
GRASP Version 5.0

!

Graphical Representations of Algorithms, Structures, and Processes

GRASP/Ada 95

Reverse Engineering Tools For Ada

Final Report

for

Delivery Order No. 33
Basic NASA Contract No. NAS8-39131

Technical Report 96-15

September 29, 1996

Department of Computer Science and Engineering

Auburn University, AL 36849-5347

Contact

James H. Cross II, Ph.D.

Principal Investigator

(334) 844-6315

cross @ eng.aubum.edu

GRASP Homepage

http://www.eng.auburn.edu/grasp

https://ntrs.nasa.gov/search.jsp?R=19970018379 2020-06-16T01:54:22+00:00Z

NASA
National Aeronautics &

i Space Administration

Report Documentation Page

1, REPORT NO.
L

r 2, GOVERNMENT ACCESSION NO.

4. TITLE AND SUBTITLE

Reengineering Tools for Use with Ada 95
(GRASP/Ada 95 Tool)

'7. AUTHORS Dr. James H. Cross II

Principal Investigator

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Computer Science and Engineering
Auburn Univeristy

" 12. SPONSORING AGENCY NAME AND ADDRESS

NASA/MSFC

3. RECIPIENTS CATALOG NO,

5. REASON DATE

6. PERFROMING ORGANIZATION CODE:

Auburn University
0010090000

8. PERFORMING ORGANIZATION REPORT NO,

CSE TR 96-15

10. WORK UNIT NO.

Delivery Order No. 33

11. CONTRACT OR GRANT NO.

NAS8-39131

13. TYPE OF REPORT AND PERIOD COVERED

Final Report
September 29, 1996
Period Covered:

Apr. 1, 1996 - Sep. 29, 1996

14. SPONSORING AGENCY CODE

_ 15. SUPPLEMENTAL NOTES

NONE

16. ABSTRACT

The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes
for Ada) has successfully created and prototyped an algorithmic level graphical representation for Ada
software, the Control Structure Diagram (CSD), and a new visualization for a fine-grained complexity
metric called the Complexity Profile Graph (CPG). By synchronizing the CSD and the CPG, the CSD
view of control structure, nesting, and source code is directly linked to the corresponding visualization
of statement level complexity in the CPG. The GRASP v5.0 software tool has been integrated with
GNAT, the GNU Ada 95 Translator to provide a comprehensive graphical user interface and
development environment for Ada 95. The user may view, edit, print, and compile source code as a
CSD with no discernible addition to storage or computational overhead.

The GRASP v5.0 software tool provides the capability for the user to generate CSDs and
CPGs from Ada 95 source code in a reverse engineering as well as forward engineering mode with a

level of flexibility suitable for practical application. This report provides an overview of the
GRASP/Ada project with an emphasis on the current update.

17. KEY WORDS (SUGGESTED BY AUTHORS)

Ada, reengineering, reverse engineering, software engineering,
visualization, metrics

19. SECURITY CLASSIFICATION (OF THIS REPORT)

None
:_,SA FORM 1626 OCT 86 ALT

20. SECURITY CLASSIFICATION (OF THIS PAGE)

None

18. DISTRIBUTION STATEMENT

Unlimited

21. NO. PAGES

37

22. PRICE

N/A

:/

GRASP Version 5.0

Graphical Representations of Algorithms, Structures, and Processes

• H

Abstract

GRASP/Ada 95

Reverse Engineering Tools For Ada

Final Report
for

Requisition No. 391310005(1F)
Basic NASA Contract No. NAS8-39131

Technical Report 96-11

October 18, 1996

The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and

Processes for Ada) has successfully created and prototyped an algorithmic level graphical

representation for Ada software, the Control Structure Diagram (CSD), and a new visualization for

a fine-grained complexity metric called the Complexity Profile Graph (CPG). By synchronizing the

CSD and the CPG, the CSD view of control structure, nesting, and source code is directly linked

to the corresponding visualization of statement level complexity in the CPG. GRASP has been

integrated with GNAT, the GNU Ada 95 Translator to provide a comprehensive graphical user

interface and development environment for Ada 95. The user may view, edit, print, and compile

source code as a CSD with no discernible addition to storage or computational overhead.

The primary impetus for creation of the CSD was to improve the comprehension efficiency

of Ada software and, as a result, improve reliability and reduce costs. The emphasis has been on

the automatic generation of the CSD from Ada 95 source code to support reverse engineering and

maintenance. The CSD has the potential to replace traditional prettyprinted Ada source code. The

current update has focused on the design and implementation of a new Motif compliant user

interface, and a new CSD generator consisting of a tagger and renderer.

The Complexity Profile Graph (CPG) is based on a set of functions that describes the

context, content, and the scaling for complexity on a statement by statement basis. When

combined graphically, the result is a composite proNe of complexity for the program unit. On-

going research includes the development and refinement of the associated functions, and the

development of the CPG generator prototype.

The current Version 5.0 prototype provides the capability for the user to generate CSDs

and CPGs from Ada 95 source code in a reverse engineering as well as forward engineering mode

with a level of flexibility suitable for practical application. This report provides an overview of the

GRASP/Ada project with an emphasis on the current update.

_r

ACKNOWLEDGEMENTS

The GRASP project has been supported, in part, by grants from NASA, the DoD

Advanced Research Projects Agnecy (ARPA), and the Defense Information Systems Agency

(DISA).

We appreciate the assistance provided by NASA personnel, especially Mr. Robert Stevens

and Judith Gregory. The grants from ARPA and DISA focused on the utilization of GRASP/Ada

in Computer Science and Engineering courses at Auburn University and preparation of

GRASP/Ada for distribution to other universities.

The following is an alphabetical listing of the team members by category, who have

participated in various phases of the project.

Principal Investigator:

Co-Principal Investigator:

Faculty Investigator:

Dr. James H. Cross II, Associate Professor

Dr. Kai H. Chang, Associate Professor

Dr. T. Dean Hendrix, Assistant Professor

Graduate Research Assistants: Larry A. Barowski, Karl S. Mathias, Patricia A. McQuaid,

Joseph C. Teate

Undergraduate Research Assistant: Tahia I. Morris

Past Graduate Research Assistants: Richard A. Davis, Charles H. May, Kelly I. Morrison,

Timothy A. Plunkett, Brian Randles, Narayana S. Rekapalli, Mark Sadler, Darren Tola

(

The following trademarks are referenced in the text of this report.

Motif is a trademark of the Open Software Foundation, Inc.

PostScript is a trademark of Adobe Systems, Inc.

Solaris and SUN are trademarks of SUN Microsystems, Inc.

UNIX is a trademark of AT&T.

X and X Window System are trademarks of the MIT X Consortium.

iii

Table of Contents

Page

1. INTRODUCTION .. 1

2. THE CONTROL STRUCTURE DIAGRAM ... 4

2.1 THE CONTROL STRUCTURE DIAGRAM ILLUSTRATED ... 4

2.2 CONTROL FLOW CONSTRUCTS ... 6

2.3 CSD BOX SYMBOLS .. 7

2.4 CSD UNIT SYMBOLS ... 8

2.5 DATA SYMBOLS .. 10

2.6 OBSERVATIONS ... 10

2.7 CSD - FUTURE DIRECTIONS ... 10

3. GENERATING CONTROL STRUCTURE DIAGRAMS WITH GRASP .. 11

4. THE COMPLEXITY PROFILE GRAPH .. 18

4.1 RELATED WORK .. 18

4.2 THE COMPLEXITY PROFILE GR_PI_ ... 19

4.3 CPG - FUTURE DIRECTIONS ... 28

5. TOOL VERIFICATION .. 29

6. SUMMARY AND FUTURE WORK ... 29

Figures

i ¸

?

Page
Figure 1. Code for Binary_Search .. 4

Figure 2. CSD for Binary_Search ... 4

Figure 3. Task Controller .. 5

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.

Figure 21.

Figure 22.

Figure 23.

Figure 24.

Figure 25.

Figure 26.

Figure 27.

Figure 28.

Figure 29.

Figure

Figure

Figure

Figure

Figure

Figure

Figure

CSD for Controller ... 5

CSD Sequence ... 6
CSD Selection .. 6

CSD Iteration ... 6

CSD Box Notation ... 7

CSD Unit symbols .. 8

CSD Unit symbols .. 9

CSD Data Symbols .. 10
Control Panel .. 11

File Options .. 11

Preference Options .. 11

Window Options ... 11

Help Options ... 11
CSD Window .. 13

CSD File Options .. 13

CSD Print Options .. 13

CSD Edit Options ... 14
CSD Views ... 14

CSD Templates ... 14
CSD Window Locator ... 15

Compiler Options .. 15

Error Highlighting .. 15

Run Options .. 16
CSD Run / Kill ... 16

CPG Options ... 16

CSD Help Options ... 17

30. Example Ada 95 while loop .. 20

31. BinarySearch CSD in GRASP/Ada .. 25

32. BinarySearch CPG in GRASP/Ada ... 25

33. Synchronized CSD and CPG in GRASP/Ada .. 26

34. CPG showing Content and Total Complexity .. 26

35. CPG showing all five metrics plotted separately .. 27

36. Complexity Profile Graph for a larger program .. 28

Tables

Page

Table 1. CPG Segments for a subset of Ada 95 ... 21

Table 3. Token Weights ... 23

Table 2. Inherent Complexity Weights .. 23

/,i: ¸:iiiJ

/ ,

• •:i ••

1. Introduction

Computer professionals have long promoted the idea that graphical representations of

software can be extremely useful as comprehension aids when used to supplement textual

descriptions and specifications of software, especially for large complex systems. The general goal

of the GRASP/Ada research project is the investigation, formulation and generation of graphical

representations of algorithms, structures, and processes for Ada. This document focuses on the

generation or reverse engineering of Control Structure Diagrams (CSDs) and Complexity Profile

Graphs (CPGs) from Ada 95 PDL or source code for visualization and measurement. The Control

Structure Diagram (CSD) is an algorithmic level graphical representation for Ada software. The

Complexity Profile Graph (CPG) is a new visualization of a fine-grained complexity metric. By

synchronizing the CSD and the CPG, the CSD view of control structure, nesting, and source code

is directly linked to the corresponding visualization of statement level complexity in the CPG.

GRASP has been integrated with GNAT, the GNU Ada 95 Translator. This has resulted in a

comprehensive graphical user interface and development environment for Ada 95. The user may

view, edit, print, and compile source code as CSD's with no discernible addition to storage or

computational overhead.

The primary impetus for creation and refinement of the CSD is to improve the

comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs

during design, implementation, testing, and maintenance. The CSD has the potential to replace

traditional prettyprinted Ada source code. The recent refinements •and extension of the current

CSD for Ada 95 include the creation and implementation of architectural-level graphical symbols

which will provide a visual link from the CSD to each Ada 95 program unit in the system

architecture diagram.

The Complexity Profile Graph (CPG) is based on a set of functions that describes the

context, content, and the scaling for complexity on a statement by statement basis. When

combined graphically, the resuk is a composite profile of complexity for the program unit. On-

going research includes the development and refinement of the associated functions, and the

development of the CPG generator prototype.

Since the overall goal of the GRASP project is to improve the comprehensibility of

software, it is important to be able to identify complex areas of source code. The complexity

profile graph (CPG) provides the user with the capability to quickly recognize complex areas of

source code. The CPG is significant in that it shows the complexity of a program unit as a profile

of statement-level complexity metrics rather than a single metric. For example, in the linguistic

approach used in Halstead's software science the numbers of distinct and total operators and

operands are used to compute the length and volume of a program without regard for program

structure or location within the program. The graph theoretic approach used in computing

McCabe's cyclomatic complexity yields a metric based on the number of decisions (edges and

nodes in the program graph). These traditional metrics are each single numbers used to describe an

entire program unit. While there are other metrics that combine the characteristics of software

science and cyclomatic complexity, none addresses the overall characteristics of program unit as a

visual complexity profile in the way that the CPG does.

/!_i

z

With the CSD and CPG synchronized, as the user can scrolls through the CSD, reading

and comprehending the source code, the corresponding CPG provides additional complexity

information for each statement in the CSD window. Alternatively, as the user scrolls through the

CPG to identify areas of high complexity, the CSD is automatically scrolled to display the

corresponding source statements.

The GRASP/Ada 95 tool provides the capability for the user to generate CSDs and CPGs

from Ada 95 source code with a level of flexibility suitable for experimentation, evaluation, and

practical application. It is expected that the new prototype will be integrated with existing CASE

tools, in which the primary motivation for the generation of graphical representations is increased

support for software life cycle activities, ranging from design through maintenance, with emphasis

on visual verification and measurement. These activities should be greatly facilitated by an

automatically generated set of "formalized diagrams and graphs" to supplement the source code

and other forms of existing documentation. The overall goal of the GRASP/Ada project is to

provide the foundation for a CASE (computer-aided software engineering) environment in which

reverse engineering and forward engineering (development) are tightly coupled. In such an

environment, the user may specify the software in a graphically-oriented language and then

automatically generate the corresponding Ada code. Alternatively, the user may specify the

software in Ada 95 and then automatically generate the graphical representations either

dynamically as the code is entered or as a form of post-processing.

The GRASP/Ada 95 software tool has the potential to be a powerful aid in any

environment where Ada 95 is expected to be written and/or read. The tool is particularly suitable

for activities during detailed design, implementation, testing, maintenance and reengineering. The

CSD is expected to be a valuable aid in comprehension and analysis of overall program structure

and flow of control, while the CPG is expected to provide additional valuable insight by providing

a visualization of the complexity of both context and content.

DoD and NASA have made a significant investments in Ada 83 and Ada 95 in an effort to

improve the quality of software and to control life cycle costs. With the approval of Aria 95 as an

ISO standard and the commercial support for Ada 95 compilers and development environments,

the promises of Ada are on the verge of becoming widespread reality. However, a major factor in

the success of Ada 95 will be availability of state of the art software support tools. Visualization

and measurement of complex software systems is an important area of software engineering

research. The current GRASP/Ada 95 research attacks both of these problems at a level that can

be expected to play a significant role in the overall improvement of the software process with Ada

95. Since much of DoD software development is expected to be affected by Ada 95, this research

has the potential for extremely widespread benefits. In particular, the GRASP/Ada 95 methods

and tools could be used to reduce life cycle costs by (1) decreasing the time required for new

people to comprehend Ada 95 software during original design and implementation, code reviews,

and subsequent maintenance, (2) identifying code sections of increased risk, especially in safety-

critical applications, and (3) facilitating and encouraging use of Ada 95 with its enhanced support

for object-oriented programming, programming in-the-large, and real-time capabilities.

This report focuses on the Ada 95 aspects of the GRASP environment. However, GRASP

has become a very robust software development application and now provides CSD support for C

and Java, in addition to Ada 95. Since GRASP is in a continual state of enhancement, readers are

referred to the GRASP Homepage (http://www.eng.aubum.edu/grasp) which includes sections on

theCSD,CurrentFeatures,FTPInformation,anUpgradeTable,Documentation,FuturePlans,
andContactInformation.

As anaidto thoseunfamiliarwith GRASPandtheCSD,wehavemadedocumentation
availableon-line.Thisinformationcontainsanintroductionto theCSD,apreliminaryon-lineuser's
guide,aswellaslinksto other on-linearticlesrelatingto GRASPandtheCSD.

Finally,if youhaveanyquestionsnotansweredin thisdocument,bugsto report,or general
commentsto makeaboutGRASP,pleasecontacttheauthorat theemailaddresson thecoverof
thisreport.

• /

2. The Control Structure Diagram

The CSD is designed to provide the user with the combined advantages of a graphical

notation and prettyprinted source code. Whereas graphical representations such as the flowchart,

Warnier-Orr diagram [Orr77], and Nassi-Shneiderman chart [Nassi73] disrupt the familiar flow of

well-indented source code, the CSD seeks to preserve this. The philosophy is to increase

comprehensibility by augmenting the source code with a graphical notation rather than presenting it

to the user in a new graphical layout. The action diagram [Martin85] provides an in line bracket

notation, but does not present the "connected" flow of control nor the rich symbols provided by

the CSD. Tripp cites many additional graphical representations for programs that have been put

forth but are not widely known [Tripp89]. However, none of these has successfully combined the

attributes of simplicity, intuitiveness, ease of use, and conciseness as the CSD has. The CSD

notation also motivated the creation of a CSD editor which has the look and feel of a typical

modern text editor. Again, this allows the user to work in a familiar setting but with the added

value of an automatically generated graphical notation. In this section the CSD is introduced, and

in Section 3 the automated support provided by the GRASP CSD Window is described.

2.1 The Control Structure Diagram Illustrated

Two examples are presented below to illustrate the CSD. The first shows the basic control

constructs of sequence, selection and iteration in Ada. These three control constructs are common

to all structured procedural languages such as Ada, C, and Pascal. The second example illustrates

a more complex control construct, the task rendezvous in Ada.

Figure 1 contains an Ada function called Binary_Search that searches an array A of

elements and counts the number of elements above, below, and/or equal to a specified element.

Figure 2 contains the CSD for Binary_Search which includes the three basic control constructs

function Binary_Search

(Key : in KeyType;

A : in ArrayType)

return integer is

low, middle, high : integer;

begin

low := A First;

high := A Last;

while (low <= high) loop

middle := (low + high) / 2;

if (Key < A(middle)) then

high := middle - I;

elsif (Key > A(middle)) then

low := middle + I;

else

return middle;

end if;

end loop;

return 0;

end Binary_Search;

Figure 1. Code for Binary_Search

function Binary_Search

(Key : in KeyType;

A : in ArrayType)

return integer is

low, middle, high : integer;

begin

-- low := A First;

-- high := A Last;

-- while (low <= high) loop

-- middle := (low + high) / 2;

(Key < A(middle)) then
• high := middle - I;

.:_sif (Key > A(middle)) then
i low := middle + i;

=[..__se

return middle;

end if;

end loop;

-- return 0;

.end Binary_Search;

Figure 2. CSD for Binary_Search

: • 7

sequence, selection, and iteration. Although this is a very simple example, the CSD clearly

indicates the levels of control inherent in the nesting of control statements. For example, at level 1

there are four statements executed in sequence - the two assignment statements, a while loop,

and a return.. The while loop defines a second level of control which contains a single

assignment statement and an i f statement, which in turn defines three separate level 3 sequences,

each of which contains one statement, the last of which is a return statement. It is noteworthy

that even the CSDs for most production strength procedures generally contain no more than ten to

fifteen statements at level 1 or in any of the subsequences defined by control constructs for

selection and iteration. This graphical chunking on the basis of functionality and level of control

appears to have a substantial positive effect on detailed comprehension of the software.

Figure 3 and Figure 4 contain an Ada task body Controller adapted from [BAR84], which

loops through a priority list attempting to accept selectively a Request with priority P. Upon

acceptance, some action is taken, followed by an exit from the priority list loop to restart the loop

with the fn'st priority. In typical Ada task fashion, the priority list loop is contained in an outer

infinite loop. This short example contains two threads of control: the rendezvous, which enters and

exists at the accept statement, and the thread within the task body. In addition, the priority fist loop

contains two exits: the normal exit at the beginning of the loop when the priority fist has been

exhausted, and an explicit exit invoked within the select statement. While the concurrency and

multiple exits are useful in modeling the solution, they do increase the effort required of the reader

to comprehend the code.

The CSD in Figure 4 uses intuitive graphical constructs to depict the point of rendezvous,

• the two nested loops, the select statement guarding the accept statement for the task, the

unconditional exit from the inner loop, and the overall control flow of the task. When reading the

code without the diagram, as shown in Figure 3, the control constructs and control paths are much

less visible although the same structural and control information is available. With additional levels

of nesting and increased physical separation of sequential components, the visibility of control

constructs and control paths becomes increasingly obscure, and the effort required of the reader

task body Controller is

begin

loop

for P in Priority loop

select

accept Request(P) do

Action(D);

end;

exit;

else

null;

end select;

end loop;

end loop;

end Controller;

Figure 3. Task Controller
i

task

-H

body Controller is

begin

-- loop

-- for P in Priority loop

_ <lect::

i _J accept Request(P)

i I _ Action(D);

il Lend;
__ . _ L___ exit.

l_se
nul 1 ;

- end select;

end loop;

end loop;

•end Controller;

Figure 4. CSD for Controller

do

dramatically increases in the absence of the CSD.

2.2 Control Flow Constructs

A complete set of CSD graphical constructs

has been developed which includes each of the
control structures in Ada 95. The basic constructs

for sequence, selection, and iteration are illustrated

below. Sequence, shown in Figure 5, is represented

by a solid vertical line with stems marking the

beginning of each statement in the sequence.

bnegin

stmtl;

stmtl;

stmtl;

d;

Figure 5. CSD Sequence

The basic constructs for selection are illustrated in Figure 6. The familiar diamond is used

to indicate a decision and is placed to the left of the condition. The true path is shown with a solid

line and the false path is indicated by a dashed line. This becomes very important when selection

constructs are nested. The next statement to be executed is found by scanning to the left, skipping

through one or more dashed lines, to fred the solid vertical line and the next stem. The basic

constructs for iteration are shown in Figure 7. Since the CSD supplements the code, the meaning
of the CSD is self-evident.

CONDITION then
• null;

: end if;

CONDITION then
: null;

se

null;

- end if;

CONDITION then
• null;

elsif CONDITION then

i L--- null;

_l___se
null;

- end if;

Swhe CASE_EXPRESSION is

en CHOICE =>

i L___ null;

en CHOICE =>

null;

_--_when CHOICE =>

i L___ null;

Lend case;

Figure 6. CSD Selection

Or INDEX_VAR

null;

null;

null;

d loop;

in INDEX_RANGE loop

--nloop

l_null;

I[---- null;

l_null;

Uend loop;

ln°°p

null;

null;

exit when CONDITION;

d loop;

-- wfiile CONDITION loop

I_-- null;null;

I_"'- null;

Uend loop;

Figure 7. CSD Iteration

!:i

:.i.

2.3 CSD Box Symbols

The CSD uses five different types of open-ended boxes to identify the major Ada program

units. These are called the single box, the double box, and the slanted box, and the single and

double boxes with dashed lines. Each particular box represents a specific group of Ada program

units. Collectively these are referred to as the CSD Box Notation as illustrated in Figure 8.

The single box, which is shown encasing "procedure Binary_Search is" in

Figure 2, is used to identify both specifications and bodies for Ada subprograms (functions and

procedures), protected types, exception handlers, and task entries. The double box is used to

identify package and protected specifications and bodies in Ada. The slanted box is used to

identify the body and specification of the Ada unit known as the task. Finally, the CSD identifies

generic packages and subprograms with a dashed single box for generic subprograms and a dashed

double box for generic packages.

I
l

[[

subprograms, exception

handlers, task entries, etc.

package specifications and bodies,

protected specifications and bodies

task specifications

and bodies

generic subprograms

generic packages

Figure 8. CSD Box Notation

2.4 CSD Unit Symbols

CSD unit symbols, illustrated in Figure 9, provide the user with the option of specializing

the program unit identified by the box notation. These are patterned after Booch's module notation

[Booch94] but include additional original symbols for task entry, protected specification and body,

and exception handler. The CSD shown in Figure 2 uses the subprogram unit symbol combined

with the box notation, but it could have been just as easily shown using only the box symbols. As

programs increase in size and complexity, the CSD unit symbols become more useful in

comprehending the Ada source since they can provide a direct visual connection with the

architectural diagrams of the system. Many users have indicated they prefer to combine the box

notation and the unit symbols as shown in Figure 10.

[] subprogram specification

i subprogram body

package specification

package body

task specification

task body

D task entry

_, generic subprogram

_,' generic package

protected specification

protected body

[] exception handler

Figure 9. CSD Unit symbols

8

subprogram specification

subprogram body

L
package specification

L
package body

task specification

task body

q
generic subprograms

generic packages

¢
L

protected specification

L
protected body

[
exception handler

Figure 10. CSD Unit symbols

2.5 Data Symbols

Although the CSD is primarily intended to depict control structures and control flow, many

users have found it beneficial to also have distinguishing symbols for type declaration and variable

declaration as shown in Figure 11. In the GRASP CSD Window described in Section 3, the user

may turn this option, as well as several others, on or off.

type My_Integer

i Ii: My_Integer;

Figure 11. CSD Dam Symbols

is new integer;

2.6 Observations

The control structure diagram is a graphical notation which maps directly to Ada 95 and

other languages such as C/C++ and Java. The CSD offers advantages over previously available

diagrams in that it combines the best features of well-indented code with simple intuitive graphical

constructs. The potential of the CSD can be best realized during detailed design, implementation,

verification and maintenance. The CSD can be used as a natural extension to popular architectural

level representations such as data flow diagrams, object diagrams, and structure charts.

2.7 CSD - Future Directions

The CSD constructs shown in figures above are expected to continue to evolve, especially

as the CSD is adapted to additional languages such as C/C++ and Java. The GASP/Ada 95

prototype, described in Section 3, provides for the automatic generation of the CSD for Ada 95, C,

and Java source code. Suggestions for improvements to the individual CSD graphical constructs

are continually solicited from users.

10

H

3. Generating Control Structure Diagrams with GRASP

i!ii:>!)
_i _

!i:!:_ • i

GRASP is a software engineering tool that generates the CSD for a given Ada program

unit, and provides a seamless integration with GNAT to perform other functions associated with

code development. GRASP is used to create, edit, compile, and mn Ada programs. This section

introduces the GRASP environment and provides a brief overview of its most common features.

The GRASP/Ada 95 Version 5.0 prototype, provides a Control Panel, shown in

Figure 12, for the overall coordination of the environment. From the Control Panel, the user

can open one or more CSD windows for Ada 95, C, and Java (Figure 13), set general

preferences (Figure 14), locate the GRASP Message Window (Figure 15), or get help on each

of the options on the Control Panel or GRASP in general (Figure 16).

Figure 12. Control Panel

Figure 14. Preference Options

:_:.._:_:':':*:"_°"._:_,.'_::_"__::_::.:::_::__::::_:_.:_.,:___"_:':'::":'::il:"':':'::_::°?:':':_:':':'_::_::':':_::"":':':___:°_:':::::::"._>z_:i:::i_:;:i:i:::i::'ii:,:i_i_i_i_i_..
__ _::.::;:;_:_:._ :::_:_:_:_:_:_:.>_:_:._:_._?.:_:_:_.;5:_;_:_,_:_:_:_:_:._:_:._ _::.>__,_ I

Figure 15. Window Options

-' y _---_:':'--W_':':'-':_-- _,_:'_.:_-_'::_'::_:':--'-'--'_':'-'-'-':::::::._':_i_::'i_i_::::':_::_ "n Y_:It_;:'::-.':_':':_i:i:_i:i_i_:'::::"a'a'a'_'_a'a'a

Figure 16. Help Options
11

• iii
i!!j

The CSD window, shown in Figure 17, is a full-function text editor with the additional

capability to generate, display, edit, and print CSDs. When a file containing an Ada program unit

is loaded, the CSD is automatically generated if Auto (next to Generate CSD on tool bar) is

turned on. Otherwise, the user may generate the CSD on demand by clicking the Generate CSD

button (or ctrl-g or F1), which is usually done routinely during the course of editing to redraw the

diagram. All white space and comments in the source code are preserved with the exception of

indentation, which is replaced by the CSD. If a parse error is encountered during CSD generation,

the cursor is moved to the highlighted line containing the error to aid the user in making

corrections. When the user saves a file, the CSD is filtered so that only the Ada source code is

retained. The CSD generation and display cycle is extremely fast (approx. 5,000 lines/sec on a

Sparc 10). The net result is that the CSD window can be used in place of a traditional program

editor to generate, display, edit, and print CSDs with virtually no overhead; i.e., the CSD is

essentially free.

The File options, Figure 18, are similar to traditional text editors. The Print

(PostScript) option, Figure 19 allows the user to set page margins, font size, headings, and

number of columns. It also informs the user if there will be line wrap at the current settings.

Default Settings allows the user to save the current settings of the CSD Window or load the

previously saved settings.

Edit, in Figure 20, also includes a block comment and uncomment option. View, in

Figure 21, allows the user to select any combination (or none) of the following: the standard

CSD Box notation, program unit symbols, data symbols, intra-statement alignment, and line

numbers. The Template option, in Figure 22, opens a tear-off menu of selectable templates

for the language of the CSD window (e.g., Ada95, C, or Java). When a template name is

clicked, the source code for it is inserted at the point of the cursor. The CSD window

Locator in Figure 23 allows the user to quickly locate the Control Panel, Message Window,

and Run Shell that go with that particular CSD Window. This is an important feature if more

than one copy of GRASP is running.

Version 5.0 is coupled with the GNAT Ada 95 compiler [ACT96]. The CSD window

in Figure 24 allows the user to invoke GNAT directly for the current program unit to perform

a Make, Compile, or Semantic Check. When an error is reported by the compiler, the

offending line of code is highlighted in the diagram. In Figure 25, line 12 is highlighted to

indicate that Counter has not been defined. Note the error message returned by GNAT is

displayed in the GRASP Message window also shown in Figure 25.

After making an executable, the user may run the file directly from the CSD Window

by selecting Run, Run Previous, or Run File as shown in Figure 26. Run assumes the user
wants to run the executable ffie associated with the source file in the current CSD window.

Run Previous runs the file that was executed by the most recent of the Run options. Run

File opens up a file select dialog box, and allows the user to run an existing executable. The

Grasp Run Shell Window is opened for input/output to the executing program as shown in

Figure 27. This shell runs as a separate process so that the execution of the user's program

cannot affect GRASP. A Grasp Run Control dialog box, also shown in Figure 27, allows the

user to send various signals to the program (e.g., interrupt or kill).

12

The CPG options shown in Figure 28 are described in Section 4. Currently, this

option is only available in the Ada 95 CSD Window. Finally, the Help option, shown in

Figure 29, provides a detailed description of each feature in the CSD Window.

/ ,.

Figure 17. CSD Window

Figure 18. CSD File Options

Figure 19. CSD Print Options

13

i¸ :

Figure 20. CSD Edit Options Figure 21. CSD Views

Figure 22. CSD Templates

14

Figure 23. CSD Window Locator Figure 24. Compiler Options

I with text_io, ada.integer_text_io;

2

procedure echo_input is

input_value : integer;

counterl : integer;

begin

-- counterl :- i;

-- text_io,put ("Please enter an integer: ");

-- ada.lnteger_text_io._et (input value);

'_i "

text io.put ("You entered the number "_

ada.integertext_io.put (input_value);

l_-- text io.new line;

l_--counterl :- counterl + I;

Uend loop;

.end echo_input;

Figure 25. Error Highlighting

15

Figure 26. Run Options

..........i..m.m.i......m

Gr_usprun execute: /homelcse_h2/teatejc/grasplecho_input

Process id is 829 .

Please enter an integer:

Figure 27. CSD Run / Kill

16

Figure 29. CSD Help Options

17

4. The Complexity Profile Graph

The overall goal of the GRASP project is to improve the comprehensibility of software.

Thus, it is important to be able to identify complex areas of source code. The Complexity ProNe

Graph (CPG), a new graphical representation based on a composite of statement-level complexity

metrics [McQuaid96], provides the user with the capability to quickly recognize complex areas of

source code. The CPG is significant in that it shows the complexity of a program unit as a profile of

statement-level complexity metrics rather than a single, global metric. For example, in the linguistic

approach used in software science [Halstead77], the numbers of distinct and total operators and

operands are used to compute the length and volume of a program, without regard for program

structure or location within the program. The graph theoretic approach used in computing

cyclomatic complexity [McCabe94] yields a metric based on the number of decisions (edges and

nodes in the program graph). These traditional metrics are each single numbers used to describe an

entire program unit. While there are other metrics that combine the characteristics of software

science and cyclomatic complexity [Robillard89], none addresses the overall characteristics of a

program unit as a visual complexity prone in the way that the CPG does.

4.1 Related Work

It is generally agreed that systematic research on metrics as tools for predicting qualitative

attributes of software originated with Halstead's Software Science [Halstead77]. Halstead's basic

metrics are number of unique operators, number of unique operands, total number of operators,

and total number of operands. Halstead conjectures relationships between these fundamental

quantities and a variety of qualitative attributes, the most popular of which are volume as a measure

of program size, and effort as an indicator of psychological complexity. While widely regarded as

seminal work in software complexity, Software Science fails to provide measurement at the level of
detail that the CPG does.

McCabe [McCabe94] was the first to propose that "complexity depends only on the

decision structure of a program" and therefore is a property derivable from a control-flow graph.

The premise is that the complexity of a program, P, is related to the difficulty of performing path

testing. McCabe terms this difficulty of path testing as cyclomatic complexity, v(G). A program

for which v(G) exceeds a certain level was considered too big, too difficult to test, and a potential

candidate for restructuring. Although widely used, the cyclomatic complexity of a program is a

single number and does not provide the rich detail that the CPG does.

An attempt to provide more detail is the interconnectivity metric of [Robillard89]. The

underlying model is based on the information-theory concepts of entropy and excess entropy and

attempts to integrate contributions of control flow complexity, data flow complexity, and program

size into a single measure. The interconnectivity metric attempts to measure the difficulty in

understanding any given statement or group of statements by measuring how a given statement is

related, or interconnected, to the rest of the program. The premise is that a statement is connected

to the rest of the program by the variables it uses and the control structures to which it belongs.

18

!iil _;i_,: i_ :

•:•i:̧•

The interconnectivity metric is computed from a matrix in which rows represent statements

in the program and columns represent elements of data flow, control flow, and program size

(variable definitions, variable re-definitions, and control structure). Once computed, the

interconnectivity metric can be graphed as a profile of a program's statement-level complexity,

much like the CPG. The CPG, however, provides greater depth and finer detail in computing

complexity and, in conjunction with GRASP/Ada, provides a more flexibility and user control in

exploring statement-level complexity.

The CPG is the visualization of a new and original complexity metric, based on a set of

functions that describes the context, content, and scaling for complexity on a statement by

statement basis. When combined graphically, the result is a composite profile of complexity for the

program unit. Our current research includes the development and refinement of the associated

functions, and the development of a CPG generator prototype for the GRASP/Ada software

engineering tool. In this prototype, the Control Structure Diagram (CSD) [Cross96b] and the CPG

are synchronized so that the visualization of control structure, nesting, and source code in the CSD

window is directly linked to the corresponding visualization of statement level complexity in the

CPG window. Thus, as the user scrolls through the CSD, reading and comprehending the source

code, the corresponding CPG provides additional complexity information for each statement in the

CSD window. Alternatively, as the user scrolls through the CPG to identify areas of high

complexity, the CSD is automatically scrolled to display the corresponding source statements.

The current research provides the capability for the user to generate CSDs and CPGs from

Ada 95 source code with a level of flexibility suitable for experimentation, evaluation, and practical

application. For example, when the user edits the Ada source code in the CSD window, both the

CSD and CPG are regenerated and rendered essentially as quickly as the user can click the

generate button. It is anticipated that the CSD and CPG will provide for an increased level of

comprehension and analysis during detailed design, implementation, verification, testing, and
maintenance.

"v

4.2 The Complexity Profile Graph

The CPG is based on a profile metric which is designed to compute complexity at various

levels of granularity based on the underlying source language. We will call these various levels of

granularity measurable units of software. The fundamental idea of the profile concept is that

software can be partitioned into a set of measurable units in such a way that each token belongs to

exactly one such unit. For example, an Ada 95 program is grammatically partitioned into individual

program units (package, subprogram, task, etc.), and each of these can be further partitioned into

statements, etc.. Theoretically, complexity can be calculated for any level of granularity defined by

the grammar of the source language. In our present research, we calculate complexity at the

production level in the source language grammar.

The CPG is a visualization of the complexity of a program unit, divided into a set of

measurable units of software which we call segments. CPG segments consist of simple statements

(e.g., assignment, procedure call) and clauses (e.g., declarations) in the underlying source language.

A program unit is parsed into a set of non-overlapping segments such that each token is included in

exactly one segment.

19

While simple statements and declarations correspond to only one segment, compound

statements such as loops and selection structures are partitioned into two or more CPG segments

for measurement. For example, the Ada 95 while loop shown in Figure 30 is partitioned into the

four CPG segments:

I. while (A < B)

2. Do_Something

3. A := A + i;

4. end loop;

loop

(To => B) ;

while (A < B) loop

Do_Something (To => B);

A :: A + i;

end loop;

Figure 30. Example Ada 95 while loop

This partitioning is advantageous for at least two reasons: these segments are the

constructs which readers would generally comprehend as single units, and the natural link between

the CPG and lines of source code is preserved. The general categories of CPG segments for Ada

95, except for tasking and object-oriented constructs, are shown in Table 1. Notice that the

statements and constructs which are partitioned into multiple segments may have other CPG

segments between their own. For example, an /f statement could have a CPG segment for an

assignment statement between its "IF condition THEN" segment and its "ELSIF condition THEN"

segment.

The Profile Metric. Unlike a traditional metric which is a single function, the profile metric

is actually a family of measurement functions,

F = { [tx I X is a measurable unit }

where each member of F calculates a specific aspect of X's complexity. While the precise

nature of the functions in F is still evolving, it is clear that, at a minimum, the number of tokens in

the measurable unit and their inherent complexities should be considered. Further study is required

to quantify the contribution of additional factors and to extend the model. For the remainder of this

article we will discuss calculating the profile complexity metric for the measurable units "program

unit", [tprog_umt(P),and "segment", l.t_gr,_nt(S).

2O

Table 1. CPG Segments for a subset of Ada 95

:_ :

• assignment statement

• delay statement

• exit statement

• goto statement

• null statement

• procedure call

• raise statement

• return statement

• declarations

ii iiiiiiiiiiiiii iiiiiiiii!iiiii iiiiiiiiiiiii!iii!iiiiiiiiiiiiiiiiiiiiiiiii iiiiiii i i i!iiiiiiiii i iii!i!i iiiii!i iii i iii
!iiiiMiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiii!iiiiiiiiiiiiiiiiiii

• IF condition THEN

• ELSIF condition THEN

• ELSE

• END IF;

i!iii!i i!iiiii!iii!iii !i!iii i! !iii!ii iii!!i! ii i! i i iiiiiiiiiiii iiiiiii

ii_!_i_iiiii_iii_i_i_iiiii_iiiii_iiiiiiiiiiiiiii_iiiiiiiiiiiiiiii!i__i!!!iiiiiiiiiii!
iiiiii!ii!iiiiiiiiiiiiiii!iiii ii N !iiiiiiiiii!ii!iiiiiiiii!iiii!

• TYPE ... IS

.RECORD

• END RECORD;
_.1 M :::::::::::::::::::::::::::::::::

iii!iiiiiiiiiiiiiii!iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!iii!i!iiiiii:!:i:i:i

 iiiiiiiiiiiiiiiiiiiiiiiiiiii i iiiiiiiiii!iiii!iiiiiiiiiiiii!il

• [GENERIC]

• CASE expression IS

• WHEN choices =>

• END CASE;

• PROCEDURE ... IS

• BEGIN

• END [Name];
i_!_!i_iii_i_i_i_i_i_i_i_i_i_i!i_i_i!i_i_i_i_iiiiiii_iii!iiiiiiiiiiiiiiiiiiii_i_ii!_i_i_ii_._i_i_i_i_i_i_i_i_i_i_i_iiiiiiiiiiiiiiiiiiiiiiiii

• [Namel[Itr] LOOP

• END LOOP [Name];

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

• [Name] [DECLARE]

• BEGIN

• END [Name];

• [GENERIC]

• FUNCTION ... IS

• BEGIN

• END [Name];

Contributions to Complexity. The profile complexity of a measurable unit is a

combination of its content complexity and its context complexity. The content and the context

complexities should be independent of each other. The content complexity tries to measure the

amount of information within a measurable unit, e.g., token or segment; while the context

21

complexity tries to measure the location of a measurable unit within the source code. The

complexity profde graph is designed such that the context complexity is the baseline complexity,

with the content complexity riding on this baseline. The rationale of this design is to provide easy

identification clusters, groups of contiguous segments of high complexity, which are based on the

context. When a cluster is identified, the content complexity can be used to isolate the heavy

segments in the cluster. With this design in mind, the range of magnitude of the context complexity

should be larger than that of the content complexity. Currently, the content contribution is

constrained to be between 0 and 3, while the context contribution is constrained to be between 0

and 15. This design provides the effect that the content complexity is a ripple riding on the curve of

the context complexity.

Content Complexity rI(S). The content metric measures the quantity of information in a

unit, not the quality. The measurement of content quality would require semantic analysis of the

code. An example of such semantic analysis is the reference to an identifier as a variable versus a

function call, or in discriminating between references to different variable identifiers based on the

complexity of their underlying data types. In our present research, the content quality is assumed to

be constant across all measurable units. For example, references to Car_l of type Real_Car and

Car_2 of type Toy_Car will be treated the same, i.e., having the same token content complexity.

Although type Real_Car may be much more complicated than type Toy_Car, the difficulty of

creating and referencing an instance of either variable is the same from the viewpoint of a

programmer. Hence the content complexities of the references to Car_l and Car_2 are treated as

being the same, while the context complexities of the declarations of their types, Real_Car and

Toy_Car, may be different.

Although the content complexity for most tokens is indeed held constant, i.e., 1.0, there are

a few exceptions: left parenthesis, logical operators (e.g., and, or, not), and comparison operators

(e.g., >, <, =). A left parenthesis normally indicates a compound expression, an index to an array,

or a parameter for a call to a procedure, function, or entry. Thus, a left parenthesis generally adds a

level of detail to be further understood, thereby increasing complexity. Since a right parenthesis

always corresponds to a left parenthesis, and generally marks the end of greater detail, thereby

decreasing complexity, it is treated as a regular token. Also, a logical operator combines two

conditions into one (except operator not), so it is heuristically more error prone and complex.

Comparison operators are treated similarly. Contribution weights for Ada 95 tokens are
summarized in Table 2.

The content complexity, rl(S), of a CPG segment S is defined as the natural logarithm of

the summation of aU of its tokens' weight contributions.

rl(S) = In]_ Weight (T)
T_S

With this definition, the summation portion for most segments should be under 20 and the

logarithm function will yield a value of less than 3.0.

22

Context Complexity z(S). The context complexity provides the baseline level of

complexity for segments of simple statements nested within a compound statement, which itself

may be nested several levels deep. The context complexity of a segment will be the summation of

the complexities of all the compound statements in which it resides. This means each compound

statement contributes to the overall level of the complexity platform which is uniform for

statements within it.

The complexity of a compound statement is based on three aspects: inherent complexity,

reachability, and breadth. The inherent complexity, I, measures the difficulty and/or complexity

nature of a compound statement. It is a subjective measurement. The rationale is that certain types

of compound statements are more error prone than others. The inherent complexity weights in

Table 3 have been used as a starting point.

The reachability complexity, R, indicates the difficulty of reaching a statement with respect

to its path predicate. The path predicate is expressed as a set of conditions, and hence R is defined

as the sum of the individual boolean condition complexities. The complexity of each boolean

condition is calculated as the number of logical operators + 1. Although certain compound

statements, e.g., ACCEPT, need an execution rendezvous to be reached, that is not considered in

this complexity. Instead, it is concluded in the inherent complexity. Complexity R is used for the

compound statements such as WHILE, IF-THEN-ELSE, and CASE-WHEN. The Breadth

complexity, B, represents the amount of computation involved in a compound statement, and is

approximated by the number of statements nested within the compound statement.

Table 2. Token Weights Table 3. Inherent Complexity Weights

Token Description Symbol

Logical Operators and, or, not, etc

Comp. Operators <, >, =, <=, etc.

Left Parenthesis (

Identifiers varl, procl, etc.

Others +, -, *,/,), vat1, etc.

Wt.

1.5

1.5

1.3

1.0

1.0

Delimiters and punctuation such as the comma,
semicolon, colon, etc. are not included.

Compound Statement Wt.

SELECT, ACCEPT 4

CASE, IF, ELSIF 3

WHILE 3

FOR, basic LOOP, EXIT 2

Block 1

Others 0

These three complexities are combined in the following way for a segment S within a

compound statement Y.

23

g(S) = c1" I (Y) + c2 * R (Y) + Ca * B (Y)

with weighting coefficients cl = 1.0, c2 = 1.0, and Ca= O. 1.

CPG Segment Profile. Combining the content complexity, rl(S),

complexity, _(S), gives the profile metric, g(S), for a segment. That is,

and the context

j.L(S) = Sl * 'l](S) -.[- $2" _(S)

where scaling factors, sI and s2, are set to 1.0 for the examples. These scaling factors, s1

and s2, and the weighting coefficients from z(S) above provide a means for adjusting the impact

that-individual factors have on the overall profile of the segment. To facilitate experimentation and

evaluation, GRASP/Ada provides a dialog box that allows the user to manipulate the value of each

scaling factor and weighting coefficient.

Program Unit Profile. Perhaps more useful than a profile at the segment level is a

complexity profile at the program unit level. The complexity profile of program unit P is a

composite of the profile metrics of its segments. The CPG is a histogram visualization of this

composite. For example, consider the CSD for procedure BinarySearch in Figure 31 and the

corresponding CPG in Figure 32. While the CSD shows the actual source code with the while

loop and nested/f statement depicted graphically, the CPG shows the complexity of the procedure

as a profile of the individual statements' complexities. The recognizable complexity density in the

CPG indicating the while loop with nested/f statement is a cluster, as defined earlier. This visual

representation of complexity (i.e., profile and cluster) forms the basis for all intended applications.

Therefore, lLtprog_unit(P)is referred to as the profile metric. Figure 33 contains the CSD and CPG of

a more complex program unit, an Ada task with a rendezvous. Again, the CPG shows clusters of

program complexity; however the level is much higher as one would expect with deeper nesting

and the greater inherent complexity of a selective accept statement (note that the vertical scale is

different).

The CPG for a program unit is displayed by plotting g(S) values for each segment

of the program unit as a histogram_ In addition, the)_(S), rl(S), I(S), R(S), and B(S) graphs can be

plotted separately, with or without scaling, to provide additional complexity profiles. This allows a

user to view the complexity of a program from a desirable perspective. A user can choose either a

color-coding or a pattern scheme to clearly distinguish the different elements of complexity when

they are plotted separately. Figure 34 and Figure 35 illustrate this feature. Notice that these two

figures, along with Figure 32, are simply different views of the complexity of the BinarySearch

procedure in Figure 31.

24

"_procedure_" BinarySearch (Key ; in KeyType; A _ in ArrayType;

WhereFound _ out integer) is

low, high, middle : integer;

begin

--WhereFound _= 0;

-- low := A'First;

-- high := A'Last;

while (WherePound = 0) and (low <= high) loop

--middle _= (low + high) / 2;

(Key < A(middle)) then
: high _= middle - i;

el_if (Key > A(middle)) then

!£---- lOW _= middle + I;

else

• =---WhereFound := middle;

~ end if;

end loop;

_end BinarySearch;

Figure 31. BinarySearch CSD in GRASP/Ada

Figure 32. BinarySearch CPG in GRASP/Ada

25

body TASK_NAME is

begin

--iloop

---- for p in PRIORITY loop

le°t!
accept REQUESTIp) (D : DATA) do

ii _-- ACTION (D),

ii Lend;

___e
null;

- end _elect;

end loop;

end loop;

.end TASK NAME;I

Complexity

Totals

Complexity 111.34637

1G.
C

o

m 12.

p
]

e 8.

]

t 4.

Y

0.

1 2 3 4 5 6 7 8 9101112131415

Segment Number

Figure 33. Synchronized CSD and CPG in GRASP/Ada

Content mm C
o

Complexity I-7 m

P
]

Totals e

x

Content 23.751797 1

t

Complexity 87.651802 y

12_

9_

"
I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 17

Segment Number

Figure 34. CPG showing Content and Total Complexity

plotted separately

26

Figure 35. CPG showing all five metrics plotted separately

: 27

" • i Jl

_ i, I

4.3 CPG - Future Directions

The preceding examples, while small, illustrate the potential of the CSD/CPG visualization

of source code. However, we feel that the greatest advantage of this visualization lies in the reverse

engineering of large software systems. The gestalt effect of the CPG visualization of a large

software system would give the software engineer the ability to quickly identify complex clusters.

Once these clusters were identified, the software engineer could then quickly navigate to them in

the CSD window and automatically have a visual aid in comprehending the code.

Figure 36 shows the complexity profile graph of a software system with over 3700 lines of

code displayed in GRASP/Ada. The CPG window clearly shows the complex clusters and the CSD

window provides an automatic control flow visualization of these areas of code. Although this size

program cannot be considered large, it serves nicely as an example of the visual leverage gained

from the CPG. More work is needed to fully explore the issues involved with the visualization and

measurement of large software systems.

Complexity J_

Totals

Complexity 8953.6172

501
40-

30-

20-

10-

0
2;0 4;0 6;0 8;0 10'00

Segment Number

_:.<i:i: :_i!i!i!i!i!i!%_:i:
.............................. _-_- _ _ .. illlll I i

Figure 36. Complexity Profile Graph for a larger program

The CPG provides more useful information than traditional metrics, by incorporating both

the content and context complexities into the metric. It seeks to identify not only complex

statements, but also complex sets of statements (clusters). Once the clusters are identified, paths to

reach this code can be identified using the CSD. The primary theme of all applications of the CPG

is to locate and prioritize clusters for selective consideration where exhaustive review is impractical

and to concentrate efforts on denser regions. This information has direct application to the areas of

software design, implementation, testing, and maintenance, and to the software development

process itself as a form of continuous feedback for analysis.

28

5. Tool Verification

Visualization and measurement tools such as GRASP/Ada are non-trivial to develop. There

are many, often subtle, details in which the tool could produce incorrect results. Therefore it is

important that tools such as GRASP/Ada be verified as being robust enough for practical

application. GRASP/Ada is capable of performing a self-test in which it runs in batch mode without

the graphical user interface and processes specified directories of Ada 95 source code.

During this self-test, each component of GRASP/Ada is tested, including the lexer/parser,

CPG segmenter, and the CSD generator. Each file in the specified directories is parsed and all

parse errors are reported. Any errors reported on code known to be correct reveal errors in

GRASP/Ada's lexer/parser component. To compute the complexity profile correctly, each token in

the source code must be included in exactly one segment; that is, all segments must be non-

overlapping and must cover the code. Thus, in the self-test CPG segments are generated for each

file and errors are reported if any segments overlap or if there is a token not included in a segment.

To test the correctness of CSD generation, the four distinct CSD views which are available

to users are generated for each file. Correctness is verified both during and after generation of the

diagram. Any errors reported during CSD generation indicate faults in the lexer/parser and

rendering algorithm components. After generation, the diagram is checked against approximately

300 rules which state the necessary properties of vertically consecutive CSD characters in a valid

diagram. Any violations of these rules plus all breaks in vertical lines of the diagram are reported.

All unit symbols, which are not covered in the rulebase, are checked for correct placement in the

diagram. Finally, to verify that GRASP/Ada is only adding the CSD to the source code and not

altering the code from its original form, a byte-level scan of the source code in the diagram is

compared to the original. Any discrepancies are reported.

As a test suite for the GRASP/Ada self-test we chose the Ada Compiler Validation

Capability (ACVC) suite. The ACVC consists of positive tests (correct code) and negative tests

(code with syntactic and semantic errors). The positive tests are in 2,205 files containing 293,669

lines of code and are processed by the GRASP/Ada self-test in approximately two minutes on a

Sun Ultra Sparc. The negative tests are in 1,233 files containing 84,987 lines of code and are

processed by the GRASP/Ada self-test in approximately 50 seconds on a Sun Ultra Sparc.

GRASP/Ada has successfully passed the self-test on all positive and negative ACVC test

files. We feel that this rigorous verification process is important for all software engineering tools

and we will continue to demand this level of robustness and efficiency from GRASP/Ada.

29

,,) _ :

"•: o:

6. Summary and Future Work

The emphasis of the GRASP/Ada project is on the automatic generation of the CSD and

CPG from Ada source code to support software life cycle activities. These life cycle activities

should be greatly facilitated by an automatically generated set of formalized diagrams and charts to

supplement the source code and other forms of documentation. Standish [Standish85] reported

that program understanding represents a tremendous portion of the cost of maintenance, and Selby

[Selby85] found that code reading was the most cost effective method of detecting errors during

the verification process when compared to functional testing and structural testing. Code reading is

still a popular and viable verification and testing strategy, as evidenced by current literature

[Basili87, Ebenau94, Knight94, Seddio93, Weller93]. Hence, improved comprehension efficiency

resulting from the integration of graphical notations and source code could have a significant

impact on the overall cost of software production.

Version 5 (November, 1996) of the GRASP/Ada prototype provides the capability for the

user to generate CSDs and CPGs from Ada source code with a level of flexibility suitable for

practical application in UNIX environments. GRASP/Ada has been verified through a rigorous

testing process using the Ada Compiler Validation Capability suite. A robust prototype such as

GRASP/Ada is essential for the evaluation of the CSD and CPG on any non-trivial Ada 95
software.

Version 5 is currently being used as a front-end for GNAT in three to five computer

science and engineering courses per quarter at Auburn University. The use of the GRASP

environment in these courses is being studied to assess its overall utility. The local version has been

instrumented to automatically collect usage data, which will be analyzed to determine how and

how much GRASP is being used. A survey is planned in which students will be asked to indicate

how they used GRASP and their preferences for its different modes. The survey data will be

compared to the actual usage data. Of particular interest, will be the students' utilization of the

CSD rather than plain text for displaying and printing their source code. The results of this study

will be presented in a future paper.

Many software systems are not composed of programs written in one language. Rather,

multiple languages are often used in the construction of large software systems. To be of practical

use, a tool such as GRASP must be readily extensible to other languages and easily used in multi-

lingual environments. We have developed a language independent framework for tools such as

GRASP which aids in extending their functionality to multiple languages [Cross96a]. Currently we

have a prototype GRASP tool that visualizes C and Java source code in addition to Ada 95. C++

and VHDL will be supported in a future release.

GRASP runs under Solaris and Linux, and is available via the internet at the Web address

on the cover of this report.

30

[ACT96]

[Aoyama89]

[Barnes84]

[Baecker90]

[Barnes84]

[Basili87]

[Booch94]

[Cross92]

[Cross94]

[Cross95]

[Cross96a]

[Cross96b]

[Ebenau94]

[Green91]

[Green92]

References

"Introduction to GNAT," Release Documents for GNAT Version 3.07, Ada

Core Technologies, 1996.

M. Aoyama, et al., "Design Specification in Japan: Tree-Structured Charts,"

IEEE Software, Mar. 1989, 31-37.

Barnes, J. G. P., Programming in Ada, Second Edition, Menlo Park, CA:

Addison-Wesley, 1984.

Baecker, R. M. and Marcus, A., Human Factors and Typography for More

Readable Programs, ACM Press, 1990.

Bames, J. G. P., Programming in Ada, Second Edition, Menlo Park, CA:

Addison-Wesley, 1984.

Basili, Victor, and Selby, Richard, "Comparing the Effectiveness of Software

Testing Strategies", IEEE Transactions on Software Engineering, December

1987, Vol. SE-13, No.12, pp.1278-1296.

Booch and D. Bryan, Software Engineering with Ada, 3rd ed.,

Benjamin/Cummings, 1994.

J. H. Cross, E. J. Chikofsky and C. H. May, "Reverse Engineering," Advances

in Computers, Vol. 35, 1992, 199-254.

J. H. Cross, "Improving Comprehensibility of Ada with Control Structure

Diagrams," Proceedings of Software Technology Conference, April 11-14,

1994, Salt Lake City, UT (distributed on CD-ROM), 25 pages.

J. H. Cross and T. D. Hendrix, "Using Generalized Markup and SGML for

Reverse Engineering Graphical Representations of Software," Proceedings of

Working Conference on Reverse Engineering, July 16-19, 1995, Toronto, 2-6.

Cross, J. H., and Hendrix, T. D., "Language Independent Program

Visualization," Eades, P. and Zhang, K. (eds.)Software Visualization, World

Scientific Publishing Co., in press, 1996.

Cross, J. H., Chang, K. H. and Hendrix, T. D. "GRASP/Ada95: Visualization

with Control Structure Diagrams. CrossTalk Defense Software Engineering

Journal, Vol. 9, No. 1, 1996, pp. 20-24.

Ebenau, Robert, "Predictive Quality Control With Software Inspections",

CrossTalk Defense Software Engineering Journal, June 1994, pp.9-16.

Green, T. R. G., Petre, M., and Bellamy, R. K. E., "Comprehensibility of

Visual and Textual Programs," Empirical Studies of Programmers Fourth

Workshop, Ablex, 1991.

Green, T. R. G. and Petre, M., "When Visual Programs Are Harder to Read

Than Textual Programs," Proceedings of the Sixth European Conference on

Cognitive Ergonomics (ECCE-6), Budapest, Hungary, 1992.

31

[Halstead77]

[Knight94]

[McCabe94]

[McQuaid96]

[Martin85]

[Nassi73]

[Orr77]

[Petre95]

[Price93]

[Robillard89]

[Scanlan89]

[Seddio93]

[Selby85]

[Shu88]

[Standish85]

[Tripp89]

[Weller93]

Halstead, M. H., Elements of Software Science, Elsevier North Holland, New

York, 1977.

Knight, J. C. and Littlewood, B., "Critical Task of Writing Dependable

Software", IEEE Software, January 1994, Vol.11, No.l, pp. 16-20.

McCabe, T. and Watson, A., "Software Complexity", CrossTalk Defense

Software Engineering Journal, December, 1994, pp.5-9.

McQuaid, P. A., Profiling Software Complexity, Ph.D. Dissertation, Auburn

University, 1996.

Martin J. and McClure C., Diagramming Techniques for Analysts and

Programmers. Englewood Cliffs, NJ : Prentice-Hall, 1985.

Nassi I. and Shneiderman, B., "Flowchart Techniques for Structured

Programnfmg,"ACMSIGPLANNotices, Vol. 8, No. 8, August 1973, 12-26.

Orr, K., Structured Systems Development, Yourdon Press, New York, 1977.

Petre, M., "Why Looking Isn't Always Seeing: Readership Skills and

Graphical Programming," Communications of the ACM, Vol. 38, No. 6, 1995,

pp. 33-44.

Price, B. A., Baecker, R. M., and Small, I. S., "A Principled Taxonomy of

Software Visualization," Journal of Visual Languages and Computing, Vol. 4,

No. 3, 1993, pp. 211-266.

Robillard, P. N. and Boloix, G., "The Interconnectivity Metrics: A New Metric

Showing How a Program Is Organized," The Journal of Systems and

Software, 10, 1989, pp. 29-39.

D. A. Scanlan, "Structured Flowcharts Outperform Pseudocode: An

Experimental Comparison," IEEE Software, Sep. 1989, 28-36.

Seddio, C., "Integrating Test Metrics Within a Software Engineering

Measurement Program at Eastman Kodak Company: A Follow-Up Case

Study", Journal of Systems Software, Vol.20, 1993, pp.227-235.

Selby, R. et. al., "A Comparison of Software Verification Techniques," NASA

Software Engineering Laboratory Series (SEL-85-001), Goddard Space Flight

Center, Greenbelt, Maryland, 1985.

Nan C. Shu, Visual Programming, New York, NY, Van Norstrand Reinhold

Company, Inc., 1988.

Standish, T., "An Essay on Software Reuse," IEEE Transactions on Software

Engineering, SE-10 (9), 494-497, 1985.

L. L. Tripp, "A Survey of Graphical Notations for Program Design -An

Update," ACM Software Engineering Notes, Vol. 13, No. 4, 1989, 39-44.

Weller, Edward F., "Lessons From Three Years of Inspection Data", IEEE

Software, September 1993, Vol. 10, No.5, pp.38-45.

32

