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ABSTRACT

The analysis and design of a submarine propulsor requires the abilily to pre-
dict the characteristics of both laminar and turbulent flows Lo a high degree
of accuracy. This report presents resulls of certain benchmark computalions
based on an upwind, high-resolution, finite-differencing Navier-Stokes solver.
The purpose of the computations is o 2valuale the ability, the accuracy and
the performance of the solver in the simulation of detailed features of viscous
flows. Features of interest include flow separation and recttochment, sur-
face pressure and skin friction distribuiions. Those features .re pariicularly
relevant to the propulsor analysis. Tesl cases with a wiut Tonge of Reynolds
numbers are selected; therefore, the effects of the conmect: ¢ and the diffusive
tcrms of the solver can be evaluated .epoiulely. Test cases incinde flows over
bluff bodics, such as circular cylinders end spheres, al various low Reynolds
numbers, flows over o flat plate with and without turbulence effecis, and
turbulent flows over arisymmetric bodies with and without propulsor effects.
Finally, to enhancce the iterative solution procedure, a full approzimalion
scheme V-cycle multigrid method is implemented. Preliminary results indi-
cate that the method significanlly reduces the computational effort.

ADMINISTRATIVE INFORMATION

This investigation was authorized by the Office of Naval Research under 6.2 Viscous
Flow Program, in accordance with Program Element 62323N, Task Area R2332MS3,
and Work Request Number N001495WX20047/AJ. This work was performed at the
Naval Surface Warfare Center, Carderock Division (NSWCCD), David Taylor Model
Basin (DTMB) under Work Unit 5060-567.

INTRODUCTION

Hydrodynamically speaking, propulsor components are lifting bodies that provide
thrust for propulsion. To improve the propulsive performance, it is desirable to have a
lifting body with an optimum lift to drag ratio. Successful analysis and design requires
the ability to predict the hydrodynamic forces on the lifting body, such as lift and drag,.
to a high degree of accuracy. Recently, large research efforts on computational fluid
dynamics (CFD) have been directed to achieve such goals. The most practical approach
is to derive some numerical methods for the Reynolds-averged Navier-Stokes equations
(RANS). The more popular methods, depending on the manner the convective ferms
are formulated, include the central differencing and the upwind differencing schemes.
Both upwind (D'TNS Code!) and central (IFLOW Code?) differencing formulations have
been used for hydrodynamics simulations at the David Taylor Model Basin (DTMB).
As part of DTMB propulsor research efforts, a variation of the upwind schemes has
been employed to simulate the flow through the blade rows of a turbomachinery® 4,




For high Reynolds number flows, the Navier-Stokes enuations become convectively
dominated and are hyperbolic in nature. Under such circumstances, the upwind differ-
encing approach becomes attractive and has vertain advantages. For a one-dimensional
case, 3t can be shown that the information at any point propagates in the divection
according to the sign of the local eigenvalues of the flux Jacobian. Consequently, a
numerical procedure with the upwind differencing technique based on the direction of
local wave propagation is physically more adaptive to the characteristics of the cqua-
tions. Besides, in the upwind scheme, the dispersive and dissipative errors are more
closely balanced than in other schemes of equal or even higher order that use the same
set of nodal points, regardless of the direction of the convection®. The flux-difterencing
splitting approach suggested by Roc® is a popular upwind scheme for solving the in-
compressible Navier-Stokes equations, since it docs not. require the inviscid flux to be a
homogenous function of order one. Based on Roe’s approach® the flux-difference is sphit
according to an approximate solution of the Riemunn problem. The solution provides
the information about the direction of the wave propagation, which, in turn. is incor-
porated into the discretized system to form an upwind scheme. The accuracy of the
solntion can be promoted to a higher order by reconstructing the primitive variables or
the fluxes midway between two nodes with an exirapolation technique. In conjunction
with the reconstriction process, the slope limiter or the flux limiter can be implemented
to obtain total variation diminishing (TVD) property’. Viscous terms can be discretized
with a second order central diffcrencing scheme. A numerical formulation, based on the
principles described above, allows the discontinuity of the solution to be resolved ove.
only two adjacent nodes without causing the non-physical oscillations. Therefore, this
approach is sometimes called high resolution.

This report presents the results of a numerical study designed to evaluate the ability
and accuracy of an upwind scheme in predicting certain flow features that are relevant
to propulsor analysis. Somne of the features of interest are flow separation and reattach-
ment, surface pressure and «kin friction distribution. Test cases for present numerical
study are selected so that (1) a wide range of Reynolds numbers are covered, (2) the
boundarics are smooth and the distortions of the grid systems are minimized, (3) the
flow features are relevant to the proplusor analysis and (1) the test data are well ana-
lyzed. Test cases include flows over hlufl bodies, such as circular cylinders and spheres,
at varions low Reynolds numbers, flows over a flat platc with and without turbulence
effects, and turbulent flows over axisymmetric bodics with and without propulsor cf-
fects. To enhance the iterative solution procedure, a full approximation scheme (FAS)
V-cycle multigrid method is implemented. A fast, convergence rate is achieved as a
result.
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THE GOVERNING EQUATIONS

The three-dimensional incompressible RANS equations based on primitive variables
are formulated in a boundary-fitted curvilinear coordinate system. Using Chorin's arti-
ficial compressibility formulation,® the incompressible Navier-Stokes equation is written
in conservation form for three-dimensional flow in Cartesian system as

Qut (B = E)s+ (F = F})y 4 (67~ Go) =0 . (1)

In Eq. 1, the dependent variable vector @ is defined as ) = (p,u, v, w)T, and the inviscid
flux vectors E7, F=, and G*, the viscous shear flux vectors E.F,, and G}, are given by

B = (ﬂiz,uz + p, uv, uw)7

Fr = (Bv,uv,v’ 4 p,ow)’

G = (Bw,uw,vw,w®+p)7

E; = Re'(0.2us.uy + vz us + w, )T

F = Re (0.uy + vy, 2040, + wy)T

Go = Re(0,u, + wy, v, + wy, 2w,)T.
The coordinates «,y, z are scaled with an appropriate characteristic length scale L. The
Cartesian velocity components u, v, w are nondimensionalized with respect to the free
stream velocity, Vi. The normalized pressure is defined as p = (p — po)/pVZE. The
kinematic viscosity, v, is assumed to be constant, and the Reynolds number is defined as
Re = V. L/v. The artificial compressibility parameter, §, monitors the error associated
with the addition of the unsteady pressure term dp/dt in the continuity equation. The

unsteady pressure term is needed for coupling the mass and momentum equations to
make the system hyperbolic.

Equation 1 can be transferred to a curvilinear, body-fitted coordinate system (( , ¢ ,
n ) through a coordinate transformation of the form

(= ((z,y.7), &=¢&(z,9.2), and p=n(2.y,2).
Thus, Eq. 1 becomes,

(Q/)+ (E~ B+ (F=F)+(C~Gy)y=0 (2)
with

(E,F.G) = ([} (E"}J .F"/] ,G"[J)"}
and

(Eu, F. G = [T) (ELfd JFold Gl



where

G G G
[T] =1 & ‘fy ¢
Na Ny 7

and the Jacobian of the coordinate transformation is given by

Te YW <¢
J—l = det Ty Ye ¢
Ty ¥Yn Zy

The Jacobian is the ratio of volume elementsin the two coordinate systems. For a proper
transformation, neither J nor its reciprocal is zero. At present. the transformation is
chosen so that the grid spacing in the computational domain is uniform and of one unit
in length in all three spatial divections. The Cartesian derivatives of the shear fluxes are
obtained by expanding them using chain rule expansions in the (, ¢, and 5 directions.

NUMERICAL DISCRETIZATION

Let ¢, 7,k denote the integer indices of a grid point in the curvilinear system (. €.y
whose Cartesian coordinates are z,y,z. Each grid point serves also as the centroid
of a control volume whose six bounding surfaces are formed by bisecting the distances
between the centroid and its six adjacent grid points. The Cartesian flow variables such
as u,v,w and p are placed at each grid point. The indices of the grid point are used
as subscripts for the variables to indicate the association. To avoid introducing any free
stream error, the metric terms sach as {,, £, and 5. etc.. are computed from z.y,z
data by using a second-order central-diffcrencing approximation of z¢, z¢ and z, etc.,
as described by Pulliam and Steger?,

INVISCID FLUXES

At present, discretization of the inviscid fluxes of Eq. 2 is achieved by applying
the Riemann solver to each direction of the coordinate system as suggested by Yee,

Warming and Harten!?. Consider a one-dimensional hyperbolic system of conservative
laws

(3),+ @ =0. p@)=55. ®

where 8 = (. £ or 1, and D(Q) is the Jacobian Matrix. Both ¢} and H(Q) are column
vectois with four components and D((Q) is a four by four matrix.

Let the right eigenvectors be tnc colurnn elements of rnatrix R and eigenvalues
A1, A A3 and Ay be the diagonal clements of matrix A, then the relationship between
D,R and A is given by a similarity transformation D = RAR™'. The row elements

4




of the matrix £~ give au orthonormal set of the left eigenvectors. In the discretized
system, the state Q; at grid point [ is considered as an averaged value in an interval,
that is

iy (a0

=AY Q db. (4)

{i-1)ae

Roe’s flux difference splitting is constructed by forming 2 mean value Jacobian ﬁ(Q1+1. Q1)
such that

H(Qua) — H(Q)) = D(Qisr. Q1) (QH»I - Qx).
and
D(Qrn. Q) = D(Qu4, Q1) as Qg — Q.

to evaluate the mean value (the local frozen value ) Jacobian at the interface [ 4: 1, the
simple average value of the state Q at two adjacent grid points are used, that is

Dy = Dli%(Qli%) (3)

|

i

where
1
Qizy = 5(QrFE Qi)
By the similarity transformation, D, 1 can be written as
DH-% = (RAR--l)H%
- + -1 -~ - -1y
= (RA'R )H% (RATH Jied
+ -
DH’% - Dl—lz- 3
where A* and A~ are the absolute values of the positive (speed of the right travelling
wave) and the negative (speed of the left travelling wave) eigenvalues, respectively.
With the mean value Jacobian locally defined, Eq. 3 can be decoupled intn a system of
four scalar equations with the eigenvalues representing the wave speeds of the Riemann
problem. Let’s define the local characteristic variables W as the projection of Q into
the Jeft eigenvectors R~ ; therefore , W = R~1Q. For any given two states Q; and
Q141, the flux at the interface H,+% can be expressed, in term of flux difference. as either
HH% =M+ RA"AH_%W (6)

or

Hipy = Hiso ~ RAY AW, (7)




where AH’%“! = (I’VI.H i VV()/Q p

Assuming that B, 77 and A are constant, with Eqs 6 and 7, Eq. 3 can be written as
a system of four scalar hyperbolic conservative equations for the characteristic variables
W, that is,

W, ~ |
<—I—> - (A; )l+‘}AI+}5 ‘V,n -*. ()‘:1 )l_%A!-;u"n = 0 fOT' m = 1\2: 3\‘1. (8)
J /y i
An implicit delta form of Eq. § is
1 _ ;
[?j - (/\m)i+§Aug + (/\:‘)l—’,-.ﬁ,_%] AWT

= (/\;)ug‘:\z-g‘l’vy’; - (}‘;tl)lv%'{ll—%”’:. , (9)

where 7 is the time step size, n is the time step number, and AWD = Wit 2,

When W, is sufficiently differentiable, the local jump in W, at the interfaces £ £,
known as

Bisy Wi (10)
are replaced with
au)'m n
huartapens s 0 .
( ae )1:{:% A (1 1)

Equation 10 is only a first-order one-sided approximation of Eq. 11. To enhaiice the
accuracy, the following relationships from a scalar schemie can be extended to a constant
coefficient. system by applying them scalarly to each of the m scalar characteristic
components in Eq. 8,

(9Wm n T n
)20 (e

1 A
+3[0+ N = AL W+ (- )07, - 0 A W) (1)

and

W, \ ™
(955’__) Al = (WQ,M - W,:;.()

t+4
j -
L0+ 07— 0 AW - @ - e a, W] s
for m=1,2,3,4, with

4’:.1: ("3:;,1) s (14)




and

e [ (B Wa AL WE)* for Ay W 0 (15)
ml = 0 for Alt%IVYZ =0

The order of the accuracy in the spatial derivatives presented above is determined by the
values of w. For w = —1, the scheme is fully upwind second-order accurate. For w = ‘;
the scheme is upwind biased third-order accurate. Function @ is called the limiter; it
15 used to control unwanted oscillations in numerical schemes. Various designs of the
limiter were found and successfully tested. 312

Substitute Egs. 12 and 13 into Eq. 9, and multiply Eq. 9 by the set of right eigen-
vectors f2 from the left. A counservative high-resolution schene for the nonlinear system
1s derived:

[(55) = Phyduy - DE,a a0 =
(RK7 R, 80,1 Q" — (REVR), A, Q" (16)
with
KE) =2 [A;;% — (1= @)AT, + (1 + )AL JOF, - 07)/4]
and
dF = diag(dF.0F, %, ¢F),

The right hand side of the Eq. 16 is evaluated at time level n; it is the spatial
derivative of Eq. 2 and is designated as residual, Equation 16 represents the relationship
between the residual at n** time step and the correction of the solutions at n+ 1™ time

step. The correction and the residual approach to zero as the solutions approach to
their steady state values.

VISCOUS FLUXES

The viscous fluxes in Eq. 2 are evaluted by a second-order central diffcrencing
scheme. The computation of the fluxes requirc all nine metric coefficients at cach
of the six bounding surfaces of each computational cell.

SOLUTION ALGORITHM

Equation 16 can be extended to three-dirnensional applications with the operator
split method. The differencing schemes described previously are applied to each co-
ordinate direction {. ¢, and n independently; a summation over all directions gives
the discretized approximation of a multi-dimensional flow problem. Upon forming the
Jacobian matrices A, B, and C from invicid fluxes E, F, and ¢ and X, Y. and

-
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Z from the viscous fluxes E,., F,. and G, , a finite-diflerencing form of Navier-Stokes
equations can then be written as:

I _ . ;
(;7 = (AT + X8 AT+ X008,
- (B"+Y’)J~+%AJ-+%+(B+ -+ Y)J,%A)_%

(€ + DheraBusy +(C7 + Z)yAy ) Q™= =RES(QY) . (1)

Equation 17 is solved by an implicit hybrid algorithm where a symmetric planar
Gauss-Seidel relaxation is used ip the { direction and approximation factorization is
applied in the ¢ and  directions:

[M — (B4 V)38, + (B 4 Y)ju%aj_%]m = —~RES(Q".Q™) ,  (18)

[M (O 4 Dy Bray +(CF 4 Z)k,gak_%]aq = MAQ | (19)

Qn+1 - Qn + AQn , (?0)
with M = I/(sJ)+ (A™ + X}y, 1 + (A* + X’)i_%, where RES(Q". Q™) indicates the

ponlinear updating of the residual while sweeping in the ¢ divection.

MULTIGRID METHOD

For certain simulations, in order to obtaln meaningful results, a large number of
finely sized grid points is nceded. The adverse effect of such a grid system upon the
computation eflort is that the rate of convergence deteriorates significantly. The analysis
provided by Brandt!? suggests that the low-frequency components of the errors are
efficiently approximated on coarse grids but are slow to convergence on fine grids.
In addition, the high-frequency components must be approximated on finc grids. By
utilizing interactively several scales of discretization, multigrid techniques resolve such
conflicts and avoid stalling.

To accommodate nonlincarities, a full approximate scheme (FAS) is used. The
discretized system of cquations described previously can be represented as:

L(Q)=-R, (21)

where [ is the differencing operator, @ is the unknown to be solved and R is the
residual.  Tle iterative process will reduce the residual to zero as the stcady-stite
solution is approached. The FAS procedures for solving Eq. 21 can be described as
follows:

(1) relax on the fine grid, L, (Q") = —R* |




-

(2) solve Lap(Q™) + [IPALA(QY)] - Lan(JP*Q*) = — R on the coarse grid, and

(3) replace Q" «—— Q" + I5,(Q* — I?*(Q*) on the fine grid.

The notation introduced here includes the diflerence operators at the fine grid Ly,
and the coarse grid Ly, , the restriction operators J#* (for the approximation) and
I#* (for the residual), and the interpolation operator 4.

RESULTS

In the followings benchmark computations, in order to qualify the comparison be-
tween the experimental measurements and computational results, root-mean-square

{RMS) differences® are calculated. The RMS difference is defined as
X 1
RMS = [Z(vf ) /;\'}

where v and v™ are computed and measured values respectively, N is the total
number of data values used m the comparison, and the subscript i ranges from 1 to

N. Computations were carried out with 64-bit precision on a Silicon Graphics Power
Challerge machine.

TURBULENT FLOW ALONG A FLAT PLATE

The structure of the: turbulent boundary layer along a flat plate has been investigated
earlier by Ludweig and Tillmann'®, and Wieghart and Tillmann!. It was found that
the axial velocity profile in the inner one-fifth of the boundary layer can be represented
by the universal logarithmic law (excluding the viscous sublayer). The rernaining outer
four-fifths can be adequatedly expressed by the power law. Wieghart and Tillmann's
data were collected in a wind tunnel test. The flow velocity was 33 m/sec and the
average dynarnic viscosity was 0.151 cm?/sec. Velocity measurements were taken at
twenty-three locations ranging from 0.087 m to 4.987 m from the leading edge. The
boundary thickness grew from 0.0335 cm to 0.9242 cm. The test data were compiled
and presented at a 1968 Stanford turbulent flow conference’®.

In the present computation, the computational domain extends 8 m in streamwise
direction, 0.16 m in cross flow dircction, and 0.5 rn in the third direction; grid points
used are 57, 61 and 5 in the respective directions. The Revnolds number (Re) is 2.2x108.
Grid distribution. in the cross-flow direction is non-uniform, and is clustcred near the
plate such that the y* coordinate of the first grid point off the plate surface is less
than 0.3. The Courant-Friedrichs-Lewy (CFL) number for present cornputations is
10%. For the turbulence modelling, the standard Baldwin and Lomax’s algebraic eddy
viscosity formulation *® is used. Figure la shows the skin friction coeflicient C, along
the plate surface, and Figs. 1b and lc show the axial velocity profiles at x=0.78 ni and
4.98 m, respectively. The RMS differences indicate that the deviations between the
measurements and the predictions are within the limits of the expected measurement




uncertainties. Figure 2 shows the velocity profile al x=4.98 in preseuted in (y*. u')
coordinates. It can be scen that the predictions agree well with the measurer ients. In
the turbulent zone where y* lies between 30 and 1000, both the predictions and the
measurements fit the universal logarithmic law. However, none of the data lie within
the sublayer. The convergence history presented in Fig. 3 shows that the residual value
approaches the machine zero.

0.006

L Skin friction coefficient
{
o.00at O Weighart's data (1951) |
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Fig. 1. Skin friction coefficicnt and velocity profile
for wurbulent flow along a flat plate.
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LAMINAR FLOW ALONG A FLAT PLATE

For steady laminar flow along a flat plate with a constant free stream velocity
Us , the pressure gradient. dp/dz in streamwise direction vanishes. The Navier-Stokes
equations reduce to the Prandtl boundary-layer equations. A solution, known as the
Blasius solution after its originator, is obtained by assuming similar profiles along the
plate at every location along the plate. Blasius assumed that

YU _ (Y
E*F(as)’

where y is the distance above the plate surface, & js the boundary layer thickness, and

¥ Y

T TS =y,

APV

with = the distance from leading edge and R, the Reynolds number based on z. Under
the sirnilanity assumption, the Prandt] boundary layer equations can be further reduced
to an ordinary differential equation. Solution can then be obtained nunerically. In the
present numerical simulation, the georetrical dimension used previously for turbulent
flow is adopted and the Reynolds number is 3.64x10°. The grid size is 129x129x3.
Figure 4a shows the skin friction coefficient along the plate surface, and Figs. 4b and
4c show the profiles of axial velocity u/U, , and transverse velocity w/U, | respectively.
The RMS difference for each quantity is also presented. The results of the present
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Fig. 4. Skin friction coefficient and velocity profiles
for laminar flow along a flat plate.

computation agree well with the solutions obtained by Blasius’s method. Part of the
deviation can be attributed to the fact that the Blasius’s solution is based on Prandtl
boundary layer equations while the current computation is based on Navier-Stokes
equations. Figure 3 shows the convergence histories for solutions with multigrid (7
jevels) and without multigrid (1 level) application. Considerable computing eflort is

saved with the application of the multigrid method.
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FLOW PAST CIRCULAR CYLINDERS AT LOW SPEEDS

For flow past a circular cylinder at Reynolds numbers (length scale is based on the
diameter) below the critical value { ~ 40) at which a Karman street is formed, the flow
is steady and twin voriices exist behind the cylinder. There are many interesting flow
related phenomena despite the simplicity of the geometry involved. The phenomena
are the boundary layer development along curved surface, the flow separation, and
wake reattachment. However, the details of these pheriomena, such as the locations of
the separation, the coordinates of the vortex center, and the wake's length and shape,
are Reynolds numbers dependent and pose great. challenges for numerical simulation.
For these and other reasons, this problem has drawn much attention in the past, hoth
theoretically and experimentally. In light of the availability and quality of the data,
this problem is selected as a benchmark case for present nurnerical study.

The outer boundary of the computational domain 3« described by a circle with a
radius 10 times that of the cylinder. An O-type and orthogonal grid svstem is se-
lected. The grid distribution in the radial direction is non-uniform and is clustered
near the surface. The distance between the cylinder surface and the first grid point is
one-thousandth of the radius of the cylinder. For computation, symmetry is assurmed
and only the plane above the axis of symmetry is considered. The number of grid
points in radial, circumferential and axial directions are 257, 287 and 3, respectively.
The CFL number used for the following computations is 10%. The boundary conditions
are: (1) a non-siip , non-penetrating, and vanishing normal pressure gradient on solid
surface, (2) prescribed free stream values at the upstream side of the outer boundary,
(2) second-order extrapolations at the downstream side of the outer boundaty and (4)
periodicity in the spanwise direction. In order to describe the main features of the flow,

13




Fig. 6. Geometrical parameters of the closed wake.

Coutanceau and Bouard's!” geometrical parameters for the closed wake are adopted
and shown in ¥ig. 6, where parameters [ and L are the width and length of the wake, 0,
is the separation angle and the vortex centers are located on the (21,y) axes by e and
b . It was observed by Taneda'® that the twin vortices behind the cylinder appeared
when the Reynolds number was greater than 6 and becarne unstable when the Reynolds
pumber was greater than 45, Therefore, the Reynolds numbers 5 and 40 are sclected as
the lower and upper bounds for the present steady-state computations. Taneda’s!® and
Coutanceau and Bouard's!” flow visualizations were obtained by similar methods: by
illuminating the light particles suspended uniformly in the liquid and by photographing
in the direction normal to the lighted plane. Taneda'® used aluminium and water in
the tests, while Coutanceau and Bouard®” used fine bright particles and the Vascline
oil * MARCOL 80 ' in their tests. The latter reference derived the particie velocity
by measuring the length of the particle trajectory during the time of exposure. The
reported ymaccuracy was less than 2%. The wall influence was investigated by chang-
ing the ratio ) peiween the cylinder and the tank diameters!”. Figure 7 shows the
compuied wake shapes bebind the cylinder at different Reynolds numbers. Compared
with the flow visualizations'™ '8, the characteristics of the wake shapes near the scpa-
ration and reattachment points are well simulated. The result indicates that the twin
vortices begin to develop at Reynolds number about 5 and it agrees with Taneda’s'®
observation. In Fig. 8, the currently computed separation angles at various Reynolds
numbers arc comnpared with those computed earlier by Keller'® ?° and Raal*! and those
measured by Coutanceau and Bouard.)” Figure 9 shows the rclationship between the
Reynolds numbers Re and the wake lengihs L/ D, from both the current computations
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and Tancda’s obscrvations.'® In Fig. 10, the coordinates of the vortex center (a,b) (see
Fig. 6) are plotted against the Reynolds number, Re. The experimental data were re-
ported by Coutanceau and Bouard!? with A , the ratio between the cylinder and the
tank diameters, equal to 0.024. The small valuc of X indicates that the wall effect is
relatively small. Figure 11 shows the similarity of the closed-wake shape.!” For com-
puted and measured wakes al different. Reynolds numbers, when the wake width ! and
its distance from the rear stagnation point X — R, are normalized with the maximun
wake width [ne. and wake length L, respectively, and then plotted against each other,
the results merge into a single curve except at the regions near the cylinder wall. Fig-
ure 12 shows the velocity similarity on the rear flow axis in the closed wake, where the
velocity u is normalized with its maximum value u,,,,. Figure 13 shows the compar-
isons of the computed and measured velocities at rear flow axis at Reynolds numbers
20 and 40. The RMS differences are comparable with the measurement uncertainty
(~ 2%). Figure 14 shows the computed pressure distribution at the cylinder surface
for Re=40" it 1s compared with the distributions observed at Re=36 and Re=45 by
Thom,*? and computed by Apelt?® at Re=40. Thom’s approximate theory*! for deter-
mining the value of the pressure at the front stagnation point at low speed gives the
result at Reynolds number 40, (147/Re) or 1.175, which agrees well with the value of
the current result 1.18. Figure 15 presents the convergence histories of the numerical
simulation at Re=40. The 7-level multigrid solver improves the efficicncy significantly.
A fine grid size is needed for detailed computation, because with such a fine grid size
the convergence is slow. The application of multigrid technique (7 levels) reduces the
computational effort considerably for a given CPU time,
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FLOW PAST SPHERES AT LOW SPEEDS

The flow and the solutions are assumed to be axisymmetric. The topology of the
grid and the specification of the boundary conditions are the same as those used for
comouting the flow over the cylinder presenied earlier, except that the reflective cou-
dition is applied in the circumferential direction. The sclutions on different meridional
planes arc related by simple coordinate transforraation. The CFL number used for the
computations is 10?. Figure 16 shows the computed wake shapes behind the sphere at
various Reynolds numbers. The relationship between the Revnolds number Re and the
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Fig. 16. Standing vortices downsucam of a sphere.
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wake length L is plotted in Fig. 17; also included are the test data from Tancda.®®
The twin vortices behind the sphere appear at Reynolds number about 23. The surface
pressure distribution at Reynolds number 100 is shown in Fig. 18; also included are the
results from earlier computations.?® %" The convergence histories for Re=100 is shown
in Fig. 19. Multigrid technique improves the cornputational efficiency significantly.
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TURBULENT FLOW PAST AXISYMMETRIC BODIES

The purpose of this computation is to investigate the accuracy of the nuwmerical
scheme in predicting the characteristics of the flow in an expanding boundary layer
under adverse pressure gradient at high Reynolds numbers. Axisymmetric bodies, des-
ignated as DTMB-bodyl and DTMB-body2, were built and tested at the David Taylor
Model Basin {DTMB)?. The Reynolds number at the test condition was 6.6x10°. The
size of the C-type grid for the present computation is 197x%3x146 in radial, circumfer-
ential and axial directions, respectively. Modified Baldwin-Lomax model? is used to
simulatc the turbulent flow, F igure 20 shows the computed (solid line) and measured
{(symbol) pressure distributions on surface of DTMB-bodyl. The RMS difference is
0.019. The measurement uncertainty for pressure was £0.015. It can be seen that
the pressure gradient is zero at the parallel mid-body region, and adverse gradient js
present at stern region. In Fig. 21 the computed velocity profiles at various axial loca-
tions at stern region of DTMB-body1 are cornpared with the measurments. The RMS
differences range from 0.012 to 0.025. The measurein st uncertainty for velocity was
+0.025. In Fig. 22 the velocity profiles. at the parallel mid-body section, are plotted in
the (y*,u%) coordinates. The value of the y* of the grid nearest to the body surface
is about 2.5. There are four grid points that lie within the laminar sublayer. The
computed distribution of skin friction (solid line) on body suiface is shown in Fig. 23,
Compared with the measurements, the RMS difference is 0.00029. The measurement
uncertainty for skin friction was $0.0002. The computed (solid line) and measured
(symbol) turbulence shear stresses near the stern region at several axial locations are
shown in Fig. 24; the RMS differences range from 0.008 to 0.015. The measurernent
uncertainty for turbulent shear stresses is -£0.01.

0.4 : -
Re=6.6x10"
RMS difference=0.019

0.2 Present comp. k

!
ol
© Expt. (Huang etal. 1978) o

0.0

-—_‘\a_e-o/g

04 06 %] )
x/L

Fig. 20. Surface pressure distribution
for DTMB-body1.

21




0.5t

0'?}.()

(-t Ne_,

2.9, Y

Re=6.6x1(f
L x/L=0.755

RMS difference=0.013

e _ Present comp.

o Expt
(Huang et al, 1978)

it ol

Q.

i

02 02 06 03

WU

4

1.0

2.0 T ™ - -

Re=6.6x10°
.50 x1.=0.914
RMS difference=:0.02

s et i g @RS
e VN I Y i ¥

wU

°©

e
0.8

pXY) v -

s st

1.0

l')

Re=6.6x10°
sl xL=0.964
RMS difference=0.025

=
¥

o5t

b
E

04%

RMS difference=0.017

 x/1.=0.846

O

0. :
oI TTT06 08 0 i
Wy,
20 R
Re=6.6x10° f
1.5+ x/L=(0.934
. RMS difference=0.012 I
S: 1.0 1
S j
o5k >
T S B S S T MY
wJ,
20 — o
Re=6.6x10°
5], WL=0.977 ]
RMS differences0.019
g .
?l_o 10 B
05t
08602 s 0608 1o T2
wU

Fig.21. Velocity profiles at stern region of DTMB-bodyl.




T han ey —— Y g 30 4 o
25} Re=6.6x10° 25} Re=5.6x10°
%L=0.4473 [ /L=0.5765
20t 20} 1
15} ] st .
10t 5 10¢ A
Present comp. P o Present comp.
5k ./ - Wall law ; 5t e Wall law 7
T T IS TV T/ SR T A T1 S R T TV T/ S T TV T
y y
Fig. 22a. x/L=0.4473 Fig. 22b. x/1.=0.5765
Fig. 22. Comparisons of wall law at mid-body section of DTMB-body1.

4E-3 T
Rex=6.6x 10°
| RMS difference=0.29"

3E-3

Tapal

~—————— Present comp.
1E-3} © Expt. (Huang etal. 1978)

. ]
Y2 . . .
, 0.6 0.8 1.0

Fig. 23. Skin frction coefficient
along the surface of DTMB-body 1.




0.15

s .
_\o Re=6.6x10°
\O  xiL=0.755
> \@ i o=
i 00']0_ o RMS difference=0.015 i
=
= C Expt. (Huang et al. 1978)
2005¢ —~——————— Present comp. b
| o
| DRSPS § Lo led 1
0052 e 0510
(-t Mrp,,
Fig. 24a. x/L=0).755.
0.15 , —_
Re=6.6x10°
*/1n0.934
3 RMS difference=0.009
0.10F ]
=
[= Oo
=
20,05} .
\\ﬁ_l
PP 4 o Lo
005204 "o o d o
(rr Vr

Fig. 24c. x/L=0.934.

Fig. 24d. x/1.=0.964.

Fig. 24. Turbulent shear stresses near the stern region of DTMB-body .

24

0.15
Re=6.6x 10°
W/L=0.846
0.10 ]
"'g" RMS differences=0.008
S
x
2005} ;
Q
o)
00850557 0% T 1o
(r-r M e
Fig. 24b, x/L=0.316.
0.15 . , :
Re=6.6x10°
w=0.964
9_ 10 RMS diffcrence=0.009 |
PE ]
<
x
“20.05} 1
00 6567 """ 0e 63" "To
(T M1,




A propeller was placed on DTMB-bodyl whose cente: line is located at x/1.=0.983.
The ratio of propeller and body diameter is 0.54. Velocity measurements were taken
at a distance of 0.227 propeller diameter upsiream of the propeller. For numerical
prediction. the propeller effect was simulated with a body force model. The computed
and measured velocity profiles under two different propeller operating conditions are

shown in Fig. 25.

The same type of computations were carried out on DTMB-body2. The velocity
profiles at different axial locations are shown in Fig. 26. The RMS differences between
the computed and measured values range from 0.008 to 0.0538.
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CONCLUSIONS AND RECOMMENMDATIONS

An upwind, high-resolution, ﬁnite-diffcrencing Navier-Stokes solver is used to sim-
ulate steady-state incompressible flows with a wide range of Reynolds numbers. Fx-
periments with mcasurements of high quality arc sclected as benchmark cases. The
predictions are compared with the measurements by evaluating the root mean square
(RMS) differences. In all cases, the RMS differences are compatible with the mea-
surement uncertainties. For the low Reynolds number cases, the detailed features of
the standing vortices behind the blufl bodies are successfully simulated. For the high
Reynolds mumber cases, the skin friciion cocflicients, the structure of the turbulent
velocity profiles and the turbulent shear stresses are correctly predicted.

At low Reynolds pumbers, the flows arc dominated by diffusive process. The rate of
convergenee of the iterative procedure becomes very slow, even for an implicit method
with a rather high CFL number. The situations can be improved significantly by
implementing the multigrid technique. Compared with the single-grid approach, the
multigrid solver is rather insensitive to the CFL numbers and an order of magnitude of
Central Processor Unit (CPU) time is saved.

In summary, the flow features that are relevant to the propulsor analysis. such as
flow separation and reattachment, surface pressure and skin friction dstributions, can
be predicted accurately and efficiently with an upwind RANS solver. The formulations
of D'TNS! are similar to the formulations described in this report, It is expected that
DTNS! code may achieve the similar performaces. For cornplicated turbulent flows, 1o

correctly predict the turbulent structures, a sophisticated non-equilibrium turbulence
model is needed.

REFERENCES

1. Gorski, J.J., “TVD Solution of the Incompressible Navier-Stokes Equations with
an Implicit Multigrid Scheme,” AJ4A paper §8-3699 (1988)

[\l

Sung, C.H., “Recent Progress in Incompressible Reynolds Averaged Navier-Stokes

Solver,” Prescnted at the International Conference on Hydrodynamics, Wuxi.
China (1994).

3. Hartwich, P-M, and Hsu, C-H, “High-Resolution Upwind Scheme for the Three-

Dimensional Incompressible Navier-Stokes Equations,” AIAA Journal, Vol. 26, No.
1T (Nov 1988).

4. Yang, C-1., “A simulation of viscous Incompressible Flow Through a multiple-Blade-

Row turbomachinery with a High-Resolution Upwind Finite Differsncing scheme,”
Nuracrical Simulations in Turbomachinery ASME FED-Vol, 227, pp.11-18 (1993)

27




9.

10.

11,

15.

16.

17.

18.

van Leer, B., “Towards the Ultimate Conservative Difference Scheme, 111
Upstream-Centered Finite Difference Schemes for 1deal Compressible Flow.” Jour-
nal of Computational Physics, Vol. 23, pp.263-275 (1977).

Roe, P. L., “Approximate Riemann Solvers, Parameter Vectors, and Difference
Scheme,” Journal of Computational Physics, Vol. 43, No. 2, pp. 357-372 (1981).

Yee, H., “On the Implementation of a Class of Upwind Schemes for Syst.tim of
Hyperbolic Conservation Laws,” NASA Technical Memorandum 86839 (1983).

Chorin, A., “A Numerical Mel.h.od for Solving Incompressible Viscous Flow I'rob-
lem,” Journal of Computational Physics, Vol. 2, pp. 2-26 (1967).

Pulliam, T.H., Steger. J.L., “On Implicit Finite-Diffcrence Solutions of Three-
Dimensional Flow.” AI4A4 paper 78-10, (1978).

Yee, H., Warming, R.F., Harten, A., “Implicit Total Variation Diminishing (TVD)
Schemes for Steady-State Calculations,” Journal of Computational Physics, Vol.

- 57, pp. 327-360 (Scpt 1983),

Roe, P.L., “Some Contributions to the Modelling of Discontinuous Flow," Lecture
in Applicd Mathematics, Vol. 22, pp. 163-193 (1985).

. Brandt, A., “Multigrid Techniques: 1984 Guide with Application to Fluid Dynam-

ics,” Lecture Nole for the CFD Lecture Series at VKI, (1984).

. Ludwieg, H.. Tillmann, W., “Investigation of the Wall Shcaring Stress in Turbulent

Boundary Layers,” NACA TM 1265, (1951).

. Wieghart, K., Tillmann, W., “On the Turbulent Friction Layer for Rising Pressure,”

NACA TM 1814 (1951).

Coles, D.E., Hirst, E.A., “Proceedings, Computation of Turbulent Boundary Layer-
1968 AFOSR-IFF-Stanford Conference, * Volume i, Compiled Daia, (1968).

Baldwin, B.S., Lomax. H., “Thin Layer Approximation and Algebraic Model for
Scparated Tirbulent Flow,” AIAA Peper No. 78.257 (1978).

Coutanceau, M., Bouard, R., “Experimental Determination of the Main Features of
the Viscous FFlow in the Wake of a Cylinder in Uniform Translation. Part 1. Steady
Flow,” J. Fluid Mech. , Vol. 79, Part 2, pp. 231-256 (1911).

Tancda, S., “Experimental lnvestigation of Wake behind Cylinders and Plates at
Low Reynolds Number,™ Journal of the Physical Society of Japan, Vol.11, No.3 pp.
302-307 (1956).

28




19.

20.

22.

23.

24.

26.

27.

28.

Takami, H., Keller, H.B., “Steady ‘Two-Dimensional Viscous Flow of an Incompress-
ible Fluid Past a Circular Cylinder,” Phys. Fluids Suppl., Vol. 12, T 51 (1969).

Nieuwstadt, F., Keller, H.B., “Viscous Flow Past Circular Cylinders.” Computers
and Fluids, Vol.1, 11 {1973)

- Hamielee, A.E., Raal, J.D., “Nums=rical Studies of Viscous Flow Around Circular

Cylinders,” Phys. Fluids, Vol. 12, 11 (1969).

Thom, A., “The Flow Past Circular Cylinders at Low Speeds,” Proc. Roy. Soc. .
A, Vol. 131, pp. 651-669 (1933).

Apelt, C.J., Acro. Res. Counc. R and M No.3175 (1958).

Thom, A., “The Pressurc on the Front Generator of a Cylinder.” Aero. Res. Counc.
R and M No.1389 (1930).

5. Taneda, S., “Experimental Investigation of the Wake behind a Sphere at Low

Reynolds Numbers,” Journal of the Physical Socicty of Japan, Vol.11. No.10, pp.
1101-1108 (1956).

Magnaudet, J., Rivero, M., Fabre, J.. “Accclerated Flows Past a Rigid Sphere or
a Spherical Bubble. Part 1. Steady Straining Flow,” J. Fluid Mech., Vol. 284, pp.
97-135 (1995).

Fornberg, B., “Steady Viscous Flow Past a Sphere at High Reynolds number.” J.
Fluid Mech., Vol. 190, pp. 471-489 (1988).

Huang, T.T., Santelli, N., Belt, (3., “Stern Boundary-Layer Flow on Axisymmetric

Bodies,™ 12th symposium on Naval Hydrodynamics Washington D.C,, pp. 127-157
(1978).

29




30




INITIAL DISTRIBUTION

Copies Code Name

1 ARPAG. Jones

6 ONR
1 333 J. Fein
1 333  P. Majurmadar
i 333 P. Puxtell
1 333 E. Rood
1 34 A. Tucker
1 334 R Vogelsong
1 OPNAV
1 N87S I Schuster
8 NAVSEA
I 034 E. Comstock
2 03X R. Crockett
1 03T M. Nicholson
1 PEOQ-SUBR A. Spero
1 PEQ-SUB R M. Troffer
1 PEO-SUB R E. Robinson
1 PEO-SUB X L. Becker
1 PEQO-SUB X D. Goldstein
2 NUWS
1 P. Lefebvre
1 J. Uhlman
2 DTIC
1 Science Applications
International Comp.,
1 R. Korpus

3 MIT/Dept. Ocean Eng.
1 D. Keenan
1 1. Kerwin
1 S, Kinnas

1 Newpori News Shipbuilding

1 J. DeNuto

1 General Dynamics/EB Div.
1 M. King

1 Arete Associates

1 T. Brockett

Copies  Code Name
4 PSU/ARL
1 C. Knight
1 McBride
1 D. Thompson
1 W. Zierke

CENTER DISTRIBUTION

Copies  Code Name
1 0114 K. Kim
1 50 W.B. Morgan
1 508 R. Boswell
1 508 J. Brown
1 508 R. Cross
1 508 H. Liu
1 521 W. Day
i 542 J. Gorski
i 542 C-H Sung
1 542 H. Haussling
i 542 Y.~T. Lee
1 544 F. Peterson
1 544 C. Dai
1 544 B. Chen
1 544 S. Neely
1 544 D. Fuhs
1 544 C-1Yang
1 7051 W. Blake
1 7200 Y-F Hwang
1 3421 TIC (C)

31



