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Abstract

In the as-produced condition the room temperature strength (-6 GPa) of Textron Specialty Materi-
als' 50 mm CVD SiC fiber represents the highest value thus far obtained for commercially produced

polycrystalline SiC fibers. To understand whether this strength can be maintained after composite

processing conditions, high temperature studies were performed on the effects of time, stress, and
environment on 1400 °C tensile creep strain and stress rupture on as-produced, chemically vapor
deposited SiC fibers. Creep strain results were consistent, allowing an evaluation of time and stress
effects. Test environment had no influence on creep strain but 1 hour annealing at 1600 °C in argon

gas significantly reduced the total creep strain and increased the stress dependence. This is attrib-
uted to changes in the free carbon morphology and its distribution within the CVD SiC fiber. For the
as-produced and annealed fibers, strength at 1400 °C was found to decrease from a fast fracture value

of 2 GPa to a 100-hr rupture strength value of 0.8 GPa. In addition a loss of fast fracture strength from
6 GPa is attributed to thermally induced changes in the outer carbon coating and microstructure.

Scatter in rupture times made a definitive analysis of environmental and annealing effects on creep

strength difficult.

Introduction

Ceramic matrix composites are leading candidates for advanced materials for use under severe con-

ditions. Potential reinforcements for these composites are chemically vapor deposited (CVD) sili-
con carbide (SIC) polycrystalline fibers. These fiber materials offer high thermal conductivity, high

as-produced strength, high stiffness, and has the potential to retain these properties for long times
to 1400 °C. The recently developed developmental 50 mm CVD SiC fiber (SCS-X) from Textron

Specialty Materials has the highest room temperature strength (6 GPa) of any polycrystalline SiC
fiber currently available. In addition, a carbon-rich microstructure suggests rupture and creep resis-
tance of these fibers will be better than Textron's standard SCS-6 fiber [1]. In an earlier study [2]

showed through bend stress relaxation tests, performed under constant strain, that the 50 mm fiber
possessed greater relaxation resistance than the SCS-6 fiber. These authors also showed that annealing

the fiber to temperatures above 1400 °C further improved the bend stress relaxation behavior. Based
upon the suggested reinforcement potential of the 50 mm CVD SiC fiber the purpose of this inves-

tigation was to obtain a preliminary evaluation of time, stress, environment, and annealing influ-
ences on the strength retention of this fiber under conditions of interest for ceramic composites.

Experimental Procedure

Figures 1 and 2 illustrate experimental set-ups for air and vacuum creep testing. Aluminum cold
grips attached the fiber to the test frame and strain measuring instrumentation, well outside the hot
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zoneof thefurnace.Creepandrupturetestingwereperformedat1400°Cunderdeadweightload-
ingconditions.Theloadwasappliedatroomtemperature,thenthefiberwassubjectedto arapid
temperatureincrease(100°C/min)to thetesttemperature.Thedurationof thesetestswasfrom
0.001upto 147hr,howevertestswhichexceeded100hrwithoutfiberfailurewereinterrupted.The
appliedstresseswerebetween300and3000MPa.Theupperlimit wasselectedbaseduponfast
fracturestrengthmeasurementsmadeonthesefibersatroomtemperatureafter100hrexposurein
argongasfrom1400to 1600°C [1]. Annealingtreatmentsfor thisstudywasperformedin thetest
furnaceat 1600°Cin argongasfor 1hourpriortothecreepstrainmeasurementsat1400°C.

Twovariationsof the50mmCVDSiCfibers(SCS-X)developedbyTextronSpecialtyMaterials
werestudiedinthisinvestigation.ThespooledfibersweredesignatedA andB,withspoolBcontain-
ing morecarbonin its microstructurethanspoolA fiber.Figure3 illustratesschematicallythe
microstructureof the50nunfiberin comparisonto theSCS-6fiber[2].Thecrosssectionof the
fiberrevealsthatmicrostructurallytheSiCsheathof the50mmfiberis similarto theinnerSiC
morphologyof theSCS-6fiber.

ResultsandDiscussion

Figure4showsthedataof [1] forroomtemperaturestrengthof thespoolBfiberafterbeingannealed
in airfor 2 rainandin argonfrom 1to 100hr.FromFigure4, it canbeseenthattheas-produced
strengthof6GPadecreaseswithincreasingtemperatureof exposure,andappearstoleveloff above
1400°Ctoabout2 GPa.Reference1attributethismajorstrengthdegradationprimarilyto lossof
thecrackbluntingcapabilityof thecarbon-richcoatingontheSiCsheath.Thisallowscreationof
criticalsurfaceflawswhichleadto fiberfailure.ThedatainFigure4alsoshowsthat,duringlong-
timecreeptestingin argonat 1400°C,fiberstrengthdegradesduetothermalaging,howeverthe
exactagingmechanismisnotclear.Ontheotherhand,thermalagingmechanismsinairremovethe
protectivecarboncoatingduringtheearlystagesof creep,wherecontinualoxidationmaythen
damagetheexposedSiCsurfacewhicheventuallyleadtostrengthdegradation.Forthepurposeof
thisstudy,Figure4 suggeststhattheinitialappliedcreep-rupturestressshouldbenogreaterthan
2GPainordertoobtain100hrcreeptestdata.Figure5illustratesas-producedfibercreepbehavior
at 1400°Casfunctionof spoolandenvironment.Forastressof 890MPa,creepstrainsdidnot
exceed1.5%in 100hr.Underthesetestconditions,creepwasmostlytransientin characterwitha
powerlaw-timedependence(t_3).Slightdifferencesincreepstrain(0.2%)existbetweenvacuum
andair datafor spoolA. Forthesameenvironmentalconditions(vacuum),spoolB Fibercreeps
morethanspoolA Fiber.

Theeffectsof annealing(1600°Cfor onehourin anargonatmospherewithnoappliedload)on
tensilecreepstrain,withanappliedstressof 1380MPa,areillustratedinFigure6.In generalthe
annealedfibersshowalargereductionin thetotalcreepstrainascomparedwith theas-produced
spoolA fiber.Thetransientcreepstagedecreasedandasteadystateregimebecameevident.Another
importantannealingeffect wasa changein the stressdependentcreepstrain (Figure7).
Stressdependenceon100hrcreepstrainfortheas-producedandannealedfiberschangedfrom2to
4 for theserespectivecases.Withinthedatascatter,thestressexponentfor as-producedfibersis
independentof spoolorenvironment.Creepbehaviorof Figures4 and5 suggestatwotermpower
lawexpressionfor thetotalcreepstrainupto 100hrat 1400°Cas,

= gl(_ nl t pJ + K2(3n2t p2

where K is an arbitrary constant and the applied stress s possess the exponents n_ = 2 and n 2 =

4 while the time t is raised to the Pl = 1/3 and P2 = 1 powers for the respective terms. Hence two
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dominantflowmechanismsareactive,givingriseto transientandsteadystatecreepbehavior.
Thefirst termontherighthandsideof Eq.1givesrisetotransientbehaviorin theas-produced
fiber (mechanism1)andthesecondtermto reducedtransientandsteadystatecreepbehavior
in theannealedfiber (mechanism2). PreviousTEM studies[1] suggestthatmechanism1is
probablycontrolledbythemigrationandredistributionof freecarbonin thegrainboundaries,
whichresultsin a lackof pinningagentsnecessaryto preventgrainboundarysliding.Onthe
otherhand,thehigh stressdependence(indicativeof dislocationcontrolledcreep)for the
annealedfiberssuggeststhat a relativelycarbon-freeSiCsheathmayallowan increasein
dislocationmobilitycausingmechanism2.Figure7indicatesmechanism2mayalsobeactive
for long-timesandrelativelyhighappliedstressin theas-producedfibers.That is a noted
reductionin rupturestrengthwith timefollowsnearlythesametimedependenceasthereduc-
tion in strengthafter annealingwith no appliedstress(c.f. Figure4). Figure8 summarizes
ruptureresultsin termsof rupturetimeversusappliedstress.While awidescatterin rupture
timesis evident,ageneraltrendtowardreducedstrengthwith increasingtimeis evident.For
all testedfibers,averagerupturestrengthafter 100hr at 1400°C is approximately800MPa
which is significantlyhigherthanthe300MPaobservedfor otherpolycrystallineSiC fibers
producedbypolymerpyrolysis[3].

Conclusions

Whilethecarbon-richcoatinghasasignificantinfluenceonthehighas-producedroomtem-
peraturestrengthof thedevelopmental50mm CVD fiber,evenwith thecoatingeffectively
removed,this fiber is still thestrongestcurrentlyavailablesmalldiameterSiC fiber up to
1400°Cfor 100hr in inertandair environments.Thefiber'screepandruptureperformances
areapparentlyrelatedto theslightlycarbon-richmicrostructurewhich inhibitsgraingrowth
andgrainboundarysliding.Annealingthefiberimpartsexcellentcreepresistance,possiblyby
stabilizingthefreecarbonin thefibermicrostructure.Sourcesof thewidescatterin rupture
strengthhaveyetto bedetermined.
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