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RNS APPLICATION FOR INTERACTING SUB- AND SUPERSONIC FLOWS

SOLUTION BASED GRID ADAPTATION THROUGH SEGMENTED MULTIGRID DOMAIN
DECOMPOSITION

Kumar Srinivasan and Stanley G. Rubin

,Abstract
A solution based grid adaptation method that combines elements of the multigrid method for solution acceleration

and the domain decomposition philosophy for grid optimization is described. Unlike other solution based adaptive gfidding
schemes, wherein the overhead of recomputing the grid and re-evaluating the solution on the adapted grid leads to higher
computational costs compared to a non-adapted calculation, the present methodology reduces the computational time
required to obtain the solution. The computational effort involved in the present calculation is significantly lower than a
non-adapted calculation that utilizes the multigrid method purely as a convergence acceleration tool. In addition to
convergence acceleration, the multigfid framework provides a mechanism of information transfer from regions wherein grid
refinement is specified to unrefined coarse grid regions. The basis for domain decomposition in the current procedure is the
variation in grid refinement requirements for each coordinate direction in different portions of the flow field. The method
is demonstrated herein on an efficient set of governing equations termed the reduced Navier Stokes equations, applied in
conjunction with a set of physical boundary conditions. The governing equations are discretized through a pressure based
flux splitting procedure that is uniformly applicable from incompressible to supersonic Mach numbers.

1. Introduction

Although significant progress has been made in the field of high speed computing there is still a need for more
efficient algorithms to solve large scale fluid dynamics problems that require considerable amounts of computer storage and
computational time. Complex three dimensional flow computations and direct numerical simulation of large Reynolds
number flows are examples of such problems. Strong viscous-inviscid interactions, associated with turbulent or high
Reynolds number (Re) laminar flows, are quite frequently characterized by the appearance of large flow gradients that are
most significant in small or 'thin' domains of finite extent, and in one or more directions, e.g., boundary or shear
layers/regions, triple deck structures and vortical or recircnlation zones. Outside of these regions, the flow is generally
diffused or inviscid and the flow gradients are less severe. However, the flow character in these 'smoother' regions, which
generally encompass the major portion of the flow domain, can be significantly influenced by interaction associated with the
thin high gradient viscous layers. In this paper we propose an approach that optimizes the overall calculation from several
standpoints and is applicable to a large class of flow problems ranging from incompressible to supersonic flow regimes. An
efficient set of governing equations that effectively represent the asymptotic behavior of the full Navier-Stokes equations are
applied. The equations referred to henceforth as the reduced Navier-Stokes (RNS) equations are discretized through a finite
difference scheme that is derived through a pressure based flux splitting approach. A general solution based grid adaptation
methodology that also ensures grid convergence efficiently is described. This approach combines the efficiency of the
multigrid method and a domain decomposition technique that provides a mechanism to split the overall flow domain into
subdomains within which adaptive grid prescription can be specified based on the local behavior of the flow field. The
computational time required for most adaptive grid schemes is typically larger than that required for a non-adaptive
calculation. This is not the case in the present approach. The adapted grid computation requires less time than a non-
adapted calculation that applies the multigrid method for convergence acceleration. The multigrid method provides
effective communication between the disparate flow domains through global coarser grids, and at the same time maintains
all conservation properties.

Many approximations of the full Navier-Stokes equations have been developed over the years, see for example,
Davis et. al. (Ref. 1). In the present study the Navier-Stokes equations are represented by an implicit lowest-order reduced
Navier-Stokes (RNS) system and a purely diffusive, higher-order, deferred-corrector. The equations are discretized through
a pressure based flux split finite difference approach. A trapezoidal or box-like form of discretization ensures that all mass
conservation properties are satisfied at interfacial and outflow boundaries, even for a primitive-variable, non-staggered grid
computation. In the past, the RNS equations have been used to solve a variety of flow problems, for example Rubin et. al.
(Ref. 2, 3), Rosenbaum et. al. (Ref. 4), etc., have applied these equations in conjunction with a global pressure relaxation
solver for a range of low speed incompressible to low Mach number subsonic flows, for both internal and external
geometries. Ramakrishnan et. al. (Ref. 5), Lai et. al. (Ref. 6), etc., have extended this methodology to unsteady



compressible flows. Pordal et. ai. (Ref. 7) have computed time accurate flow solutions, including supersonic inlet unstart,
using the RNS system and methodology.

The discretized equations are solved through a global pressure relaxation approach as described in Rubin et. al.

(Ref. 3). This is a space marching approach wherein at each (approximately) streatnwise location the discrete, non-linear

equations are solved exactly based on known values (or current iterate) at the previous spatial station and guessed (or

previous iterate) values at the next streamwise location. As with most iterative methods the convergence rate of this
multisweep procedure, that improves the pressure field in each iteration, slows down significantly as the number of mesh

points especially in the streamwise or marching direction is increased. Himansu and Rubin (Ref. 8, 9) have applied the
multigrid method in a semi-coarsening mode to significantly accelerate convergence for a wide range of two and three

dimensional external flow problems. In this approach the grid is coarsened only in one direction when proceeding from one
multigrid level to the other. This approach was found to be more effective especially for turbulent flows and laminar flows

with strong viscous-inviscid interaction and flow separation. The inability of the coarse grids to capture these flow features

make the coarse grid corrections to the fine grid solution ineffective and the multigrid procedure breaks down. Some of

these effects can be attributed to the non-uniformity of the grids typically used in the direction normal to the body surface.

In fact, two dimensional laminar flow examples with strong separation and viscous inviscid interaction have been

successfully computed through the present adaptive gridding muitigrid domain decomposition approach wherein coarsening
in both directions have been applied successfully. In this approach only uniform grids were used in all grid levels. In the

current investigation, this grid adaptation procedure has been extended to three dimensional flows. For laminar flow

computations grid coarsening/refinement is allowed in all three directions. For turbulent flow computations the semi-

coarsening multigrid approach (with the adaptive element) was found to be most effective because use of uniform grids can

be uneconomical in three dimensions even though adaptive refinement is prescribed. Significant gains in computational

costs are achieved, over single grid calculations, with either a full coarsening or semi-coarsening muitigrid technique.

Grid adaptation approaches can be broadly classified into two basic approaches: (I) Dynamic redistribution of a

preset number of grid points by specifying a solution based criterion that minimizes the discretization error, and (2) the
addition of grid points in regions where the truncation error is large. Each of these techniques has advantages and

disadvantages. The first approach guarantees better accuracy; although, the overall computational time may not necessarily

be lower than that for a non-adapted calculation. In addition, the level of accuracy is constrained by the number of grid

points used in the initial grid. The additional computational cost associated with computing the grid distribution is high

(Thompson et. ai., Ref. I0). Also, special care must be taken to ensure a compromise between conflicting requirements of

orthogonality, smoothness or lack of skewness, and concentration. A variational approach that couples the solution of the
flow variables with that of the grid is by far the best methodology when dealing with moving grids. The second approach

of overlaying grids also has several variants. In the CHIMERA method, first developed by (Steger et.al., Ref. I I) a major

grid is generated about a main component of the configuration and minor grids that may be generated through different

transformations, are overlaid. This method provides the flexibility of handling complex, multi-component geometries by

using simple grid generation tools. It also allows for the possibility of local refinement in regions of large gradients. The

absence of a global coarse grid can hinder convergence of the solution, in particular, due to inconsistencies in grid accuracy

of the different patches. Other overlaid mesh systems have been used previously by a number of researchers. Magnus et. al.
(Ref. 12), used overlaid grids to achieve improved computational accuracy for solving transonic flow about airfoils. Berger

et. al. (Ref. 13) has developed a numerical procedure which automatically inserts overlaid grids to resolve high gradient

regions to two dimensional convection problems. With overlaid grids, conservation properties at grid interfaces can be of

major concern.
Local refinement procedures necessitate proper treatment of grid interfaces to ensure mass conservation.

Typically, boundary conditions on the local grids are obtained by interpolating the solution obtained on coarser grids. In
full Navier-Stokes calculations boundary conditions are required on all three velocity components at non-wall boundaries.

Hence simple linear interpolation schemes are not sufficient to ensure mass conservation within local sub domains. In the

current RNS methodology, only two of the three components of velocity need to be prescribed at a free boundary. The third

component is computed from the RNS system with a trapezoidal discretization of the continuity equation.

Using the multigrid method as a framework for adaptive grid refinement was first suggested by Brandt (Ref. 14).

The development of this methodology is very logical, since the multigrid method already comprises a hierarchy of grids

ranging from coarse to fine. Conventionally, the multigrid method is applied to accelerate the convergence of a discretized

elliptic problem on a given mesh. This framework can be conveniently adapted to provide optimal refinement, by limiting
the extent of the finer grids to regions where the error, or lack of grid convergence thereof, is still large. Brandt refers to

this as 'segmental' refinement. This ideology forms the basis of the current work. Earlier research, on similar approaches,

has been presented by Fuchs (Ref. 15) and Thompson et. al. (Ref. 16); although, in their approaches no attempt is made to

distinguish between refinement requirements in the different coordinate directions. This has been achieved by the authors in

previous papers (Refs. 17,18) for a variety of two and three dimensional flows, that are primarily represented through a
Cartesian coordinate system. The need for grid refinement in each coordinate direction is tracked through truncation error

estimates of specific derivatives.



Adaptivegriddingrequiressomeformof error estimation. A number of different approaches have been applied

by previous researchers, for the purpose of grid adaptation, as well as, for a means of estimating the quality of the results.
Typically most error estimation or grid convergence checks require a solution on two different grids with different

resolution. Brandt (Ref. 14) recommends estimate of the coarse grid truncation _ri'or as a refinement criterion. This can

easily be estimated within the multigrid algorithm. However, this estimate does not provide information about which

coordinate direction lacks refinement. In order to obtain such information, the test would have to be performed multiple
times; each time the finer of the two grids has to be refined in just one coordinate direction. This again adds to the overhead

of the calculation. It also makes it impractical as a criterion for adaptive refinement, where the primary goal, apart from
better accuracy, is to reduce the overall computational cost. Hence in the present study, a simple and inexpensive procedure

based on Richardson extrapolation is applied to estimate truncation errors of key derivatives. These are then used as criteria
in the adaptive refinement process.

Domain decomposition can be viewed as a divide and conquer philosophy, where sub problems corresponding to
each sub domain can be solved using any appropriate efficient solver. There are interactions between sub domains, that

involve passage of suitable information through an iterative procedure. It is recognized that when there are several sub

domains, the presence of a global coarser grid can greatly enhance the rate of convergence of the iterative procedure. Since

this is the underlying philosophy of multigrid methods, the current segmented multigrid domain decomposition concept
weaves these two ideas to achieve significant gains in computational time over conventional multigrid procedures. The

basis for domain decomposition in the present study is disparity in refinement requirements in different portions of the flow
field.

In the present study, results are presented for several three dimensional internal flow configurations for both low

and high speed regimes. The discretization scheme is uniformly valid for the entire Mach number range from

incompressible to supersonic flows.

2. Solution Procedure

In this section a detailed description of the adaptive gridding procedure is presented. Details relating to the grid

structure, truncation error estimation and multigrid implementation are described. In addition some aspects of the data
structure necessary for enhanced implementation of the local refinement procedure are described.
2.1 Grid Structure

The overall solution algorithm comprises several grid levels that form part of the multigrid hierarchy. The calculation

starts on a fairly coarse grid for most problems. In calculations wherein the multigrid method is applied purely as a
convergence acceleration tool, the finer multigrid levels comprises a single global grid that is determined apriori. The aim

of the present approach is to optimize the computational grid. Hence, extent of the finest grid is not known apriori

necessitating the calculation to start on coarsest grid levels and proceeds to finer levels in the multigrid hierarchy. The finer
multigrid levels are generated through the adaptive refinement process. Assume grid adaptation is initiated at level k

(typically k - 2) in the multigrid hierarchy; level 1 being the coarsest. The grid starting at level k can comprise series of

subdomains each refined with respect to the k-I grid level in one or more coordinate directions. The subdomains within a

multigrid domain could be abutting each other or disjoint. This flexibility allows disparity in refinement requirements in

different regions of the flow field to be handled efficiently.

The choice of the coarsest grid has to be specified with care and is determined entirely by the complexity of the

geometry and the associated flow field. In fact, some calculations have been performed with the first mesh point, from wall

boundaries, lying outside of the thin viscous or boundary layer (Ref. 17-19). Unlike laminar flows, in complex three

dimensional turbulent flow calculations it may not always be possible to obtain solutions on very coarse grids, especially in

directions normal to the walls when wall functions are not applied which is the case in all the computations presented herein.

Similarly for flows involving shock waves, excessively coarse grids cannot be used in the streamwise direction. The

coarsest grid should not contain a large number of grid points, as this will result in high overhead cost for the truncation

error calculation, and a, less than optimal application of the adaptive gridding approach. These considerations are primary in
the choice of the coarsest grid distribution.

The first two grid levels necessarily span the entire computational domain. A relatively coarse mesh size is used in all

coordinate directions, along which adaptive refinement is to be performed. Thus if adaptive refinement is to be performed

only along the _-direction, then a coarse grid is prescribed in that direction. In the other two directions, there is the option

of using coarse or fine grids. This depends on the choice of the multigrid algorithm to be applied, i.e.. (i) full coarsening

multigrid or (ii) semi-coarsening multigrid. In problems where coarse grids are unallowable due to the flow physics

considerations mentioned earlier, the semi-coarsening multigrid philosophy appears to be a better choice, although full

coarsening is usually possible for one or two levels. Four or five full coarsening levels are possible in laminar flows and

turbulent flows in simple geometries.

The global pressure relaxation procedure is applied to obtain the solution on the first two coarse grids. This
constitutes less than 5-10 % of the overall computational cost. Based on the truncation error estimation process to be



describedin thenextsection,thenextmultigridlevelisdetermined.In general,levelk in the multigrid hierarchy is

determined based on the truncation error estimation using solution on level k-I and k-2. After the extent and grid structure

of level k is determined, the calculation proceeds sequentially from one subdomain to another. One relaxation sweep on a
fine, adapted multigrid level comprises of one sweep in each of the subdomains in that level. The decision to transfer the

calculation to another grid level depends on several factors. These will be discussed in detail in the section on multigrid

implementation. Upon convergence of the current finest multigrid level, the truncation estimation process is repeated with
the solution on the two finest grid levels and the domain structure of the next multigrid level is defined. Since, truncation

error is only determined for all points in the finest grid, the regions refined will naturally be a subregion of the finest grid
although there could be further segmentation based on the local truncation error in each coordinate direction. It is also

possible that the entire region occupied by level k is refined in level k+i.

2.2 Truncation error estimation and refinement strategy

Error estimation is an essential element of all adaptive gridding methods. Zeeuw et. al. (Ref. 20) adopt a criterion

based on the change in the solution and they fix the percentage of grid points that should be refined. Thompson et. al. (Ref.

16) apply a criterion based on the global truncation error of the system of equations. Brandt (Ref. 14) has shown that given

the solution on two grids, the global truncation error of the coarse grid can be approximated with the fine grid accuracy.

This type of truncation error evaluation provides a reasonable guideline to ensure grid convergence, but it does not provide
information about which coordinate contributes significantly to the truncation error.

In the present study one of the primary aims is to optimize the grid, in each coordinate direction independently ,
wherever possible. Information relating to the degree to which a given coordinate gradient contributes to the overall

truncation error is required. Since this is not easily achieved through a global truncation error procedure, error estimates in
certain key derivatives are evaluated and applied as the criteria of refinement for each coordinate direction. For the

streamwise (_) direction, the truncation error in the p_ term is used as the criterion for both compressible and

incompressible flows. Most of the flow phenomena to be considered herein, e.g., separation, reattachment, shocks, strong
geometric curvature, etc., are associated with large pressure gradients. Thus this term can be an effective mechanism in

identifying such regions. For the normal (rl) direction, the truncation error in vorticity or UnTI is used as the criterion for

local refinement. Boundary layers are usually associated with strong vorticity gradients and urfq is the most significant

contributor. Additional gradient parameters can be added when necessary, e.g., u¢¢, if _ adaptation is desired. New

criteria can be defined to satisfy any specific application. For example, if it is desired to apply the adaptive refinement

philosophy for predicting laminar instability and transition, a criterion based on the frequency of disturbance or the rate of

growth of the instability can be applied.

The truncation error in the 'key' derivatives is obtained with a Richardson extrapolation procedure. This provides a

simple and reliable estimate of the truncation error for specific derivatives. Conventionally, Richardson extrapolation is

applied to improve order of accuracy. An appropriate combination of solutions is obtained on two different grid levels and
the leading truncation error terms are eliminated. In the current approach, the same philosophy is applied to calculate the

leading truncation error term. For example, consider the p_ term. The discretization of this term, is given by (Ref. 17, 17).
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The simplifying assumption COi_l/2 =txli+l/2 has been made in equation (1). HOT refers to higher order terms. A similar

expression for the coarse grid, with grid spacing 2A_, is

/c0_ + (1 -,,<,l )[ + (1 - 2co_)A_p_ + HOT (4)

The superscript 'c' and 'f' in equations I and 4 refer to the fine and coarse grids respectively and the subscript I refers to

the same physical grid location as i on the fine grid. Letting _p_ = A_p_ and subtracting equation (1) from (4) we

obtain,



o_(p_- P_-I)+(!-t0_)(p_+l- P_)-2[to[(p_- P_-I) +(1-o_)(pi+,- Pi)]']

A similarexpressioncanbederivedfortheuqntruncationerror.
Thisapproachprovidesa veryreliablemethodof identifyingregionswheretruncationerroris largealthoughthe

absolutevalueof truncationerrorcalculatedmaynotbeaccurate.In thepresentapproachtheaimis to restrictgrid
refinementtoregionsof largetruncationerror.Richardsonextrapolationprovidesthisinformationinareliablefashion.
Theabsolutevaluesofthetruncationerrorisnotneededinthepresentadaptationprocedure.

Thetruncationerrorobtainedthroughthisprocedureisnormalizedwiththemaximumvalueoverallthegridpointsin
thecurrentmultigridlevel.Thenormalizedtruncationerroralwaysrangesbetween0and1.Thisunifiesandsimplifiesthe
settingoftolerancesforthevarioustruncationerrors.Thevaluesofnon-normalized truncation errors can vary significantly

from problem to problem and will be dependent on parameters such as the Reynolds number, grid spacing etc. The choice
of the tolerance for the normalized truncation error is based on range of mean, maximum and minimum values of the

truncation error field. If the truncation error field is fairly uniform then a lower tolerance must be chosen to ensure that not

too many grid points are refined. This is usually not the case for complex viscous flows. Even for simple boundary layer

flows the distribution of truncation error in the discretization of the gradients normal to the surface depict a large variation.

Similarly, large truncation errors are associated with streamwise pressure gradient in regions of flow separation,
reattachment and shocks waves. The variation in the truncation error in the pressure gradient is not as much as the

truncation error in the normal viscous derivatives. Hence a higher tolerance (0.1-0.3) is set for the normalized truncation

error in the pressure gradient term whereas a much lower tolerance (0.01-0.1) is set for the normalized truncation error in

the viscous terms. This ensures that too many grid points are not refined. Under-refining the grid will result in poor

solutions and/or non-convergence of the finer grid levels. This is discussed in more detail discussed in Ref. 22.
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Figure 1 Sample refinement patterns.

Figure ! shows typical grid structures on two successive multigrid levels. In Case I, the grid is refined locally in the

direction. Similarly in Case 2. the grid is locally refined in the 11 direction. The finer grid contains only one subdomain in

both these cases. For Case 3 however. 5 subdomains are identified - two with 11 refinement, one with _ refinement, and

two with refinement in both 7_and r 1directions. Note that in Case 3, there are both abutting and disjoint subdomains.

The process of calculating the truncation error and defining new sub domains is repeated for subsequent multigrid

levels. The treatment of each sub domain is the same as for the global domain. The type of refinement associated with a

new sub domain is a snbset of the type(s) of refinement associated with its parent subdomain. In each subsequent level the

amount the sub-region where refinement is prescribed decreases. Each muitigrid level is decomposed into a discrete

number of abutting or disjoint sub domains, for which refinement is specified in one or more directions. This pattern is

defined by the directional refinement criteria as determined by the truncation errors in the two key derivatives mentioned

above. Each successive multigrid level derives part of its topology from the subdomaining pattern of the coarser

predecessor.

Although within individual subdomains the grid is structured, when all the multigrid levels are overlaid, the effective

grid has the appearance of an unstructured grid. In the global pressure relaxation procedure a line/plane is solved implicitly

in the marching direction. This requires each computational unit. in the present case each subdomain, to be a rectangular

region in the (_,q,_) computational system. During the truncation error estimation process, all grid points which need

refinement in the _ and rl directions are tagged based on individual refinement criterion. A marching sweep is performed

in the _ direction and all 0q,_) planes that contain at least one point needing _ refinement is marked. These planes are then



groupedintoindividualblocks;someblocksrequire_refinementandsomedonot.Oncethisblockingiscompleted,each
blockissearchedforpointsneedingrI refinement.Duringthisprocess,blocksarecreatedin the11direction.A similar
strategyisfollowedastheblockcreationprocessinthe_direction.Withineachblockinthe_direction,intersectionswith
13blocksaredeterminedandindividualsub-domainsthatwouldformthenextmultigridlevelaredetermined.Ineach
subdomainappropriatecombinationof refinementsareperformed.Duringtheblockcreationprocessin the_ andrI
directions,a toleranceof twostationsisprovidedbeforecreatinganewblocki.e.,a newblockiscreatedonlyif two
successivestationsareencounteredwithoutpointsneedingrefinement.Noattemptismadetoadaptivelyrefinein the
directionin thecurrentwork.Thismeansthateitherfull refinementisperformedor finegridsareusedin thisdirection
evenoncoarsemultigridlevels.Duringtheprocessof groupingpointsneedingrefinementintorectangularregions,points
whichdonotrequirerefinementcangetrefined.Asaresultthefinalgridisnotnecessarilyoptimalbutit isoptimized.If
aexplicitsolverisusedtosolvethesystemof equations,unlikethesemi-implicitsolverpresentedherein,therefinement
processcanbeoptimizedfurther,althoughtheefficiencyofexplicitsolversforcomplexflowswithstrongviscousinviscid
interactionisdebatable.

Someguidelinesarefollowedduringtherefinementprocess.Withineachsubdomain,refinementisspecifiedbased
ontheoveralltruncationerrorlevelforallsubdomainsof thatmultigridlevel.Thetypeofrefinementperformedwithina
newsubdomainmustbeasubsetofthetype(s)ofrefinementperformedwithinitsparent.Forexample,furtherrefinement
(atahighermultigridlevel)in thestreamwisedirectionis notperformedinasubdomainthatwasrefinedonlyin the
normaldirectioninacoarsermultigridlevel.Refinementcannotbere-initiatedinaregionwhereitwasterminatedandthe
extentof anysubdomaincannotexceedthatof itsparent.Thisstrategyisnotsuitedforunsteadyflowswheretheregion
needingrefinementhastovaryassignificantflowfeaturesareconvectedwithtime. A methodologyof shiftingthefine
gridregionstocapturethetransientflowbehaviorhastobedevisedforsuchsituations.A completeredefinitionof the
adaptedgridscanalsobeperformedforeachtimestep.

Sincetherefinementis performedlocally,'hangingnodes'willappeartobepresentin thegridwhenthelocally
refinedgridisoverlaidontheglobalcoarsemesh.Asdescribedintheboundaryconditionsectiontofollow,thevaluesat
theseinteriorboundariesareobtainedby interpolationof eitherthecoarsegridsolutionvaluesor solutionobtainedon
neighboringsubdomainswhichmaybesharingtheinterfacein thesamemuitigridlevel. Althoughthenodesatthe
interfaceappeartobehangingnodes,withinasinglesub-domaintherearenohangingnodes,sincethegridisuniformly
refinedthroughoutthesub-domain.Thus,asthecalculationproceedsona givensub-domain,nospecialtreatmentis
necessary.Thereisnodifferenceintheimplementationoftheglobalpressurerelaxationprocedureforlocalsub-domains
andglobalcoarsegrids.Therefinementprocessdoesnotimposeanyconstraintstocontrolaspectratioofcellsor ratioof
refinementlevelsbetweenadjacentgridpoints.Thuswhentheoverallgridisviewedasaunionof allthemultigridlevels,
therecouldbephysicallyadjacentpointsthatdifferin refinementbymorethanonelevel. Butwhenthecalculation
progresses,therearenosuddenjumpsin thegridbecausethelevelof refinementwithineachdomainisuniform.The
globalpressurerelaxationalgorithmis appliedsub-domainbysub-domain.Theboundaryconditionsareupdatedonly
duringvisitstothecoarsergrid. Although, typically size of the sub-domain wherein refinement is prescribed decreases.

this is not a required in the present method. Situations wherein the parent domain is refined to form the subsequent

multigrid level is allowable.
For geometries that require grid transformation, the finest grid is generated in all three directions. Thus the maximum

number of allowable grid levels is prescribed apriori. Typically a grid that is extremely fine can be generated and stored.

When a grid level is defined adaptively, with respect to its parent, then only a portion of this global fine grid corresponding

to that level is required. By ensuring that all coarse grid points are subsets of the finest grid level, the geometric definition

is preserved in coarser levels. Figure 2 shows the adapted grid obtained for a 90 ° bend duct. Note that the finest level

consists of four separate sub domains. These comprise portions of a global grid, that is generated for the geometry. A

simple algorithm to search for the starting locations of each sub domain and to read in the appropriate portion of the global

grid has been implemented. This aspect of the methodology leads to a significant advantage especially for complex

geometries wherein it is often difficult to limit the number of grid points and meet all the grid clustering features desirable

to obtain a grid independent solution. The current adaptive gridding procedure takes away this burden by allowing a fine

grid to be generated throughout the domain without the constraint of limiting the number of grid points. Portions of this

global fine grid are then extracted to define the finer multigrid levels. The adaptive refinement process creates a grid that

resembles an unstructured grid, but retains the advantages of a structured grid.

2,3 Multigrid Implementation

The multigrid technique is used here to solve a system of discrete equations that define an elliptic boundary value

problem on a hierarchy of successively finer grids. This technique can be viewed in two different ways; (i) the coarser

grids are correction grids that accelerate the convergence of the finest grid by efficiently removing low frequency error

components, or (ii) the fine grids are correction grids that improve the accuracy of the coarser grids by introducing fine

grid transfer functions to the coarse grid discrete system. Both view points are relevant to the present study. On coarse



gridslevels,whereinlocalrefinementhasnotyetbeeninitiated,thecomponent(i) issignificant.Throughcomponent(ii),
thefinergridlevelsimprovetheaccuracyof thecoarsegridsolution,evenoutsideof regionswhererefinementis
performed.

bal domain

.,,9

_rnain 4

Figure 2 Adapted grid for a 90 ° bent duct.

The multigrid technique has been applied to a wide variety of compressible flow problems by Jameson et. ai. (Ref.

23), among others. Acceleration of compressible and incompressible flow solution procedures have been presented by

Shyy et. al. (Ref. 24). The technique has been applied to unstructured grids by Mavriplis (Ref. 25). Himansu et al., (Ref.

8, 9) have applied the multigrid technique in a semi-coarsening mode to accelerate the convergence of the global pressure

relaxation procedure for a wide range of incompressible and compressible external flows in both two and three dimensions.

In this approach, the grid is coarsened only in the _ direction when transferring from fine to coarse grids. The details of the

implementation of this multigrid technique for the global pressure relaxation procedure can be found in Himansu et. al.

(Ref. 8, 9) and in Srinivasan (Ref. 19). Certain elements are reviewed here for the sake of completeness, and to illustrate

some interesting findings with regard to the multigrid restriction operation. The discrete equation that is solved on portions
^k-1

--k-1 k-1 lk-ll_k k-I k and Ak-lu k-I = b k-Iof the coarse grid, that have been refined is of the form ,_u u = lk l'n + Au Ik Un,

defines the equation at points on the coarse grid which have not been refined. Here Rnk represents the global residual after

n sweeps on level k in the multigrid hierarchy. This indicates the level of convergence of the pressure, or velocity in
^k-I

reversed flow regions, fields and is evaluated as R k = b k -A kuunk. I[ -I and Ik represent fine to coarse grid transfer

^k-1

operators from level k to k-1. I k is a simple injection operator that takes the solution from fine to coarse grids. In the

current work, the covariant momentum balances in the (_,_1,_) directions are solved. There are two choices for the

evaluation of Rkn on the coarse grids; (i) residuals of the covariant _, 1"1and _ momentum balances can be directly

restricted to the coarse grid, or (ii) the values of the residuals in the Cartesian balances can be computed through the inverse
transformation. These values can be restricted to the coarse grid and then the residuals in the covariant balances can be

recomputed on the coarse grid using coarse grid metrics. Numerical tests indicate that the second approach provides a

much better representation of the fine grid problem on the coarse grid. This leads to significant improvement in the

performance of the multigrid algorithm. Figure 3 shows a comparison of the convergence rates attained by the two

approaches with the convergence history of a single grid computation (Curve I). Clearly the second approach, restriction

of the Cartesian residuals (Curve 3), is better than restriction of the covariant residuals (Curve 2). The example shown in

Figure 3 was obtained for two dimensional flow past a trough geometry; similar behavior has been observed for all

problems considered herein.



Sincetherecanbesubdomainswithinwhichthegridisrefinedinoneormorecoordinatedirectionswithrespecttotheir
parents,it isnecessarytoimplementallpossiblemodesof multigridtransferoperations.Fortwo-dimensionalcalculations,
threedifferentmuitigridmodesareimplemented;namely,_ri refinement,_ refinement,and11refinement.Forthree-
dimensionalSMGDDcalculationssevendifferentmodesareimplemented,i.e.,_,ri__,_ri,_, ri_and_ri_refinement.For
eachmodeappropriateinterpolationschemesareimplementedinordertoprovideinitialguessforthefinegridbasedon
coarsegridsolutions.
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Figure 3. Comparison of convergence rates with different residual restriction.

Instead of the standard V or W cycle (Brandt Ref. 14) a dynamic criterion is adopted in the present

calculations to switch between the fine and coarse grids. When the ratio of the global residual between two successive

sweeps is greater than a certain preset tolerance (typically 0.9 to 0.95), indicating that the convergence rate of the relaxation

procedure is slowing down. the calculation is switched to the coarser grid level. If the ratio is greater than unity then the

calculation continues on the fine grid since this could represent some flow feature (separation region, shock wave) is not

completely settled in the fine grid computation. Hence it is necessary to allow a few more global sweeps in the fine grid to

establish the solution (not completely converge) before switching to the coarse grid. Rubin et. al. (Ref. 3) have estimated

the convergence rate of the global pressure relaxation procedure through avon Nuemann analysis of a linearized form of

the RNS system of equations. The convergence rate k of the global relaxation procedure is determined by the spectral

radius of the linearized system and is given by
k - 1 - C,n2(A_) 4 N_Zl riM' (6)

where C, is a constant of O(I), N_ is the number of stations in the streamwise or marching direction, rim is the extent of the
normal boundary location and A_ is grid size in the marching direction _. This analysis indicates that improved

convergence is achieved when number of stations in the marching direction is reduced and when the normal extent of the

computational boundary is small. Both these features are achieved in the present adaptive refinement calculations since the

finer grids are limited to smaller regions of the flow field. Thus convergence rates on finer grids are comparable to coarse

grids in most cases. The range of values for the residual ratio(0.9-0.95) has been established through numerical

experimentation on a wide range of problems, although success of the method does not strongly depend on the choice of

this parameter.
On the coarse grid it is not necessary to completely converge the solution. The tolerance for convergence on the

coarse grid is prescribed to be an order of magnitude lower than the current norm of the residual on the immediately finer

grid. The calculation also switches back to the coarser grid level if the magnitude of the correction to local boundary

conditions on the fine grid is larger than the convergence criterion on the finest grid.
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Figure 4 Comparison of eddy viscosity contours with and without local refinement.

Applicability of the multigrid method to turbulent flows has been studied by many researchers, although most of

the work has been limited to two dimensional flows. Braaten et. al. (Ref. 26) have applied the multigrid method to a

pressure correction based solution procedure. Joshi et. al. (Ref. 27) have studied internal flows. Lein et. al. (Ref. 28) have

also studied turbulent flows using the multigrid method. Treatment of eddy viscosity for turbulent flows requires special

attention. A significant difficulty with the multigrid method in turbulent flows, is the loss of resolution near solid walls on

coarse grids especially when wall functions are not applied. This can result in erroneous values of eddy viscosity on

coarser grids. Shyy et. al. (Ref. 24) have suggested a partial coarsening approach wherein grid points near the wall are not

coarsened. This is a feasible approach but is difficult to implement in an adaptive refinement calculation as presented here.

To the author's knowledge the present study is the first that combines elements of adaptive refinement and the muitigrid

method to solve turbulent flow computations. Some new strategies to treat the eddy viscosity were tested and have been

successfully applied to the turbulent flow cases presented herein.

For all the turbulent computations presented herein, turbulence closure is provided through a Renormalization
Group (RNG) based algebraic eddy viscosity model. The original RNG based algebraic model as derived by Yakhot and

Orszag (Ref. 29) leads to a cubic equation for the eddy viscosity. This equation produces multiple positive roots in some

cases, and the choice of the correct root is not clear. Lund (Ref. 30) has recast this cubic equation as a quartic that leads to

four roots, two imaginary, one real positive and one real negative. Thus the choice of the correct root is clear. This form of

the RNG algebraic model is applied herein. Details about the implementation of this model can be found in Kirtley et. al.

(Ref. 31 )

In the present study, the eddy viscosity field is computed only on the finest grid and in those portions of the coarse
grid where the grid is not refined. At coarse grid points that are refined, the eddy viscosity field is simply injected from the

fine grid and held fixed during visits to the coarse grid. This strategy has been validated for flow in a two dimensional
straight duct at Re=105. Figure 4 shows the comparison of eddy viscosity contours obtained with and without local

refinement. The agreement is excellent. The top figure corresponds to the adaptive calculation. The fine grid levels are

limited to two narrow regions near the two walls. These are demarcated by the two horizontal lines. Note that the eddy

viscosity contours are perfectly smooth across these boundaries. Before defining these thin regions near the wall boundaries
the coarse grid solutions are obtained. On a coarse grid with no points in the laminar sub layer, the peak eddy viscosity

values for this Reynolds number is computed to be about 200. The peak occurs roughly midway between the walls and the



centerlineof theduct,a regionof theflowfield where no grid refinement is prescribed. On prescription of the thin
refinement region and following the strategy explained above, it was found that the eddy viscosity values improves even in

the region wherein no refinement is specified. On convergence, the eddy viscosity value and its location are captured
correctly even though this location lies in the unrefined coarse grid outside _the thin boundary layer region. This

methodology has been applied successfully in all of the turbulent flow computations presented herein. In some

computations, however, when grids normal to the surface are too coarse, the calculation failed to converge. In such

situations, the grid normal to the wall is coarsened only once and then held fixed for all coarser grids and the grid
refinement/coarsening is prescribed only for the streamwise direction.

3. Governing Equations and Boundary conditions

The grid adaptation methodology is demonstrated on the reduced Navier Stokes (RNS) set of equations. Detailed

description of the derivation of these equations, associated discretization and applicability can be found in Ref. 2. One

aspect of the RNS discretization is the use of consistent boundary conditions. The scheme is fully conservative because the
discrete continuity equation is integrated directly and exactly at each grid point unlike pressure correction based methods

that solve the Poisson equation for pressure correction to indirectly ensure mass conservation. This aspect provides

robustness to the current adaptive gridding approach by ensuring mass conservation on local and global grids without the

need for elaborate conservative interpolation schemes (Ref. 32, 33) to transfer boundary conditions from global coarse grids

to local fine grids. Some elements of the boundary conditions are described here for completeness.
Although, only internal flows are considered herein, boundary conditions will be described for both external and

internal flows. There are situations where sub domains within the channel/duct may have a free boundary, and 'external'

flow like boundary conditions are required in these local sub domains. The required inflow boundary conditions reflect

whether the flow is compressible or incompressible. The free stream Mach number is prescribed for compressible flows

and is set to zero for incompressible flow.

At the inflow, U, V, W are prescribed for incompressible flow, (p is not required, but is obtained as part of the

solution) and U, V, W and p_ = 0 for subsonic compressible flow. This allows for an adjustment in the inflow mass

(through the density), that is consistent with the prescribed downstream pressure. In discrete form this equation becomes

P--_- P_ - P_-' - P_" (6)

where P2 denotes the calculated pressure at first station downstream of the inlet and Pl denotes the inlet pressure. The

inflow pressure is given by p_. = to p_ + (1 -to) P2- Here n denotes the global iteration counter, Note that the stations

I and 2 are both at the current iteration level. A more detailed discussion of this condition can be found in (Rosenbaum et.

ai., Ref. 4). For supersonic flows the inlet pressure is treated as known since there is no upstream influence. For both

compressible and incompressible flows the remaining boundary conditions are:
U, V, W at all solid boundaries:

U, W, p at all free (11) boundaries: ( V computed)

U, V, p at all free (_) boundaries: ( W computed)

At the outflow. (_=_max) P= constant is prescribed; at an interface outflow, _=_o < _-_max,P is prescribed, either from the

current grid level computation through inter domain transfers, or from multigrid transfers. This, depends on whether or not

the boundary is shared with another sub domain in the current muitigrid level. U, V, W are not required at any outflow

boundary when U > O; when U < 0 (this can occur if the sub domain boundary is located within a reversed flow zone), U,

V, W are prescribed either from current grid calculation or from multigrid transfers. If the global domain ends within a

reversed flow zone, then the negative convective fluxes are neglected. This is used to remove the need for a downstream

velocity boundary condition necessitated by the upwinded streamwise convective terms. This has been validated for

several flows with reverse flows at the outflow boundary. It is significant that the pressure at solid boundaries, V at free r I

boundaries, and W at free _ boundaries are all calculated as part of the solution in a given grid level. For external flows, if

a sub domain has its outflow at some (_ < _max), then the boundary condition on pressure changes from Neumann to

Dirichlet type. For internal flow, the outflow boundary condition for the pressure is always of Dirichlet type. In time-

dependent, characteristic-based, Navier-Stokes computations that use locally embedded grids, boundary conditions are

required for all variables, i.e., U, V, W and p on all boundaries. In addition, special care has to be taken to ensure that mass

conservation is not violated locally or globally. With the pressure-based flux-vector splitting and the trapezoidal or 'box'

formulation, this difficulty does not occur as the normal velocities V in r !, W in _ or U in _, are not prescribed at the (1"!)

upper or (_) cross flow, or (_) outflow boundaries, but are computed as part of the solution. This eliminates the need for

special interpolation formulae to ensure conservation of mass when the boundary conditions are prescribed from the coarse

grid solution. Thus weak instabilities, that arise when such methods are applied in Navier-Stokes formulations without

satisfying mass conservation, do not appear in the present method. Direct evaluation of the pressure at the inflow and wall
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boundaries, with the trapezoidal or box discretization, also eliminates the need for extrapolated pressure boundary

conditions at walls and outflow boundary conditions and ensures momentum conservation throughout.

4. Results _

Several two and three dimensional flow problems, exhibiting incompressible to supersonic conditions, for both

laminar and turbulent flow regimes have been considered. The choice of geometries is driven by availability of

experimental data and/or calculations by other researchers. Some geometries have been chosen so as to bring out the

efficacy of the segmented multigrid domain decomposition procedure and the ability to automatically define regions of high

gradients that require improved resolution. As part of the segmented multigrid domain decomposition procedure presented
herein, it is necessary to obtain solutions on a hierarchy of grids. The results on different grid levels can then be used as a

means of demonstrating grid convergence.
Unless specifically noted, all calculations, are initialized with uniform flow conditions on coarse grids. On the

finer grids, interpolated solutions from coarser grids are used as the initial approximation to the solution. This is a

significant feature, since in many full Navier-Stokes computations initial approximations must be obtained by Reynolds

number continuation procedures (Ref. 34). This can add significantly to computational cost.

4.1 Flow in an S-shaped duct
Laminar and turbulent flow calculations are considered for an S-shaped duct as defined by Michelassi et. al. (Ref.

35). Experimental data is available for both flow regimes. This geometry is typical of jet engine intakes that are required to

redirect the flow. Secondary flow is a determining factor affecting the duct performance. Experimental data is available in

Taylor et. al. (Ref. 36) for a Re=790, based on inflow hydraulic radius and bulk velocity. A partially developed inflow

profile is assumed at the inflow. Figure 5 shows the three dimensional adapted grid for this geometry. There are four

multigrid levels, of which two are adapted. The equivalent finest level corresponds to a 129x41x41 grid or 216849 mesh

points. The adaptivity leads to three sub domains in the finest level with grids of 17x15x41,33x21x41 and 17x19x41. This
results in a reduction of nearly 75 %. The entire adaptive calculation (inclusive of all four levels) is completed in 7.45 hours
on an IBM RS 6000-530 series machine or about one hour on a Cray Y-MP. Time under-relaxation was required for this

geometry. A constant At = 1.0 was used on all grid levels.

Figure 6 depicts the symmetric xy-plane grid, and the corresponding 'normal' velocity contours. Note that the
contour lines are smooth across the sub domain boundaries. The local refinement pattern is defined by examination of the

pressure contours that are shown on Figure 7. All the fine grid regions are automatically determined around regions where
the pressure gradient is large. The smoothness of the solution across the domain boundaries is evident. Figure 8 depicts the

cross-flow velocity vectors at various axial locations. The horizontal lines represent the boundaries of the local subdomains

at these sections. The behavior of the cross flow changes significantly from section 2, to 3 and from 4 to 5. Note the

presence of three counter rotating vortices in section 5. These are absent in the other three sections. Section 5 is located at

the end of the second bend of duct. Figure 9 shows the comparison of the axial velocity component with the experimental
data. The comparison is for all five sections at the z=0.5 or mid-span location. A grid convergence study is also presented

on the figure. Good agreement is obtained with the data. The addition of fourth order damping was not required for this

geometry. Also solutions were obtained with the RNS system without the comer region viscous terms in spite of the strong
cross-flow separation that is present in this flow field.

Turbulent flow calculations at Re=40.(XX) were also performed for this geometry. Figure 10 shows the velocity

vectors along the symmetric xy-plane and the cross flow pattern at the end of the second bend (Section 5). The cross flow

behavior is significantly different from the corresponding laminar flow, although recirculation regions are still present. At

the inflow, a partly developed turbulent velocity profile is prescribed to match the experimental setup. Figure I ! shows a
comparison of profiles of the axial velocity component at various sections along the mid span location with experimental

data. Good agreement is again obtained. The turbulent flow computation was performed with two multigrid levels having

17x21x21 points and 33x41x41 points, respectively. The eddy viscosity is updated globally after each sweep. This

calculation was completed in about 7 hours on an IBM RS/6000 520 series machine or less than an hour on the CRAY Y-

MP. Adaptivity was prescribed for a third level only in the streamwise direction.
4.2 Flow in a 900 duct

Ducts with rectangular/square cross-sections are very frequently found in engineering application. The laminar

flow in a 900 bend duct. as defined by Humphrey et. al. (Ref. 37), is considered. The Re=790, based on inflow bulk
/7 "x

velocity and hydraulic diameter (d) of the cross-section of the duct, and the Dean number De--- Re,/[ d / is 368,
V _,2Rc J

where Re is the mean radius of curvature.
A fully developed straight flow solution is prescribed as the inflow condition in order to match the experimental

data of Humphrey et. al. (Ref.37). Figure 12 shows the three dimensional adapted grid for this geometry. Four multigrid

levels are prescribed, two of which are adaptive. The finest grid is equivalent to a 65x33x33 mesh, although the adaptivity
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actuallyreducesthis number of grid points by about 60 %. The calculation is completed in 4.5 hours on an IBM RS/6000

530 series machine or 35 minutes on a CRAY Y-MP. Note that the fine grid zones differ from those of the example shown

in Figure 2. This is due to the difference in the inflow profiles. Figure 2 was obtained with a uniform inflow profile. As a

result, the flow undergoes a significant gradient near the inflow; whereas, in the present case, the changes in the solution are

negligible until the bend and maximum in the latter half of the bend. The adapted fine grid region is packed around this
high gradient portion of the flow field.

Figure 13 shows the contours of the streamwise velocity component (V0) at four different cross-sections, viz., at

the beginning of the bend (0=0°), two stations on the bend, (0=30 °, 0=60 °) and one at the end of the bend (0=90°). The x-

axis is the normalized radial distance and the y-axis is the azimuthal direction. Note the change in the flow pattern. Figure

14 shows the cross flow velocity vectors. The components of the velocity are the radial velocity (Vr) and azimuthal velocity
w. Strong secondary recirculation develops in the second half of the bend. Such behavior has been observed

experimentally by Humphrey et. al. (Ref. 37). The fluid tends to accumulate near the outside of the bend. Figure 15
presents the comparison of streamwise velocity profiles at the four designated sections. The solution on two different grids

is shown. Good agreement is obtained with the experimental data from Ref. 37.
4.3 Three dimensional convergent divergent nozzle

As a compressible flow example, the flow in a convergent divergent nozzle is studied for laminar and turbulent

flow conditions. This geometry provides a good test case, as it spans the low subsonic to supersonic Mach range. The
geometry has a square cross-section, as all four walls converge/diverge uniformly. For the present calculations, the ratio of

the maximum to throat area is 3.81. At the outflow, a back pressure 0.04 times the inflow pressure is prescribed. This

corresponds to the fully expanded case, as given by inviscid quasi one-dimensional analysis.

For the laminar case. a Re=5(X) based on the throat hydraulic radius is considered. Figure 16 shows the adapted

grid and velocity vectors on the symmetric xy-plane. Note that the refinement was concentrated around the throat region
which represents the region of largest pressure gradient. Five multigrid levels were used. Two adaptive levels were

specified. Although adaptivity was specified only in the streamwise direction, during the multigrid cycling the grid was

coarsened in all three directions. The finest grid is equivalent to a 129x33x33 grid. The adaptivity reduces this number of

grid points by nearly 55 %. The complete subsonic to supersonic, five multigrid, calculation is completed in about 14 hours

on the IBM RS/6000 530, or less than two hours on the CRAY. Figure 17 shows the contours of the normal and streamwise

velocity components. The solution is, once again, smooth across the zonal boundaries. The streamwise velocity increases
nearly eight times from inflow to outflow. Figure 18 shows the contours of the normal velocity component at the throat and

at the outflow. These flow patterns are quite different. This is also seen in Figure 19 for the cross flow velocity vectors.

Note the presence of two counter-rotating vortices at the four corners of the throat section. Near the nozzle exit all the

velocity vectors rotate outward as expected. Figure 20 shows a comparison of the streamwise and normal velocity

components at the mid span (z---O) throat location for three different grids. No significant change is observed in the

streamwise velocity component when the cross plane grid is refined, but axial refinement increases the peak velocity

significantly. Note that the maximum velocity occurs away from the centerline.
Calculations were also made for a turbulent Reynolds number Re=105. and with several different values for the

back pressure. Calculations are first completed for the fully expanded case. wherein Pback/Pin=0.04. Figure 21 shows the

pressure and Mach number contours on the symmetric xy-cross plane. Note that the flow smoothly accelerates from

subsonic to supersonic Mach numbers. A magnification of the cross-flow near the four corners of the cross plane at the

throat is also depicted. Two counter-rotating vortices are evident. This calculation was continued using three semi-

coarsening multigrid levels (all full refinement), with a finest grid of 33x41 x41. Figure 22 presents more details of the flow.

The top picture shows the velocity vectors in the symmetric xy-plane. Note that the flow accelerates significantly from

inflow to outflow. The normal velocity contours are shown for three different cross-sections, viz., a section ahead of the
throat, the section at the throat and a section near the outflow. Note that the flow behavior is quite different at the throat,

wherein the recirculatory flow pattern as depicted in Figure 21 appears. This behavior is absent in cross-sections ahead and

behind the throat. Although the contour line pattern for the sections in the convergent and divergent portion appear to be

similar, the sign of v is reversed. The negative v contours are shown with dotted lines. The flow moves towards the

centerline in the convergent portion and away from it in the divergent portion.

4.4 Flow in an inlet geometry

Computational fluid dynamic simulation of flow through engine inlets provides a testing methodology to analyze

the performance of various engine configurations. The nature of the flow exiting from the engine will determine the

performance of any turbomachinerv.
A generic two dimensional inlet configuration has been selected. This consists of a 7.5" ramp on the lower

surface, and a flat upper surface. The length of the passage is five times the inlet entrance height. The ramp terminates at a
unit normalized distance from the inlet entrance. The calculation is for a free stream Mach number of 2.5 and a laminar

Reynolds number of 103. based on the height at inflow. The performance of the segmented multigrid domain

decomposition procedure is assessed for this supersonic flow. Figure 23 depicts the adapted grid that corresponds to a
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uniformfine grid of 161x81. Note that the fine grid is 'packed' in the regions where a shock is present. There are two

regions of separated flow on the upper and lower walls that result from strong shock-boundary layer interaction. These

regions are evident in the streamline pattern of Figure 24. The finest region in the adapted grid encompasses the two

recirculation zones. Figure 25 compares the pressure contours obtained from the adapted calculation and full refinement
calculation with five fully refined multigrid levels. Good agreement is obtained. The number of grid points for the local

refinement calculation is about 8500. This compares with 13000 for the full refinement calculation. Due to the presence

of the shock wave and associated reflections the reduction is less than in the earlier low speed examples. Since only

'rectangular' regions have been defined as sub domain, the oblique nature of the shock wave leads to excessive refinement.

This can be avoided by the use of an explicit solver (Ref. 13). this would allow each individual grid cell to be refined

independently, and on the basis of a local truncation error criterion

5. Summary

A solution procedure that ensures accurate, grid converged flow solutions very efficiently has been described. It

combines the advantages of the multigrid method and the flexibility of a domain decomposition approach to reduce

computational costs through grid optimization. The overhead involved in computing truncation error and prescribing the

finer levels of the muitigrid hierarchy are minimal, leading to significant reduction in computational effort as compared to a

non-adapted calculation with multigrid acceleration. Examples have been presented in incompressible and supersonic

Mach number range. The pressure flux splitting based discretization scheme ensures that mass conservation is preserved in
all subdomains. This is significant for the current procedure since boundary conditions have to be specified for local

regions wherein a finer grid is prescribed and the need for special conservative interpolation schemes to calculate these

boundary values is removed. The method also provided flexibility in choosing the adaptivity criterion. Higher order

discretization can be applied in local regions of large gradients which are automatically identified in the present method.
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Three dimensional convergent-divergent geometry
Laminar flow; Re=500
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