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SUMMARY

Partial failures of aircraft primary flight control systems and structural damages to aircraft during

flight have led to catastrophic accidents with subsequent loss of lives (e.g. DC-10, B-747, C-5,

B-52, and others). Following the DC-10 accident at Sioux City, Iowa in 1989, the National

Transportation Safety Board recommended "Encourage research and development of backup flight

control systems for newly certified wide-body airplanes that utilize an alternate source of motive

power separate from that source used for the conventional control system."

NASA Dryden Flight Research Center (DFRC) investigated the use of engine thrust for emergency

flight control and has presented results of simulation and flight studies of several airplanes,

including the B-720, Lear 24, F-15, B-727, C-402, and B-747. NASA DFRC successfully

demonstrated in 1993 in a series of 36 F-15 flights, including actual PCA landings, that throttle

control of engines alone can be used to augment or replace the aircraft primary flight control

system to safely land the aircraft. NASA DFRC conducted very successful flight tests in August-

December 1995 of the MD-11 jet transport utilizing engine thrust for backup flight control. A

series of three piloted simulation tests were conducted at NASA Ames Research Center from

1992-1995 to investigate propulsion control for safely landing a medium size jet transport which

has experienced a total primary flight control failure.
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This report describes the concept of a propulsion controlled aircraft (PCA), discusses pilot

controls, displays, and procedures; and presents the results of a PCA piloted simulation test and

evaluation of the B747-400 airplane conducted at NASA Ames Research Center in December,

1996. The purpose of the tests was to develop and evaluate propulsion control throughout the full

flight envelope of the B747-400 including worse case scenarios of engine failures and out of trim

moments.

Pilot ratings of PCA performance ranged from adequate to satisfactory. PCA performed well in

unusual attitude recoveries at 35,000 ft altitude, performed well in fully coupled ILS approaches,

performed well in single engine failures, and performed well at aft cg. PCA performance was

primarily limited by out-of-trim moments.

1.0 INTRODUCTION

Partial failures of aircraft flight control systems and structural damages to aircraft during flight

have led to catastrophic accidents with subsequent loss of lives (ref. 1) (e.g., DC-10, B-747, C-5,

B-52 and others). These accidents can be prevented if sufficient alternate control authority remains

which can be used by the pilot to execute an emergency safe landing.

Following the DC-10 accident at Sioux City, Iowa in 1989, the National Transportation Safety

Board recommended "Encourage research and development of backup flight control systems for

newly certified wide-body airplanes that utilize an alternate source of motive power separate from

that source used for the conventional control system" (ref. 2). The problem in the general case is

that currently there is no satisfactory method onboard the aircraft for effectively controlling the

aircraft with a disabled primary flight control system. In addition, manual throttle control of

engines is extremely difficult because of pilot unfamiliarity with dynamic response of the aircraft
in this mode.

NASA Dryden Flight Research Center (DFRC) investigated the use of engine thrust for emergency

flight control and has presented results of simulation and flight studies of several airplanes,

including the B-720, Lear 24, F-15, B-727, C-402, and B-747 (refs. 3 and 4). Using an F-15

aircraft, NASA DFRC successfully demonstrated in 1993 in a series of 36 flights (ref. 5), including

actual PCA landings, that throttle control of engines alone can be used to augment or replace the

aircraft primary flight control system to safely land the aircraft (ref. 6). The NASA DFRC concept

used specifically developed control laws in the aircraft flight control computer system to drive the

engines in response to pilot input commands for bank angle and flight path angle. As a follow-on

to the F-15 PCA flight tests, NASA DFRC and MDA developed and implemented PCA control

laws for the MD-11 jet transport. Flight tests of MD-11 PCA flight control were very successfully

conducted in 1995 (refs. 7 and 8).

NASA Ames Research Center (ARC) conducted three PCA piloted simulation tests for a mid-size

jet transport in support of and complementary to the PCA tests conducted by NASA DFRC (ref.

9). NASA ARC conducted a PCA piloted simulation test and evaluation of the B747-400 airplane

in December 1996.



This reportdescribestheconceptof apropulsioncontrolledaircraft(PCA), discussespilot
controls,displays,andprocedures;andpresentstheresultsof apilotedtestandevaluationin a
B747-400pilotedsimulation.

1.1 Purpose of B747-400 Piloted Simulation Tests.

A piloted simulation test and evaluation was conducted at NASA Ames Research Center to

investigate propulsion control for safely landing a B747-400 jet transport which has experienced a

total primary flight control failure. The test was completed in December 1996 on the Ames B747

Flight Simulator (ref. 10) for the purpose of investigating expanded PCA operational capabilities

throughout the full flight envelope and in worst case scenarios including engine failures and out of

trim moments.
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2.0 AIRCRAFT AND FLIGHT SIMULATOR DESCRIPTION

2.1 B747-400 Aircraft Physical Description.

The B747-400 aircraft physical dimensions are shown in figure 1 and listed in table 1. The B747-
400 aircraft has a fuselage length of 225 feet, a wing span of 213 feet, a maximum takeoff weight
of 870,000 lb, and a nominal landing weight of 540,000 lb.

Figure 1. B747-400 Physical Dimensions.
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Table 1.B747-400aircraftphysicaldimensions.

GROSSWEIGHT.
• Maximum Takeoff: lb.
• Maximum Landing: lb.
• Typical Landing: lb.

DIMENSIONS.
• Wing Area: 5500
• Wing Span: 196
• MeanChord: 27.3
• Nominal LandingCG: 22

ENGINES.
• Max Thrust: 56,000 lb.
• Inboardengy dist to cg: 39.6 ft.
•.Inboardengz dist to cg: 7.6 ft. (in flight)
• Outboardengy dist to cg: 69.4 ft.
• Outboardengz dist to cg: 2.5 ft. (in flight)

870,000
630,000
540,000

sq.ft.
ft. (wingletsextendto 213ft)
ft.
%

2.2 B747-400 Aircraft Flight and Engine Dynamics.

The B747-400 aircraft flight dynamics characteristics are typical of a large four engine jet

transport. The frequency and damping (simulation data) of the open loop dynamics for a typical

PCA approach configuration are listed in table 2.

Table 2. Typical landing configuration open loop dynamics.

TRIM CONDITION.

• weight = 540,000 lb., altitude = 2,000 ft.,

• 20 flaps, landing gear down, cg = 22%
LONGITUDINAL SHORT PERIOD.

• freq. = 1.60 rad/sec, period = 3.9 sec.
PHUGOID.

• freq. = 0.105 rad/sec, period = 60 sec.

DUTCH ROLL.

• freq. = 1.04 rad/sec.
SPIRAL CONVERGENCE.

• tau = 31.0 sec.

ROLL RATE DAMPING.

• tau = 0.33 sec.

damping ratio = 0.60

damping ratio = 0.150

period = 6.0 sec. damping ratio = 0.23

time to double amplitude = 22.0 sec.

The epr response time constant (63% of commanded value) from simulation data to a step input of

the B747-400 PW-5600 engines is about 1.1 seconds at low altitude and approach airspeed; and

about 2.5 seconds at 35,000 ft altitude.
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2.3 B747-400 Normal Landing Configuration and Airspeed.

The B747-400 aircraft nominal landing weight range is from 520,000 lb to 560,000 lb and with

either 25 or 30 degree flaps. Reference landing airspeed at 540,000 lb and 30 degree flaps is 142 kt.

2.4 B747-400 Cockpit.

The B747-400 cockpit has CRTs for pilot and copilot primary flight displays and map displays. A

typical Boeing mode control panel (MCP) is located above the instrument panel for selection of

various autopilot modes. In the autothrottle mode, the throttles move in unison to a single throttle

servo. However, there is a limited amount (approximately 5%) of individual trim capability for

each engine.

2.5 B747-400 Emergency Extension of Flaps and Landing Gear.

The B747-400 trailing edge flaps are normally lowered by hydraulics while leading edge flaps are

lowered pneumatically. In the event of complete hydraulic failure, the flaps can be lowered by a

secondary alternate electrical backup system.

The B747-400 landing gear is normally lowered by hydraulics. In the event of complete hydraulic

failure, the landing gear can be unlocked electrically, and extended by gravity.

2.6 B747-400 Flight Simulator Description.

The piloted simulations were conducted in the B747-400 Flight Simulator at NASA Ames

Research Center (ref. 10). The B747-400 flight simulator is a very high fidelity motion base

simulator with a 180 degree field of view "wrap around" visual scene (table 3). The cab layout of

pilot controls and displays is an exact replica of United Airlines aircraft (Tail #RT612) cockpit. All

systems within the simulator function and operate just as those in the actual airplane. The

simulator has unique research capabilities beyond the normal training simulator used for airline

pilots.

The B747-400 Flight Simulator at NASA Ames is certified once each six months by the FAA as a

"Level D" simulator, the highest level of fidelity to which a simulator is certified.
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Table3. B747-400flight simulatordescription.

COCKPIT.
• Duplicateof B747-400controlsanddisplays.

MODELS
• High fidelity aerodynamics,controls,andengines.
• High fidelity environmentalconditions.
• High fidelity sound.

OUT THE WINDOW SCENE.
• High fidelity 180degree"wraparound"visual.

CAB MOTION.
• High fidelity cabmotion.

DATA COLLECTION.
• Realtimecockpitdatatimehistories.
• Realtimetouchdownsnapshots.
• Comprehensivesetof flight datafor post-flight analysis.
• Video andaudiotape.

2.7Turbulence Model.

The turbulence mathematical models provide turbulence rms values and bandwidths (table 4)

which are representative of values specified in Military Specifications Mil-Spec 8785 D of April

1989. Both translational turbulence along each stability axis and rotational turbulence about each

stability axis is generated.

Table 4. Light turbulence model amplitude and bandwidth.

Altitude=2,000 ft Airspeed=225 kts.
TRANSLATIONAL GUSTS.

rms value bandwidth

(kts) (rad/sec)

u axis: 1.5 1.0

v axis: 1.5 1.0

w axis: 1.__33 1.0

Total: 2.6

ROTATIONAL GUSTS.

rms value bandwidth

(deg/sec) (rad/sec)

p gusts: 0.27 1.3

q gusts: 0.25 1.3

r gusts: 0.26 1.3
Total: 0.46

Note: Gust amplitude and bandwidth depend on airspeed and altitude.
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3.0 PCA CONCEPT

3.1 PCA Concept.

PCA control laws provide aircraft longitudinal flight control through parallel engine thrust fore

and aft to control climb or descent flight path. PCA lateral-directional flight control is provided

through asymmetric thrust to control bank angle. In the PCA mode, commanded engine pressure

ratio (epr) is sent directly to each engine control individually, and the throttles do not move. PCA

concept implementation is depicted in figure 2. PCA control law diagrams are shown in appendix

A, and PCA control law equations are shown in appendices B through F.

3.2 PCA Control Law Development.

An off-line development station was established that utilized aircraft mathematical model software

which was an exact duplicate of the B747-400 flight simulator mathematical model software. PCA

control law structure and gains were developed using the off-line B747-400 development station.

Gains were set for various trim points primarily by analyzing transient response to step inputs of

flight path angle command and bank angle command. Gains were tuned until speed of response

was satisfactory, response was asymptotic, and steady state values reflected step commands.

Software modules from the off-line development station were transported onto the B747-400

Flight Simulator and produced exact duplicate dynamic responses of the full moving base cab

simulator.

3.3 PCA Control Law Structure.

The PCA control law initial epr trim point is determined from an epr trimmap rather than simply

using the epr values at PCA engage. This initialization method is used because the pilot, in an

attempt to fly the aircraft on manual throttles, could possibly have moved the engines far from a

desired straight and level trim condition prior to PCA engage. Appendix G shows the epr trimmap

for straight and level flight. The PCA control,law structure utilizes simple linear feedback control

laws which command epr for each engine about the initial epr trim point. Longitudinal control law

feedback includes flight path angle and flight path angle rate (derived from vertical speed and

ground speed) and pitch rate. Lateral-directional control law feedback includes ground track angle,

bank angle, roll rate, and yaw rate.

3.4 PCA Engine Control Implementation.

The conventional B747 autothrottle servos move all throttles simultaneously as one. However, for

PCA implementation it is necessary to control all four engines independently. Therefore, it was

necessary to develop additional engine control software to provide the capability of commanding

each engine pressure ratio independently.

However, there is a limited capability (+/-5%) for each engine to retrim itself. This capability

would provide the possibility of implementing PCA with the current autothrottle controls, thereby

minimizing implementation costs.
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PCA CONCEPT

[ @ _M'CP Pilot Inputs _/_.

POSSIBLE B747-400 PCA
ENGINE CONFIGURATIONS

Pitch Control

1. All four engines.
2. Inboard engines (outboard engines at idle).
3. Outboard engines (inboard engines at idle).

Roll Control

1. Asymmetric Left two engines/Right two engines.
2. Asymmetric Inboard engines (outboard at idle).
3. Asymmetric Outboard engines (inboard at idle).

9 Possible Combinations of Pitch and Roll Control I

Figure 2. PCA concept and possible engine configurations.

3.5 PCA Engine Configurations.

Five of the nine possible PCA engine configurations for pitch and roll control were investigated

during the control law development phase. The five configurations investigated are shown in table

5. The primary PCA engine configuration mode was use of all four engines for pitch control and

use of both engines on each wing to provide the asymmetric thrust for roll control. Engine out

modes are provided by using only inboard engines for both pitch and roll control or only outboard

engines for both pitch and roll control. Four of the nine possible engine configurations were not

investigated as they would not appear to offer any advantages.



Table 5. B747 PCA Engine Configurations.

5 of 9 POSSIBLE CONFIGURATIONS WERE INVESTIGATED

pitch control roll control

PrimarYMode[ Configuration 1: All Four Engines 2 left/2 right Engines

EngineoutI Configuration 2: Outboard Engines Outboard EnginesModes Configuration 3: Inboard Engines Inboard Engines

Configuration 4:
Configuration 5:

All four Engines
All four Engines

Inboard Engines
Outboard Engines

CONFIGURATIONS NOT INVESTIGATED

pitch control roll control

Configuration 6:
Configuration 7:

Configuration 8:

Configuration 9:

Outboard Engines

Outboard Engines

Inboard Engines
Inboard Engines

Inboard Engines

2 left/2 right Engines
Outboard Engines
2 left/2 right Engines

3.6 PCA Industry Benefits.

The results of a study (ref. 11) to identify PCA industry benefits are shown in table 6. The study

was conducted for a the 30 year life cycle of a fleet of 300 aircraft in the category of 400,000 lb.

takeoff gross weight. It was assumed that PCA allows mechanical backup flight controls to be

eliminated, PCA training costs are equal to mechanical backup costs, PCA saves one aircraft over

a 30 year period, and insurance is 5% less for a PCA-equipped aircraft.

Table 6. PCA industry benefits.

SAFETY

• Eliminate Catastrophic Accidents due to Loss Of Primary Flight Control

ECONOMIC

• Weight Reduction Saves:

• Insurance Savings:

• Saved Airplane:

• PCA Certifications Costs:

TOTAL LIFE CYCLE SAVINGS:

$295M

42M

110M

-10M

$436M (1993 dollars)
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4.0 PCA Operational Modes.

The B747-400 Mode Control Panel (MCP) is located in the cockpit directly above the pilot's

instrument panel. The MCP is used by the pilot for normal autopilot operations and to engage the

various autopilot modes that are available, such as airspeed hold, altitude hold, and heading select.

The MCP layout is shown in figure 3.

The "left flight computer" button on the B747-400 MCP was used for PCA engage. The pilot then

controls the flight path of the aircraft by using the "vertical speed knob" and the ground track by

using the "heading select knob." The PCA pilot procedures are basically the same as for normal

autopilot operations in the heading select mode and the vertical speed mode.

MODE CONTROL PANEL (MCP)

PCA Track PCA Rght Path PCA Engage
Command Command Button

,,, \ .....

Oil @ -- _l_L_ oct

. ||i

Figure 3. B747-400 Mode Control Panel.

The pilot may also select "localizer only" or "fully coupled" approach modes for performing an

approach and landing. In the localizer only mode, PCA automatically tracks the localizer while the

pilot controls glidepath angle with the vertical speed knob. In the fully coupled mode, PCA

automatically tracks localizer and glideslope, and also initiates autoflare at 150 ft radar altitude.

The sequence of modes at PCA engage is shown in figure 4. Initially, PCA engages in an "ATT

HOLD" mode specifically designed to stabilize the aircraft in a wings level attitude at the desired

flight path angle. This mode was particularly useful for recovery from unusual attitudes at

engagement. After stabilization is achieved the PCA control laws transition to the "HDG HOLD"

mode, and then to the "HDG SEL" mode when the pilot desires a new track command.
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PCA MCP MODES

"ATTITUDE HOLD" MODE (Pilot first engages PCA).
PCA control laws stabilize aJc to zero bank angle.
PCA control laws stabilize a/c to MCP commanded

flight path angle.
"ATT HOLD" displayed on PFD.

"HEADING HOLD" MODE.
• When close to the specified flight path angle and bank

angle close to zero, PCA control laws automatically
transition to a heading hold mode.

• "HDG HOLD" displayed on PFD.

"HEADING SELECT" MODE.

• When pilot pushes "SEL" on heading hold knob, PCA
control laws automatically transition to the heading
selected by the pilot.

• "HDG SEL" displayed on PFD.

• IF AIRCRAFT ATTITUDE UNDERGOES LARGE UPSET (such
as large out of trim moments) WHILE IN PCA "HDG HOLD"
or "HDG SEL" modes.
• PCA control laws revert to "ATT HOLD" mode.

MCP flight path angles can be commanded by pilot I
while in the ATTITUDE HOLD MODE. I

Figure 4. Sequencing of PCA modes.

5.0 TEST DESCRIPTION

5.1 Test Objectives.

Objectives of the simulation test were:

• Develop PCA control laws for the B747-400 full flight operational envelope for loss of primary

flight controls including worst case scenarios of engine failure and out of trim moments.

• Test and evaluate PCA performance in piloted simulations.

12



5.2 Test Scope.

A total of six pilots participated in the tests and conducted approximately 75 simulated approaches

and landings to San Francisco runway 28 right. PCA performance was evaluated also at cruise and

medium altitudes. Scope of the test is shown in table 7.

Table 7. Scope of the B747°400 PCA piloted simulation tests.

PILOTS

• 3 NASA, 1 Boeing, 1 AirForce, 1 Airline.
EMERGENCY SCENARIOS

• Mechanically jammed controls.

• Complete hydraulic failure.

• Single engine failure.
• Out of trim moments.

ALTITUDES

• Sea level to 35,000 ft altitude (including unusual attitudes).
GROSS WEIGHTS

• 540,000 lb to 620,000 lb.

CENTER OF GRAVITY

• 22% to 40%.

DRAG CONFIGURATIONS

• Clean, 0 flaps & lg down, 20 flaps & lg down.

5.3 Baseline Flight Scenario.

A typical flight from San Francisco to Honolulu was used as the baseline for establishing typical

takeoff weights, fuel loads, altitudes, airspeeds, and configurations. The baseline flight profile is

shown in figure 5.

5.4 Emergency Flight Scenario.

The worst case emergency for loss of primary flight controls occurs at cruise altitude and with the

stabilator is frozen at a cruise airspeed trim setting. This is the worst case because it will end with

very high approach airspeeds of over 200 kt. The emergency flight profile is shown in figure 6.

13



B747 OPERATIONAL SCENARIO USED
AS BASIS FOR PCA INVESTIGATIONS

Cruise 35,000 ft at M = 0.85, 290 kt

cg = 21.4%, stab = 3.6

Descend at 290 kt/ "

/
'_--_ 10,000 ft

PHNL

Landing

GW = 540,000 Ibs

40,000 Ibs fuel

cg = 22.0%

limb at 0.84 mach

24,000 ft

limb at 340 kt

10,000 ft

KSFO
Flight from San Francisco to Honolulu.

Takeoff
GW = 640,000 Ibs

140,000 Ibs fuel

cg = 22.0%

Figure 5. Operational flight profile used as baseline for PCA piloted simulation.

B747 PCA EMERGENCY SCENARIO

An unforeseen explosive event (engine explosion, bulkhead blowout,

PHNL

bomb, etc.) occurs shortly after level off at cruise altitude.

J unforeseen Ievent

Cruise 35,000 ft at M = 0.85, 290 kt J

og = 21.4%, stab = 3.6

W _ Climb at 0.84 mach

Descend at 290 _ F _"_ 24,000 ft

\ c,imbat3,okt
/ Configuration Transition _k.

10,000ft _ _ _'_'--'--- 10,O00ft
_ Climb at

Landing Takeoff KSFO

GW = 540,000 Ibs GW = 640,000 Ibs

40,000 Ibs fuel 140,000 Ibs fuel

cg = 22.0% cg = 22.0%

Figure 6. Emergency flight profile use for PCA piloted simulation.
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5.5 Approach and Landing Scenarios.

Approaches were conducted under daylight conditions and nominally in light turbulence with a 20

kt. mean wind from 30 degrees off the left of the aircraft nose. Approaches were conducted with

complete loss of primary controls simulated as a result of (1) mechanically jammed controls, or (2)

complete hydraulic failure. In addition, single engine failures and out-of-trim moments were

superimposed on the emergency scenario of loss of primary flight controls. Approaches were

begun at 2000 feet altitude, offset to the left of the runway, and on a heading parallel to the runway

requiring an "S-turn" to the right for runway line up. Pilots could conduct the approach in either

(1) manual throttles-only control, (2) PCA MCP heading and vertical speed knobs, (3) PCA

localizer-only coupled, or (4) PCA ILS fully coupled. The initial approach conditions are shown in

figure 7. Evaluation criteria included pilot comments, Cooper-Harper ratings, and touchdown

performance.

SIMULATION INITIAL POSITIONS
FOR

APPROACH AND LANDING

Wind 250 deg, 20 kt
Light Turbulence
(10 kt crosswind)

SFO 28R

GW = 540000 Ib

22% cg

Hdg
282 deg

I 4000 ft

165 kt, 20 flap (..)..,I ....................I,..i

6000 ft

225 kt, 20 flap Cj...ll .................................IW-"
235 kt, 0 flap

6000 ft

235 kt, 0 flap (.._...=1).................................II...:
#4 eng fail

235 kt, 0 flap I 6000 ft
out of trim L)".II ................................. I.,'i

12 nm, 2000 ft

15 nm, 2000 ft

18 nm, 2000 ft

21 nm, 2000 ft

Figure 7. Initial approach conditions for landings at San Francisco runway 28R.
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6.0 RESULTS AND DISCUSSION

6.1 Effect of Control Surface Float.

Control surface float during a complete hydraulic failure has a significant effect on aircraft

dynamics that needs to be taken into consideration for the best landing configuration. In the clean

configuration and with control surfaces floating due to hydraulic failure, the ailerons typically float

upward 10-12 deg resulting in a trim airspeed decrease of about 20 kt. This was about the same

amount of control surface float experienced in NASA Dryden MD 11 flight tests.

In the case of mechanically jammed control surfaces and no control surface float, lowering 20 deg

flaps decreased trim airspeed about 30 kt as would be expected. Thus, with mechanically jammed

controls, the desirable landing configuration was 20 flaps.

However, in the case of a complete hydraulic failure and with control surfaces floating, lowering

any leading edge or trailing edge combination of flaps increased trim airspeed up to 50 kt. Thus,

with a complete hydraulic failure, the desirable landing configuration was no flaps.

In summary:

1. Mechanically jammed controls, no control surface float: Land with 20 flaps.

2. Complete hydraulic failure, control surfaces floating: Land with 0 flaps.

It should be noted that these results in simulation for trim airspeeds with flaps lowered and control

surfaces floating have not been validated in flight tests.

6.2 Landing Site Selection.

PCA approach airspeeds are high (220-240 kt) when conducting approaches with the stabilator

frozen at cruise trim settings. With either mechanically jammed controls or complete hydraulic

failure, a landing site with sufficiently long runway should be selected that provides for safe

landing and rollout at these high landing airspeeds.

Spoilers, engine thrust reversers, and brakes are not operable in the case of a complete hydraulic

failure. Thus, with a complete hydraulic failure, the pilot has no way to slow the aircraft on rollout

other than simply shutting down one or more engines.

6.3 Tendency to Float (or Bounce) on Landing.

Sink rate is reduced typically about 6 fps when the aircraft enters ground effect (below about 60 ft

altitude). Sink rate is increased typically about 6 fps for a 10 kt wind shear below 100 ft altitude.

PCA approaches are typically at high airspeeds (220-240 kt). All of these factors (combined with

no elevator control) cause the aircraft to be very susceptible to either float or bounce. Once the

aircraft has begun to float, all that can be done is to bring throttles to idle, but the aircraft will

continue to float until airspeed bleeds off sufficiently to "settle in."
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6.4 PCA Unusual Attitude Recovery.

PCA performance in an unusual attitude recovery is shown in figure 8. PCA was initially engaged

at about 36,000 ft altitude, about 10 degrees nose up flight path angle, and about 90 degrees roll

angle to the left. The roll angle recovered rapidly with large asymmetric thrust, and then the

phugoid was damped in about 2 oscillations. Lowest altitude during the recovery was 30,000 ft.

UNUSUALATTITUDE RECOVERY
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Figure 8. PCA unusual attitude recovery at cruise altitude.
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6.5 Transition to Landing Configuration.

PCA performance in a transition to landing configuration at 10,000 ft altitude is shown in figure 9.

Trim airspeed decreased 11 kt by dumping 80,000 lb of fuel. Trim airspeed decreased another 20

kt by lowering the landing gear. PCA performed well in minimizing altitude and pitch changes.

Airspeed
(kt)

Altitude

(ft)

Rate of
Climb
(fpm)

Engine
Pressure

Ratio

TRANSITION TO LANDING CONFIGURATION

Complete Hydraulic Failure, 22% cg, 10,000 ft altitude

Dump fuel to go from 620,000 Ibto 540,000 Ib

Dump

40,000 Ib
Fuel

280

260

240

220

10100

10000

9900

9800

1000

50O

0

-500

-1000

1.4

1.2

1

0.8

Dump Lower
40,000 Ib Landing

Fuel Gear

!

• -0 ! I

- : [ : : :
: I : 1 I ; I I

 iiii,,iiiiiiii ii

0 20 40 60 80 100
Time (sec)

Figure 9. Transition to landing configuration at 10,000 ft altitude.
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6.6 PCA Flight Path Angle Step Response (low, medium, cruise altitude).

A comparison of typical PCA longitudinal step responses for cruise, medium, and low attitudes is

shown in figure 10. Longitudinal flight path control at low altitudes was precise with good stability

and sufficiently fast to provide satisfactory glideslope tracking for landing. Response times (63%

of commanded value) decreased with altitude, but were sufficiently fast to satisfy requirements.

FLIGHT PATH ANGLE STEP RESPONSE

Comparison of Cruise, Medium, and Low Altitude Performance
Complete Hydraulic Failure, 22% CG
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Figure 10. Responses to -1 and + 1 degree flight path command at cruise, medium, and low
altitudes.
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6.7 PCA Flight Path Angle Step Response (aft cg).

A comparison of longitudinal step responses for 22% cg and 40% cg with equal stabilator position

is shown in figure 11. The response at 40% cg was as fast and as well damped as the response at

22% cg. However, gain scheduling with cg was necessary to retain the good response at aft cg.
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0.5

"_ -0.5
£1.

,n"

i ..... i
.............. ..,[ ................

ii

i :
L....... i.... : ............. :..............

i i -1.,0 i ,-1.50 50 100 150 50 100 150
Time (sec) Time (sec)

230. , :

2'8d _ ,do 1_o
Time (sec)

192

_190

_188

,<

186

_1s4
O

182_
I

5_ Time (sec) lOO 150

1.3

1.25

1.2

_1.15
UJ

1.1

1.05

lo 5_)
I

Time (sec) too 15o

1.16

U.I 1.1

1.08

1.06 .... 50 100 150
Time (sec)

Figure 11. Comparison of longitudinal step response at 22% cg and 40% cg.
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6.8 PCA Lateral-Directional Step Responses.

A comparison of typical PCA lateral-directional step responses for track angle commands of 30

degrees and 5 degrees is shown in figure 12. Satisfactory roll rates are achieved with peak sideslip

angle of less than 1.5 degrees. Peak asymmetric epr was only 0.08 for 30 deg track change, and

only 0.02 for 5 deg track change.

LATERAL-DIRECTIONAL STEP RESPONSES
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.v. ..... :---i .... :...... :-_, ......

....!__" i!i '_---:...... :-c,_-.':i_-.......... !..........

! I

50 Timl0Dsec) 1;0 200

Figure 12. Lateral-Directional step responses at 2,000 ft altitude.
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6.9 PCA Track Angle Step Response (low, medium, cruise altitude).

A comparison of typical PCA lateral-directional step responses for cruise, medium, and low

altitudes is shown in figure 13. Track angle control at low altitude was precise with good stability,

and sufficiently fast to provide satisfactory control for landing. Bank angle response times were

slower at altitude, but were sufficiently fast to provide satisfactory track angle performance.

TRACK ANGLE STEP RESPONSE
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Comparison of Cruise, Medium, and Low Altitude Performance
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Figure 13. Comparison of lateral-directional step responses at cruise, medium, and low altitude.

22



6.10 Manual Throttle Approach with Complete Hydraulic Failure.

A typical manual throttle approach following a complete hydraulic failure is shown in figure 14.

The approach was conducted in light turbulence with a mean wind from 250 deg at 20 kt (10 kt left

crosswind). The aircraft was in a fairly large amplitude phugoid throughout the approach resulting

in flying over the airport at about 500 ft altitude. Bank angle varied between -10 to +10 degrees,

and the pilot was able to align the aircraft track to runway centerline reasonably well. None of the

pilots were able to make a successful manual throttle approach and landing. In each case, the

aircraft either landed hard and short of the runway or flew over the airport.

6.11 PCA Localizer Only Coupled Approach (no turbulence).

PCA performance for a localizer only coupled approach is shown in figure 15 for a condition of no

turbulence but including a 10 kt crosswind (mean wind from 250 deg at 20 kt). The aircraft was

coupled to the localizer for automatic track control, while the pilot commanded flight path angle

through the MCP vertical speed knob for controlling glideslope and flare. With mechanically

jammed controls, 540,000 lb gross weight, 20 deg flaps, 22% cg, and stabilator at cruise trim

setting, the trim airspeed straight and level was 225 kt. Trim airspeed increased about 5 kt on the

glideslope.

PCA performed well in providing satisfactorily fast and precise control of flight path angle and

track angle. With no turbulence, the aircraft tracking was very smooth and stable, and quickly

compensates for crosswind conditions. The aircraft touched down 1,695 ft past the glideslope

touchdown point, 16 ft left of centerline, and with a sink rate of 8.2 fps.

6.12 PCA Localizer Only Coupled Approach (moderate turbulence).

PCA performance for a localizer only coupled approach is shown in figure 16 for a condition of

moderate turbulence including a 10 kt crosswind (mean wind from 250 deg at 20 kt). The

emergency scenario was a complete hydraulic failure. With a complete hydraulic failure at

540,000 lb, 0 deg flaps, 22% cg, and stabilator at cruise trim setting, the trim airspeed straight and

level was 235 kt. Trim airspeed increased about 5 kt on the glideslope. The pilot flew the approach
about "1-dot-low."

PCA performance was good, considering the condition of moderate turbulence. Peak bank angle

excursion on glideslope was about +/-8 deg with an rms of 2 deg. Peak flight path angle excursion

on glideslope was about +/-1 deg with an rms of 0.25 deg. The aircraft touched down 2,361 ft past

the glideslope touchdown point, 10 ft left of centerline, and with a sink rate of 8.9 fps.

6.13 PCA ILS Fully Coupled Approach (aft cg).

PCA performance for an ILS fully coupled approach with a 40% aft cg is shown in figure 17.

Wind conditions were light turbulence including a 10 kt crosswind (mean wind from 250 deg at 20

kt). The emergency scenario was mechanically jammed controls. With mechanically jammed

controls at 540,000 lb, 20 deg flaps, 40% cg, and stabilator at cruise trim setting, the trim airspeed

straight and level was 185 kt. Trim airspeed increased about 5 kt on the glideslope.
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PCA approachandlandingperformanceat40% wasasgoodasperformanceat 22%cg (normalcg
rangeat 540,000lb grossweight is 13%to 31%).Theaircrafttoucheddown2,108ft pastthe
glideslopetouchdownpoint, 21 ft left of centerline,andwith a sinkrateof 6.8fps. In general,PCA
ILS fully coupledtrackingperformancewaswithin 1/4doton localizerandglideslopefor light
turbulenceand 10kt crosswinds.

6.14 PCA ILS Coupled Approach (right outboard engine failure).

PCA performance for an ILS fully coupled approach with the right outboard engine failed is

shown in figure 18. Wind conditions were light turbulence including a 10 kt crosswind (mean

wind from 250 deg at 20 kt). The emergency scenario was a complete hydraulic failure with

superimposed engine failure. In this scenario, PCA identified the engine failure by monitoring

engine rpm and fuel flow, and automatically reconfigured control to the PCA "two inboard engine

mode," and brought the left outboard engine to idle to reduce yaw moment of the failed engine.

With a complete hydraulic failure and the outboard engine failed at 540,000 lb, 0 deg flaps, 22%

cg, and stabilator at cruise trim setting, the trim airspeed straight and level was 230 kt. Trim

airspeed increased about 5 kt on the glideslope.

PCA approach and landing performance in the "inboard engines mode" was as good as

performance with all four engines operating. The good performance is due to the fact that the

engines are operating at higher epr than when in the "all four engine mode" which provides faster

engine response and also more thrust margin above idle. The aircraft touched down initially

slightly hard and bounced slightly, and then settled in 848 ft past the glideslope touchdown point,

32 ft left of centerline, and with a sink rate of 2.1 fps.

6.15 PCA ILS Coupled Approach (out-of-trim yaw moment).

PCA performance for an ILS fully coupled approach with an out-of-trim yaw moment equal to 2

deg of left rudder is shown in figure 19. Wind conditions were light turbulence including a 10 kt

crosswind (mean wind from 250 deg at 20 kt). The emergency scenario was a complete hydraulic

failure with superimposed out-of-trim yaw moment. In this scenario, PCA automatically

retrimmed the aircraft in yaw by compensating the out-of-yaw moment with an asymmetric bias of

about 0.03 epr. With a complete hydraulic failure and the 2 deg rudder out-of-trim yaw moment at

540,000 lb, 0 deg flaps, 22% cg, and stabilator at cruise trim setting, the trim airspeed straight and

level was 235 kt. Trim airspeed increased about 5 kt on the glideslope.

PCA approach and landing performance was adequate with the 2 deg out-of-trim yaw moment.

However, PCA could not have handled much more out-of-trim yaw moment when on the

glideslope because the right side engines were operating close to idle. The aircraft touched down

96 ft short of the glideslope touchdown point, 5 ft left of centerline, and with a sink rate of 13.3

fps. After touchdown and with engines at idle, the aircraft veered off to the left on rollout due to

the 2 deg of left rudder.
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MANUAL THROTTLE APPROACH

Complete Hydraulic Failure ,540,000 Ib, 0 flaps, 22% cg
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Figure 14. Manual throttle approach with complete hydraulic failure.
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PCA LOCALIZER ONLY COUPLED APPROACH (moderate turbulence)

Complete Hydraulic Failure, 540,000 Ib, 0 flaps, 22% cg
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Figure 16. PCA localizer only coupled approach with moderate turbulence.
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Figure 18. PCA ILS coupled approach with right outboard engine failed.
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PCA ILS COUPLED APPROACH (out-of-trim yaw moment)

Complete Hydraulic Failure, 540,000 Ib, 0 flaps, 22% cg
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Figure 19. PCA ILS coupled approach with 2 degree rudder out-of-trim yaw moment.
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6.16 PCA Touchdown Footprint.

Manual throttle mode touchdown footprint and sink rate were unacceptable. None of the pilots

were able to successfully complete a "manual throttle" approach and landing on their first try. The

longitudinal "phugoid" mode was particularly difficult for pilots to control with "manual throttles"

because of the low natural dynamic damping of this mode. The natural spiral convergence of the

B747 helped in maintaining control of bank angles. Typically, aircraft flight path diverged when

pilots flew manual throttle approaches due to either over correcting or correcting out of phase with

the phugoid mode.

PCA touchdown footprints and sink rates were consistently satisfactory. Touchdown footprint for

PCA ILS coupled approaches is shown in figure 20. PCA coupled approach landings had a mean

touchdown sink rate of 8 fps with an rms deviation of +/- 3 fps.

P CAI LT% CupHIeDOAWpPNr°FaeOhOeTP R IN T

Distance past Glideslope Touchdown Point:
Distance from Centerline:
Sink Rate:

780 ft, +/- 660 ft
left 7 ft, +/- 23 ft

8 fps, +/- 3 fps

Figure 20. PCA ILS coupled approach footprint.
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6.17 Pilot Ratings.

Pilots were asked to rate the various modes in which they conducted approaches and landing. The

rating scale is shown in table 8. Mean and standard deviations of the pilot performance ratings are

shown in figure 21.

Table 8. Pilot approach and landing rating scale.

1 -3:

4 - 6:

7 - 9:

10:

Satisfactory without improvement, negligible deficiencies.

Adequate, warrants improvements, moderately objectionable deficiencies.

Inadequate, requires improvements, major deficiencies.

Unacceptable, improvements mandatory, major deficiencies.

Satisfactory performance:

Land on runway, touchdown sink less that 6 fps.

Touchdown within first 1,500 feet of runway.

Adequate Performance:

Land on runway, touchdown sink less that 12 fps.

Touchdown within first 3,000 feet of runway.

Satisfactory
Without

Improvement

4
Adequate
Warrants 5

Improvement
6

7
Inadequate

Requires 8
Improvement

9
Uncontrollable

Improvement10
Mandatory

PILOT RATINGS
Conv Conv-Cont PCA PCA PCA Manual

Cont 3 hyd sys MCP Coupled Loc- Throttle

failed knobs only

1

3 _ _ I I

+

Figure 21. PCA pilot ratings. Conventional controls had a mean rating of 2.0, conventional

controls with 3 hydraulic systems failed was rated at 3.2, PCA MCP knobs was rated at 4.5, PCA

coupled was rated at 3.5, PCA localizer-only was rated at 3.5, and manual throttle was rated at 9.3.
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6.18 Operational Limitations.

The most severe PCA operational limitation is the ability of PCA to control out-of-trim moments.

The required asymmetric epr in level flight to offset an equivalent yaw moment due to rudder is

shown in table 9. At cruise altitude, over half (0.45) of the available asymmetric epr (0.70) is

required in order to balance a 3 deg rudder offset. The low thrust engine epr during an approach on

a 3 deg glideslope for various rudder offsets is shown in table 10. When yaw moments equivalent

to a 6 deg rudder offset are present, engines on the side opposite the yaw direction are driven to

idle thrust. Thus, with 6 deg of rudder offset, there is no margin for lateral-directional

maneuvering. An example of a PCA fully coupled approach with 2 deg of rudder offset was

discussed and shown in figure 17.

Table 9. Asymmetric epr required to balance a rudder offset in level flight.

Yaw Moment

Equivalent
4 Engine Required

Asymmetric EPR

Sea Level 3 deg rudder 0.10

10,000 ft Altitude 3 deg rudder 0.15

35,000 ft Altitude 3 deg rudder 0.45

Table 10. Asymmetric low epr required to balance a rudder offset on a 3 deg glideslope.

Rudder Offset Low EPR

0 0.99

2 0.97

4 0.95

6 0.93 (idle thrust)

Turbulence amplitude is also a PCA operational limitation during approach and landing. When

there were no out-of-trim moments present, PCA was able to perform a satisfactory fully coupled

approach in moderate turbulence (see figure 12). However, as rudder offset increases, the level of

acceptable turbulence for a safe landing is reduced because of the reduced thrust margins above
idle thrust.

The envelope for a safe PCA landing under various conditions of turbulence versus rudder offset is

shown in figure 22.
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Approach and Landing
Turbulence 235 kt, 0 flap, Ig down

Level

Severe

Safe Landi

Moderate _ff Envelopq

Light __
None

0 3 6 9

Rudder Offset (deg)

g

Figure 22. PCA operational limitations in turbulence and with rudder offsets.

7.0 CONCLUSIONS

A PCA system using closed loop linear feedback control laws was developed, tested, and

evaluated in piloted simulations on the B747-400 flight simulator at NASA Ames Research

Center. The basic PCA design concept was similar to the PCA concept flight tested by NASA

Dryden Flight Research Center on the F15 and MD 11 aircraft.

STEP RESPONSE

• Aircraft response to PCA flight path angle and track angle commands was precise and generally

well damped. Response times were adequate for consistent and safe landings.

ILS TRACKING

• Glideslope and localizer tracking on PCA ILS coupled approaches in light turbulence and 10 kt
crosswinds was within 1/4 dot.
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TOUCHDOWNFOOTPRINT

• Touchdownfootprint wasconsistentto providesafelandings.
- Touchdownpastglideslopetouchdownpoint: 780ft, +/-660ft.
- Touchdownfrom centerline: left 7 ft, +/-23ft.
- Touchdownsink rate: 8 fps,+/-3 fps.

UNUSUAL ATTITUDE RECOVERY

• PCA performedwell in recoveringfrombankanglesof over90degrees.
• PCA normally required2 to 3 oscillationsto dampout thephugoidmotionat cruisealtitudeafter
PCA engagein pitch anglesup to 30 degrees.

AFT CG PERFORMANCE

• PCA performanceat 40%cg wasasgoodasat 22%cg whencontrolgainswerescheduledwith
cg.

SINGLE ENGINE FAILURE PERFORMANCE

• PCA landingperformancewith singleenginefailureswasasgoodaswith all 4 engines
operating.

PILOT RATINGS

• Pilot meanrating for PCA ILS coupledapproacheswassatisfactory.
• Pilot meanrating for PCAMCP approacheswasadequate.
• Pilotsslightly preferlocalizeronly coupledapproachessothattheycanselectglideslope
approachangle.

LANDING SITE SELECTION

• PCA approachairspeedswerehigh (225- 240kt) with cruisestabtrim settingsandrequirelong
runwaysfor safelandingandrollout.

OPERATIONAL LIMITATIONS

• Safelandingswerelimited to belowmoderateturbulence(with no rudderoffset).
• Safelandingswerelimited to lessthan4 degrudderoffset (withno turbulence).
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APPENDIX A - PCA CONTROL LAW BLOCK DIAGRAM
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Figure 23. PCA control law block diagram.
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APPENDIX B - PCA LONGITUDINAL CONTROL LAWS

tgamc = delta thrust command/engine (ibs/eng) for flight path angle control.

eprgamc = delta epr command/engine for flight path angle control.

7c - commanded flight path angle (deg.)

(pilot input from MCP knob in MCP mode, calculated in ILS Coupled mode)

q_c = commanded bank angle (deg.)

(pilot input from MCP knob in Bank mode, calculated in MCP Track mode)

Longitudinal Control Law Structure

tgamc = kgamref*tgain* [(kgamc*yc - kgam*y) +

kgamint*Tint - kq*qf - kgamdot*Tdotf + kgamphi*yq_]

eprgamc - kpitmode*tgamc*keng keng - 1/56,000

qf= [1/(0.5*s + 1)]*q

Tint = (Yc - y)/s, absolute value Tint < 40.

Ydotf = [s/(s + 1/taugamf)]*y

70 = 54*[1/(taugamphi*s + 1)][1 - cos(_c)]

tgain = (sea level pressure)/(ambient pressure)

kpitmode = 1.00 for all four engine configuration.

kpitmode = 2.00 for inboard engine only configuration.

kpitmode = 2.00 for outboard engine only configuration.

Longitudinal Control Law Gains

Mechanically Jammed

[no controls float)

Complete Hydraulic
Failure

_controls floating)

20 flaps 20 flaps clean 0 flaps clean

lg down lg down lg down
165 kt 225 kt 285 kt 235 kt 265 kt

kgamref 0.08 0.08 0.11 0.05 0.11

kgamc 0.80 2.00 2.00 2.00 2.00

kgam 0.80 2.00 2.00 2.00 2.00

kg amd ot 1.60 5.20 40.30 7.20 40.30

taugamdot 4.00 4.00 1.00 4.00 1.00

kgamint 0.04 0.07 0.08 0.07 0.08

kq 4.00 5.50 5.50 5.50 5.50

kgamphi 1.25 1.25 1.00 1.25 1.00

taugamphi 3.50 3.50 1.50 3.50 1.50

Gain Scheduling tgain with Altitude

h = altitude (ft.) hl = tgl000, h2 = hl*hl, h3 = hl*h2

tgain = 1.0000 + 0.43123"hl - 0.0000525"h2 + 0.0000423"h3
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APPENDIX C - PCA LATERAL-DIRECTIONAL CONTROL LAWS

tpsic = delta thrust command/engine (lbs/eng) for psi track angle control.

eprpsic = delta epr command/engine for psi track angle control.

gtc = commanded track angle, deg. (pilot input from MCP knob in Track mode).

_c - computed bank angle, deg. (based on track angle command).

Lateral-Directional Control Law Structure

tpsic = kphiref*[(kphic*% - kgam*q_) - kp*p - betastar]

eprpsic = krollmode*tpsic*keng keng = 1/56,000

betastar = [kbetadot*s/(s + 1/taubdot)][g*_/vtrue - r]

¢c = kpsic*(vtrue/g)*[_c -_trk] when in Track mode.

krollmode = 0.65 for all four engine configuration.

krollmode = 2.20 for inboard engine only configuration.

krollmode = 1.40 for outboard engine only configuration.

Lateral-Directional Control Law Gains

Complete Hydraulic
Failure

[no controls float) (controls floating)

20 flaps 20 flaps clean 0 flaps clean

Ig down lg down lg down

165 kt 225 kt 285 kt 235 kt 265 kt

kphiref 0.0188 0.0188 0.0250 0.0108 0.0250

kphic 0.2500 0.3550 0.3550 0.3550 0.3550

kphi 0.2000 0.3050 0.3050 0.3050 0.3050

kp 0.2000 0.0200 0.2200 0.0200 0.2200
kbetadot -2.1000 -2.1000 -2.1000 -2.1000 -2.1000

taubdot 0.7000 0.7000 0.7000 0.7000 0.7000

kpsic 0.1200 0.1200 0.0500 0.1200 0.0500

Mechanically Jammed

Max bank angle may be selected by the pilot or may operate in an automatically limited mode. The

automatic limits for bank angle vary with altitude as follows:

Auto bank angle command limit - 21.8 - 1.7*tgain (tgain = psl/pa)

at 2,000 ft altitude, _max command = 20.0 deg.

at 10,000 ft altitude, _max command = 19.3 deg.

at 35.000 ft altitude, _)max command = 15.0 deg.
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APPENDIX D - PCA ILS COUPLED CONTROL LAWS

Glideslope Capture and Track Mode

gsdev = ILS Glideslope deviation (deg.)

gsref - ILS Glideslope (deg.)

xgs = horizontal distance to glideslope touchdown point.

herr = xgs*gsdev/57.3 (altitude deviation (ft) from glideslope)

hdotf = [s/(s + 1)]*herr

vtrue = true airspeed (fps)

• Glideslope Capture

if coupled approach is armed, and if glideslope deviation signal is active:

then gamtest - gsref + (kh*herr + khdot*hdot)/vtrue

if gamtest < 0:

then initiate glideslope track mode

• Glideslope Track Mode

tgamc = same as in PCA MCP mode, except that 3'c is now calculated as follows:

]'c = gsref + (kh*herr + khdot*hdotf)/vtrue

Localizer Capture and Track Mode

locdev = ILS Localizer deviation (deg.)

psiref = Localizer ground track (deg).
locdist = distance to localizer antenna

yerr - locdist*locdev (lateral localizer track error, ft)

ydotf = [s/(s + 1)]*yerr

• Localizer Capure

if localizer approach is armed, and if localizer deviation signal is active:

then phitest = -57.3*(ky*yerr + kydot*ydotf)/32.2

if sign(ynav)*phitest > 0: then initiate localizer track mode

• Localizer Track Mode

tpsic = same as in PCA MCP mode, except that Oc is now calculated as follows:

_c - -ky*yerr -kydot*ydotf- kphiint*phiint

39



i,

IES Coupled Gains

kh

khdot

khint

ky

kydot

kphiint

Mechanically jammed
(no controls float)

20 flaps, lg down

165 kt 22__5kt

3.60 3.60

0.64 0.64

0.16 0.16

0.0036 0.0036

0.1050 0.1050

0.0080 0.0122

Complete Hydraulic
Failure

(controls floating)

0 flaps, ig down
235 kt

3.60

0.64

0.16

0.0036

0.1050

0.0122
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APPENDIX E - PCA ILS AUTOFLARE CONTROL LAWS

Mechanically Jammed Controls (no control float)

At 150 ft radar altitude:

At 60 ft radar altitude:

At 40 ft radar altitude:

At touchdown:

Pilot Procedures:

hdotc = -3 fps.

7c = 57.3*hdotc/vg (vg = ground speed, fps)

0c = 0.

If hdot < 10 fps, eprc = idle.

PCA disconnected.

1. Deploy spoilers and reverse thrust at touchdown.

2. If aircraft if floating, deploy spoilers prior to touchdown.

Complete Hydraulic Failure (controls floating)

At 150 ft radar altitude:

At 60 ft radar altitude:

At 40 ft radar altitude:

At touchdown:

Pilot Procedures:

hdotc = - 13 fps.

7c = 57.3*hdotc/vg (vg = ground speed, fps)

_c = O.

If hdot < 10 fps, eprc = idle.

PCA disconnected

1. Choose landing site for no spoilers, no brakes, and no reversers.
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APPENDIX F - PCA UNUSUAL ATTITUDE CONTROL LAWS

In the event the PCA is engaged in an unusual attitude, a separate set of control laws is used at

PCA engage to initially stabilize the aircraft in a straight and level flight condition. An "unusual

attitude" is defined in the controls by the following criteria:

"Unusual Attitude" criteria in control laws:

abs(Tc - 7) > 1.0 deg, and abs(Tdot) > 0.2 deg/sec, and

abs(_) > 2 deg, and abs(p) > 4 deg/sec.

Longitudinal Control Law Structure

tgamc = kgamref*tgain* [(kgamc*Tc - kgam*7) - kq*qf- cos(_)*kgamdot*?dotf + ku*uf]

eprgamc - kpitmode*tgamc*keng keng = 1/56,000 ?limited to +/- 1.0 deg.

Lateral-Directional Control Law Structure

tpsic = kphiref*[kphi*qb - kp*p - betastar - kphiint*phiint] - yawtrimepr + roltirmepr

eprpsic = krollmode*tpsic*keng keng = 1/56,000 betastar limited to +/- 3 deg/sec.

Control Law Gains

Mechanically Jammed or Complete Hydraulic Failure
clean and at cruise mach

35,000 ft altitude

kgamref O. 1030 kphiref 0.0250

kgamc 1.9840 kphi 0.3036

kgam 0.3970 kp 0.220

kq 5.4800 kbetadot -2.1000

kgamdot 40.2800 kphiint 0.0150
ku 7.8000

Out of Trim Yaw Estimate

Cnbeta = O. 18 + 0.06"h/35000 Cybeta = -0.018"57.3

dthrl4=(eprl - epr4)*56000/(O.7*tgain)

dthr23 = (epr2 - epr3)*56000/(O.7*tgain)
nthr = 69.4*dthr14 + 39.6*dthr13

betaest = vayb*(W/g)/(Cybeta*Q*5500) rdot = [1/(1 + s)]*r pdot = [1/(1 + s)]*p

naero = Izz*rdot - nthr + (Iyy - Ixx)*p*q - Ixz*(pdot - q'r)

yawtrimmeas = naero - Q*S*span*[Cnbeta*betaest + Cnrud*rud + Cnr*r *span/(2*vt)]

yawtrimfil = [1/(1 + l OS)*yawtrim_meas

yawtrimepr = yawtrimfil*O.7*tgain/(4*60*56000) (command per engine)
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Out of Trim Roll Estimate

Clbeta = -0.10 Clp = -0.25

laero - Ixx*pdot + (Izz - Iyy)*q*r - Ixz*(rdot - p'q)

rolltrimmeas = laero - Q'5500" 196*[Clbeta*betaest + Cla*ail + Clp*p* 196/(2"vt)]

rolltrimfil = [1/(1 + 10S)*rolltrimmeas

rolltrimepr -- (Cnbeta/Clbeta)*rolltrimfil*0.7*tgain/(4*60*56000) (command per engine)
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APPENDIX G - PCA EPR INITIAL CONDITIONS

The PCA control law initial epr trim point is determined from an epr trimmap rather than simply

using the epr values at PCA engage (figure 24). This initialization method insures that a close

approximation to an initial straight and level epr trim is used by the control laws at time of PCA

engage.
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Figure 24. PCA initial epr trimmaps.
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