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I. Introduction

The AdvancedMicrowaveSoundingUnit (AMSU)and the MicrowaveHumidity

Sounder (MHS)constitute the advancedmicrowavesoundingsystemto be flown on

the EOS-PMplatform. Similar instruments(the AMSU-A corresponding to the AMSU

and the AMSU-B corresponding to the MHS) are scheduled to become operational on

the NOAA polar orbiting satellites beginning with NOAA-K. The unique characteristics

of the AMSU-MHS instruments, as compared to the capabilities of their infrared and

microwave predecessors, introduce new opportunities -- and challenges -- for

operational retrievals of atmospheric structure. Not only will these new data improve

present capabilities for the retrieval of atmospheric profiles of temperature and

moisture, but they will provide the only opportunity for successfully retrieving

atmospheric temperature and humidity profiles in the presence of modest amounts of

cloud and precipitation. A complementary opportunity is presented by the potential of

the AMSU-MHS to obtain information about the structure of clouds and precipitation.

The data sets obtained will contribute to the current knowledge of global water and

energy budgets, and provide critical information on the horizontal and vertical

distribution of tropospheric water vapor, the spatial and temporal distribution of rain,

and the relationship of cloud formation and dissipation to atmospheric dynamics and

thermodynamics.

The AMSU and MHS combined have a total of 20 channels in the microwave

region of the spectrum. Each channel receives a single linear polarization which

changes orientation with scan angle. Of the 15 AMSU channels, the 12 channels in the

50-60 GHz oxygen absorption region are primarily intended for atmospheric

temperature sounding. The three remaining channels at 23.8, 31.4 and 89 GHz are

used to obtain estimates of total column water vapor and cloud liquid water as well as

rain amounts, and to supply information on surface conditions. The MHS also has an

89 GHz channel, but with a factor of three smaller field-of-view (FOV) than its

counterpart on the AMSU. The other four MHS channels are on the wings of the 183.3

GHz water vapor absorption line, and are used together with the moisture channels of

the AMSU to retrieve profiles of tropospheric water vapor.

Data from these microwave sounders will be complemented by visible and

infrared data from companion instruments on the same platforms. These companion



instruments are the Atmospheric Infrared Sounder (AIRS) and the MODerate-resolution

Imaging Spectroradiometer (MODIS) on the EOS platform, and the High-resolution

Infrared Radiation Sounder (HIRS) and the Advanced Very High Resolution Radiometer

(AVHRR) on the NOAA polar orbiting satellites. This unique combination of instruments

on both NASA and NOAA platforms will also provide challenging opportunities for

merging complementary data with different resolutions and sampling characteristics to

produce products which combine the individual strengths of each component observing

system.

The greatest challenge to using these data sets for the study and modeling of

climate, and of the Earth's water and heat exchanges, is the development of robust

methods capable of retrieving atmospheric humidity and temperature profiles at optimal

accuracy for a given set of atmospheric conditions. In work to date with the Marshall

Space Flight Center (MSFC), the Cooperative Institute for Meteorological Satellite

Studies (CIMSS) has set up a flexible framework for the investigation of future satellite

data systems in quantitative analysis and atmospheric numerical prediction. The work

has covered a wide range of related topics within the general guidelines of observing

system simulation experiments (OSSEs). The topics have included: 1) synthesis of raw

data for current and future satellite sensors using surrogate atmospheres from forecast

models; 2) the development of synthetic radiance images for forecast and radiation

model diagnostic purposes; 3) the generation of atmospheric retrievals and other

derived products from the synthetic data; 4) the application of these derived products to

numerical models of the atmosphere; and 5) the investigation of real data from the

SSMFF2 instrument for the purposes of atmospheric water vapor profiling, cloud

discrimination and the estimation of column cloud water amounts.

II. Accomplishments

Much of the work to date can be conveniently discussed within the various

components of observing system simulation experiments. Fig. 1 (Wu et al. 1995)

shows a diagram of a typical so-called "fratemal twin" OSSE, where a different forecast

model is used to generate the surrogate atmosphere and synthetic data than is used to

run the data impact evaluations. A high-resolution physical model of the atmosphere is

used to generate a surrogate "truth" of "nature" state which, similar to the real



atmosphere, contains high spatial and temporal resolution features of dynamical and

physical consistency. From this model atmosphere, radiance sets can be constructed

for the channel complement of existing or planned satellite instruments using forward

radiative transfer models and adding realistic instrument errors

Subsequently, retrievals of atmospheric profiles or other variables are made

from these radiances using a background atmosphere for the retrieval, consisting of the

=truth" plus realistic error fields. The sum of truth plus error is designed to mimic the

usual forecast information available to an operational retrieval system. Finally, the

retrieval data are used in a data assimilation (analysis/forecast) system to estimate how

much the =errors" can be corrected (e.g., via the assimilation, how much can the

"truth"+error state be returned to the =truth" state), and what are the benefits of these

corrections in subsequent forecasts. In this OSSE sequence (Fig. 1), experiments

using various satellite data forms are depicted "SAT', while other experiments

employing either adiabatic or diabatic model initialization procedures are labeled =AI"

and "DI", respectively. The various experiments will be detailed in later sections. The

work accomplished under this program comprises elements of the observing system

simulation overview.

As discussed by Lipton (1988) and others in reviews of OSSE procedures, for

simulations involving satellite products it is highly desirable for the experimental

sequence to be complete in the sense that the surrogate atmosphere should be used

to generate raw satellite radiances from which the atmospheric retrievals or other

satellite products are then derived. The simpler route, assuming a priori that the data

will have certain error characteristics, is not nearly as realistic-and informative. The

procedures which we have developed follow this directive, the goal being to make the

evaluation of data products from future satellite sensors as rigorous as is possible

within a simulation context. Our OSSEs are somewhat unusual in that the synthesis of

satellite data, soundings and other satellite data products has been given at least equal

emphasis to the testing of data in forecast situations.



A. Radiative Transfer Modelsand Synthetic RadianceImagery

1. SyntheticImageryGeneration

The generation of synthetic radiances for future satellite instruments, as

depicted in Fig. 1, has proceeded using atmospheric forecast model simulations run at

high horizontal and vertical resolution, so that small scale atmospheric features may be

captured both in the surrogate atmosphere and the resulting forward radiances. In this

work, we first developed and implemented fonNard models of radiative transfer for the

clear air to produce radiances for the AMSU, MHS and HIRS instrument channel suites.

Later (Diak et al. 1992; Wu et al., 1995), the models were amended to include the non-

scattering effects of cloud liquid water. Most recently, the effects of scattering

processes of cloud ice and hydrometeors have been included in synthesizing the

microwave brightness temperatures (Bums et al. 1996).

Diak et al. (1992) and Diak and Huang (1994) gave examples of channel

radiances made from CIMSS mesoscale model output for the case study day of 25

January 1986 for AMSU-B channel 19 (a 183 GHz water vapor sounding channel) and

AMSU-A channel 3 (a 50 GHz O= atmospheric sounding channel). Both channel

simulations included the non-scattering effects of cloud liquid water (CLW) distributions

from CIMSS forecast model output. This day was marked by a strong frontal system

dominating the weather of the east coast. For AMSU 19, the differences in brightness

temperature caused by the presence of cloud liquid water were as much as 5 degrees

K. Cloudy minus clear brightness temperatures for channel 3 were most evident over

water surfaces, (as much as 40-50 K), where there is pronounced warming of the

scene by clouds due to the low microwave emissivity of water at this frequency. In both

of these channels, the structure of the east coast cold front was well-represented, as

was information on the location of clouds.

To calculate the clear and cloudy radiances described above, the fast model for

microwave transmittance of atmospheric gases developed by Eyre and Woolf (1988),

was used, extended to account for the transmittance of cloud liquid water (CLW) using

the formulation of Grody (1988). This transmittance formulation, however, does not

easily allow scattering effects to be addressed. For this purpose, a radiative transfer

model (RTM) has been adapted for this project from Kummerow and Giglio (1994),



which uses Mie scattering code to obtain the absorptionand scattering coefficients,

which are then input to a 2-stream radiative transfer calculation. The forecast models

used to produce synthetic data for these cases include both the CIMSS forecast model

(80 km resolution in the horizontal, 1 km in the vertical) and the UW-RAMS model

(Tripoli, 1992, horizontal resolution of 3.3 kin, a vertical resolution of approximately 500

m). In terms of resolution and complexity, the former model is representative of

operational models currently in use. The fields from the latter model include six

hydrometeor species (cloud water, rain water, graupel, pristine [cloud] ice, snow, and

aggregates), which allows detailed examination of the scattering process at the various

sensor frequencies. One of the motivating factors for such radiance comparisons was

to assess the potential of model-predicted fields of cloud, hydrometeors and resulting

forward radiance calculations to serve as guesses for the retrieval of atmospheric

profiles and microphysical quantities.

The images shown in Figs 2 and 3 were generated to simulate observations

made with the SSM/'I'-2 sensor on a Defense Meteorological Satellite Program (DMSP)

satellite, which has channels similar to those of MHS (AMSU-B) (see Bums et al. 1995

and 1996 for details). Forward brightness temperatures were calculated from CIMSS

forecast model output on 9 February 1995, when a convective system was observed

over the eastern Pacific Ocean. Calculations were carded out at five frequencies:

91.655 and 150.0 GHz (SSM/T-2 window channels) and 176.31, 180.31, and 182.31

GHz (lower side-bands of the SSM/I"-2 water vapor channels).

Fig. 2 presents the synthesized brightness temperatures at 91 GHz for three

cases: (1) a "clear" case where the presence of cloud was ignored; (2) a "cloud" case

which incorporated the forecast cloud water profile to determine the absorption and

transmittance; and (3) a "rain" case calculated with the scattering RTM and including

rain water profiles from model output. The effect of including cloud absorption and

scattering successively in the radiative transfer calculations can be seen most clearly in

this example at 28N and 134 to 130W. The "cloud" case shows significant warming at

this frequency compared to the "clear" case. The effect of adding scattering by rain is

to reduce the brightness temperatures by up to 5 K. The results for the other

frequencies show much smaller absorption and scattering-induced changes. We

believe this is due in l_art to the minimum size set here for scattering hydrometeors.



Fig 3 showssyntheticimagerygeneratedfrom the same atmospheric fields for

176 GHz (AMSU-B channel 20) and here scattering from smaller cloud droplets and ice

particles is also included. The brightness temperature depressions seen along 30N in

the "ice" case, but not in the "clear" or "cloud" cases, are associated with the

distribution of cloud ice in the forecast model output. The maximum brightness

temperature depression in this region in the "cloud" case is only 5 K, compared to 17 K

in the "ice" case. The discrepancies decrease for frequencies closer to the center of

the 183.3 GHz water vapor line: ice-related depressions are 10 K and 6 K at 180 and

182 GHz (AMSU-B channels 19 and 18), respectively.

2. Comparison With DMSP Data

The images actually obtained by the DMSP F-11 satellite at 91 and 183+_7 GHz

are shown in the lower right panels of Figs 2 and 3, respectively. Observed and

simulated brightness temperatures are further compared in Fig. 4, using transects

through the images. The measured brightness temperatures show a much larger range

of variation than do the synthetic data. In particular, the low measured brightness

temperatures at the core of the system (26N, 13 VV) are not seen in the simulated "rain"

or "ice" results. This is due not to deficiencies in the radiative transfer model, but rather

to the inability of a forecast model of this resolution and level of physical complexity

(typical of current operational models) to produce the high localized rain and ice water

concentrations which causes the low observed microwave brightness temperatures.

The synthetic imagery does indicate scattering in the cloudy region to the north (29.5N),

due to a peak in model-predicted cloud ice and rain water. This peak, however, is

displaced relative to the column cloud water and a scattering index derived from

coincident Special Sensor Microwave Imager (SSM/I) data, both of which show peaks

coinciding with the convective core.

Table 1 summarizes the statistics on the difference between simulated and

observed SSM/'I'-2 brightness temperatures. Statistically, the agreement is actually

worse when the radiation model includes scattering than when it does not. This is

because the forecast model produces broad areas with cloud ice, whereas, in reality for

this case, ice occurs in more localized centers. This model therefore predicts lower

than observed brightness temperatures in these areas (compare the lower left and



lowerrightpanelsof Fig. 3). Onlyfor the few locations with high ice content, where the

forecast model produces not enough ice and the predicted brightness temperatures are

too high (positive differences), does use of the scattering model with the mesoscale

model fields represent an improvement in the forward brightness temperature

comparisons.

To better understand the causes for the differences between observed and

simulated brightness temperatures, the scattering RTM has been applied to high

resolution fields for the Hurricane Gilbert event produced by the UW-RAMS model.

These simulations showed brightness temperature behavior similar to that seen in the

data transects (25N to 29N), where the Tb-frequency relationship for the three water

vapor channels is reversed relative to clear air situations. The "cross-over" of

brightness temperatures is caused by the presence of precipitating ice, especially snow

and aggregates. However, even cloud ice alone can result in substantially reduced

brightness temperatures and therefore large deviations from the expected brightness

temperature behavior due to water vapor variations. It is thus necessary to screen out

such events prior to processing data for water vapor profile retrieval.

The difference Tb(180)-Tb(182) was applied to screen out areas of intense

oceanic convection in the study area. Table 1 indicates that this improved agreement

by more than a factor of two at 176 GHz, smaller factors for the other two channels

which are less affected by ice, and resulted in a loss of less than 20% of the data

points. The remaining 5-6 K difference may be attributable to errors in the water vapor

absorption model (English et al. 1995), as well as to actual differences in atmospheric

moisture between the background and real atmospheres. Such screening had no

effect at 91 GHz, indicating that this channel is sensitive to different hydrometeor forms

than are the water vapor channels. As indicated by the comparison for nominally clear

areas shown in Table 1, the large differences between observed and synthetic imagery

is most likely due to inadequacies in the surface description rather than in the

atmospheric hydrometeor profiles.



Table I

Channel Frequency

Simulation 91Ghz 178Ghz 180Ghz 182Ghz #points

no screeninq

"cloud'-obs 13.4K 11.2K 8.1K 8.8K

1606

=rain/ice"-obs 14.6K 11.4K 8.8K 7.1K

screenin,q

=cloud"-obs 13.8K 4.7K 5.2K 6.1 K

=rain/ice"-obs 15.1 K 6.6K 6.5K 8.8K

1317

clear

=cloud'-obs 16.6K 3.9K 3.9K 7.0K

=rain/ice'-obs 17.0K 4.2K 4.4K 7.3K

522

Table 1. RMS differences (simulated minus observed) for channels of the SSM/I"2 instrument.
=Cloud" and =rain/ice" indicate which forecast model microphysical species were included in the
forward radiance calculations. =Screening" indicates that measured Tb(180)-Tb(182) was used to
screen precipitation events. =Clear" indicates results for clear areas only.

B. Retrievals: Theory and Synthetic Data

1. Simultaneous Retrieval of Atmospheric Profiles and Cloud Properties

The simultaneous retrieval technique used in this research for the production of

AMSU-HIRS atmospheric sounding information and cloud properties is a physical-

statistical algorithm from Eyre (1989, 1990), which is a form of the so-called "maximum

likelihood" retrieval algorithms used to produce atmospheric soundings from satellite

measurements. The form of the retrieval equation is,



X = Xb + CKT(KCK T + E) "1(Tam- Te(Xb)), (1)

where X is the retrieval atmospheric and cloud state profile vector; Xb, a background

profile vector representing prior knowledge of this atmospheric state; C, the expected

vertical covariance of the background error; E, the expected radiometric error plus the

error in the radiative transfer forward model; T_, the vector of satellite-measured

channel radiances or brightness temperatures; T,(X_), a component of the forward

radiative transfer giving the radiances or brightness temperatures corresponding to the

background atmospheric state Xb; and K, the gradient of the forward radiative transfer

model, that is, the partial derivatives of T,,(X_) with respect to the elements of the

atmospheric state vector X. Superscripts T and -1 denote matrix transpose and

inverse, respectively.

Within this physical-statistical retrieval approach, certain cloud parameters can

be retrieved simultaneously with the atmospheric profiles of temperature and moisture.

To date, the profile vector X includes the variables required for an adequate

representation of the cloudy (non-precipitating, water cloud) radiative transfer problem,

that is, the atmospheric temperature profile, the humidity profile, the surface air and

skin temperatures and the cloud top. pressure, =effective" fraction and column cloud

liquid water amount. Further details on the application of this algorithm to a synthetic

AMSU-HIRS data base for this program can be found in Diak et al. (1992) and Wu et

al. (1995)

. Retrieval of Atmospheric Temperature and Moisture Profiles Using

Synthetic Data

Several investigators (e.g., Hayden 1988; Eyre 1989) have indicated that the

quality of physically-based satellite retrievals is closely linked to the quality of the

background fields used in the retrieval process. Therefore, in generating these

atmospheric fields used for the simulated AMSU-HIRS retrievals, it is important to

approximate background error statistics and background (forecast) field errors that

represent realistic uncertainties, as influenced by conventional data availability, forecast

model accuracy and other considerations. In this work, we have applied numerical



procedureswhich are able to generatebackgroundfield errorswith specified RMS

magnitudesand defined horizontaland vertical covariances(Diaket al. 1992),so that

the qualityandeffectivenessof the retrievalprocessmaybe realisticallyevaluated.

The qualityof the retrievedtemperatureand moistureprofilesand total column

cloud liquid water amountscan then be addressedby examiningthe reductionof the

simulated temperature,moistureand cloud water errors, that is, a comparisonof the

retrieval versus the "truth" values (see Fig. 1). We presenthere two representative

examples of such error reductionusing AMSU-HIRSsyntheticdata in the retrieval

algorithm of Eq. 1, differing from one another in that they were made using two

independent sets of synthetic error fields. These results are shown in Fig 5 (a-b),

illustrating the retrieval performance for both temperature and dewpoint temperature

profiles. The statistics are generated from 820 retrievals covering most of the

continental United States on one case study day and include both clear and cloudy

regions (Wu et al. 1995).

For the temperature retrievals, the first data set (5a) shows that the RMS error

for the background (guess) temperature profiles at most levels below 400 hPa is

between 1 and 2 K. The temperature retrieval is able to improve upon the background

profile by 0.3-1 K. Above 400 hPa, the RMS error for the background temperature is

larger than 2 K, and here the retrievals have reduced the error by about 0.5 K. In the

second data set (5b), the errors in background temperature profiles at all levels are less

than 2 K. For both data sets, the absolute accuracy of the retrieved temperature

profiles at most levels below 500 hPa is about 1 K. The profiles of RMS error for the

dewpoint temperature in both data sets show that the background errors for the

dewpoint temperature at most levels below 400 hPa are 4-5 K and the retrievals have

reduced these errors to 3-3.5 K. The results shown here are typical of those obtained

in our studies (Diak et al. 1992; Wu et al 1995) and demonstrated in a more theoretical

framework by Eyre (1990).

3. Cloud Liquid Water and Cloud Top Pressure Retrievals

The retrieval of cloud liquid water and cloud-top height are accomplished in the

retrieval algorithm through the inclusion of synthetic microwave (AMSU) and infrared

(HIRS) data, respectively. A simple (non-scattering) transmittance formulation for the

10



effects of cloud water on the AMSU microwave frequencies is used to interpret these

measurements to obtain estimates of total column cloud liquid water. Infrared data is

input to a simple algorithm (resembling so-called "CO2 slicing" methods) within the

retrieval to estimate a cloud top pressure and =effective" fraction.

Through various sets of simulated retrievals, cloud water was retrieved with an

RMS accuracy of about 170 g-m °2 (0.170 mm). A range of the =truth" cloud water

amounts which were used in the forward radiative transfer calculations to produce the

synthetic data was about 50 to 1500 g-m'=o In the simulated retrievals, occasionally

cloud liquid water was retrieved at locations where cloud presence was not supported

by the truth data set, however, the amounts were very small (less than 50 g-m2). The

RMS error in the estimation of cloud top pressures for the same data sets is about 50

hPa.

C. Observing System Simulation Experiments

1. Overview

Again, Fig. 1 is a flow diagram depicting the series of OSSEs which were

carried out using the atmospheric retrievals and estimates of cloud liquid water

amounts and cloud top pressures which were described in the previous section.

Included in these tests were analyses and forecasts which used only the retrievals.

Subsequent experiments then sequentially added: 1) cloud liquid water and cloud top

estimates from the synthetic satellite data and 2) adiabatic initialization procedure, in

which model-generated latent heating (from precipitation) in the first several hours of

the forecast is used in a re-initialization of the model from the initial time to reduce the

model spin up time to produce precipitation (see Wu et al. 1995 for details).

2. Forecast Results

Results of experiments employing synthetic AMSU-HIRS soundings, estimated

cloud liquid water amounts and cloud top pressures and the diabatic initialization

procedures have been detailed in Diak et al. (1992) and Wu et al. (1995) and will only

be summarized here. Table 2 gives a summary of forecast errors for a suite of 12-hour

]!



model predictions (see Fig. 1), comparing those where satellite retrievals of

atmospherictemperatureand moisturehave been used to correct errors in the model

initial state ('SAT") to forecasts with no satellite data input ("NOSA'I"). These results

are representative of those detailed in Diak et al., 1992 and Wu et al., 1995. As

shown, for each forecast time there is a modest but consistent improvement in the

model error statistics for both temperatures and dewpoint temperatures with the

inclusion of the AMSU-HIRS retrievals.

The inclusion of estimated cloud parameters and the diabatic initialization

procedures are targeted at reducing the spin-up time in model forecasts to achieve

realistic precipitation amounts and horizontal patterns. In modem atmospheric

prediction systems, cloud liquid water is a prognostic variable whose evolution depends

on atmospheric humidity and parameterized rate reactions between various

precipitation forms and other water states. In these cloud and precipitation

parameterizalions, cloud water is a "bucket" which must be filled to a certain threshold

before precipitation can occur. Thus, any information on the cloud water distribution at

the beginning of a forecast can be very beneficial to improving short-term forecasts of

precipitation. SimUady, the diabatic initialization procedure developed here (Wu et al.

1995) can use precipitation rates (latent heating) from any source to enforce dynamical

consistency between model fields of temperature, wind and moisture and the latent

heating fields associated with the precipitation. This information is also beneficial in

short-term forecasts of precipitation and cloud.

Fig. 6 shows a typical example of precipitation patterns and amounts for four

forecasts. Fig. 6a shows 4-hour precipitation from a control forecast. The objective of

the next three experiments shown (b-d) is to see how well various data and initialization

procedures can replicate the control forecast precipitation features. Fig. 6b shows the

reduction in precipitation in the eady stages of a forecast when no satellite data is

included and a standard adiabatic (no latent heating feedback) procedure is employed

to initialize the forecast model. Fig. 6c shows improvements with the inclusion of the

satellite temperature and moisture retrievals and also the cloud quantities estimated

from satellite data. The best results, shown in 6d, are achieved when both these

satellite data and a diabatic initialization procedure (see Wu et al. 1995) are utilized. In

general, the lime of maximum impact on the precipitation is at or before this 4-hour

forecast time, when models typically exhibit the worst spin-up problems.

12



Table 2

Tim..__._e Initial Data 1000hPa 850hPa 700hPa 500hPa 300hPa

T I Td T I Td T I Td T / Td T / Td

Oh NOSAT 1.21/2.25 1.28/3.46 1.37/4.10 1.70/3.90 1.51/4.43

(ANAL) SAT 1.01/1.85 0.9712.12 1.06/3.21 1.04/3.33 1.36/4.76

3h NOSAT 1.36/2.53 1.26/3.71 1.65/3.89 1.69/3.66 1.59/3.71

SAT 1.07/1.52 1.15/2.64 1.38/3.18 1.12/2.45 1.53/3.73

6h NOSAT 1.27/2.50 1.40/2.80 1.82/4.04 1.70/4.07 1.59/4.14

SAT 1.1611.49 1.03/2.05 1.47/3.62 1.23/3.21 1.50/3.47

12h NOSAT 1.34/2.23 1.47/2.55 1.36/3.31 1.53/4.71 1.30/4.44

SAT 1.34/1.36 1.05/2.37 1.17/3.54 1.08/4.67 1.15/4.10

Table 2. Root mean square errors of temperature and dewpoint temperature for 0, 3, 6 and 12-
hour forecasts compared to a "truth" forecast (see Fig. 1). "SAT" indicates a forecast which
includes satellite-retrieved profiles of atmospheric temperature and moisture, based on
simulated AMSU-HIRS data. The "NOSAT" results have no data inputs and thus document the
effects of uncorrected errors in the initial state (Oh) and the growth of these errors through the
subsequent forecast times.

D. Retrieval of Atmospheric Moisture from DMSP data

The variational method described in Section C above has been used to retrieve the

3-dimensional water vapor distribution from actual DMSP observations (Wu et al 1996).

The case study presented here is from 9 February 1995, over the eastern Pacific

Ocean adjacent to California and Mexico, and is based on the same inputs used in the

generation of synthetic data as described in Section A1 above. The measurement

vector consisted of brightness temperatures from the four functioning channels of the

F11's SSM/T-2:183+1 GHz, 183+3 GHz, 183+7 GHz, and 91 GHz. No screening of

13



the data for convective events was done prior to retrieval. CIMSS model forecasts of

the atmospheric and surface conditions provided the background fields for the retrieval.

The upper, middle, and lower panels of the left column of Fig. 7 show, respectively,

the background, the retrieved, and the observed Tb(180) (the brightness temperature

for the 183+_3 GHz channel). The background and the retrieved Tb's are computed

using the background and the retrieved atmospheric states, respectively, and their

differences from the observed Tb(180) are shown in the right column of Fig. 7. The

sharp frontal zone observed in the measured brightness temperatures near 30°N,

separating the dry air to the north (high value of Tb(180)) from the moist air to the south,

also appears in the background Tb(180), albeit smoother and some 100-150 km further

north. In the retrieval, this moisture front is pushed southward closer to its actual

position, reducing the magnitude and the width of a belt of error shown in the difference

image. The mesoscale features of convection evident along 126°W and 132°W are

absent in the background Tb(180), but are remarkably recovered by the retrieved

Tb(180). As implied in the previous discussion of simulated data, however, the retrieval

failed to reproduce the extremely cold Tb(180) at the core of convective cells. These

cold Tb(180) correspond well to the scattering index derived from the concurrent SSM/I

observations using the algorithm of Grody (1991), displayed in the lower right panel of

Fig. 8.

The results for the other two water vapor channels are similar. For the surface

channel Tb(91), however, the error after retrieval, though reduced (except for the

convective regions), remains relatively large (Fig. 8). A likely reason for this larger error

is the specification of the surface emissivity. While the retrieval algorithm (Eq. 1) can

include estimation of the surface microwave emissivity (see Eyre 1989), this has not yet

been implemented. In the retrievals, we have specified the mean emissivity of the

surface, but have not taken into account modulations which may be caused by

variations in temperature and wind speed. The implementation of the emissivity

retrieval (Eyre 1990) and/or a more sophisticated emissivity model, such as that of

Wilheit (1979). is planned,

Figure 9 shows relative humidity (RH) cross sections along 129°W, from the

background (upper panel), the retrieved (middle panel), as well as their difference

(lower panel). In the upper and middle troposphere, the retrieval moved the front

southward and added mesoscale structure associated with the convective cells south of
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the front. These RH changes, evaluated using the SSM/T2 Tb measurements (Fig. 7),

likely indicate improvements to the background RH fields, although a more definitive

conclusion will require additional verification data. In the lower troposphere, the

retrieval impact progressively diminishes and the retrieval process shows only a

minimal effect on the background RH. The magnitude of the background error estimate

in moisture (the diagonal of the C matrix of Eq. 1) is smaller at lower atmospheric

levels, and thus the retrieval algorithms considers the background value of water vapor

in the lower troposphere to be more reliable (-10% error) than in the upper troposphere

(~100% error). As a result, the adjustment of atmospheric moisture in the lower

troposphere is more constrained towards the background. This is consistent with Fig.

8, which shows large difference in the retrieved versus measured Tb(91), a channel

which is sensitive to lower tropospheric moisture. The diagonal elements of the C

matrix (the error variance of background humidity information), has been evaluated

using radiosonde data and thus is heavily weighted towards land regions, where errors

in predictions are generally lower. It is probable that these error variances should be

increased for oceanic locations, so that the retrieval algorithm can make larger

adjustments to the moisture profiles at lower tropospheric levels.

Figure 10 shows the total precipitable water (TPW) from using an algorithm by Petty

(1994). Using the SSM/I product as a qualitative verification, the SSM/T2 retrieval puts

the front in a better position and adds realistic features to the south of the front. Both

the background atmosphere and the retrieval, however, overestimate the TPW,

compared to the SSM/I estimate. The overestimate by the SSM/T2 retrieval algorithm

is due to the relatively small background error variance (the C matrix discussed in the

previous paragraph) at lower atmospheric levels. The retrieval is able to add water

vapor where the background is unrealistically dry (in the upper and middle troposphere)

but is constrained to not allow large adjustments to the RH background fields at lower

levels, that is, to remove water vapor in the lower troposphere.

E. Other Accomplishments

First results were also obtained for simultaneously retrieving column cloud liquid

water (CLW) and water vapor from the SSM/T2 data using the variational method

framework outlined in Section B1. Table 3 summarizes the CLW statistics from the 9
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February1995case study. Includedhere are the total CLW amountsderivedfrom the

coincident SSM/I data using the algorithm of Bauer and Schluessel (1993). The

horizontal patterns of CLW retrieved from the SSM/I"2 are encouraging in that they are

very similar to those from the SSM/I. The magnitudes are, however, much smaller than

the SSM/I-derived CLW. Two factors are involved. First, the spatial resolution of the

some of the SSM/I channels used in the CLW estimate from that sensor is about 15

km. The highest-resolution SSM/T2 channel is 45 km. The SSM/I is thus able to

resolve spatial detail in the cloud fields below the resolution of the SSM/T2. A second

contributing factor is that three out of the four SSM/T2 channels used for the cloud

water retrieval are around 183 GHz, where signal saturation occurs for relatively low

amounts of CLW (Bauer and Schluessel, 1993). This means that only for relatively thin

clouds do the weighting functions for these channels extend below cloud top. Inclusion

of the lower frequency channels on the AMSU should improve the retrieval of higher

cloud liquid water amounts.

Table 3

Mean (am .=) Maximum (gm "=)

Retrieved 77.9 1400

SSMI._J 201.7 4000

Table 3. Cloud water estimates retrieved from SSM/T2 data compared to estimates from SSM/I
data.

A simple "minimum residual" (Eyre and Menzel 1989) cloud estimation

algorithm, originally developed for use with infrared sounder data, has been adapted to

channels of the AMSU and MHS and investigated for the determination of cloud

properties in the microwave region of the spectrum (Huang and Diak 1992; Diak 1994).

In these studies, it was found that this method, using certain adjacent pairs of sounding

channels, could be used to estimate a cloud height and "effective" fraction pertinent to
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microwave frequencies. The "effective" cloud fraction was found to be well-correlated

with column cloud water amount (Diak 1994). The "minimum residual" technique thus

can either be useful as simple two-channel means to approximate column cloud water,

or as a preprocessing step in the cloud water retrieval component of the simultaneous

atmosphere/cloud retrieval algorithm (Eq. 1), to provide a better initial guess of the

cloud state.

III. Conclusions and Future Goals

Research over the lifetime of this project has progressed from experiments with

simulated AMSU-MHS-HIRS data, investigating the retrieval of atmospheric profiles and

cloud water from these data and their applications to numerical forecasts (OSSEs),

through to studies using the developed procedures with real data. These real-data

studies have examined the retrieval of atmospheric moisture profiles and column cloud

water amounts from SSM/T2 data, as well as the effects of scattering on SSM/I'2

radiances.

In OSSEs using atmospheric soundings and column cloud liquid water amounts

derived from a synthetic data base, there has been a modest but consistent

improvement in atmospheric predictions of temperature and moisture with the inclusion

of these data. A diabatic initialization procedure, developed under this project, has

complemented the satellite data studies and been used to increase the accuracy of

short-range forecasts of precipitation coverage and amounts

Brightness temperature simulations of SSM/T2 observations containing a

convective storm system have been made by applying two radiative transfer models,

one which accounts only for the absorption due to cloud water and the other which also

considers scattering from precipitating hydrometeors, to CIMSS forecast model output.

The level of complexity of the CIMSS model in the prediction of cloud and rain features

is equal to or slightly better than average operational forecast systems. Comparisons

show that incorporating forecast information on cloud and rain water profiles produces

a significant impact on simulated brightness temperatures. Scattering due to the

presence of rain and ice in the forecast model causes decreases of up to 5 K at 91

GHz and up to 17 K for water vapor channels relative to the case where scattering is

ignored. This is small, however, compared to scattering depressions of over 80 K seen
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in SSM/I"2observationsof the sameevent. Thissuggests that the information on rain

supplied by operational forecast models is not sufficiently detailed (not at high enough

resolution) to produce the signatures of rain systems observed in the satellite

measurements. Therefore, in water vapor retrievals using this forecast model for

initialization, increasing the complexity of the forward model to account for scattering

effects is not warranted. In this case a pre-processing step will be necessary to detect

and exclude precipitation events.

A case study using SSM/T2 data demonstrated how the 3-dimensional water

vapor distribution can be physically retrieved using the variational approach first

investigated using a synthetic data base. As described, the retrieval is able to produce

a more realistic horizontal moisture distribution, relative to the background field, and

has significant impact on the RH estimate in the upper and middle troposphere, which

seems to be positive, but has little impact on lower tropospheric moisture. With a better

surface emissivity model and careful examination of the retrieval constraints, the overall

quality of the retrieval should be further improved, particularly in the lower troposphere.

Results on the estimation of column cloud liquid water amounts from the same data

base, while very preliminary, are encouraging.

Future work will involve a merger of the extensive experience of the University

of Wisconsin-Madison in remote temperature and moisture sounding of the atmosphere

with the expertise in precipitation retrieval at Purdue University. In new efforts, the

retrieval systems developed under the current program will be extended to include

more complex atmospheres containing diverse cloud and precipitation features. The

research tasks will address four major problems associated with clouds and

precipitation:

• the importance of microwave scattering in precipitating cloud;

• significant uncertainties in the theoretical modeling of top of atmosphere

brightness temperatures for precipitation structures owing to the sensitivity

of radiative transfer calculations to the assumed vertical and horizontal

distributions of hydrometeors, as well as particle size, shape and density;
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• thehighly nonlinear response of many of the AMSU channels to the vertical

distribution of cloud and precipitation water, and

• the extreme spatial variability of clouds and precipitation, often on scales

much smaller than the footprint of the sensor.
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Figure Captions

1. A schematic diagram to illustrate satellite data observing system simulation
experiments(OSSEs).

2. Brightnesstemperaturemapsat 91 GHz from the three simulation cases (clear,
cloud and rain) and from SSM/T2 observations.

3. Brightness temperature maps at 183 + 7 GHz from the three simulation cases (clear,
cloud and rain) and from SSM/T2 observations.

4. Transects across convective system: (a) brightness temperatures measured in the
three SSM/T2 water vapor channels and the GOES-IR channel; (b) simulated
brightness temperatures (both RTM modes for 176 GHz); and (c) quantities derived
from coincident SSM/I measurements: column integrated water vapor (wv), cloud liquid
water (clw) and scattering index (SI).

5. Profiles of forecast model error in temperature and dewpoint temperature and errors
in synthetic AMSU-HIRS retrievals for two case studies.

6. Four-hour precipitation fields: a) control (truth) forecast); b) a forecast with no
satellite inputs and an adiabatic initialization; c) a forecast including satellite retrievals
of atmospheric profiles of temperature and moisture, column cloud liquid water and
utilizing an adiabatic initialization procedure; d) a forecast with identical satellite inputs
as (c), only utilizing adiabatic initialization procedure.

7. Left column, top to bottom: Predicted, retrieved and observed radiances at 180
GHz

Right column, top to bottom: Observed minus background radiances and observed
minus retrieved radiances at 180 GHz and scattering index.

8. Left column, top to bottom: Background, retrieved and observed radiances at 91
GHz.

Right column, top to bottom: Observed minus background radiances and observed
minus retrieved radiances at 91 GHz and Tb(182) minus Tb(180).

9. Cross sections of forecast model relative humidity, retrieved relative humidity and
retrieved minus predicted relative humidity.

10. Top to bottom: Model-predicted total precipitable water, retrieved precipitable
water and precipitable water observed from SSM/I.
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