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Abstract--High order entropy coding is a powerful

technique for exploiting high order statistical depen-
dencies. However, the exponentially high complexity
associated with such a method often discourages its

use. In this paper, an entropy-constralned residual
vector quantization method is proposed for lossless
compression of images. The method consists of first

quantizing the input image using a high order entropy-
constrained residual vector quantizer and then coding

the residual image using a first order entropy coder.
The distortion measure used in the entropy-constrained

optimization is essentially the first order entropy of
the residual image. Experimental results show very

competitive performance.

I. INTRODUCTION

A common approach to lossless image coding is to pre-

process the data, in a way that removes statistical depen-
dencies among the input symbols, and code those sym-

bols with an entropy coder. Individual systems differ in
their choice of statistical models for removing redundan-

cies and their choice of entropy coders, like arithmetic and

Huffman for example. Simple statistical models such as
DPCM can remove some of the dependencies but usually

are ineffective in handling high order dependencies.

High order statistical models have been proposed pre-

viously for lossless compression of binary images [1], and

were shown to be very effective. Unfortunately, they can-
not be translated efficiently to the gray-scale case. The

computational and storage demands can be prohibitive.

For example, a typical first order conditional statistical

model might require that 65535 conditional probabilities

be computed and stored. This number grows exponen-

tially with increasing model order. Compounding the

problem is the fact that many of the probability tables

cannot be populated even when large training sequences

are used, making high order entropy coding a very difficult

task.

Several methods have been proposed recently for re-
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ducing the complexity of these statistical models [2, 3, 4,

5]. Most employ quantization or merging principles to
reduce the number of conditioning states or tables of con-

ditional probabilities, usually leading to orders of mag-
nitude reductions in complexity while sacrificing only a

small loss in performance. Others involve decomposition

of the original signal into binary signals, which increases

the accuracy of estimating the statistical model and thus
improves the compression performance. In this paper,
we introduce a new method that is based on both de-

composition and probability table reduction techniques.
Statistical modeling is performed through high order con-

ditional entropy-constrained residual vector quantization

(CEC-RVQ) [6, 7]. The entropy-based distortion measure

employed in the CEC-RVQ optimization coupled with the

high order entropy coding of the CEC-RVQ output result
in substantial reductions in the entropy of the residual

signal. This design framework, leads to high compression

performance relative to other competing approaches.

II. PROPOSED FRAMEWORK

The hybrid technique of quantization and entropy cod-

ing of the residual signal has been shown to yield good

compression performance [8, 9, 10]. This is due to the fact
that quantization often produces a structure where high

order statistical dependencies can be exploited. Moreover,

since the output alphabet of the quantizer can be made

smaller than that of the original signal, the complexity of

high order statistical modeling is reduced. This is espe-

cially the case when structurally constrained quantizers

are employed. In particular, the structure of the multi-

stage residual vector quantization (RVQ) used here has

been shown [11] to be very successful in providing more
accurate estimates of the statistical dependencies of the

original signal while also reducing drastically the complex-

ity of high order statistical modeling. Multistage RVQ

produces multiresolution approximations of the input sig-
nal, and allows high order statistical conditioning to be

performed between the stage sub-signals.

As shown in Figure 1, we employ a CEC-RVQ to
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Figure1: Proposed CEC-RVQ lossless coder.

quantize the input signal, where the output of the stage

RVQ is then fed into a statistical-model-driven entropy
coder (EC). The high order stage statistical model is rep-

resented by a finite-state machine (FSM) where the state
transitions are based on previously coded _symbols. The

quantized signal is rounded to the nearest integer, and the

residual signal, formed by subtracting the rounded quan-

tized signal from the original one, is then coded using a
first order entropy coder. Empirical work has shown that

using higher order entropy coding does not lead to signif-
icant reductions in output entropy of the residual signal.

In the final stage of the encoder, the bits emanating from

the stage entropy coders as well as the residual entropy
coder are combined together into a uniquely decodable

bit stream, which is sent to the channel.

There are two important ideas, unique to this frame-

work, that exemplify the novelty of this lossless approach.

First, since the overall system is lossless, it is potentially

better to employ the entropy of the residual signal as a
distortion measure in the design of the CEC-RVQ. Using

conventional distortion measures such as the squared error

measure does not lead to minimization of the residual en-

tropy. To elaborate, let z be the input and _ be the output
of the CEC-RVQ. The new distortion measure used in the

design of the CEC-RVQ is d(z, _) = - log2[pr(I(z - _))],

where I(a) is the integer closest to the real a. The dis-
tortion is essentially the self-information of the integer-

converted residual signal, and is used as an estimate of the

length of the codeword that would be used to encode the

symbol l(z - _). In other words, the CEC-RVQ designed
to minimize such a distortion measure also minimizes the

entropy 1 of the residual signal.
The second idea is that only entropy is a measure of

performance. Since the distortion measure is the entropy,
the CEC-RVQ design algorithm produces an operational

entropy-enfropy curve where each point represents a pair

of entropies, the first being the high order entropy ho of
the CEC-RVQ and the second being the entropy hr of

the residual. The high order entropy ho is obtained by

ho = 7/(hr), where 7/is the operational entropy-entropy
function. It can be easily shown that the function 7/(hr)

is continuous and differentiable (except for some points).

However, it is generally not convex, and its convexity de-

pends on the source as well as the entropy measure used
to estimate the information content in the residual sig-

1This is the ftrst-order entropy. For higher order entropies, high
order probabilities should be used in the distortion measure.
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Figure 2: Illustration of an operational entropy-entropy curve.

nal. Fortunately, experimental work shows that for natu-

ral images and the first-order entropy, the function 7/(hr)
is convex with endpoints Ho and H, as illustrated in Fig-

ure (2). In the figure, the right endpoint H is the first-
order entropy of the original signal. The left endpoint

Ho = 7/(0) is the high order entropy of CEC-RVQ which

results in perfect reconstruction after the CEC-RVQ out-

put is rounded to the nearest integer. Due to the mono-
tonicity of the CEC-RVQ (i.e., distortion will, on the aver-

age, only decrease by adding RVQ stages), Ho is finite. In
other words, there is a point beyond which all of the real

components of the residual signal lie in the real interval

(-0.5, 0.5). The problem at hand is to find an (7/(hr), hr)
pair such that the function .T(hr) = 7/(hr) ÷ h_ is mini-
mized. As shown in the figure, the minimum occurs at h;

such that H'(hr) = -1. As will be shown later, the CEC-

RVQ algorithm is based on a Lagrangian minimization
where _ is the slope of the operational entropy-entropy

function 7/. Thus, the problem translates into designing

the EC-RVQ with corresponding Lagrangian parameter

lying in the neighborhood of 1.
Note that .7" would not necessarily have a minimum

at hr if 7/ were not convex. Moreover, it is implied in

Figure 2 that Ho < H. This is not true in general,

since H depends on the source and Ho depends on the

source, quantizer, and quantizer output statistical model.

If Ho >_ H, the minimum may be larger or equal to the en-

tropy H, and quantization becomes useless. However, by

using CEC-RVQ, it is observed that Ho is usually signifi-

cantly smaller than H. Thus, CEC-RVQ has the potential

of achieving rates that are substantially lower than those

obtained by first order entropy coding the original signal.

HI. DESIGN AND COMPLEXITY ISSUES

The CEC-RVQ design algorithm proposed here itera-

tively minimizes the Lagrangian

J_ = El- log2 pr(I(X - :X))] -I- _E[£(L(J]U))],



where U is the state random variable [6], L is the high

order conditional entropy mapping, and £(L(JIU)) is the

length of the variable length codeword L(,]IU ). The La-

grangian parameter A controls the entropy-entropy trade-
otis and is used in the design process to locate on the op-

erational entropy-entropy curve the point where the sum

of the entropies is a minimum or close to a minimum.

In this work, a training sequence that is representative

of the source output to be encoded is used in the design

process. Let z i be the ith k-dimensional vector taken from
the training sequence of size N. An optimal encoding op-

timization step generally requires exhaustively searching

the reproduction vector _* that minimizes the Lagraagian

- log 2 pr(I(z i - _*)) + A(- log 2 pr(j[u)), where j is the

current output of the CEC-RVQ and u 6 U is the current

conditioning state. This typically yields large encoding

complexity. To reduce complexity, non-exhaustive stage

searching algorithms are usually used, leading to a good
balance between complexity and encoding accuracy. In

particular, the dynamic M-search algorithm [12], which is

shown to generally perform better than the conventional

M-search algorithm, is used here to search the CEC-RVQ.

The decoder optimization step consists of using the

Gauss-Seidel algorithm [6] to iteratively minimize the av-

erage output entropy of the residual signal subject to fixed

stage encoding partitions. Suppose the CEC-RVQ con-
tains P stage VQ codebooks, each containing Np(1 _< p <

P) k-dimensional code vectors. Also, let V(jp) denote

the jpth non-causal partition cell that corresponds to the

jpth code vector in the pth stage codebook. The partition

cell r(jp) is formed of all slage-removed residual vectors
i is given by•Ti(h) = :r i - z_(jp), where zp

p-1 P

z' "
1=1 i=p+l

where j_,..., j_ are the corresponding encoding decisions

for the input vector :r_. Each iteration of the Gauss-Seidel

algorithm consists of sequentially replacing for each stage
partition cell the old stage code vector y(jp) with the cen-

troid vector c(jp) given by

c(jp)= arg min E - l°g2 Pr(](_/_(JP)-u))" (I)
_E_ k

"yq_,)¢V(j,)

The centroid vector c(jp)isvery difficult(ifnot impos-

sible)to determine analytically.Thus, a numerical op-

timizationprocedure isused in this work. This further

complicates the decoder optimization,but such iterative

optimizationisonly performed in the designprocess and

thereforedoes not affectthe encoder/decoder complexity.

The entropy coder optimizationconsistsof simply up-

datingthe finite-statemachine (FSM) and the correspond-

ing statetablesof conditionalprobabilities[6].Only the

stage p-1 stage p stage p+l

Figure 3: nitmtration of a conditioning structure for CEC-RVQ.

stage high order statistical models are optimized, and no
actual entropy coders are embedded in the design loop.

This simplifies the design process, but the complexity of

the stage statistical models must still be addressed. Like

VQ, high order statistical modeling provides a way to ex-

ploit high order statistics while also requiring complexity

that is exponentially dependent on the parameters of the
model. RVQ drastically reduces the complexity of the high

order model and improves our estimates of the dependen-

cies by generating multistage approximations of the input

signal, where the output alphabets of the subspaces are

small (e.g., 2, 3, or 4).

Complexity-coustralned statistical modeling for the out-

put of the stage RVQs can be divided into three tasks. The
first task is to locate a small humber mp of conditioning

symbols (or previous outputs of some stage RVQs), given

an initial region of support containing _v conditioning

symbols, such that the myth order conditional entropy is
minimized. This is illustrated in Figure 3 for the case

of image coding, where the shaded block in the middle

is the stage vector upon which conditioning is being per-

formed. A total ofm (12 in this case) neighboring blocks

is utilized for conditioning. These blocks define the spa-

tial region supporting the conditioning. The solid arrows

show these neighboring blocks at the pth stage. In ad-

dition to the spatial dimension, conditioning is based on

corresponding blocks at different stage levels, which is il-

lustrated in Figure 3 by the dashed arrows, showing these

conditioning blocks at the (p - 1)th and (p + 1)th stages.

By building a conditioning tree as described in [7] and

using the dynamic M-search algorithm, one can find the

best stage statistical models of orders 1, 2, 3, etc.

The second task to be performed is to determine the

best orders for each of the stage statistical models subject

to a constraint on overall complexity. For this purpose, a

tree with P branches is built and populated with a suffi-

ciently large number of complexity-entropy pairs in each
branch. The well-known generalized BFOS algorithm [13]

is then used to prune the tree to find the best stage or-

ders subject to a limit T1 on the number of conditional

probabilities, used here as a measure for complexity.

Since relatively high orders are usually required to

achieve a very low entropy, the complexity of the stage



IMAGE HYBRID CODER DPCM [3] [4]

LENA 4.27 4.80 4.42 4.20

B_IDGE 4.30 4.82 4.30 4.32

Table 1: Performance comparison of the hybrid lossless coder with

vPcM, [3], and [4].

statistical models can still be high. Moreover, contextual

information is usually located in a relatively small region

of the state space. In other words, many states do not

occur, and corresponding tables of conditional probabili-

ties are not populated. Thus, the third task is to reduce

the number of states while sacrificing a minimal loss in

performance. The PNN algorithm [14] was shown to be
successful in reducing the size of the stage statistical model

by one order of magnitude while still limiting the increase

in entropy to about 1%. The same approach used to lo-
cate the best stage statistical model orders is used here,

where the PNN algorithm is applied to each of the stage

statistical models with just-determined orders such that

a new complexity-entropy pair is obtained every time two

conditioning states are merged into a new one. The BFOS

algorithm is again applied to identify the best numbers of
conditioning states subject to a limit T_ (T_ << T1) on

the total number of conditional probabilities.

IV. EXPERIMENTAL RESULTS

Several images of size 512 x 512 taken from the USC
database were used to design a CEC-RVQ codebook as

described in the previous section. In all cases, test im-

ages were excluded from the training set. The CEC-RVQ
codebook contains 12 stage codebooks with four 4 x 4 code

vectors in each codebook. It is searched using the dynamic

M-search algorithm, leading to approximately 60 vector

Lagrangian calculations per input vector. The condition-

ing scheme we use is the one illustrated in Figure 3.
To locate the best orders for the stage models for a

fixed maximum number of 4096 conditional probabilities,

a balanced tree with depth 6 is constructed where the best

1, 2,..., 6 conditioning stage symbols are used. After the

BFOS algorithm is employed, the number of conditioning
states is further reduced by the PNN algorithm, whose

outputs are used to populate yet another tree. Finally,
the BFOS algorithm is used again to generate the FSM
where the number of conditional probabilities is limited

to 512.

The CEC-RVQ that yields the minimum overall en-

tropy is determined as described previously using the train-

ing sequence. The corresponding set of stage codebooks,

mapping tables generated by the PNN algorithm, and ta-
bles of conditional probabilities are used for encoding.

Table 1 shows the entropy performance of the proposed

hybrid coder, DPCM, and that of two of the best loss-

less compression techniques [3, 4] on the test images LENA
and BOAT. The entropy is used as a measure so that the

comparison is fair. An actual adaptive arithmetic coder
was used to encode both the output of the stage RVQs

and the residual image, and the compression ratios were

slightly larger. Obviously, the proposed coder compares

very favorably. Even better compression performance may
be attained by using larger vector sizes and/or exploit-

ing any statistical dependencies between the multistage

images and the residual one. Preliminary experimental

results are encouraging further Study.
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