The following VGM script is an example of how to use these intrinsics:

#

# Create core variables to extract a plane from a grid:
#

allocate xvar[161,1,65]

allocate yvar [161,1,65]

allocate zvar [161,1,65J

#

# Extract the coordinates with intrinsics:

#

set xvar = x(xyz[1,1,,1])

set yvar = y(xyz[1,1,,1])

set zvar = z(xyz[1,1,,1])

Script. 11.3: Extraction of grid coordinates for manipulatiol_s.

These intrinsics are used in conjunction with the set command to extract existing grid data,

converting the physical coordinates into interna.1 variables. As internal variables they can

be manipulated with the blend and set commands to do sonic re-genera.tion and selective

smoothing towards grid generation. For example, to force the Y-coordinate to be zero in the

above example, thereby producing an X-Z symmetry plane, the following VGM script can
be added:
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I set yvar = 0.0
set xyz[l,l,,13 = xvar yvar zvar

i_)

o

Script 11.4: Making an assumed plane, planar.

The last command above instructs VGM to set the physical coordinates of X. Y and

Z for the appropriate grid locations to be the contents of variables xvar. yvar and zvar.

respectively. Using the above construct to reset the physical coordinates of a volume grid.

the internal variables a.re reconverted back to the grid da.ta. One note of caution is due here:

the left hand side of the last set command must haa_e variables with the same physical limits.

and can not be anything other than three internal variables in this construct ti.e. intrinsics

are not allowed). Aside from this. the language construct for changing grid data and thereby

re-evaluating or re-generating grid data can be done easily.

11.3 Straight Line Generation

During the adaption processes with some codes, a redistribution from VGM or the generation

of a grid using the solution to hyperbolic PDE's, one of the 12 bounding edges of a block or 4

bounding edges of a. surface may be corrupted. Such corruption usually requires regeneration

of that edge using various line and curve types including ellipses, cubics, conics and in some

ca.ses straight lines. Though VGM is not designed to handle the former geometry types, the

straight lines are possible through the use of the redist command. Utilizing the linear

ha.sis function construction a.rgument of the redist command a line can be placed between

two points, using any of the distribution functions explained in this manuah To generate a

straight line, simply use the following COlnnland:

redist k-direction linear arclength physical points=9 vinokur(.l,l.)

xyz[l,l,O,l,l-9:0] newblock=yes

set xyz[l,l,O,l,l-9] = xyz[2]

Script 11.5: Straight grid-line genera.tion.

This set of commands will generate a straight line between points I=hnax, J=l and K=I

to 9, add a vinokur distribution with a.n initial cell size of 0.1 and an ending cell size of 1.0
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and placethe new line into the original location from which it wasextracted. This construct
canbe usedto fix a volume grid, generatedby HYPGEN, as illustrated in Fig. 11.6.

:J,.

I=lm_- 4

, _ , _,,,_

Figure 11.6: HYPGEN generated grid fronl a. wall to an outer domain with a. corrupted

block edge.

To fix this grid, a straight line is placed between the I(=t and t(=9 points a.t the exit

of the volume grid on the top symmetry plane. Then the defining face grids are regenerated

with 2DTFI and the volume updated with 3DTFI. using the following script:

redist k-direction linear arclength physical points=9 vinokur(.l,l.)

xyz[l,l,O,l,l-9:0] newblock=yes

set xyz[1,1,O,l,1-9] = xyz[2]

# Re'generate the block faces that use this edge:

tfi 2d arclength xyz[1,1,141-0,1,1-15]

tfi 2d arclength xyz[1,1,0,1-15,1-15]

£fi 3d arclength iterations=t6 xyz[1,1,141-0,1-15,1-15]

\

Script 11.6: Correction of a block bonndary to smooth a grid.

The resulting volume grid is illustrated in Fig. 11.7. As evident by the straight line inserted

into the top back corner of the volume grid, this fix is more than adequate for ('.FD purposes
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Figure 11.7: HYPGEN generated grid fixed with VGM using a straight line generation and

other comn_ands.

as the grid line orthogonality at the wall has been significantly improved and the volume

grid freed of the corrupted defining block edge.

Also notice the trailing edge of the wing. A region about the negative volumes was

regenerated simply by applying 2DTFI to the maximum I-plane and 3DTFI on a small

region encompassing the fixed grid lines. These simple manipulations were added to the

scripts modifying the top of the vehicle, thereby performing all necessary fixes at one time.

11.4 Summary of Generation Capabilities

Although VGM was never designed to do grid generation, the use of 3DTFI, the extended

grid intrinsics and the generation of straight lines can provide a.n alternative to multiple

codes used to generate or fix surface and volume grids. The techniques are simple, but once

again, when combined with other N/GM commands, create a powerful tool to manipulate

existing grids.
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Chapter 12

Tutorials

This chapter contains 6 individual simple operational tutorials, including:

1. Coarsening a volume grid;

2. Decomposing a. single block volume grid into multiple blocks;

3. TFI grid smoothing;

4. Conversion of an inviscid grid to a viscous one;

5. Merging multiple blocks into a single block;

6. Combination of tutorials 3 and 4.

12.1 Tutorial I: Coarsening a Volume Grid

12.1.1 Purpose:

The purpose of this tutorial is to thin out or coarsen a. dense volume grid to an ordered

subset for CFD computing. The coarse grid will be used by CFD solvers to establish the

true domain of the flow field, which is expected to lie within the limits of the existing grid.

Upon adapting the grid to established flow field, this coarse grid can be used as a template

to adapt the fine volume grid.

12.1.2 Steps To Be Used

To coarsen a vohtme grid_ the following steps are used:

1. Read in the volta-he grid ( /VGM/tntorials/ssv001f.g). The file is in PLOT3D, single

block, Fortran Unformatted (binary) style, dimension and type, respectively.

2. Write out the coarse grid to ssv00lf-coarse.g, by writing out every 4 _l, point in the

I-direction, every other point in the .J-direction and every 4 _h point in the K-directiom

using the LAURA code coordinate system.
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These commands are coded into a script and executed either interactively or as a background

process. Once the script has been executed, results must be viewed using appropriate graph-
ics software such as TECPLOT TM or FAST.

12.1.3 VGM Script

The script _o perform this operation is:

This script coarsens a volume grid of unknown size:

Step I: Read in the volume grid into grid system I.

read /VGM/tutorials/ssvOOlf.g plot3d single binary

Step 2 : Write out every 4th I-point, every 2nd J-point and every 4th K-point:

write /VGM/tutorials/ssvOOlf-coarse.g plot3d single binary xyz[l,l, :4, :2, :4]

Step 3: Done; exit VGM.

q uit

Scrip_ 12.1" Coarse grid generation fl'om fine grid definition.

12.1.4 Results

The results of this script are illustrated in Fig. 12.1: Notice that the dimensions of the

original grid are (161 X 129 X :3:3). and by using increments of 4. 2 and 4 for the I-. J-. and

K-directions. respectively, the dimensions of the coarse grid are ,41 X 65 X 9/. The wall

features are preserved 1)3, the coarse grid even though it contains significantly fewer points.

This coarse grid can be used to reduce the time required to establish a CFD simulation on
this vehicle.
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0 riginal Coarsened

Figure 12.1: Results of thinning out a dense volume grid.

12.2 Tutorial II: Decomposing a Single Block Volmne

Grid

12.2.1 Purpose:

Tile purpose of this tutorial is to decompose a vohune grid KOln a massive single block into

a set of multiple blocks. By doing so the grid becomes more manageable and applicable to

parallel processing.

12.2.2 Steps To Be Used

To decompose a single block into multiple blocks, the following steps are used:

1. Read in tile volul_le grid (/VGM/tutorials/ssv001f.g). The file is ill PLOT3D, single

block, Fortran Unformatted (binary) style, dimension and type, respectively.

2. Allocate internal blocks for 4 individual grids and extra.ct the volume grids represented

by:

• Block 1: I=1-81, J=1-12.9, 1(=1-33;

• Block 2: I=81-161, J=1-69, 1,2=1-:3:3;

• Block 3: I=81-161, J=69-87, K=1-33; and

• Block 4: I=81-161, J=87-129, K=1-33

:3. Combine the blocks into a new grid set.
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4. VV'rite out the new multiple block decomposition to ssv001f-decomp.g.

12.2.3 VGM Script

The script to do this tutorial should be:

#

#

#

#

#

read /VGM/tutorials/ssvOOlf.g plot3d single binary

#

#

#

#

#

#

#

This script decomposes a volume grid into 4 blocks:

Step l: Read the volume grid into grid system I (xyz[l]).

Allocate internal grid blocks and decompose the domain:

Grid System 2, block I will contain new Block I.

Grid System 3, block 1 will contain new Block 2.

Grid System 4, block I will contain new Block 3.

Grid System 5, block i will contain new Block 4.

Step 2 :

allocate xyz [81,129,33]

allocate xyz [81,69,333

allocate xyz [81,19,33]

allocate xyz [81,43,33]

set xyz[2] = xyz[l,l,1-81]

set xyz[3] = xyz[l,l,81-0,1-69]

se_ xyz[4] = xyz[1,1,81-0,69-87]

set xyz[5] = xyz[l,l,81-0,87-O]

#

# Step 3: Combine the new blocks into a set for writing the decomposition:

#

combine xyz[2] xyz[3] xyz[4] xyz[5]

#

# Step 4: Write the decomposed volume grid:

#

write /VGM/tutorials/ssvOOlf-decomp.g plot3d multiple binary xyz[6]

#

# Step 5: Done; exiz VGM.

#

quit

Script, 12.2: Domain decomposition fl'om a single block topology.
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NOTE: Remember that the Grid System number alwa.ys increments upon the

a.llocation of a. new grid block or combination of multiple blocks.

12.2.4 Results

The results of this script are illustrated in Fig. 12.2:

Original 4-Blocks

12.3 Tutorial III: TFI Grid Smoothing

12.3.1 Purpose:

The purpose of this tutorial is to smooth a. volume grid with either poor grid lines or nega.tive

\'olumes resulting froln volume generation or grid a.daption. In this example, parts of the

interior grid and a portion of one of the grid boundaries (I=161) have been corrupted. Two

dimensiona.1 TFI will be initially used to smooth the grid boundary the 3-D TFI will be used

to repair the grid interior. The method, as detailed in chapter 9 section 9.2, offers a possible

"quick fix" to problem regions.

12.3.2 Steps To Be Used

To smooth a volume grid using TFI, the following steps are used:

1. Read in the volume grid ( /VGM/tutorials/ssv001f.g). The file is in PLOT3D, single

block, Fortran Unformatted (binary) style, dimension and type. respectively.
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2. Modify the regions of:

• Zone 1: 1-161. J-34-52. K-1-35: (Grid boundary smoothing using 2-D TFI)

• Zone 1: 1-141-161. J=34-52. K-1-35: (3-D TFI)

• Zone 2: 1-81-161. J-104-129. K-1-33: 13-D TFI) and

• Zone 3: 1-106-115. J-36-98. K-1-23. (3-D TFI)

3. Write out the new smoothed volume grid ssv001f-tfi.g.

12.3.3 VGM Script

The script to do this tutoria] should be:

#

# This script smoothes a volume grid using TFI:

#

# Step 1: Read in the volume grid

read /VGM/tutorials/ssvOOlf.g plot3d single binary

#

# Step 2a: Smooth Zone i (I=161, 3=34-52, K=I-15):

tfl 2d arclength xyz[l,l,O,34-52,1-15]

#

# Step 2b: Smooth Zone i (I=141-161, 3=34-52, K=I-15):

t_ 3d arclength iterations=f6 xyz[l,l,141-O,34-52,1-15]

#

# Step 2c: Smooth Zone 2 (I=81-161, J=I04-129, K=1-33):

tfi 3d arclength iterations=f6 xyz[l,l,81-O,104-O]

#

# Step 2d: Smooth Zone 3 (I=i06-I15, 3=36-98, K=1-23):

t_ 3d arclength iterations=f6 xyz[l,l,106-115,36-98,1-233

#

# Step 3: Write the smoothed volume grid:

write /VGM/tutorials/ssvOOlf-tfi.g xyz[l]

#

# Step 4: Done; exit VGM.

quit

Script 12.3: Grid smoothing using various TFI dimensions.
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12.3.4 Results

Tile resultsof this script are illustrated in Fig. 12.3:

I=161 I=151 I=121 I=109

Figure 12.3: Results of smoothing a volume grid with TFI.

This script perforn_s many operations, and offers a glimpse into what can be clone in

the VGM Kame work. First, TFI is not limited to two o1" three-dimensions, only; both can

be clone in a single script as is typically the ca.se. Second, to smooth a zone that abuts

to a boundary, may require the generation of that boundary with TFI or other forms of

smoothing, as clone in zone 1. If the boundary is better than the volume grid, it is held

fixed while the zone or volume is re-generated, as done in zone 2. Third, just because a zone

has been re-generated with TFI does not mean that more precise zones internally cannot be

re-generated. This offers the flexibility of establishing good boundaries and still providing

enhanced smoothing, as done in zone 3.

12.4 Tutorial IV: Conversion of an Inviscid Grid to a

Viscous Grid

12.4.1 Purpose:

The purpose of this tutorial is to convert a grid used for inviscid computations into one

that is suita.ble for viscous computations. Inviscid grids typically have fewer points than a

viscous grid because the shear and viscous effects are not being modeled. By comparison,
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to do a viscouscomputation, morepoints are neededto resolvethe viscouseffectsincluding
the packing of points near the wall to capture gradients in a boundary layer. To convert
an inviscid grid to a viscousgrid, the grid dimensionsusually have to be increasedin the
direction of the strongestgradients, typically from the body to the outer boundary,and the
spacinga.t the wall must be reduced.

12.4.2 Steps To Be Used

To convert an inviscid grid into a viscous one, the following steps are used:

1. Read in the volume grid (/VGM/tutorials/ssv001f.g). The file is in PLOT3D, single

block, Fortran Unformatted (binary) style, dimension and type, respectively.

2. Increase the body to outer domain dimension (K) from :3:3 to 65 points and cluster

points towards the wall (K=I) to capture boundary layer gradients.

3. Write out the new multiple block decomposition to ssv001f-decomp.g.

12.4.3 VGM Script

The script to do this tutorial should be:

#

# This script converts an inviscid grid into a viscous one:

#

# Step I: Read in the volume grid

read /VGM/tutorials/ssvOOlf.g plot3d single binary

#

# Step 2: Increase the K-dimension and cluster points near the wall at K=I:

redist k-direction spline arclength parametric points=65 vinokur(.l,l.)\

xyz[l] newblock=yes

#

# Step 3: Write the new volume grid:

write /VGM/tutorials/ssvOOlf-redist.g plot3d single binary xyz[2]

#

# Step 5: Done; exit VGM.

quit

Script 12.4: Conversion of inviscid grid to viscous grid.
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12.4.4 Results

The results of this script are illustrated in Fig. 12.4:

1=151

'iii '

Inviscid

\

\

\

\

\

\

\

\

1=109

Viscid

Figure 12.4: Results of converting a.n inviscid grid to a. viscous one.

As expla.ined in section 8.1, the parametric doma.in of the redistribution comma.nd

enables the modifying of tile number of grid points in one direction, while ma.inta.ining the

overa.tl grid line character of the source volume grid. This capability is exploited here. as

well as the capability to scale the cell sizes at a boundary using the vinokur function with
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scalingpercentagesasopposedto physicalcell sizes.In this tutorial, the cell sizesat the wall
were scaleddown to 10%of their current values,while the outer boundary cells were kept
at their current values. Furthermore,by increasingthe number of points from 33 to 65, the
density of grid points from the wall to the outer boundary variesmore smoothly than if the
number of points were kept constant. Useof this techniquecan reducethe time to generate
viscousgrids for computationsabout complexgeometries. Initiating a viscousflow solution
with inviscid computations which are conservative(i.e. Euler computationswhich placethe
outer boundary farther from the wall than required), can ensure proper flow capture, an
assumptionof numerousCFD algorithms.

12.5 Tutorial V: Merging Multiple Block Decomposi-

tions Into a Single Block Volume Grid

12.5.1 Purpose:

The purpose of this tutorial is to convert the decomposition of a volume grid from multiple

blocks into a single block. This may be advantageous for the manipulation of volume grid

decompositions that have too many blocks to be tracked, or the reducing of the total nmnber

of blocks for a computation.

12.5.2 Steps To Be Used

To convert a multiple block volume grid into a single block, the following steps are used:

1. Read in the volume grid (/\/GM/tutorials/ssv001f-decomp.g) frolTl tutorial 2. The

file is in PLOT3D, multiple block, Fortran Unformatted (binary) style, dimension and

type, respectively.

2. Allocate one large volume grid to contain the 4 individual grids, and place them ac-

cordingly.

3. Write out the new single block decomposition to ssv001f-merge.g.

12.5.3 VGM Script

The script to do this tutorial is illustrated in script 12.5.

12.5.4 Results

Since the resulting volume grid is the sa.me as in Tutorial 2, see Fig. 12.2.
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This script converts a multiple block decomposition into a single block:

Step i: Read in the volume grid of Tutorial 2:

read /VGM/tutorials/ssvOOlf-decomp.g multiple

Step 2: Allocate internal grid block to contain all 4 blocks:

allocate xyz [161,129,33]

set xyz[2,1,1-81] = xyz[l,l]

set xyz[2,1,81-O,l-69] = xyz[l,2]

set xyz[2,1,81-O,69-8Y] = xyz[1,3]

set xyz[2,1,81-O,8Z-O] = xyz[l,4]

Step 3 : Write the single block volume grid:

write /VGM/tutorials/ssvOOlf-merge.g plot3d single binary xyz[2]

#

# Step 4 :

#

quit

Done; exit VGM.

Script 12.5: Conversion of multiple block decompositions to a single block.
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Chapter 13

, • ,i__

Command Index

This chapter provides a comprehensive listing of all VGM commands and their individual

syntaxes. This should be used for a reference only; the explanation of all the comznands are

in the previous chapters.

13.1 Input and Output

[read file:name { type} {.style:} {format} { dimension} ]

where,

filename is the file name of the data to be read. The file name rules are a.s
follows:

1. Limited to 60 characters in length;

2. Can not be identical to read arguments;

:3. (:an not contain ['s, ]'s, \'s, o1" commas;

4. Are ca.se sensitive;

5. May contain directory placement characters (./, ../and ,-_)

format is the data format, ascii, unformatted, or binary. <default=unformatted>

.style is the style the file is in; gridgen, plot3d, laura or tecptot TM. <default=ptot3d>

type is the type of data in the file; gridonly, solution(ngsys), or curve. <default=gridonly>

NOTE: The solution(ny.sy.s ) option requires a grid syst.em number

to attach the data to, to ensure there is one va.lue for each grid

point in each block. The variables loaded in this lnanner will have

variable names of the form:

( varname_.nNN_b lkBBB )

where the NN represents the Grid System nttmber and the BBB

represents the block number.
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dimension represents the number of blocks in the grid set, single or multiple.

< default =single>

where,

(write filename {type} {style} {format} {dimension} xyzE...3 {orientation})

z

filename is the file name of the data to be written. The file name rules are

identical to the readcommand.

format is the data format, ascii, unformatted, or binary. <default=unforlnatted>

style is the style the file is in; gridgen, plot3d, laura, or tecplot(variables).

<default=plot3d>

NOTE: The variables specifiable in the tecplot(variablcs) option

include the physical coordinates (X, Y, and Z), the COlnputational

coordinates (I, J, and K), and array and constant variables in the

form:

tecplot(x,y,z,i,j,k,dsj i))

type is the type of data in the file; gridonly, solution(ngsys), or curve. <default=gridonly>

NOTE: The solution(variables) option requires a set of variables,

similar to the tecplot (...) argument.

dimcnsio_ represents the nulnber of blocks in the grid set, single or multiple.

<defa.ult =single>

xyz[...] is the block or region or set of blocks to be written as a data set.

NOTE: The block limits may be used in this command to select

a range.

orientatioT_ is the physical and computational orientation of the grid. It is

specified with the following argument:

[switch(x,y,z,i, j ,k))

where the physical coordinates are specified in the order to be written, and

same with the computational coordinates.

NOTE: The oricntatio_) basically changes the entire reference

frame of the grid written. Beware. no check is done to determine if

a left handed coordinate system is written.
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13.2 Distributions

where,

{copydist interpolant basis direction xyzt[..,] xyz2[..,] )

interpolant is the parameterization to be used for the copy. The possible values

for the argument are arclength or normarc.

basis is the interpolation basis to be used. The possible vahes can be linear

or spline.

direction is the direction to copy the grid-point distributions, one for each com-

putational index. The possible values are I-direction, J-direction, or

K-direction.

xyzl[...] is the source grid block to get the grid-point distributions.

xyz@..] is the destination grid block containing the grid-lines to be modified.

redist domain basis directio_ interpoIants points=# distribution_fm_ctio_ newblock= xyz[...] ]

where,

domain is the physical or COlnputational domain to be used for the redistribu-

tion. The possible values for the argument can be physical or parametric.

basis is the interpolation basis to be used. The possible values can be linear

or spline.

direction is the direction to redistribute the grid-point distributions, one for each

COlnputational index. The possible values are I-direction, J-direction,

or K-direction.

iT)te:rpoIa.nts is the type of parameterization to be used. The possible values are

arclength and normarc (i.e. normalized arclength).

poiT_ts=# is the number of points to be generated as a result of the redistribu-
tion.

distribiztion_function this is the function to be used for the redistribution. The

functions possible are:

1. equal

2. vinokurl4( /k._b_:_i.,_,/k_%_,_d)

4. vin2cub(Asb_gi_,A.s_d,ratio)

5. sin

6. -sin

7. COS
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8. l aura(ASbegi_,S,c_x,fstr,epO,fsh)
9. :_unc(.filcname)or func(array_variable)

ncwblock= specifies if the results of the redistribution axe to be stored in a new

grid system and grid ])lock. Possible values are yes or no.

xyz[...] is the region of a grid ])lock to be redistributed distributiolas.
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13.3 Variable Manipulation

where,

allocate varname[I-limit, J-limit, K'limit] )

varname is the array variable name to store computed grid parameters. The

array variable name rules are as follows:

1. Limited to 60 characters in length;

2. Can not be identical to grid parameters (intrinsics);

3. Can not contain ['s, ]'s, \'s, o1" commas;

4. Are not case sensitive;

5. Computational limits may not exceed the grid-point limits of VGM.

I-limits First Computational Index Limit

d-limit.s Second Computational Index Limit

K-limit.s Third Computational Index Limit

blend

where,

varname[I-limit.J-limit.K-limit] dirc, ction dimension domah_ interpolation= {xyz[...]} )

varname is the core variable containing an arclength parameter to be blended

for smoothing a grid.

directio_ is the direction to blend the arclength parameters. The possible values

are I-direction, J-direction, or K-direction.

dime:nsion is the dimension of the blend. This Call be either:

1. ld - single dimension

2. 2d - two dimensions

3. 3dp - two dimensions but planar by stepping through the third dimen-
sion

4. 3dw - three dimensions

domai_ is the physical or computational domain to be used for the blending.

The possible values for the argument can be physical or parametric.

NOTE: If the parametric dolnain is used. the parameterization

of the domain being blended is based on the computational coor-

dinates, and the xyz [... ] need not be specified. ('onversely, if the

physical domain is to be used, the xyzF...] argument m._tst be

present and mu.*t have the same dimensions of the variable being
blended.
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i_terpolation= this is the interpolation scheme to be used to blend fFOH1 one

know index to another. The schemes possible are:

1. linear

2. elliptic is

.3.spline

4. tfi

5. larcs(#,#,#) 19

NOTE: The linear, elliptic, and spline interpolationschemes

are only a.vailable in one dimensional interpolation; the last two are

for 2d, 3dp and 3dw interpolation.

zyz/...] is the region of a grid block to be used for computing arclength blending

functions if the do'mai_ is physical.

set varn, am, el[I-lim, it,J-limit, K-limil] = varnam.e2[Llim.it, J-limit,K-Ii'mit] ]

-or-

set varnamc l[I-limit,J-limit,K-Iimit] = ds*(xyz[ngsys _blk, I-li'm, it, J-limit, K-limit]) ]

where,

varTmm.e7 is the destination array variable name to store computed grid param-

eters or other variables.

var_mmc2 is the source arras_ variable or intrinsic (ds*) to be equa.ted or com-

puted, respectively. The only rule that must be followed is the computa-

tional region of each variable or intrinsic in the equate must be the same.

I-limits First Computational Index Limit of region to be set

J-limits Second C,omputational Index Limit of region to be set

K-limits Third Computational Index Limit of region to be set

dsia =

dsja =
dska =

dsin =

dsjn =

dskn =

Arclength function in I-direction

Arclength function in J-direction

Arclength function in K-direction

Normalized arclength function in I-direction

Normalized arclength function in J-direction

Normalized arclength fnnction in I_Ldirection
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13.4 Block Manipulators

where,

allocate Xyz[I-limit,J-limit,K-limit] I

xyz is a. volume grid block, using the standard data structure.

I-limits First Colnputational Index Limit

J-limit.s Second C,omputational Index Limit

K-limits Third Computational Index Limit

NOTE: The gridsystem number and block number are not included in the

allocation of the new grid block; only the computational limits are required.

Also, this command will cause the grid system maximum to increase by 1 each
time it is used.

where,

(combine xyz[ngsysi, nblkl] xyz[ngsys2, nblk2]

xyz is a source grid block. Subsequent xyz's are other blocks to be added. There

are some rules tha.t can be used t.o govern which grid blocks a.re used:

1. xyz [ngsys3 will get all the blocks in grid system ngsys

2. xyz [ngsys, nblk_begin-nblk_end : nblk_J.ncrement-1 will get. those blocks

that are referenced in the range from nblk_begin to nblk_end by nblk_increment

NOTE: This command will cause the increasing of the grid system maximum

by 1 each time it is used.

set xyz[ngsys, nblk, I-limit,.]-limit, K'limit] = xyz[ngsys, 7_blk. I-limit, J-limit,K-limit] )

-or-

set xyz[ngsys, nblk',l-limit.J-limit, K-limit] = x-variable y-variable z-variable )

where,

xyz on the left hand side is the destination block to store the results fronl

extracting or merging grid blocks.

:ryz on the right hand side is the source block to be extracted or merged. The

only rule that must be followed is the computational region of each grid

block in the equate must be the same.
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I-limits First Computational Index Limit of region to be set

J-limits Second Computational Index Limit of region to be set

K-limits Third Computational Index Limit of region to be set

x-variable is the internal variable containing the X-coordinate of the block to be
set

y-variable is the internal variable containing the Y-coordinate of the block to
be set

z-variable is the internal variable containing the Z-coordinate of the block to be
set
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13.5 Grid Generation

smooth dimension direction definition:type order distribution_function xyZ[..J boundary_condition _

where,

dimension is the dimension of the smoothing. As implemented, this can only be

ld. The 2d or 3d capabilities will be added to VGM in the future for PDE

solving.

direction is the direction to smooth the grid. The possible values are I-direction,

J-direction, or K-direction.

d@'nition_lype determines whether the defining grid that describes a surface or

volume retains the current shape or is permitted to change (similar to the

subface parametric mode of GRIDGEN ). The possible values are fixed or

general.

NOTE: Only the general option is implemented.

order is the degree to which the derivatives are computed in a specified direction

of smoothing. It is specified by order=# where #+1 points a.re used to

construct the necessary derivatives.

distribtttio__functio_ this is the function to be used for the smoothing. The

functions possible are:

1. equal

O van0kur (2X._b_g._,A._.,_._)

3. cub i c( _Sbegi,,_,_e,nd )

4. vin2cub(A.sb_i_,As_d,ra.tio)

5. sin

6. -sin

7. COS

t

S. laura( _%_gi.,_,S,_._,fstr,epO,fsh )

9. func(.fi/e_amc) or func(array_variable)

NOTE: To retain the existing distribution or existing cell sizes for

the distribution functions tha.t require control pa.rameters, include

the argument kee:pctrrrcnt with the smooth COlumand.

xyz[...] is the region of a grid block to be smoothed.

botm.dary_condition.s are specified as Dirichtet or fixed grid 1)oundary conditions.

The possible values are specified by dirichlet= (...) and the control pa-

rameters are dependent on the direction of smoothing; if smoothing is to

be done in the I-direction, Dirichlet BC's are possible at jmin, jmax, kmin.

and kmax.
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NOTE: If oneof the Dirichlet BC's is missing,that edgewill have
a Neumannboundary condition in which the grid will besmoothed
at that edge.

where,

[tfi di._ension domain { iterutions=} xyz[.. ] )

dirne_sioT_ is the dimension of the TFI. This can ])e either 2d or 3d.

do_neiT_ is the physical or computational domain to be used for the TFI inter-

polants. The possible values for the argument can 1)e physicat or parametric.

ite'ratioT_s= this is the number of iterations to be performed to optimize the

interpolants in three-dimensional TFI; 16 is sufficient.

NOTE: This argument is only necessary when three-dimensional

TFI is performed.

xyz[..._ is the region of a grid block to 1)e regenerated.
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13.6 Programming Language

/

This command is used to end all VGM scripts. Each script must have one.

command is also augmented by stop, exit, halt, end, bye, and by.

This

This command is used to identify comment lines. It must be the beginning character on
a. line.

This command is the line continuation marker. If a command and its arguments can not

fit on a single 80 character line, the continuation marker allows the remaining arguments to

he placed on the next line.
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Chapter 14

Trouble Shooting and Errors

Since the VGM code is more of a language, there are numerous places that error checking

occurs. Though not inclusive of all the possible errors that can be detected, the VGM code

does identify as many as possible. This chapter lists all the possible errors that are detected

and explains each.

The VGM code also writes a. debug file, generated based on the UNIX process identifi-

cation number (PID). The construct of the file name is:

VGM_debug-######

where, the _'s represent the PID.

The next sections are arranged in order of specifics:

Language Errors -

Command Errors -

Redistribution Errors -

Input and Output Errors -

errors resulting from general language a.nomalies,

including synta.x and spelling.

unique errors resulting from arguments of a specific command.
errors that are common to the redist and smooth commands.

errors that result from read and write commands.

There is no particular order to the errors listed in each section. Just the error and the

meaning of it with respect to the command or commands.
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14.1 Language Errors

*** ERROR: Number of consecutive lines skipped >

*** Issuing QUIT command sequence.

tO.

The maximum number of blank lines allowed in VGM is 10. To use any more, causes this

error to be displayed, and the code will gracefully stop. This was implemented because if

the script does not have an finishing command such as quit the end of file is re-read and

re-read.

*** ERROR: Domain not specified (parametric or physical)!

*** line:iline cmdline(iline)

Those commands that require a domain argument must have that argument on the comma.nd

]ine or this error will result. Usually the user has forgotten to add this argument.

*** ERROR: Type of interpolants not specified!

*** Command Line: cmdline(icmd)

The copydist redist and smooth commands require the bridging function to be used to

generate the basis curves for all interpolations.

*** ERROR:

***

*** Command Line:

*** ERROR:

Interpolation method not

cmdline(icmd)

-or-

Multiple occurrences of

*** Command Line: cmdline(icmd)

specified.

interpolation methods found.

The interpolation basis type is required for all comlna,nds requiring the computation of

arclengths to form basis functions for redistribution. The possible types are linear or

spline.
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*** ERROR: Incorrect limit specifications:

*** Specification: cmdpart(nuse)

The limits chosen for a grid block or an array variable ha.ve been exceeded. Check the limits

of these storage types.

*** ERROR: Direction entered is not available:

*** Direction: cmdline(icmd)

Most commands require a direction of interpolation, computation or blending. The possihle

types are i-direction, j-direction, or k-direction. Any other direction chosen will

result in this error message.

*** ERROR: Type of arc-length not specified.

*** IARC=iar

*** Command Line: cmdline(icmd)

-or-

*** ERROR: Multiple occurrences of <arclength> found.
*** IARC=iar

*** Command Line: cmdline(icmd)

Each conlnlaild tha.t uses a.n a.rclength function can utilize a physical or computational

domain dependency on the arclengths, except the smooth command. Those commands re-

quiring the computa.tion of the arclength need to have the type specified. The possible values

are arclength for the physical domain, and parametric for the computa.tional domain.

*** ERROR: Incorrect command on line icmd!

There a.re only 12 commands, including # for comment lines.

command requested.

Check the spelling of the
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*** ERROR:File not found!

The file in a read or redistribution command does not exist.

n&l-ne.
Check the spelling of the file
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14.2 Manipulation Command Errors

14.2.1 ALLOCATE Command

*** ERROR: Core Variable chosen does not

*** cmdpart(ivar)

***

exist:

This should be fairly straight forward. If you assumed an array variable exists and use it in

specifying block limits, and the variable has never been defined via. an allocate command,

this error will identify which argument of the current command has that undefined variable.

Check the spelling of the array variable and the spelling of the variable used in it's allocation.

14.2.2 BLEND Command

POLE identified,

J=

K=

switching to

This warning tells the user that a. singularity has been detected on a face or in a volume grid

that has requested the computing of the physical arclength parameter. This waring comes

from the blend command, where the processes is trying to establish an arclength parameter

space. To account for the singularity, the code first changes the index at which it computes

the arclength, to search for a non-singular grid line. If it does not, the physical domain

will be changed to parametric domain.

*** ERROR: Blending not performed.

Direction and limits are not conducive:

For direction, # to blend < direction MAX

The increment on the direction of the blend command produces intervals that are not

equal To properly blend multiple regions, the intervals resulting from the limits in a one
-t edimensional direction blend must be equal. (h_ck the increment.

*** ERROR: ID Interpolation not possible with the following method:

\¥hen blending a variable in one dimension, the TFI and LARCS blending types are not

allowed. This error can result from either requesting a non-one-dimensional interpolation

type, or a. syntax error in the blending type.
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*** ERROR: Dimension of blending/interpolation not

*** Command Line: cmdline(icmd)

specified!

The blend command requires the type of blending to be used, specified with the interpolation=

argument.

*** ERROR: Extrapolation can not be done!

*** X(1)=x(1) X (Idim) =x (idim)

*** u(J)=u(j>

This error results fron] using the elliptic interpolation type for the blend command. If

the limits of the blend require extrapolation beyond the the limits of available data, elliptic

extrapolation can not be done, only linear extrapolation is possible. Check the limits of the

array variable and the arclength domain to be used if and only if the physical domain is in

I_ISC.

/

*** ERROR: Not enough values to use for interpolation!

Number of values required: 2

Number of values given: n

When using the linear or elliptic interpolation types in the blend command, a.t least

two data points have to be used, a beginning and ending point. This error usually results

froln choosing the increment of the blending zones to be too large. Check the limits of the

arras _ variable and the arclength dolnain to be used if and only if the physical domain is in

use.

*** WARNING: No values need to be interpolated.

', L

When using the linear or elliptic interpolation types in the blend command, a.t least

one point should be interpolated. This error usually results from choosing the increment of

the blending zones to be too small. Check the limits of the arras _ variable and the arclength

domain to be used if and only if the physical domain is in use.

*** ERROR: Input abscissas out of order.
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When using the linear or elliptic interpolation types in the blend command, the de-

pendent variable has to be in order, but the independent can vary wildly. This error usually

results from crossed grid lines being chosen for a particular manipulation. Check the grid.

*** ERROR: Volume identified for 2D manipulation!

LAflCS interpolation type is only available for 2d and 3dp blending. A volume zone has

been requested, which can not be blended with LARCS. Check the interpolation type or the

dimensionality of the blend command.

14.2.3 COMBINE Command

*** ERROR: Current combination of blocks will exceed the available

block limits!

Maximum Blocks: limblk

Blocks Needed: mxblkm + delmblk

The combine command works by increasing the block reference list by a specified number of

blocks, given in the combine command, instead of making duplicate copies of a block. The

new blocks placed in the reference list are done so by noting the counters to the positions in

the physical coordinate arrays. This error results if the number of blocks to be duplicated
ca.uses the maximum number of blocks in the current VGM execution to exceed the ma.ximum

number of blocks available to the code.

14.2.4 COPYDIST Command

*** ERROR: Incorrect destination grid limit specifications:

***

*** Specification: cmdpart(nuse)

-or-

*** ERROR: Number of sources does not match

*** number of destinations:

*** INDEX Source Dest inat ion
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The copydist commandrequires the number of destination grid lines to be identical to the
number of sourcegrid lines. If this is not true, this error messagewill appear. Check the
limits in the cross-directionto the direction of the copy (i.e. if the I-direction is the copying
direction, the cross-directionsareJ and K).

##

** POLE identified in basis.

** Resulting points will have basis values.

** O=j

K=k##

-or-

##

** POLE identified in basis.

** Resulting points will have basis values.
** l=i

K=k##

##

-or-

#,

** POLE identified in basis.

** Resulting points will have basis values.
** I=i

** J=j

The copydist command will identi_ _ pole boundaries in the direction chosen for the desti-

nation grid. If a pole boundary exists the resulting grid will not be changed from its original

positions. This is just a warning to tell the user that a switch of operations has been done.

14.2.5 REDIST Command

###

*** ERROR: Incorrect New Block specifier:

###

*** cmdpart(iblk)

This error can be produced by the redist and set commands. For tile redist comnaand, the

only two answers to the newblock= argument are "yes" and "no", and any thine else will

generate this error message. The set COlmnand uses this error message to tell the user that

you can not set a. grid block equal to a single array variahle. The set has to he to another

grid block.

###

*** ERROR: Number of new points not specified!
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*** Command Line: cmdl ine (icmd)

In the redist command, the number of points to be placed along the basis curves must be

specified, with the points= argument.

*** ERROR: No new block specifier conflicts

*** with other inputs.

*** Implied condition: ITOTAL=NEWPTS

*** ITOTAL=itot NEWPTS=',newpts

-or-

*** ERROR: No new block specifier conflicts

*** with other inputs.

*** Implied condition: JTOTAL=NEWPTS

*** JTOTAL=',jtot,' NEWPTS=',newpts

-or-

*** KTOTAL=',ktot,

ERROR: No new block specifier conflicts

with other inputs.

Implied condition: KTOTAL=NEWPTS

' NEWPTS=',newpts

The number of points specified in the direction of a redistribution does not match the number

of points already in that direction for the limits chosen in the grid block specification. This

is conflicting with the non-newblock specification; so the manipulation is not done. Check

the limits of the grid block to be redistributed and the number of new points to be placed

a.tong that grid line; if these two limits are not identical this error results.
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14.2.6 SET Command

** This feature is not available.

** It can be done by:

** allocate xvar[...]

** set xvar[...] = 0.0

** set xyz[i] = xvar y(xyz[13) z(xyz[i])

-or-

** allocate yvar[...]

** set yvar[...] = 0.0

** set xyz[1] = x(xyz[l]) yvar z(xyz[1])

-or-

** allocate zvar[...]

** set zvar[...] = 0.0

** set xyz[l] = x(xyz[l]) y(xyz[l]) zvar

The %ature being requested is to place a grid intrinsic on the left ha.nd side of the equa.1 sign

in the set command. This is not allowed. To set a single coordina.te of a. grid block to a

number, the code gives tile user 3 different command sequences.

*** ERROR: Trying to assign a temporary variable

*** more than one value.

*** TEMPVAR = ctmpv(ntmpvar)(l:ncpertmpv(ntmpvar))

Temporary variables ca.n only have one va.lue. To try to set multiple va.lues to a. consta.nt is

impossible. 1Remember that tempora.ry variables are consta.nts in VGM.

*** ERROR: Core variable value type unrecognizable.

*** CMDPART=cmdpart(4)

The capa.bility to a.ssign a. consta.nt value to a.n a.rray va.riable exists, but. the constant ha.s to

be either a va.riable or a number. This error will result, if the constant is not. another a.rray

variable, constant, or a number. Check the spelling of the varia.ble on the right hand side.
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*** ERROR: General Math not

*** cmdline(1)

allowed:

When using the set command, general equations of math are not allowed. The only types

of values that can be set are constants, array variables, grid blocks and intrinsics. Each can

have a "-" sign in front of the value, but that is all. This error can also be given if the

variable or value on the right hand sign is not one of the possible values or if it is misspelled.

*** ERROR: No match of limits can be found:

*** cmdline(i)

The set command requires the indices on the left to match the indices on the right of the

equal sign for block manipulations such a.s grids and array variables. If the limits do not

match, one side does not have enough memory to be equated to the other.

14.2.7 SMOOTH Command

*** ERROR: Number of points to be used for ID vector construction _

*** not specified.

*** Command line:

*** cmdline(icmd)

\¥hen smoothing a. grid with the hermite vector interpolation, the order of the vector needs

to be specified with order=#. If not this error will result from that argument not on the

command line.

*** ERROR: Dirichlet boundaries not specified.

*** Command line:

*** cmdline(icmd)

When smoothing a grid with the hermite vector interpolation, the boundary condition ar-

gument (dirichlet= (...)) needs to be on the command line. If the user does not want

any boundaries held fixed, the argument still has to appear, but no control words are to be

placed inbetween the parentheses.
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** WARNING: Distribution problems detected.

** Locations written to fort.8 and fort.20

The vinokur and cubic distribution functions may not work with the specified control

parameters. This can produce NaN or infinity for results. If this happens, try changing the

limits of the smoothing or the sizes of the beginning and ending cells. Also check the length

to which the cells are being applied. There may not be enough distance to accolmnodate

the cell sizes or there may be too much.

14.2.8 TFI Command

*** ERROR: Number of 3DTFI iterations not specified!

*** Command Line: cmdline(icmd)

To do three-dimensional TFI, tile number of optimization iterations needs to be specified

with the iterations= argument. In two-dimensional TFI, there is no optimization.
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14.3 Redistribution Errors

ERROR: Surface and redistribution

Surface:

Itot=itot

Jtot=jtot

Ktot=ktot

Control Variables: <vinokur & cubic>

Ltot(DSB)=Id_dsb Mtot(DSB)=md_dsb

Ltot(DSE)=id_dse Mtot(DSE)=md_dse

control variable limits do not match: _

Control Variables: <vin2cub>

Ltot (DSB)=id_dsb Mtot (DSB) =md_dsb

Ltot (DSE)=id_dse Mtot (DSE) =md_dse

Ltot(RATIO)=id_ratio Mtot(RATlO)=md ratio

Control Variables: <laura>

Ltot(DSB)=Id_dsb Mtot(DSB)=md_dsb

Ltot(DSE)=Id_dse Mtot(DSE)=md_dse

Ltot(FSTR)=id_fstr Mtot(FSTR)=md fstr

Ltot(EPO)=id epO Mtot(EPO)=md_epO

Ltot(FSH)=id_fsh Mtot(FSH)=md fsh

Control Variables: <vin2cub>

Ltot(NEWPOINTS)=Id_junk Mtot(NEWPOINTS)=md_junk

<<< AND/OR>>>
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*** JTOT != LTOT -or- KTOT != MTOT

*** ITOT != LTOT -or- KTOT != MTOT

*** ITOT != LTOT -or- JTOT != MTOT

When specifying the control parameters for a distribution function argument in the redist

and smooth commands, if arrays are used, each array used as a control parameter has to

have the same dimensional limit in the cross-directional indices. Note that each distribution

function has different control parameters that are checked; hence the extent of the above

error message. The code will only print out the message that identifies the function chosen.

*** ERROR: Cross-direction limits of core variable do not match grid limits:

*** Jtot=jtot Mtot=mtot

*** Ktot=ktot Ntot=ntot

-or-

*** Itot=itot Ltot=Itot

*** Ktot=ktot Ntot=ntot

-or-

*** Itot=itot Ltot=ltot

*** Jtot=jtot Mtot=mtot

When specifying the control parameters for the distribution function a.rgulnents of the re-

dist and smooth commands, the index limits of the fa.ce or point identified by the cross-

directional indices to the direction of the redistribution must match the index limits of the

array or constant variables. If there is no match of these limits, the code can not perform the

redistribution because there is not enough data for the chosen function. This error usually

results from indices being incorrect in the grid block specifier, or misspelled variable name

or even an undefined variable. The latter is more difficult to track because an allocate may

ha.re created a misspelled array variable. Check the indices of all variables, and grid blocks

being referenced and check the dimensions.

*** ERROR: Distribution function not found.

The redist a.nd smooth commands require a distribution function. If one is not selected,

this error message will appear.
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*** ERROR: Core Variable chosen and Block limits do not match:

*** Block Limits:

*** IDIM=idima(nblku)

*** JDIM=j dima(nblku)

*** KDIM=kdima(nblku)

-or-

*** Itot=itot

*** Jtot=3tot
*** Ktot=ktot

-and-

*** Core Variable Limits:

*** LDIM=idim(mcorv)

*** MDIM=mdim(mcorv)

*** NDIM=ndim(mcorv)

-or-

*** Ltot=Itot

*** Mtot=mtot

*** Ntot=ntot

\¥hen specifying the index limits for the blend comma.nd with interpola.tion in the physical

domain, the limits of the grid block llltISt match the limits of the blending, including the

increments. Otherwise, the amount of da.ta needed to compute the arclengths is incorrect.

*** ERROR: File for variable not read.

***

*** GRIDGEN format assumed.

If a. variable that represents a file ha.me, used as a control pa.rameter for the distribution

fimction of a redist or smooth comm_nds, does not exist or is in the incorrect format,

this error will result. Ea.ch of the distribution comma.ntis can hold a.t most, a. 2D surface

of control pa.ra.meters for a distribution function. The forma.t of these control parameters is

GRIDGEN beca.use it is surfa.ce based. C,heck the forlna.t of the file being used to loa.d a.
control variable.
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*** ERROR:

*** Ltot=itot

*** Mtot=mtot

*** Ntot=ntot

Specified limits of core variable must be

One of the following has to be I:

in 2D computational space

If a variable used as a control parameter for the distribution function of a redist or slnooth

COlnmand does not. represent at most a 2D surface, this error will result. Check the limits

of the variable being used to speci_ ,_the control parameters.

*** ERROR: Problem w/internal-read.

*** CVAR=cvar(nvar)

*** FILEU=fileu

*** NC=ncf

If a constant is used for a. control variable to a distribution function in the redist or smooth

COlnmands, and the constant is not discernible due to characters other than "E" for exponen-

tial notation, an error will result. This error will also result if the constant is not determined

to be an array variable or file name. Check the constant requested.

*** ERROR: Unrecognizable distribution.

***

*** DIST option: ',dist

There are only 9 different distribution functions available. The one you have requested does

not exist. This usually occurs if the distribution function is misspelled.

*** ERROR: Could not correct poor parameterization:

*** 1-Direction REDIST

*** MPi,MP2=mpl,mp2

*** JPT,DSnew(JPT)=jpt,dsnew(jpt)

*** i,j,k: i,j,k

-or-

*** ERROR: Could not correct poor parameterization:
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•_ J-Direction REDIST

•_ MPI,MP2=mpI,mp2

•_* JPT,DSnew(JPT)=jpt,dsnew(jpt)

•*_ i,j,k: i,j,k

-or-

•_* ERROR: Could not correct poor parameterization:

•_ K-Direction REDIST

•_ MPi,MP2=mpl,mp2

•** JPT,DSnew(JPT)=jpt,dsnew(jpt)

•** i,j,k: i,j,k

When the spline function is used to construct the basis function for a redistribution, since

the spline is unclamped, the resulting curve could produce negative volumes 1)3; reversing

the direction of the basis curve. If this occurs, the VGM code will attempt to correct it by

isolating the region that is bad and redistributing it to correct the curve. The correction

changes the parameterization slightly, but does reduce the risk of generating negative cells or

volmnes. This error will tell the user if the code can not re-parazneterize the basis function

to alleviate the possible generation of negative cells or volumes. Try using linear basis

function generation.
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14.4 Input and Output Errors

*** ERROR: TECPLOT binary file can not be read!

The only format available to read TECPLOT data files is ASCII. Rewrite the TECPLOT

file as ASCII to get VGM to read it.

*** Nothing read due to flags not set.

Although the input command has defaults, some of the argument types may be specified

incorrectly or not at all. Check to make sure there is a file to be read or written.

*** ERROR: Input command not found.

*** INPUT COMMAND: cmdpart(npart)(l:ncperpart(npart))

The read command has found an argument that makes no sense, lJsually VGM will try to

interpret this as a file name. If it is not, check the spelling of the argument.

*** ERROR: Data block form incorrect or file not

*** BLOCK: nblk

complete!

During the input phase of the read COlnma.nd, all end-of-file (EOF) was found or the data

types are incon'ect (i.e. trying to read a floating point number into an integer variable).

Check the format of the file.

*** ERROR: File to be appended not found.

*** FILE: fileu(i:nc)

*** Above filename being set up anew.

The file requested to be appended does not exist. The VGM code will create this file for

the output of data. If this action is not adequa.te, check the spelling of the file name to be

appended.
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*** ERROR: TECPLOT variable limit mismatch:

12=i2

J2=j2
K2=k2

LDIM=Idim(mcorv)

MDIM=mdim(mcorv)

NDIM=ndim(mcorv)

When data is being written in TECPLOT form, the array variables being written must have

at least the number and range of indices available for the write. If the limits of writing a

variable exceeds the limits of that variable, this error will result and no data will be written.

*** ERROR: Grid System not specified for Solution output.

The solution argument of the input and output, commands requires a grid systen_ number

to attach and reference the solution data to a grid. Change the solution argument to reflect.

the grid system number.

*** ERROR: Mach, Alpha, Re, Time does not exist for solution data set: ngsys

The flow constants in the PLOT3D styled solution file are not in the file or are not. readable.

e(,h,ck the solution file to verify the correct data is in the header.

*** ERROR: Number of variables for solution data is incorrect.

Only 5 variables can be written.

The PLOT3D style of solution data file can only support 5 flow varial)les. To request more,

another solution file needs to be written.

*** ERROR: Grid System and Block does not have Solution variables.

To reference flow variables in the writing of data into the PLOT3D style, they must be of

the form discussed in section 4.1 or listed separately in the solution argument.

*** ERROR: Grid System and Block does not have LAURA variables.
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The grid systemnumberchosento write out a LAURA restart file doesnot haveflowvariables
attached to it. Checkthe grid systemnumber in the LAURA argument.

*** ERROR: Conflicting arguments:

*** TECPLOT and Switching of coordinates is not possible.

The switch argument can not be used on array va.riables, so it can not be used with the

TECPLOT output style.

*** ERROR: Conflicting arguments:

*** Core variable output and Switching of coordinates is not possible.

The switch argument can not be used on array variables, just physical grid blocks.

*** ERROR: Conflicting arguments:

*** Binary TECPLOT files are not possible.

(!urrently, only the AS(Ill mode of TECPLOT data style is available for reading and writing.

*** ERROR: Conflicting arguments:

***

*** Different number of TECPLOT variables for an append.

When appending a. data set to a. previously opened file, the number of variables must match

the number of variables in the file. The VGM code does not keep track of multiple files, only

the previously written TECPLOT file. If the number of variables requested to be written

does not match the nmnber already written, this error message will result. Check the number

of variables for each file to be appended and be sure that, that number is identical.

*** ERROR: Conflicting arguments:
***

*** Solution output of no solution data.
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To output solution data, solution data.must exist. This could be causedby not referencing
the correct grid systemnmnber. Checkthe grid systemnumber and the solution argument.

*** ERROR: Incorrect source grid limit specifications:

***

*** Specification: cmdpart(npart)(l:ncperpart(npart))

*** I=il to i2

*** J=jl to j2
*** K=kl to k2

The limits chosen for a grid block or an array variable have been exceeded. Check the limits

of these storage types.

*** ERROR: Output command not found.
***

*** OUTPUT COMMAND: cmdpart (npart) (i :ncperpart (npart))

The write con]l]]and has found an argument that makes no sense. Usually \TGM will try to

interpret this as a file name. If it is not, check the spelling of the argument.

*** ERROR: Grid System number to output,

***

*** GRID SYSTEM REQUESTED: ngsys

not valid.

The grid system being identified for output in a. grid block or solution argument or an array

variable is incorrect,. Check the grid system number requested.
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