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ABSTRACT

An aerodynamic shape optimization method that treats the design

of complex aircraft configurations subject to high fidelity compu-
tational fluid dynamics (CFD), geometric constraints and multiple

design points is described. The design process will be greatly accel-

erated through the use of both control theory and distributed memory

computer architectures. Control theory is employed to derive the ad-

joint differential equations whose solution allows for the evaluation

of design gradient information at a fraction of the computational cost

required by previous design methods [5, 4, 24, 18]. The resulting

problem is implemented on parallel distributed memory architectures

using a domain decomposition approach, an optimized communica-
tion schedule, and the MPI (Message Passing Interface) standard

for portability and efficiency. The final result achieves very rapid
aerodynamic design based on a higher order CFD method.

In order to facilitate the integration of these high fidelity CFD

approaches into futuremulti-disciplinary optimization (MIX)) ap-

plications, new methods must be developed which are capable of

simultaneously addressing complex geometries, multiple objective

functions, and geometric design constraints. In our earlier studies

[8, 9, 10, 11, 19, 15, 20, 21, 22, 23, 1], we coupled the adjoint based

design formulations with unconstrained optimization algorithms and

showed that the approach was effective for the aerodynamic design
of airfoils, wings, wing-bodies, and complex aircraft configurations.

In many of the results presented in these earlier works, geometric

constraints were satisfied either by a projection into feasible space

or by posing the design space parameterization such that it auto-

matically satisfied constraints. Furthermore, with the exception of

reference [9] where the second author initially explored the use of
multipoint design in conjunction with adjoint formulations, our ear-

lier works have focused on single point design efforts. Here we
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demonstrate that the same methodology may be extended to treat

complete configuration designs subject to multiple design points and

geometric constraints. Examples are presented for both transonic

and supersonic configurations ranging from wing =done designs to

complex configuration designs involving wing, fuselage, nacelles

and pylons.

INTRODUCTION

To realize the potential of CFD to produce superior aircraft designs,

high fidelity aerodynamic analysis and maturing sensitivity analysis

methods must be integrated in an MIX) method. In an accompa-

nying paper presented by the second author at this conference [12],

the necessity of developing new methods capable of complete con-

figuration design is discussed. Without such approaches, benefits

obtained through, say, a wing only design are likely to deteriorate

quickly once the configuration is integrated with the fuselage and

nacelles. Further, for some problems such as transonic designs with

significant aft wing loading, it will be necessary to perform the de-

sign work with viscous effects included. Despite the fact that flow

analysis has matured to the extent that Navier-Stokes calculations

are routinely carried out over very complex configurations, direct
CFD based design is only just beginning to be used in the treatment

of moderately complex three-dimensional configurations.

Existing CFD analysis methods have been used to treat the design
problem by coupling them with numerical optimization methods

[5, 4, 24, 18]. The essence of these methods, which incur heavy

computational expense, is very simple: a numerical optimization

procedure is used to extremize a chosen aerodynamic figure of merit

which is evaluated by the given CFD code. The configuration is sys-

tematically modified through user specified design variables. Most
of these optimization procedures require the gradient of the cost

function with respect to changes in the design variables. The sim-

plest of the methods to obtain these necessary gradients is the finite

difference method. In this technique, the gradient components are



estimatedby independentlyperturbingeach designvariablewitha

finitestep,calculatingthecorrespondingvalueoftheobjectivefunc-

fionusing CFD analysis,and forming theratioof the differences.

The gradient is then used by the numerical optimizationalgorithm

to calculate a search direction. After finding the minimum or maxi-

mum of the objective function along the search direction, the entire

process is repeated untilthe gradient approaches zero and further

improvement is not possible.

The finite-difference approach which has been historically used

to calculate the aerodynamic sensitivities is especially inappropriate

when complex configurations, requiring hundreds or even thousands

of design variables, and multiple design points are to be consid-

ered. Nevertheless, it is attractive when compared with other tra-

ditional design strategies such as inverse methods, since it permits

any choice of the aerodynamic figure of merit. The use of numerical

opfmization for transonic aerodynamic shape design was pioneered

by Hicks, Murman and Vanderplaats [5]. They applied the method to
two-dimensional profile design governed by the potential flow equa-

tion. The method was quickly extended to wing design by Hicgs

and Henne [4]. Later, in the work of Reuther, Cliff, Hicks and Van
Dam, this method was successfully used for the design of supersonic

wing-body transport configurations [ 18]. However all of these cases,

which were confined to finite difference gradients on serial computer

architectures, were limited in their geome_c complexity simply due

to computational expense. For example, the designs presented in
[lg] were limited to wing-body configurations. Yet it is well known

that optimum perforraance (especially for supersonic configurations)

will requirehighly tuned naceIle/airf_ameintegrations.It was not

possible to include nacelle/airframe considerations into the design
problem outlined in [18] since the required number of mesh points,

which more than doubles with the inclusion of nacelles, could not be

afforded.

Recently, through our own work and that of other groups, altema-

five, less expensive methods for obtaining design sensitivities have

been developed. These methods greatly reduce the computational

costs of optimization. The most promising of these approaches is the

adjoint formulation whereby the sensitivity at a single design point

with respect to an arbitrary number of design variables is obtained

with the equivalent of two flow calculations (one flow solution and

one adjoint solution). Moreover, the adjoint solution (and to a lesser

extent the accompanying flow solution) need not be highly con-

verged to be useful in significant contrast to the highly-converged

flow solutions which are crucial to accurate finite difference gradi-

ents [25]. For the case of multiple design points, separate flow and

adjoint solutions are needed for each design point Thus, so long

as the number of design points remains significantly smaller than

the number of design variables the reduction in the computational

time resulting from the employment of an adjoint approach will be

convincing.

In spite of the large decrease in computational cost provided by
an adjoint formulation, the aerodynamic optimization of a complete

configuration, especially with the inclusion of viscous effects or

taken in the context of even larger MIX) problems, still remains a

formidable computational task. The advent of reliable and efficient

parallel computers using disWibuted memory is thus a key enabling

technology for design calculations of complete aircraft configura-

tions subject to multiple design conditions and for both linear and

nonlinear consu'aints to be treated in an acceptable turnaround time.

The work presented in this paper combines the adjoint formulation

and a parallel implementation such that objective function evalua-
tions and aerodynamic sensitivities for any particular point in the

design space may be calculated in a very short wall clock time. This

approach is then coupled to a constrained sequential quadratic pro-

gramming (SQP) optimization algorithm [2]. Linear conslraints are

treated by a projection into feasible space while nonlinear constraints

are addressed through an augmented Lagrangian approach.

FORMULATION OF THE ADJOINT EQUATIONS

The aerodynamic properties which define the cost function I at a

single design point are functions of the flow field variables, w, and

the physical location of the boundary, which may be represented by
the function 3r. Then

I = I (w,.F')

and a change in Y results in a change

,_I = OIT 6w + 81T
ow __f_r (1)

in the cost function. The governing equation R and its first variation

express the dependence of w and _" within the flow field domain D:

R (w, .T)

Next, introducing a Lagrange multiplier th, we have

oIT- ofT _T OR OR _._)

]

Choosing ¢ to satisfy the adjoint equation

[oRI',= oz
oqw j _ (3)

the first term is eliminated, and we find that the desired gradient is

given by

_T OI T _T [ OR]----0._" _-_ . (4)

Since (4) is independent of 6w, the gradient of I with respect to an

arbitrary number of design variables can be determined without the

need for additional flow field evaluations. The main cost is in solv-

ing the adjoint equation (3). In general the adjoint problem is about

as complex as a flow solution. If the number of design variables is

large, it becomes compelling to take advantage of the cost differen-
tial between one adjoint solution and the large number of flow field

evaluations required to determine the gradient by finite differences.

To treat the multipoint problem a composite cost function is deveb

oped as a weighted sum of cost functions at each independent design
point:

Z=AII1 + A21z,

where A1 and A2 are the relative weights of the two cost functions

at different design points. The composite gradient is then obtained
by taking the same weighted sum of the gradients developed by the

above procedure for each poinL



MULTIBLOCK FLOW SOLUTION

In our most recent papers [17, 23] the adjoint based design formula-

tion was extended for the Euler equations to treat complete aircraft

configurations via a new multiblock implementation. This extension

of the method from that presented in our earlier three-dimensional

work required the replacement of the single block flow and adjoint

solvers [10, 20, 22] with their multiblock counterparts. During the

development of the new multiblock flow solver, care was taken to

satisfy additional demands that design methods place upon analysis

algorithms.

In order to use CFD in an automated design environment, the flow

solver must meet fundamental requirements of accuracy, efficiency,
and robust convergence. High accuracy is required since the pre-

dicted improvements in the design realized by the method can only

be as good as the accuracy of the flow analysis. Efficiency of the flow

solver is also critical since the optimization of the design will gener-

ally require the computation of many flow solutions or other solutions

of comparable complexity. The last aspect, robust convergence, is

also of significant importance. In highly refined aerodynamic de-

sign applications, the main benefit of aerodynamic optimization is in

obtaining the last few percentage points in improved efficiency. In

such cases the solutions must be highly converged so that the noise

in the figure of merit, say drag at a fixed lift, is well below the level

of realizable improvement.

In our three-dimensional single block applications, the FLO87

code written by the second author easily met all of the above criteria.

FLO87 achieves fast convergence with the aid of multigridding and

residual smoothing. It is normally easy to obtain solutions that

converge to machine accuracy. The challenge in reference [23] was

to meet these strict convergence requirements within the framework

of a multiblock flow solver. The usage of a multiblock flow solution

is the first step towards the treatment of more complex configurations.

However, the use of the multiblock strategy to treat the complex

configurations that are presented in this paper is not the only viable

approach. Other alternatives, such as unstructured mesh solvers, are

also currently under investigation.

The general strategy in developing the multiblock flow solver is to

construct and update a halo of cells around each block such that the

flow solution inside each block is la'ansparent to the block boundaries.

This task requires establishing the size and location of halo cells

adjacent to block boundaries, and loading the halo cell values with

appropriate flow field data at the appropriate times. To accomplish

this task, a two-level halo is constructed around each block. The

requirement of this double halo results from the necessity of keeping
a complete stencil of calculated fluxes entering and leaving each

cell in the entire domain without regard to block boundaries. Since

both the convective and the dissipative fluxes are calculatexl at the

cell faces (boundaries of the control volumes), all six neighboring

ceUs are necessary, thus requiring the existence of a single level

halo for each block in the multiblock calculation. The dissipative

fluxes are composed of a blend of first and third order differences

corresponding to terms that mimic second and fourth derivatives

of the flow quantifies [16]. This requires a second layer of halo

cells at each block interface. Halo cells on the external boundary

of the entire computational domain are constructed and updated by

extrapolation and reflection. Coarse grids axe computed in the usual

fashion, by aggregating groups of eight cells and then repeating

the above halo cell process. Once the halo configuration is set up

for each block, standard methods for spatial discretization and time

integration (including artificial dissipation, residual averaging, and

multigridding) are employed to compute the flow solution within

each individual block.

The system of equations solved here as well as the solution strategy

follows that presented in many earlier works [16, 7, 6]. The three-

dimensionalEuler equations may be written as

Ow . Of_
0---_-+ _-_-x = 0 inD, (51

where it is convenient to denote the Cartesian coordinates and ve-

locity components by xl, x:, x3 and ul, u2. u3, and w and fi are

defined as

pal puiul + p_n

w = pu2 , fi = puiu2 +pti2

pt_3 puiu3 -{- p_i3

pE puiH

(6)

with

W_d r ,

P

put

pit2

pu3

pE

For the multiblock case, the above notation applies to each block

in turn. The flow is thus determined as the steady-state solution to

equation (9) in all blocks subject to the flow tangency conditions on

all solid boundary faces of all blocks:

Un =O onall Bs (11)

pU,

pUilll "]- Qilp

pU, u2 + Q,zp

pU, u3 + Q,3p

pU, tt

(10)

with 8ij being the Kronecker delta function. Also,

1
p=(,-,p{E- (7)

and

pH = pE -F p (8)

where 3' is the ratio of the specific heats. Consider a transformation

to coordinates 5, _2, _3 where

Kij = _ ax__.£[ J = det (K), K 5' = [ 0_i 1
i i ' La Jj '

Introduce scaled con_avaxiant velocity components as

U, = Qij u_

where

Q = jK -1.

The Euler equations can now be written as

OW OF_

O--T + _ = 0 in D, (9)



where t/is 1, 2, or 3 depending on the direction that is normal to

face Bs where a solid surface is assumed to exisL At the far field

boundary faces, BF, freesWeam conditions are specified for incom-

ing waves, while outgoing waves are determined by the solution.

The time integration scheme follows that used in the single block
strategy [16]. The solution proceeds by performing the cell flux

balance, updating the flow variables, and smoothing the residuals, at

each stage of the time stepping scheme and each levelofthe multigrid

cycle. The main difference in the integration strategy is the need to

loop over all blocks during each stage of the integration process. The

use of the double-halo configuration permits standard single-block

subroutines to be used, without modification, for the computation of

the flow field within each individual block. This includes the single-

block subroutines for convective and dissipative flux discrefization,
multistage time stepping, and multigfid convergence acceleration.

The only difference between the integration strategies is in the

implementation of the residual averaging technique. In the single-

block solution slrategy, a tridiagonal system of equations is set up

and solved using flow information fxom the en_e grid. Thus, each

residual is replaced by a weighted average of itself and the residuals

of the entire grid. In the multiblock sCategy, the support for the

residual smoothing is reduced to the size of each block, in order

to eliminate the need to solve scalar tridiagonal systems spanning
the blocks, which would incur a penalty in communication costs.

This change has no effect on the final converged solution, and in

the present application has not led to any reduction in the rate of

convergence.

THE ADJOINT FORMULATION FOR THE EULER EQUA-

TIONS

The application of control theory to aerodynamic design problems

is iUustratexl by treating the case of three-dimensional design, using
the Euler equations discussed above as the mathematical model for

compressible flow. In our previous work, the illustrative problem

most often used specified the cost function as a measure of the differ-

ence between the current and some desired pressure dislribution. In

the case of transonic flows over conventional commercial transport

wings this aerodynamic figure of merit proves to be very effective

since the tailoring of these pressure distributions to achieve close

to optimum performance is well understood by most aerodynami-

cists. However, for either the case of supersonic design of three-

dimensional configurations or designs which involve complicated

geometries the specification of pressure distributions that will deter-

mine near optimum performance is considerably more challenging.

Therefore, from the outset of our development of the adjoint formu-

lation, many different cost functions or their combinations have been

allowed. Here, for illuslxative purposes we will use drag at a fixed
lift as the cost function.

I = Cz_

= CA cos a + CN sin a

= 1 c,. (s. coso,+ s, sinSref s

where S= and S_ define projected surface areas, Sre f is the reference

area, and d_l and d_z are the two coordinate indices that are in the

plane of the face in question. Note that the integral in the final

expression above is carried out over all solid boundary faces. The

design problem is now treated as a control problem where the control

function is the geometry shape, which is chosen to minimize I,

subject to the constraints defined by the flow equations (5-10). A

variation in the shape will cause a variation 5p in the pressure and

consequently a variation in the cost function

OCD 6a

where _CD is the variation due to changes in the design parameters

with a fixed. To treat the interesting problem of practical design,

drag must be minimized at a fixed lift coefficienL Thus an additional

constraint is given by

6CL =0,

which gives

OCz 6a

Combining these two expressions to eliminate 6a gives

(oc_£a_
6I = _UD _ oo / _UL. (12)

\ /9¢a/

Since p depends on w through the equation of state ('7-8), the varia-

tion 6p can be determined from the variation 6w. If a fixed computa-
tional domain is used, the variations in the shape result in variations

in the mapping derivatives. Define the Jacobian matrices

of,
A, = _w' Ci = QoAj. (13)

Then the equation for 6w in the steady state becomes

0
0_--"_($Fi) = 0, (14)

where in the domain

= c,6,,,+ 6(Q,,) f,.

and on the solid surface,

i 0

Qnl _P

Qn3_p

, 0

+p,

0

(Q.2)

8(Qo,)
0

(15)

on any Bs.

Now, multiplying equation (14) by a vector co-state variable _b,

assuming the result is differentiable, and integrating by parts over
the entire domain,

O0_

where fii are components of a unit vector normal to the boundary.

Equation (16) can now be subtracted from equation (12) without

changing the value of _I. Then ¢, may be chosen to cancel the



explicit terms in 8w and 6p. For this purpose _b is set to the steady-

state solution of the adjoint equation

o,/, 7,0,¢
at c, _ = 0 in D, (17)

with the surface boundary condition

(¢_q,,, + ¢nq,,=+ ,e,q,,3)= _2onanBs, (18)

where

1 s, sin )
"/Moo Sre f

+_ (S, cosa - S, sin_) } .

At internal block boundaries, the face integrals cancel liom the

adjacent blocks. At the far field the choice of the adjoint boundary

conditions depends on whether the flow is subsonic or supersonic.

For subsonic flow, so long as the outer domain is very far from the

configuration of interest, we may set

_&-s = 0 on all BF.

It is noted that the waves in the adjoint problem propagate in the

opposite direction to those in the flow problem due to the transpose

in equation (17).
Finally we obtain the expression

1 //B Cp{('$,cosc_+'S_sinc_ )61 = Sref s

£,o+ _b _/ (SQii.fj) d_k- (19)

Details of the approach as well as the development for other cost
functions have been presented in references [10, 11, 15, 20, 21, 23].

MULTIBLOCK MESH VARIATIONS

In order to construct 61 in equation (19), the variation in the metric
terms must be obtained in each block. One way to accomplish this is

to use finite differences to calculate the necessary information. This

approach avoids the use of multiple flow solutions to determine the

gradient, but it unfortunately still requires the mesh generator to be

used repeatedly. The number of mesh solutions required is propor-

tional to the number of design variables. The inherent difficulty in

the approach is two-fold. First. for complicated three-dimensional

configurations, elliptic or hyperbolic partial differential equations

must often be solved iteratively in order to obtain acceptably smooth

meshes. These iterative mesh generation procedures are often com-

putationally expensive. In the worst case they approach the cost of

the flow solution process. Thus the use of finite difference meth-

ods for obtaining metric variations in combination with an iterative

mesh generator leads to computational costs which strongly hinge on

the number of design variables, despite the use of an adjoint solver

to eliminate the flow variable variations. Second, multiblock mesh

generation is by no means a trivial task. In fact no method currently

exists that allows this to be accomplished as a completely automatic

process for complex three-dimensional configurations.

In our earlier works [20, 19, 15, 8, 9, 10], two methods have

been explored which avoid these difficulties. In the first method,

a completely analytic mapping procedure was used for the mesh

generation. This technique is not only fully automatic and results in

smooth consistent meshes, but it also allows for complete elimination
of finite difference information for the mesh metric terms. Since

the mapping function fully determines the entire mesh based on the

surface shape, this analytic relationship may be directly differentiated

in order to obtain the required information without considering a

finite step. An analytic mapping method requires the geometry

topology to be built directly into the formulation, and only works for

simple configurations. Nevertheless, within these limitations it has

proven to be highly effective [8, 9, 10l.

The second method that we have explored is the use of an analytic

mesh perturbation technique. In this approach, a high quality mesh

appropriate for the flow solver is first generated by any available

procedure prior to the start of the design. In examples to be shown

later, these meshes were created using the Gridgen software devel-

oped by Pointwise, Inc.[26]. This initial mesh becomes the basis

for all subsequent meshes which are obtained by analytical pertur-

bations. In the method that was initially developed for wing-body

configurations it had been assumed that only one surface, say the

wing, was perturbed during a design case. This permitted the use of

a very simple algebraic mesh perturbation algorithm. New meshes

were created by moving all the mesh points on an index line project-

hag from the surface by an amount which was attenuated as the arc

length from the surface increased. If the outer boundary of the grid

domain is held constant the modification to the grid has the form

z?'_ = z_" + S _" (z,'_ - z'"_,,, (20)

where zi represents the volume grid points, x,, represents the surface

grid points and S represents the arc length along the radial mesh line

measured from the outer domain, normalized so that S = 1 at the

inner surface. Unfortunately this simple logic breaks down in the

ease where multiple faces sharing common edges are allowed to

move. Thus in order to use analytic mesh perturbations for the

trealraent of the more general problem where multiple faces of a

given block may be simultaneously deformed, equation (20) had to

be modified in a way that resembles transfinite interpolation ('IT'I)

[27]. Unlike TFI, where there is no prior knowledge of the interior

mesh, the perturbation algorithm developed here (WARP3D) does

make use of the relative interior point distributions in the initial mesh.

The WARP3D algorithm has been modified from that presented

in reference [23] and is now a three stage procedure [17]. The first
stage shifts the internal mesh points to produce an interim block that

is determined entirely by the new locations of the 8 comer points

defining the block. The second stage corrects the perturbations

resulting from the first stage by determining the distance each of

the 12 edges of the stage 1 block needs to be moved to attain the

desired edge locations. Finally with both corner and edge point

motion accounted for, the third stage corrects the internal points for
the relative motion of the six faces.

Since our current flow solver and design algorithm assume a point-

to-point match between blocks, each block may be independently

perturbed by WARP3D, provided that perturbed surfaces are treated

continuously across block boundaries. The entire method of creating

a new mesh is given by the following algorithm.

1. All faces that are directly affected by the design variables (active



faces) are explicitly perturbed.

2. All edges that touch an active face, either in the same block or

in an adjacent block, are implicitly perturbexi by (20).

3. A.U inactive faces that either include an implicitly pezturbed

edge or abut to an active face are implicitly perturbed by a

quasi-3D form of WARP3D.

4. WAgP3D is used on each block that has one or more explicitly

or implicitly pe_ faces to determine the adjusted interior

points.

Note that much of the mesh, especially away fi'om the surfaces, will

not require mesh perturbations and thus may remain fixed through
the entire design process. Close to the surfaces, many blocks will
either contain an active face or touch a block which contains an

active face, either by an edge or by a comer. As the design variations
affect the active faces, the above scheme ensures that the entire mesh

will remain attached along block boundaries. Added complexity is

needed to accomplish step (2) since the connectivity of the various

edges and comers must be indicated somehow. Currently, pointers
to and fzom a set of master edges and master corners are determined

as a preprocessing step. During the design calculation, deflections

to any edges or comers are fed to these master edges and master

corners which in turn communicate these changes to all connected

edges and corners.

Since this mesh perturbation algorithm is analytic it is possible
to work out the analytical variations in the metric terms required

for equation (19). This approach was followed in [20]. However
since the mesh peruabation algorithm that was used in the current

paper was significantly more complex, and it was discovered that
the computational cost of repeatedly using the block pemabation

algorithm was within reason, finite differences were used to calculate

6Q_j instead of deriving the exact analytical relationships.

DESIGN VARIABLES AND CONSTRAINED OPTIMIZATION

It remains to choose design variables and impose cons_aints. In our

earlier work, where the analytic mesh mapping strategy was used,

each point of the surface mesh served as a design variable. This

technique combined with smoothing and projecting into feasible

space of the resulting gradient has proven to be highly effective for
single-block design cases [8, 9, 10, 11, 15, 19, 20].

Alternatively, geometric design variables and constraints may be

provided for selection by the designer to allow greater control over

the design process. To develop this s_ategy, the multiblock approach

has been coupled to the NPSOL algorithm of Gill Murray, Saun-
ders, and Wright [2]. NPSOL is a sequential quadratic programming

(SQP) method in which the search direction is calculated by solving

the quadratic subproblem where the Hessian is defined by a quasi-

Newton approximation of an augmented Lagrangian merit function.

The Lag,range multipliers in this merit function serve to scale the ef-

fect of any nonlinear constraints that the design may contain. Linear

constraints are lreated by solving the quadratic subproblem such that

the projected search direction remains in feasible space. A complete

treatment of the method and other optimization strategies is given by

Gill Murray, and Wright [3].

The primary control upon which the entire design process revolves

is the variation in the aerodynamic surfaces. This is readily apparent

from the development of the adjoint approach. Thus it is at the level

of surface variations that the coupling with NPSOL is accomplished.

Realizing that aircraft configurations are composed of separate en-
tities (wings, fuselages, naceUes, etc.) upon which cons_amts are

imposed, an underlying set of geomelry entities acts as a starting in-

put for the design process. Next, the user-specified design variables

are allowed to act independently upon any of these geometry enti-

ties. Linear and nonlinear geomelric constraints are also evaluated

on these primary geometry entities. At any particular point in the

design process, changes to the mesh surfaces are obtained by first

intersecting all of the geomells, entities to construct a set of paramet-

ric surfaces representing the complete configuration. The location

of each surface mesh point on this parametric representation is de-

termined for the initial configuration in a preprocessing step. The

perturbed surface mesh point locations are determined by evaluating

the parameUic geometry surfaces at these predetermined locations.

Once the surface mesh points have been updated, the volume mesh
may be perturbed and either the gradient or the solution calculated.

The important feature of this approach is that a set of simple geometry

entities lies at the core of the entire design process. This technique

retains the typical way in which aerodynamic vehicles are defined,

and provides strict controlover how, say, wing/body intersections are

treated. Furthermore, since the chosen design variables act directly
upon the geometry entities, at the end of the design process these

entities may be output for future analysis.

In the current implementation, the input geometry entities are

restricted to those defined by sets of points. However, in the future,

CAD entities such as NURBS surfaces will also serve in this role,

thereby allowing both the input and the output from the aerodynamic

surface optimization to interface directly with a CAD database.

DOMAIN DECOMPOSITION AND PARALLEL IMPLEMEN-

TATION

The main strategies that are used to accomplish the paraUelizafion

of the design code are: a domain decomposition model a SPMD

(Single Program Multiple Data) strategy, and the MPI (Message

Passing Interface) library for message passing. The choice of MPI

was determined by the requirement that the resulting code be portable

to different parallel computing platforms as well as to homogeneous
and heterogeneous networks of workstations.

As one can see from the previous sections, obtaining the desired

parallelization by domain decomposition entails the trea_nent of four

separate parts: the solution of the flow equations, the solution of the

adjoint equations, the calculation of the mesh perturbations, and the

calculation of the gradient integral formulas. No attempt is made to
parallelize the constrained SQP optimization algorithm or the calcu-

lation of the changes to the underlying geometry entities. It is thus

assumed in this context that the determination of the step sizes and

search directions provided by the op "tanization algorithm is com-

putationally insignificant when compared with the other elements

necessary during the design.

Since the flow and adjoint equations are to be solved using ex-

actly the same efficient numerical techniques, the same paralleliza-

tion techniques used for the flow equations apply to the solution

of the adjoint equations. Therefore, all details of the parallel im-

plementation corresponding to these first two parts of the program

are identical. Furthermore, since the mesh perturbation algorithm



WARP3Dalsoworks on a block-by-block basis, the communication

necessary to maintain mesh consistency can also be addressed by

the same domain decomposition strategies that are used for the state

and costate fields. The essential details of this decomposition strat-

egy and parallel implementation as well as some calculated parallel

speed-ups can be found in [17].

COMPLETE MULTIBLOCK DESIGN ALGORITHM (SYN87-

MB)

With all the necessary components defined for the multiblock adjoint-

based design, it is now possible to outline the complete procedure:

1. Decomposethe mulfiblock mesh into an appropriate number of

processors, and create lists of pointers for the communication
of the processor halo cells.

2. Solve the flow field governing equations (5-10) for each design

point.

3. Solve the adjoint equations (17) subject to the boundary condi-
tion (18) for each design point

4, For each of the n design variables repeat the following:

• Perturb the design variable by a finite step to modify the

geometry entities.

• Reintersect the geometry entities to form parametric ge-

ometry surfaces.

• Explicitly perturb all face mesh points affected by the

geometry changes by evaluating their locations on the

parameWic geomeuies.

• Implicitly perturb all faces that share an edge with an

explicitly perturbed face.

• Obtain the new internal mesh point locations via

WARP3D for those blocks with perturbed faces.

• Calculate all the delta metric terms, _Qi,_, within those

blocks that were perturbed by finite differencing.

• Integrate equation (19) to obtain 8I for those blocks that

contain nonzero _Qi,j, and for each design point, to de-
termine the gradient component

5. Calculate the search direction via NPSOL and perform a line
search.

6. Return to (2) if a minimum has not been reached.

The basic method here builds on that used in [20] with the proper

extensions to treat multibtock domains. In order to implement the

method, equation (17) and boundary condition (18) must be dis-
cretized on the multiblock domain. In the current implementation, a

cell centered, central difference stencil that mimics the flux balancing
used for the flow solution is used. Since this choice of discretization

differs f_om the one obtained if the discrete flow equation Jacobian

matrix were actually transposed to form the adjoint system, the gra-

dients obtained by the present method will not be exactly equal to

the gradients calculated by finite differencing the discrete flow so-

lutions. However, as the mesh is refined these differences should

vanish. Continuing, the adjoint system so discretized is solved on

the multiblock domain in a fashion identical to that used for the

flow solution. Therefore, the adjoint solver, like the flow solver,

uses an explicit multistage Runge-Kutta-like algorithm accelerated

by residual smoothing and multigridding. Intra-block communica-

tion is again handled through a double halo which allows for the full
transfer of information across boundaries except for the stencil of

support for the implicit residual smoothing.

Step (4) in the above procedure is the portion of the method that is

still treated by finite differences. Fortunately, all of these steps incur

a small computational cost compared with a single flow analysis.

It is therefore possible, without significant penalty, to leave this in

finite difference form even for cases where many hundreds of design
variables are used.

NUMERICAL TESTS AND RESULTS

Numerical results will be presented for three classes of problems to

demonstrate the versatility of our methods. Reference [23] gives a

trea_-nent of the reliability of the flow solver as well as the ability of

the adjoint method to provide accurate gradients very efficiently. The

parallel speed-ups attained by the method have been demonstrated

in [13, 17].

Transonic Multipoint Wing Design

The first test case explores the viability of using multipoint aerody-

namic design for an isolated wing configuration under transonic flight

conditions. The version of the adjoint based design code, originally

presented by the second author [10, 11], is used as a test bed for the

multipoint design. The design variables were the 4,224 surface grid

points on the wing, each of which was free to move in the normal

direction. The test case wing has a unit-semi-span, with 38 degrees

leading edge sweep. The wing has a modified trapezoidal planform,

with straight taper from a root chord of 0.38 to a tip chord of 0.10.

The wing has an aspect ratio of 9.0 and a curved trailing edge in the

inboard region blending into sWaight taper outboard of the 30% span

station. The initial wing sections were based on an airfoil specially

designed by the second author's two dimensional design method [8]

to give shock free flow at Mach 0.78 with a lift coefficient of 0.6.

This section, which has a thickness to chord ratio of 9.5%, was used

at the tip. Similar sections with increased thickness and reduced
camber were used inboard. The variation of thickness was nonlin-

ear with a more rapid increase near the root, where the thickness to

chord ratio of the basic section was multiplied by a factor of 1.44.

The inboard sections were rotated upwards to give the initial wing 6

degrees of twist from root to tip.

The two-dimensionalpressure disCibution of the starting airfoil at

its design point was introduced as a target pressure distribution uni-

formly across the span. This target is presumably not realizable since

it would imply a lifting wing with zero vortex drag, but it serves to

favor the establishment of a relatively benign pressure distribution.

The total inviscid drag coefficient, due to the combination of vortex
and shock wave drag, was also included in the cost function. Calcu-

lations were performed with the lift coefficient forced to approach a

fixed value by adjusting the angle of attack every fifth iteration of the

flow solution. A grid with 192x32x48 = 294,912 points was used.

Figures (1 - 7), show the results of the multipoint calculation at

a Mach number of 0.85 and three different design lift coefficients



(0..500, 0-525 and 0_550). The plots show the initial wing geome_y

and pressure distribution, and the modified geometry and pressure

distribution after 60 design cycles. Table 1 summarizes the predicted

reduction in the total inviscid drags at the three design points. As is

CL Initial CD Final CD

0.500 0.0156 0.0114

0_525 0.0173 0.0123

0.550 0.0191 0.0135

Table 1: Drag reduction at three different design points

evident in the figures the shock strengths have been greatly reduced

with most of the wing displaying shock flee conditions at all three

design points. At the low CL design point there is a very weak

incipient double shock palm, and at the high lift design point there

is a very weak single shock. Single point optimization at CL = 0-500

and 0_550 yielded drag coefficients of 0.0112 and 0.0133, so the

compromise wing is within 2 drag counts of both point optimized

wings at their design points.

Transonic Constrained Aircraft Design

As a first demonstration of the multiblock optimization algorithm, a
typical _ansonic business jet configuration is considered. The same

geometry was also studied in [23, 1].

The initial multiblock mesh about the business jet wing, body,

and nacelle has 72 blocks and 750K cells. The underlying geomelry

entities that are eligible for design changes include a wing with
six defining stations and a fuselage. The initial configuration was

designed for Mach = 0.8 and CL = 0.3.

In the first design case (Test Case 1), a single point cons_'ained

design is attempted in which the Mach number is pushed to 0.82.

The objective is to minimize configuration pressure drag at a fixed

lift coefficient of 0.3 by modifying the wing shape. Eighteen Hicks-

Henne design variables are chosen for five of the six defining sections

for a total of 90 design variables. (The section at the symmetry

plane is not being modified.) Spar thickness constraints were also

enforced at each defining station at z/c = 0.2 and z/c = 0.8.

Maximum thickness was forced to be preserved at z/c = 0.4 for all
six defining sections. Each section was also constrained to have the

thickness preserved at z/c = 0.95 to ensure an adequate included

angle at the trailing edge. A total of 30 linear geomemc constraints

were imposed on the configuration. Figure (8) shows an iso-C v

colored rei_esentation of the initial design and the final design after

5 NPSOL design iterations. It is clearly seen that the rather low

Cv region terminated by a strong shock spanning the entire wing
upper surface has been largely eliminated in the final design. Figure

(9) shows overlays of the C v distributions for the initial and final

designs at four stations along the wing. It is seen that the final result
has reached a near-shock-fTee condition over much of the outboard

wing panel. The drop in configuration pressure drag for this case

was 22.5%. Noting that most of this drag reduction came from a

decrease in wing wave drag implies that further improvements may
be possible through the reshaping of other components.

In a second design example for this business jet configuration, a

multipoint design is attempted. The three design points are Math =

0.81 with a CL = 0.35, Mach = 0.82 with a CL = 0.30, and Mach =

0.83 with a CL = 0.25. Figures (10 - 12) show the ini_d and final

Cv distributions achieved using the same 90 design variables and

30 geome_h_ consWaints and 5 NPSOL design iterations as for Test

Case 1. Note that for each design point the s_'ong shocks present on
both the upper and lower surfaces in the initial configuration have

been eliminated. Figures (13 - 15) show comparisons of the three-

point solution with the single point solution of Test Case I at all fltree
design points. Interestingly, the upper surface shapes for both final

designs are very similar. However, in the case of the single-point

solution, a sCong lower surface shock appears at the Mach = 0.83,

CL = 0.25 design point. The three-point solution is able to suppress

the formation of this lower surface shock and shows a 9 count drag
benefit over the single-point design at this condition. However, it

has a 1 count penalty at the design condition for which the single-

point case was optimized. As in the wing alone multipoint design,

a weak single shock is seen for one of the three design points while

a very weak double shock is seen at another design point. Table

2 summarizes the drag results for the two design cases. (The Cv

values have been normalized by the drag of the initial configuration

at the second design point.) Before proceeding to the next section,

Design Conditions Initial Test Case 1 Test Case 2

Mach CL CD CD CD

0.81 0.35 1.00257 0.85003 0.85413

0.82 0.30 1.00000 0.77350 0.77915
0.83 0.25 1.08731 0.81407 0.76836

Table 2: Drag reduction for single- and multipoint
designs

it should be noted that these business jet design examples are only
representative of the potential for automated design, and are not

intended to provide designs for actual construction. First, in each

case only 5 NPSOL steps were taken where considerably more could

have improved the designs slightly. More importantly, for the case of

transonic designs, the inclusion of viscous effects may prove to have

an important impact on the optimized shape. In our future transonic

studies, the Navier-Stokes equations will be employed in place of
the Euler flow solver used here.

Supersonic Constrained Aircraft Design

In the case of supersonic design, it is conjectured that as long as

turbulent flow is assumed over the entire configuration, the inviscid

Euler equations suffice for aerodynamic design since the pressure

drag does not seem to be greatly alfected by the inclusion of viscous

effects, and a fiat plate skin friction estimate of viscous drag is

often close to the mark. In our current study, the generic supersonic
transport configuration used in the design studies of reference [17]
is revisited.

The baseline supersonic transport configuration was sized to ac-

commodate 300 passengers with a gross take-off weight of 750,000

lbs. The supersonic cruise point is Mach 2.2 with a CL of 0.105.

As can be seen in Figure 16, the planform has a break in the leading

edge sweep. The inboard leading edge sweep is 68.5 degrees while

the outboard is 49.5 degrees. Since the Mach angle at M = 2.2 is



63 degrees it is clear that some leading edge bluntness may be used

inboard without a significant wave drag penalty. Airfoils which use

blunt leading edges were created that range from 4% thick at the root

to 2.5% thick at the leading edge break point. The symmelric initial

airfoils were chosen with the purpose of accommodating thick spars

at roughly 10% and 80% chord over the span up to the leading edge

break. Outboard of the leading edge break where the wing sweep is
ahead of the Mach cone, a sharp leading edge was used to avoid un-

due wave drag. The airfoils were chosen to be symmetric, biconvex

shapes modified to have a region of constant thickness over the mid-

chord. The four-engine configuration features axisymmeMc nacelles

tucked close to the wing lower surface. This layout favors reduced

wave drag by minimizing the exposed diverter area. However, it

may be problematic because of the channel flows occurring in the

juncture region of the diverter, wing, and nacelle at the wing trailing

edge. The leading edge heights of the diverters are determined by

the boundary layer local displacement thickness such that entrain-

ment of boundary layer flow into the engines is avoided. Since the

distances from the wing leading edge to the diverter leading edge are

different for the two nacelles, this causes a corresponding diverter

height difference.

The computational mesh on which the design is run has 180 blocks

and 1,500K mesh cells, while the underlying geometry entities define
the wing with 16 sectional cuts and the body with 200 sectional cuts.

In this case, where we hope to optimize the shape of the wing, care

must be taken to ensure that the nacelles remain properly attached
with the diverter heights maintained. To accomplish this without

the inclusion of additional geometry entities, the portions of the

nacelles and diverters that are actually below the wing planform

outline take their associated surface mesh point motion from their

projected locations on the lower parametric wing surfaces.

The objective of the design is to reduce the drag at the single design
point (Mach= 2.2, CL = 0.105) by modifying the wing shape. Just

as in the transonic cases, 18 design variables of the Hicks-Henne

type are chosen for a given wing defining section. However, instead

of applying them to all 16 sections, they are applied to 8 of the
sections and then lofted linearly to the neighboring sections. Spar

constraints are imposed for all wing defining sections at x/c = 0.05

and x/c = 0.8. An additional maximum thickness constraint is

specified along the span at x/c = 0.5. A final thickness constraint is

enforced at x/c = 0.95 to ensure a reasonabletrailing edge included

angle. An iso-C v representation of the initial and final designs is

depicted in Figure 16 for both the upper and lower surfaces.

It is noted that the st_ng oblique shock evident near the leading

edge of the upper surface on the initial configuration is largely elim-

inated in the final design after 5 NPSOL design iterations. It is also

seen that the upper surface pressure disUibution in the vicinity of the

nacelles has formed an unexpected pattern. However, it is recalled

that thickness constraints abound in this design, and these upper sur-

face pressure patterns are conjectured to be the result of sculpting of

the lower surface near the nacelles which affects the upper surface

shape through the thickness conswaints. For the lower surface, the

leading edge has developed a suction region while the shocks and

expansions around the nacelles have been somewhat reduced. Fig-

ure 17 shows the pressure coefficients and (scaled) airfoil sections

for four sectional cuts along the wing. These further demonstrate

the removal of the oblique shock on the upper surface, and the ad-

dition of a suction region on the leading edge of the lower surface.

The airfoil sections have been scaled by a factor of 2 so that shape

changes may be seen more easily. Most notably, the section at 38.7%

span has had the lower surface drastically modified such that a large

region of the aft airfoil has a forward-facing portion near where the

pressure spike from the nacelle shock impinges on the surface. The

final overall pressure drag was reduced by 8%, from CD = 0.0088
to CD = 0.0081.

CONCLUSIONS

In the period since this approach to optimal shape design was first

proposed by the second author [8], the method has been verified by

numerical implementation for both potential flow and flows mod-

eled by the Euler equations [9, 19, 15, 11]. In two accompanying

papers at this conference, the method is being extended to treat the

Navier-Stokes equations [12, 14]. It has been demonstrated that the

method can be used successfully with a finite volume formulation

to perform calculations with arbitrary numerically generated grids
[19, 15]. Further, results have been presented for three-dimensional

calculations using both the analytic mapping and general finite vol-

ume implementations [20]. In the last year the technique has been

adopted by some industry participants to perform the aerodynamic

design of future configurations [1]. With the parallel implementation

of the multiblock design algorithm now complete, the technology has

advanced to the degree that aerodynamic shape design of complete

aircraft configurations with very rapid turnaround is possible.

In this paper we have shown how the complicated design of

both transonic and supersonic aircraft configurations including air-

f_ame/nacelle integration effects can be accomplished in a routine

fashion for multiple design points and with the inclusion of con-

straints. While the results presented in this paper have been re-

stricted to the inviscid Euler equations, this limitation will soon
be overcome in our future work. The focus here was instead to

demonsU'ate the feasibility of realistic designs governed by simple

geometry entities that are assembled and treated during the design

process. Furthermore, with the proven coupling to NPSOL and the

addition of multiple design point capability, the door is lruly open

for the method to act as a crucial element of a high fidelity MDO

technique capable of revolutionizing aircraft design.
All analysis and design cases were performed on parallel archi-

tecture machines in less than one day, demonstrating that complete

configuration designs may be achieved with rapid turn-around even

with the most conservative estimates of available computational re-

sources. In future efforts, additional disciplines will be coupled into

the techniques presented here while work continues on the unsu'uc-

tured grid approaches and on the inclusion of viscous effects.
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la: Initial Wing lb: 60 Design Iterations

Figure 1: Lifting Design Case, M = 0.85, Fixed Lift Mode.
Multipoint Drag Reduction, Initial and Final Wings.
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UPPER SURFACE PRESSURE UPPER SURFACE PRESSURE

2a: Initial Wing
CL = 0.4995, CD = 0.0156, a = --1.471 °

2b: 60 Design Iterations
CL = 0.5000, CO = 0.0114, _ = --0.933 °

Figure 2: Multipoint Lifting Design Case: First Design Point, M = 0.85, CL = 0.5000
Fixed Lift Mode, Drag Reduction.
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UPPER SURFACE PRESSURE UPPER SURFACE PRESSURE

3a: Initial Wing
CL = 0.5243, CD = 0.0173, a = --1.300 °

3b: 60 Design Iterations
CL = 0.5251, CD = 0.0123, a = -0.770 °

Figure 3: Multipoint Lifting Design Case: Second Design Point, M = 0.85, Cz = 0.5250
Fixed Lift Mode, Drag Reduction.
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UPPER SURFACE PRESSURE UPPER SURFACE PRESSURE

4a: Initial Wing
CL = 0.5490, CD = 0.0191, e = --1.128 °

4b: 60 Design iterations
CL = 0.5501, CV = 0.0135, _ = --0.608 °

Figure 4: Multipoint Lifting Design Case: Third Design Point, M = 0.85, CL = 0.5500
Fixed Lift Mode, Drag Reduction.

14



$

=

8

Z

/

_x x

÷
÷

+

x_ N

$

$

8

g

5a: Initial Wing, Span Station = = 0.484 5b: Design After 60 Cycles, Span Station z = 0.484

Figure 5: Multipoint Lifting Design Case, Design Point 1 :
Fixed Lift Drag Minimization.

M = 0.85, Cz, = 0.500, Pressure Coefficients of Initial and Final Wing Sections.
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6a: Initial Wing, Span Station z = 0.484 6b: Design After 60 Cycles, Span Station z = 0.484

Figure 6: Multipoint Lifting Design Case, Design Point 2:

Fixed Lift Drag Minimization.

M = 0.85, CL = 0.525, Pressure Coefficients of Initial and Final Wing Sections.
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Figure 7: MuItipoint Lifting Design Case, Design Point 3:

Fixed Lift Drag Minimization.

M = 0.85, C_ = 0.550, Pressure Coefficients of Initial and Final Wing Sections.

16



8a: Baseline Design

8b: Optimized Design

Figure 8: Transonic Business Jet Configuration
Iso-Cp Contours,

Baseline and Optimized Designs,

M = 0.82, CL= 0.30
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90 Hicks-Henno variablos. Spar Constraints Active.
- - -, initial Prosaures

--, Pressuros After 5 Design Cyclos.
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Figure 10: Business Jet Configuration. Multipoint Drag Minimization at Fixed Lift.
Design Point 1, M = 0.$1, Cr. = 0.35

90 Hicks-Henne variables. Spar Constraints Active.
---, Initial Pressures

--, Pressures After 5 Design Cycles.
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Figure 11: Business Jet Configuration. Multipoint Drag Minimization at Fixed Lift.
Design Point 2, M = 0.82, CL = 0.30

90 Hicks-Hsnne variables. Spar Constraints Active.
---, Initial Pressures

--, Pressures After 5 Design Cycles.

2O



• t

fl

i _ r _ i i I e i i i
eae lie em l_e al_ e_e ew e_ in eto LD

12a: span station z = 0.190

GN Qle a_ _ _ el_ a_ I_ _ Q_Pq_ I.W

12b: span station z = 0.475

C

u u 1 n [ _ _ n I _
ew alo I_ Q_ a_ Q_ _w _ eJo I_o _

12c: span station z = 0.665

i i f i i _ i i i L !
lee lie I_ _ e_ I_o aw o_e _o ei_ lW

12d: span station z = 0.856

Figure 12: Business Jet Configuration. Multipoint Drag Minimization at Fixed Lift.
Design Point 3, M = 0.83, CL = 0.25

g0 Hicks-Henne variables. Spar Constraints Active.
---, initial Pressures

--, Pressures After 5 Design Cycles.
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Figure 13: Business Jet Configuration. Multipoint Drag Minimization at Fixed Lift.
Design Point 1, M = 0.81, CL = 0.35

90 Hicks-Henne variables. Spar Constraints Active.
- - -, Pressures for Design Test Case 1.
m, Pressures After 5 Design Cycles.
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Figure 14: Business Jet Configuration. Multipoint Drag Minimization at Fixed Lift.
Design Point 2, M = 0.82, CL = 0.30

90 Hicks-Henne variables. Spar Constraints Active.
- - -, Pressures for Design Test Case 1.
--, Pressures After 5 Design Cycles.
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Figure 15: Business Jet Configuration. MuItipoint Drag Minimization at Fixed Lift.
Design Point 3, M = 0.83, CL = 0.25

90 Hicks-Henna variables. Spar Constraints Active.
- - -, F_essures for Design Test Case 1.
_, Pressures After 5 Design Cycles.
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Figure16:SupersonicTransportConfiguration.
Iso-CpContoursonUpperandLowerSurfaces.

Baselineand Optimized Designs,

M = 2.2, CL= 0.105
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Figure 17: Suporsonic Transport Configuration. Drag Minimization at Fixed Lilt.
M = 2.20, CL = 0.105

144 Hicks-Henna variables. Spar Constrainta Active.
-- -, Initial Pressures

--, Pressures Altor 5 Design Cycles.
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