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Summary

This paper describes the test procedures and the cri-

teria used in selecting an effective runway-surface-

texture modification at the Kennedy Space Center (KSC)

Shuttle Landing Facility (SLF) to reduce Orbiter tire

wear. The new runway surface may ultimately result in
an increase of allowable crosswinds for launch and land-

ing operations. The modification allows launch and land-

ing operations in 20-knot crosswinds, if desired. This

5-knot increase over the previous 15-knot limit drasti-

cally increases landing safety and the ability to make on-

time launches to support missions in which Space Station

rendezvous are planned. The paper presents the results of

an initial (1988) texture modification to reduce tire spin-

up wear and then describes a series of tests that use an

instrumented ground-test vehicle to compare tire friction

and wear characteristics, at small scale, of proposed tex-

ture modifications placed into the SLF runway surface
itself. Based on these tests, three candidate surfaces were

chosen to be tested at full-scale by using a highly modi-

fied and instrumented transport aircraft capable of dupli-

cating full Orbiter landing profiles. The full-scale Orbiter

tire testing revealed that tire wear could be reduced

approximately by half with either of two candidates. The

texture-modification technique using a Humble Equip-

ment Company Skidabrader TM shotpeening machine

proved to be highly effective, and the entire SLF runway

surface was modified in September 1994. The extensive

testing and evaluation effort that preceded the selection

of this particular surface-texture-modification technique
is described herein.

Introduction

Since the beginning of the Space Transportation Sys-

tem (STS) program, the need has existed for a landing

facility near the Space Shuttle launch site. This need
stems from the possibility of having to make a return-to-

launch-site (RTLS) abort landing and from a desire to

make the Kennedy Space Center (KSC) Shuttle Landing

Facility (SLF) a prime landing site for normal end-of-

mission operations to reduce program cost, time, and

ferry risk factors. Because of extreme conditions

imposed on Orbiter tires (especially on the main gear

tires) during landing, tire wear has been a long-standing

issue for landings at KSC. The SLF runway was

designed with extremely rough texture and transverse

grooving to provide exceptional friction performance

during heavy rainfall conditions. These factors, com-
bined with landing in the presence of crosswinds, caused

tire wear to be a limiting parameter for flight operations.

Early landings of the Space Shuttle Orbiter were made on
the lakebeds and smooth concrete runways at Edwards

Air Force Base, California, to allow the greatest possible

margin for errors in the final approach for landing or for

anomalies during the landing rollout. The KSC SLF in

Florida has a unique runway that was constructed in the

mid-1970's that is approximately 5 mi from the Shuttle

launch pads and provides the STS program with the

capability to land safely in the event of an RTLS or poor

weather conditions at other sites. Operationally, the

prime landing site is the SLF, which minimizes program

costs, reduces Orbiter processing time, and eliminates the

hazards associated with ferry flights from the West
Coast.

Early in the STS program, excessive wear on the

Orbiter main gear tires was observed during landing

operations at the KSC SLF. Almost every landing at the
SLF had some tire-wear anomaly that could be traced to

the roughness of the runway surface. The original speci-

fications for flight operations included the capability to
land in 20-knot crosswinds, but fire-wear concerns at the

KSC SLF reduced the allowable landing crosswind limit

to 10 knots. The 20-knot crosswind specification was to

provide the STS program with the flexibility to launch

and land without frequent weather delays. The unique

Orbiter gear geometry, landing conditions, tire materials,

and runway configuration all combined to produce tire
wear that limited the Orbiter's crosswind landing capa-

bility. Numerous attempts to build operational capability
to the 20-knot crosswind level have been made, includ-

ing changing the SLF runway touchdown-zone texture

and changing the tread material of the main gear tires.

In the mid-1980's, research was conducted to quan-

tify the effect of various parameters such as speed, yaw

angle, runway roughness, and load on the tire-wear phe-

nomenon. Yaw angle is defined as the angle between the

rotational plane of a tire and its velocity vector. The

results of those tests showed that the spin-up process pro-

duced an unacceptable wear spot on the main gear tires

and that the spot grew with subsequent cornering later in
the rollout whether it was crosswind or pilot induced. At

that time, work was begun to improve the tire-wear char-

acteristics by changing the tread-rubber compounding. In

addition, work was conducted at the Langley Aircraft

Landing Dynamics Facility (ALDF) which showed that a

large reduction in spin-up wear could be achieved by

changing the texture in the spin-up regions of the runway
(ref. 1). The original texture of the runway (fig. l(a)) was

an extremely rough, longitudinally brushed finish with

transverse grooving that measured 1/4 in. wide by 1/4 in.

deep, spaced on 1 1/8 in. centers. A 3500-ft-long section
on each end of the 15 000-ft-long runway was modified

to a texture which resembled corduroy material, its tex-

ture aligned with the landing direction (fig. l(b)). The

texture was modified by using a stack of diamond grind-

ing wheels that cut into the original surface deeply

enough to remove the original transverse grooves. This



modificationreducedthe main gear tire spin-up wear lev-
els to one-half the original values; therefore, the allow-

able crosswind value for landing and launching was
increased from 10 knots to 12 knots but was still short of

the original program requirement for 20-knot crosswind-

landing capability.

In 1992 mission STS-50 landed with the first main

gear tires using a new tread compound. This new com-
pound produced less tread wear and allowed crosswinds

for launch and landing to be as high as 15 knots. Numer-
ous studies were conducted to see what effect the surface

roughness had on rollout wear as opposed to spin-up
wear (refs. 2 to 4). Results of those studies showed that

while the transverse grooves had a great effect on spin-up

wear, they had liule or no effect on the magnitude of the

rollout wear response of the tire (ref. 5). Conversely, the

corduroy texture on the ends of the runway had a drastic
effect on spin-up wear but caused the same amount of

wear on the tire when rollout occurred on that surface. It

was obvious that simply continuing the corduroy texture

into the center 8000 ft of the runway would not produce
the desired reduction in tire wear to allow for 20-knot

crosswind operations.

The studies at Langley Research Center showed a

relationship between tire wear and tire side energy. The

relationship showed that to increase the fire-wear capa-

bility to a 20-knot crosswind level, the tire must be capa-

ble of absorbing twice the energy necessary for a 15-knot
crosswind condition.

The purpose of the study described in this paper was
to define a texture modification for the SLF which would

reduce the Orbiter main gear tire rollout-wear rate by

approximately one-half while retaining acceptable wet-

friction performance. A plan was developed wherein a

number of modification techniques were applied in small

test strips directly onto the runway surface at the KSC

SLF. An Instrumented Tire-Test Vehicle (ITTV) was

used to rate 16 textures that were applied to the runway

surface in addition to the two existing textures. Compari-

son testing with the ITI'V involved loading a T-38 air-

craft main gear tire and conducting yawed-rolling tests at
low speeds by using a special instrumented fixture
attached to the rear of the ITFV. Wear-rate information

in the form of lost weight per foot of rollout distance was

used to classify each surface-texture treatment. Wet-

friction test results were also used in conjunction with the
wear information to narrow the surface selection to three

candidates. These three surface treatments were then

applied to full-scale test sections that encompassed the

full length of the runway (15 000 ft) and were about 10 to

12 ft wide. A specially modified Convair 990 transport
aircraft was then used to conduct full-scale tests of

Orbiter main gear tires on the candidate strips by simulat-

ing Orbiter landings under a variety of conditions and

piloting techniques, including simulated 20-knot cross-
wind landings. The test results were used to select a mod-

ification technique to provide the necessary reduction in

tire-wear rates to allow for 20-knot crosswind operations.

This paper presents the modification techniques studied,

documents the results of the ITYV testing used to narrow

the full-scale candidates to a manageable number, and
presents results of the Convair 990 aircraft full-scale tire
tests which were used to select the modification tech-

nique that could provide a 20-knot crosswind-landing
capability for the Orbiter.

Apparatus

Original Runway

The original runway surface, prior to any modifica-

tion for these tests, consisted of an extremely rough, lon-

gitudinally brushed finish with transverse grooving

measuring 1/4 in. wide by 1/4 in. deep, spaced on 1 1/8
in. centers (fig. l(a)). A 3500-ft-long section on each end

of the 15000-ft-long runway was modified to a new tex-

ture that resembled corduroy material with its texture

aligned with the landing direction (fig. 1(b)).

Test Vehicles

Instrumented Tire-Test Vehicle (ITTV). The ITTV

is a highly modified 1976 truck (fig. 2). The 28 000-1b

truck has a specially designed force measurement dyna-

mometer attached to the rear that permits the mounting of

a wide range of aircraft and passenger vehicle tires or

other apparatus for various kinds of testing. Aircraft fires
up to 26 in. in diameter can be accommodated in the fix-

ture and can be vertically loaded by using a pneumatic

system up to 5000 lb. The fixture can be yawed with

respect to the direction of motion so that tire-cornering
data can be acquired. Forces and moments associated

with yawed or braked rolling conditions such as side

load, drag load, aligning torque, and overturning torque
can be measured and recorded by using an onboard elec-

tronic data acquisition system. Other pertinent data for

tire testing, including vehicle speed and distance, are also

measured. The Iq'TV can perform tests at any speed up to
65 mph. The vehicle operator and observer have numer-

ous display devices to provide real-time feedback during
testing in an attempt to maintain the desired test condi-
tions throughout the test. Further information about the

ITTV test capability can be found in references 6 and 7.

Landing Systems Research Aircraft (LSRA). In

1989 NASA designed a test facility capable of simulating
full-scale Orbiter landing conditions. The facility con-
sists of a modified Convair 990 aircraft and is known as



the LandingSystemsResearchAircraft (fig. 3). The
LSRAprogramwasfundedby theNASAShuttlePro-
gramOfficeatJohnsonSpaceCenterandprovidedthe
capabilityforfull-scaletestingofOrbitermaingeartires.
Severalothertire testfacilitieshadvariousparameters
suchasverticalloadthatcouldbetestedatfull scale,but
thesefacilitiescouldnotrepresentcorrectlyotherfull-
scaleeffects,suchasafiat,concreterunway.

Thedevelopmentof theLSRAwasundertakenat
DrydenFlightResearchFacilityin Edwards,California.
Theaircraftwashighlymodified,andalargeholehadto
becutin theaircraftbellyatthecenter-of-gravityloca-
tionbetweenthemainlandinggear.A robuststructural
modificationwasdesignedto carryaircraftfuselage
loadsaroundthe holeto ensurestructuralintegrity
throughouttheaircraft.A hydraulicloadingsystemwas
installedin theaircrafttoapplyverticalloadtoanarticu-
latingpallettowhichthedesiredtestarticlewasattached
(fig.4).Thesystemwascapableof applyingup to 250
000lbof verticalloadtothetestarticle.Forthepresent
investigation,a steerablefixturewith a singleOrbiter
maingeartirewasattachedtothepallet.Thefixturewas
controlledbyusingasophisticatedfeedbackcontrolsys-
temthatpermittedtimehistoriesofverticalloadandyaw
angletobeinputintoanonboardcontrolcomputerprior
toatestflight.A typicalsetof timehistoriesusedbythe
controlcomputerduringasimulated20-knotcrosswind
Orbiterlandingis shownin figure5. A specialrotary
actuator,capableof yawingthefixtureupto35deg/sec,
hydraulicallysteeredthefixture.Thedesiredspeed-time
historywasnot incorporatedinto thefeedbackcontrol
system,but an indicatorwasmountedin theaircraft
cockpittogivethetestpilotacomparisonof howfastor
how slowthetestarticlewaswhencomparedto the
desiredspeed-timehistory.Thesteerablefixturewas
controlledin partby usinga setof opticalnoncontact
infraredtranslationalspeeddevices.Thesedevicesmea-
suretranslationalspeedby lookingat interferencepat-
ternsof theradiationreflectedby theground.Because
thepilotmuststeertheaircraftin responseto theside
forcesgeneratedby thetesttire or in responseto the
actualcrosswindsonthetestaircraft,ameansof measur-
ingtheaircraftyawangle(inthiscase,theanglebetween
theaircraftbodyaxisanditsvelocityvector)neededto
bedevised.Conventionalinertialplatformunitsdonot
havetheaccuracyor theresponseneededfor thisappli-
cation;therefore,twoopticalunitsweremountedat+45 °

from the body axis and at 90 ° to each other. The aircraft

had zero yaw when both instruments agreed in their

speed measurements. If one instrument reported a higher

speed than its companion, the aircraft yaw angle could be

computed in real time by the control computer, and the
steer angle of the fixture relative to the body axis could

be appropriately adjusted. This adjustment ensured that

test-pilot inputs were isolated from the test-tire yaw

angles.

The test aircraft was capable of landing at speeds up

to 245 knots and of beginning a test at about 240 knots, if

desired. The vertical load for the single-tire test fixture

was structurally limited to 150 000 lb, which is slightly

higher than the maximum desired test-tire load of
142500 lb. The vertical load could be controlled to

within approximately 2000 lb, the yaw angle accuracy

was approximately 0.25 °, and the aircraft speed was gen-

erally held within 2 to 5 knots of the desired speed-time
histories.

Over 100 channels of data were recorded both

onboard the aircraft and after telemetry to a ground con-

trol station. Some of the pertinent parameters recorded

for this part of the investigation included aircraft speed,
test-tire vertical, side, and drag loads, test-tire yaw angle,

and tread temperature. Extensive video coverage of the
test tire from three different locations also proved to be

an invaluable measurement tool. The video signal was

synchronized to the data stream and thus the exposure
time of different Orbiter tire-carcass cord layers could be

recorded in postprocessing playback. This visual mea-
surement of tire wear was one of the most widely used

pieces of information in this investigation. Numerous

safety features were added to the aircraft for these tests,

including low-oxygen sensors to detect the presence of a

nitrogen gas accumulator leak, fault-detection hardware
and software in the computer and control system, fire

detection and suppression systems, triple-redundant

mechanisms to ensure cessation of load application, if

needed, and armor plating of certain areas of the aircraft.

A more detailed description of this unique test facility
can be found in reference 8.

Test Tires

ITTV tests. The test tires used on the test fixture of

the rvI'V were 20 x 4.4 bias-ply Type VII aircraft tires

with a ply-rating of 14 and a 3-groove tread design; they

are similar to those found on the main gear of a T-38 air-
craft. A new and a worn ITTV test tire are shown in fig-

ure 6(a). The rated load and pressure of the tire are

6000 lb and 265 psi, respectively. Because it was desir-

able for wear testing to have the test tire inflated to the

actual Orbiter tire pressure, the ITTV test tires were

inflated to 350 psi. The tires were mounted on standard
aircraft wheels according to accepted buildup proce-
dures. A new tire was used for each surface tested.

LSRA tests. The test tires used on the LSRA steer-

able test fixture were of the same design as the Orbiter



maingearflight tires. One of the 44.5 × 16.0 - 21

bias-ply aircraft tires with a 34-ply rating is shown in

figure 6(b). The original rated load of the tire and the

pressure were 60 900 lb and 315 psi, respectively. These

test tires (and the flight tires) are generally inflated to

higher values prior to flight because of some small

expected leakage and the cold temperature expected

during normal landing operations. Therefore, these test

tires were inflated to 340 psi at ambient temperature. The

peak certified tire load at the time of this writing is

142500 lb. This load limit is intended to prevent exces-

sive tire deflections which could damage the carcass

structure during landing operations. The test tire is of the
modified tire design, in which an additional 0.1 in. of

undertread was added to the original design, and the

entire tread material was changed from a natural rubber

composition to a blend of natural and synthetic rubbers
comparable to those used on commercial aircraft. These

modified tires provide a much-improved wear behavior

as compared to tires of the original design. The tread
grooves themselves are 3/32 in. thick. A sketch of the tire

cross section is shown in figure 7.

The only difference between the test tires and the

actual flight tires is that the test tires failed certain gov-
ernment quality-control tests for cosmetic reasons. The

manufacturer' s certification of the tires for flight and for

all-wear testing to date suggests that these rejected tires

are fully as robust as those that make it to the flight vehi-
cle. A new tire was used for each test run conducted on

the full-scale test strips by using the LSRA. The Orbiter

tires were mounted on standard Orbiter beryllium brake

wheels according to accepted buildup procedures. The

tire-wheel combination was mounted on a specially

designed axle, along with a standard Orbiter beryllium
brake assembly, to allow it to be attached to the test fix-
ture on the aircraft.

Other Test Equipment

Mu-Meter. The Mu-meter (fig. 8(a)) is a friction-

measuring device designed to be towed behind a vehicle
on a test surface (ref. 9). The device consists of two test

tires loaded vertically and toed out to include an angle of

15 °, thus forcing each tire to operate in a yawed-rolling

condition with side forces directed away from and can-
celing each other. The device measures the tensile force

in the axle and gives a measure of the surface friction

being developed by the yawed test tires. The device can

conduct tests on dry surfaces and is capable of using an

onboard water tank to wet the test surface just ahead of
the test tires.

Skid trailer. The Florida Highway Department pro-

vided a test device which was used to help characterize

the surface-friction capability of some test surfaces used

in the I'ITV testing. The skid trailer and the tow vehicle

(fig. 8(b)) consist of an instrumented trailer equipped
with a water supply and dispensing system and actuation

controls in the tow vehicle cab for braking the trailer test

wheel from a free-rolling condition to a momentary com-

plete (100 percent slip) lockup (ref. 10). After the test

apparatus is brought to the desired test speed, e.g.,
40 mph, water is dispensed at a constant rate to produce

0.04 in. surface water depth (delivered ahead of the test

tire), and the braking system is actuated to lock the test

tire. The resulting friction drag force acting between the

test tire and the pavement, together with the speed of the
vehicle, is recorded with the aid of suitable instrumenta-

tion. This skid trailer also can be operated on dry or natu-

rally contaminated, e.g., rain-wet, surfaces.

British Pendulum Tester (BPT). The British pendu-

lum tester, a device designed to provide a measure of sur-

face microtexture, was used in this investigation to help

quantify the relative roughness of the texture for each
surface tested. Microtexture is defined as a surface-

roughness quality on the subvisible or microscopic level.

The passenger tire industry uses such a parameter to help
quantify long-term automobile and truck tire wear. Mac-

rotexture, on the other hand, provides a measure of the

surface roughness on a much larger scale and is compara-
ble to the quality and scale one would perceive if one
rubbed his hand on a surface.

The BPT uses a pendulum to which a rubber footpad

(fig. 9) is attached. The device is used by placing the feet

of the tester on the surface to be tested and by leveling

the apparatus. The footpad is then raised to a predeter-

mined height (angle) and released. The pendulum and the

footpad swing freely, allowing the rubber footpad to

scrape the surface when the pendulum traverses the ver-

tical orientation. A certain amount of energy is then dis-

sipated by friction and wear of the footpad. According to

the theory of the device, the pendulum then swings

upward to a height (angle) lower than the equivalent

release point on the other side. This difference in height

gives a measure of the dissipated energy and the relative

surface microtexture. The height reading is in nondimen-
sional units; larger units denote a rougher surface that

prevents the pendulum from rising to as high a point as it

would with a smoother surface. Thus, the higher a read-
ing is, the rougher or higher a microtexture the surface

has. Generally, on surfaces where one can feel an

increased macrotexture, one would expect the BPT to

indicate a higher microtexture as well. The BPT was

used after wetting the surface to be tested. Some surfaces

were not evaluated by using the BPT, but the ones that

were tested were evaluated by using the pendulum swing

direction both parallel and perpendicular to the long axis

4



of the runway. More information regarding the BPT can
be found in reference 10.

Outflow meter. The Outflow meter is a device

intended to provide a measure of surface macrotexture
(ref. 11). The meter consists of a rubber doughnut

attached to the bottom of a tube that is open at its top end

(fig. 10). The doughnut is placed on the surface being

evaluated, and a standard quantity of water is poured into

the top of the tube. Because the surface macrotexture

does not allow the entire rubber doughnut to contact all

the valleys in the surface texture, the water escapes

through the contact patch, and the time for the entire vol-

ume of water to escape is measured. The time then
becomes the relative measurement of surface texture

when this device is used. Thus, the shorter the time for

the water to escape, the rougher the surface texture is.

Grease sample texture-measurement kit. Another

means of quantifying the macrotexture of a surface was
included in this investigation. A grease sample texture-

measurement kit (fig. 11) was used to find the average

texture depth (ATD) of each surface tested in this study.

The kit contains a supply of ordinary grease, a hard rub-

bet squeegee, a plunger, and a short tube that is open on
both ends and has a handle. The short tube is filled with

grease and provides a calibrated, known volume of

grease for the measurement. The plunger is used to

extrude the grease onto the surface being evaluated. The

grease is spread evenly with the rubber squeegee as far as

possible between two strips of masking tape placed at a

known distance apart on the surface. At this point, essen-

tially all valleys created by local hills on the test surface

have been filled with the grease. The initial volume of

grease is then divided by the measured area on the sur-

face and yields a measurement of the average depth of

the surface texture. This parameter agrees well with the
results one would feel while rubbing his hand on the sur-

face. A more detailed discussion of the technique is

given in references 9 through 12. One should note that
there are other surface qualities that certainly must influ-

ence tire wear such as sharpness of surface disparities,

but measurement techniques for these other qualities are

not yet fully devised or understood.

Computed tomography. Computed

tomography was used to provide an alternate means of

defining tire rubber loss caused by wear. A device, simi-
lar to medical CAT (Computerized Axial Tomography)

scanners, passes X rays through the cross section of the
tire, and sensitive detectors are used to receive the atten-

uated signals on the opposite side of the tire. By placing a
calibrated block of known size in the scan with the tire, a

digital measurement program can be used to measure the

tire width or thickness before and after wear testing. An

example of the tire-profile dimensions before and after

testing is shown in figure 12(a). In the figure, dimensions

1 through 40 represent scans that are parallel to the rota-
tional plane of the tire, thus providing 40 data points

from the left towards the right shoulder of the tire to

characterize the tire-tread wear. Figure 12(b) provides a

representation of the tire cross section before and after
testing. The change in thickness can then be correlated
with other tire-wear measurements. This kind of exami-

nation is advantageous because many more individual or

discrete measurements can be performed automatically
in a nondestructive manner. Reference 13 has more

information about this technique.

Other measurement hardware. Several common

measurement tools were also used in this investigation.

To measure tire wear during the small aircraft tire testing

by using the ITI'V, a sensitive scale was used that gave

weight readings that were accurate to about l g or

0.002 lbf. The entire test tire and wheel were weighed on

each candidate surface at various times during the tests

so that a history of tire rubber loss could be recorded.

For both the ITI'V and the LSRA tests, a tire-tread-

measurement gauge was used to provide tire-wear mea-

surements. The gauge is designed to sit fiat across the

tire-tread ribs and has an extendable probe which is

pushed to the bottom of the tread grooves and measures

the remaining tread depth. For cases in which Orbiter tire

wear was expected to be between the bottom of the tread

grooves and the first carcass cord layer, several small
l/4-in.-diameter holes were bored into the main gear tire

tread by using a small rotary tool. These holes were

bored 9/32 in. deep until the first carcass cord layer was

just exposed. By measuring from the bottom of the hole
to the outer surface of the tire, one could determine wear

depth prior to exposure of the first carcass cord layer.

Texture-Modification Devices

Four methods of modifying the existing concrete

runway at the KSC SLF were employed in a number of

ways to provide 16 new textures in addition to the exist-

ing 2 textures on the runway. The four methods were

diamond-blade grinding, Skidabrader TM shotpeening,

rotopeening, and methacrylate coating. Table 1 presents

a chart identifying the 18 texture test strips. Table 2 pre-
sents data for all 18 test surfaces, including the results of

ATD measurements, BPT measurements, Outflow meter

measurements, and limited Mu-meter and skid trailer

testing. The Mu-meter and skid trailer results are pre-
sented as nondimensional values calculated by dividing

the measured side loads by the vertical load on the test

tires. Although some surfaces were not evaluated with
the BPT and the Outflow meter as shown, these data can

be used to quantitatively compare the different textures.



Figure13showsasketchof therunwayandtheloca-
tionof eachteststrip.Figure13(a)showsanoverall
layoutof eachtestareausedin thisinvestigation.Fig-
ure13(b)showseightteststripsusedduringtheITTV
testingwhicharelocatedtowardsthenorthendof the
runwayandeastof therunwaycenterline.Figure13(c)
showseightteststripsusedduringthe rI'TV testing
whicharelocatedtowardsthenorthendof therunway
andwestof therunwaycenterline.Figure13(d)showsa
sketchof thefull-lengthteststripsappliedtotherunway
forLSRAtesting.Notethatteststrips1and3hadadif-
ferenttextureonthetouchdownzones,comparedtothe
centerpartofthestrips,andthatteststrip2hadthesame
textureapplicationfor theentirestrip.

Theoriginal surface type prior to modification is

referred to either as TG, the transversely grooved

8000-ft-long section in the center of the runway, or as

LG, the longitudinally grooved 3500-ft-long touchdown

zones. These zones, often referred to as the corduroy

touchdown zones, did not actually have grooving but

rather had the texture that remained after the 1988 grind-

ing operation gave the appearance that longitudinal
grooves had been installed.

Diamond-blade grinding. The diamond-blade-

grinding texture-modification technique uses a stack of

diamond saw blades to cut into the existing texture. This

technique has been used for many years to smooth

sections of highways and recently has been used to alter

the texture on some runways. Figure 14 shows one type

of machine that is designed to grind concrete surfaces.

The machine height can be controlled for depth of cut,

and water is typically used as a cooling agent. The slurry
produced during cutting is typically vacuumed and

pumped into holding tanks for later removal. The device

is designed to traverse the surface slowly, and forward

speed is not normally varied. Figure 15 shows a close-
up of a cutting head used on a smaller version of the

machine shown in figure 16. The spacers between
blades can be adjusted so that a range of blades/in.

configurations can be selected. For these tests, an ITTV
test strip was cut (all ITTV test sections were 2 to 6 ft

wide and 400 fi long unless otherwise noted) by using

a blade spacing of 5 blades/in. For the LSRA testing, a

7 blades/in, configuration was used in a test strip 12 ft

wide and 11 500 fi long. This configuration is the practi-

cal limit for normal blade spacing and provides a fairly
smooth surface. Another rvrv test section was created

by using the same grinding machine but with a head that

had interlocking diamond saw blades that produced an

extremely smooth surface that is similar to a polished

stone surface. This same equipment was used to produce

the corduroy touchdown zones on the runway in 1988 by

using a blade spacing of 4 1/2 blades/in. A photograph of
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this surface, which is typical of this technique, is shown
in figure 17.

Skidabrader TM shotpeening. The Skidabrader TM

machine was used extensively to produce a variety of

textures. This device, shown in figure 18, uses pressur-

ized air to propel small steel shot at the surface being tra-

versed. The intention is to break many of the sharp peaks
on the original rough surface to reduce the ATD of the

surface. The machine is also used to roughen smooth sur-
faces such as the rubber-contaminated touchdown zones

of commercial runways. The steel shot also impacts other

areas of the surface texture, and one can imagine many
possibilities of modification outcomes. The size and

shape of the shot and the shot velocity can be varied. The

forward or traverse velocity of the machine also can be

varied to change dramatically the resultant texture. The

shot is vacuumed up after impact, along with surface

debris, and is separated and recycled to be used again.
The machine produces a modified swath 6.5 ft wide. For

the ITTV test strips, the Skidabrader TM was used with a

single shot size and a single shot velocity, but with three

forward velocities. Six test strips were produced by tra-

versing both the corduroy touchdown zone and the origi-
nal center section of the runway at machine velocities of

100, 150, and 220 ft/min. For the LSRA tests, one test

strip 12 ft wide was produced by using the Skidabrader TM

and by traversing the full 15 000-ft length at 150 ft/min in

two swaths. Two other test strips were produced by using

the Skidabrader TM machine at the same velocity, but only
the 3500-ft-long corduroy touchdown zone on the end of
the runway was modified as an entrance to a different

texture strip in the center 8000 feet of the runway. For

one case, the touchdown zone on each end of the runway
was modified as an entrance for a texture that will be

described in the next section; for the other case only one

end of the runway was modified (the LSRA test strip that

was produced by using the diamond-saw-grinding tech-
nique). During the creation of all Skidabrader TM surfaces,

many ATD measurements were taken, and the equipment
operators were required to produce a texture that varied

in ATD by no more than 10 percent throughout the entire
test section.

Rotopeening. The rotopeener shown in figure 19(a)
is a device with tungsten buttons attached to leather-like

belts or straps. A head loaded with these straps of buttons

rotates, and as it does, the buttons slap the runway sur-

face and cause the tops of the macrotexture peaks to be

broken off in much the same way as they are with the

Skidabrader TM. The buttons were unable to penetrate the
texture as deeply as the Skidabrader TM machine; thus, the

rotopeener changed the texture on the very top surface of

the runway and on the edges of the transverse grooves

when applied in the center section of the runway



(fig.19(b)).FortheITI'V teststrips,thebuttonsworeout
occasionally;consequently,theoperatorsfeltthatdiffer-
entresultswouldbeobtainedwithold-versus-newbelts.
Therefore,onthecorduroytouchdownzoneof therun-
way,a test section using new belts was produced. This

section could be compared with another path in the same

zone by using old belts. The operators suggested that the

machine would produce a different result if it were oper-

ated in the transverse direction on the runway; therefore,

the machine was operated in a lateral direction and pro-

duced a longitudinal strip that was placed in the center or

transversely grooved section of the runway. For the

LSRA tests, a 10-ft-wide laterally rotopeened strip was

placed in the center 8000-ft section of the runway with a

3500-ft-long Skidabrader TM strip as the entrance to this

texture on each end of the runway. The machine modi-

fied only a 10-in.-wide swath at a time, so this process

was very time-consuming. Once again, operators of the

rotopeening equipment were required to produce test sec-

tions which varied no more than 10 percent, as measured

by the ATD method.

Methacrylate coating. The fourth method used to

produce modified textures at the SLF involved the use of

a low-viscosity liquid known as methacrylate (fig. 20).

This compound bonds to the concrete runway surface

and dries extremely hard. The intention was to fill the
low areas of the surface texture in hopes of reducing the

ATD of the surface. In a photograph, the surface would

appear simply to be wet; the compound gave the impres-
sion of dried polyurethane. This liquid was applied

(fig. 20(a)) only on the corduroy touchdown zone texture

because no efficient way could be devised to force it to

stay on the land areas of the transversely grooved center

section texture while it dried. One test strip was produced

by using ordinary paint rollers to apply a single coat of

the compound in a 2-ft-wide by 340-ft-long area.

Another short test strip measuring 2 ft by 60 ft was pro-

duced by applying two coats of the compound. A close-

up view of this coating after the liquid hardened is shown

in figure 20(b). This strip showed that extra coats of this

costly compound would continue to reduce the ATD, but

the strip was not long enough for wear testing.

Test Procedures

ITTV Testing

The ITTV was used to measure and compare tire-

wear rates on a variety of short test strips that were mod-

ified by using several techniques, A new 20 x 4.4 test tire
was mounted on a standard aircraft wheel for each sur-

face tested. The wheel was weighed without bearings

prior to being installed on the test-fixture axle that was
mounted at the rear of the ITTV. This initial wheel

weight became the measurement standard for each test

strip. To provide meaningful wear data for test-strip

comparisons, it was decided to attempt to conduct tests

totaling about 4000 fi on each strip. In the case of one of
the smoother surfaces, a total distance of over 7000 ft

was achieved. To reasonably accelerate the wear rate of

the test tires, the tires were always set at a fixed yaw

angle of 8°. To distribute the expected wear across the

test-tire footprint evenly, the test tire was yawed towards

the opposite direction after every test run.

The ITI'V was then driven to the desired test strip

and lined up in preparation for a test. The data-recording

system onboard the rrI'v was then activated, and the test
tire was lowered to the test-strip surface and loaded to

4500 lb. The ITI'V was then accelerated slowly to

approximately 25 mph and driven in a straight line to
ensure that the test tire remained on the test strip. The

Iq'TV braked to a stop at the end of the test strip. The tire
was raised, and the IITV was then driven to the original

starting point for setup to repeat the test and to accumu-
late distance on the test tire.

The tire and wheel were removed after every two or

three individual test lengths and weighed to provide a tire

weight loss-versus-distance history. The tire-tread depth

gauge was used each time the tire was weighed, and tire-

tread depth measurements were recorded at four places
around the tire circumference in each of the three

grooves. The tire-wheel combination was then returned
to the test axle and more distance on the tire accumulated

in the same fashion. After wearing through the tire-tread
material, wear into the test-tire carcass commenced. This

process changed the wear rate for those portions of the
overall tests on each tire, but each tire was taken to a

wear condition of approximately five cord layers, thus

preserving the capability to make wear-rate comparisons
between surfaces. Data were periodically reviewed to

ensure that steady-state vertical and side loads were

being maintained. The vertical load during each test
reviewed was steady at the desired 4500 lb. All the Iq'TV

wear testing was conducted on dry test surfaces, and as a

result, all the recorded side loads, regardless of the test

surface, were approximately 1700 lb throughout each
test. The 168 individual tests were conducted on the

I'Iq'V test strips to provide wear-rate comparison data.

For wet-friction evaluation of the modified surfaces,

the ITTV was used for 20 tire-cornering tests at yaw

angles of 2°, 4 ° , and 8° under both wet and dry condi-
tions at a 4500-1b vertical-load condition. The surfaces

included in this testing were the single coating methacry-

late strip (test strip 2), the Skidabrader TM 150 ft/min

strips on both the corduroy touchdown zone and the cen-

ter section (test strips 5 and 6), the solid-head-cutter

diamond grinding on both the corduroy touchdown zone



andthecenter section (test strips 14 and 15), and both the

unmodified corduroy touchdown zone and the center sec-

tion (test strips 17 and 18). Only these test strips were
evaluated for wet friction because it became clear that the

other textures would not be selected as full-scale test-

strip candidates. The solid-head-cutter diamond-grinding
test strips had excellent wear characteristics, as will be

shown, but were unlikely to have satisfactory wet-
friction performance.

For these tests, the ITTV was driven over the desired

test strip both at walking speed and at 60 mph. For the

high-speed tests, the test tire was lowered just as the

ITTV was entering the test section, which consisted typi-

cally of a 40-ft length dry surface of the desired type fol-
lowed by a 40-ft length of the same surface texture which

a KSC fire truck had wet down just prior to the test. The

water condition simulated the conditions shortly after a

typical rain shower, with a water depth of approximately
0.02 to 0.04 in. The same data were recorded as for the

wear testing except for the tire weight-loss data, which
were not considered relevant to these friction tests.

LSRA Testing

The 23 flight tests were conducted by using the
LSRA to impose full-scale landing conditions on Orbiter

main gear tires. The flight tests covered a wide range of

conditions that might be experienced during actual flight

operations and included simulating a variety of piloting
techniques which might affect tire wear. Because the

tests were intended to expand the crosswind-landing

envelope to 20 knots, all tests were conducted by simu-
lating a 20-knot crosswind from either the right or the

left. The previously tested aircraft was considered a reli-

able and repeatable facility on which to perform the full-

scale testing; high confidence in the system to perform

the test programmed into the control computer had been

achieved. The challenge for the test team was to program

the correct types of tests to make the decision-making
process as clear as possible. To simulate 20-knot cross-

wind landings, time histories of tire vertical load, tire

yaw angle, and speed are needed. A tire-cornering model

based upon tire vertical load and yaw angle (by far the
two most important parameters which influence tire cor-

nering) had been developed previously by using ALDF

and LSRA test results. This tire-cornering model pro-
duces tire side force as its output, and this force was used

as one of the inputs into a Shuttle Orbiter landing and

rollout simulator program. Other important parameters
such as vehicle-control surface dynamics and vehicle

aerodynamics were also modeled in the simulator. Based

on aerodynamic inputs modeling a 20-knot crosswind on

the vehicle during landing, the simulator output included

main gear tire yaw-angle time histories. These time his-

tories were checked by conducting tests with the LSRA
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that used the same time histories and by measuring tire
side forces. The side forces closely matched the side

forces predicted by the simulator and thus provided a

check of the modeling process. This check provided con-
fidence that the LSRA could actually simulate crosswind

landings on the test tires.

Test conditions. A number of 20-knot crosswind-

landing profiles were developed to define a range of pos-

sible conditions that the Orbiter tires might be subjected

to in actual flight experience (table 3). Yaw angle was
the most important parameter relative to Orbiter main

gear tire wear. The yaw time history for the tires has a

nominal value for each crosswind and Orbiter speed dur-
ing the rollout, but other flight disturbances add to or

subtract from that baseline. For example, if the Orbiter
lands with a lateral drift rate at touchdown, the touch-

down yaw angle could go up or down, depending on the
direction of drift. If the pilot allows the crosswind to

push the vehicle downwind prior to derotation, then a

steering maneuver to bring the vehicle back to the center-

line will cause increased yaw angle and therefore

increased wear on the tires. Derotation speed and rate

also affect main gear tire vertical loads that ultimately
will manifest themselves as changes in tire-wear behav-

ior. Although there are many possible flight conditions,

three types of 20-knot crosswind profiles were generated,

and they are referred to as case 9, case 10, or case 11 in

table 3. All three cases assumed a touchdown-speed dis-
persion of 20 knots, which forced a 225-knot touchdown

speed for the tires. Note that figure 5 is a graphical repre-
sentation of case 9. The main difference between case 9

and case 10 is the addition of the triangular steering pulse

just after peak tire load. Peak tire load on the main gear
tires occurs just as the nose tires touch down after the

derotation maneuver for the Orbiter. The steering pulse is

intended to model a 20-ft S maneuver that an aggressive

pilot would perform after having been pushed downwind

by a strong crosswind. This maneuver had been per-

formed several times in actual Orbiter flight experience,
even though such a maneuver was discussed and discour-

aged during pilot training.

Case 11 is similar to case 10 except that the cross-

wind is modeled as coming from the left as opposed to

the right (as in cases 9 and 10). The yaw-angle time his-
tories for cases 10 and 11 are different; the Orbiter main

gear tire has a phenomenon known as ply-steer that pro-
duces an uncommanded side force to the left as it rolls,

even at zero yaw. To achieve the same side force to com-

bat identical aerodynamic side forces, the vehicle

assumes a slightly lower yaw angle during rollout with
crosswinds from the left because of the free forces devel-

oped by the four main gear tires. This phenomenon can-

not be mitigated by mounting tires backwards on the



wheelsorbyrollingthetiresbackwards.Becauseof the
unavoidableasymmetricnatureof thecompositestruc-
tureof thebias-plytiredesign,theply-steerforcealways
actsinasingledirection.Therolloutsimulationprogram
hadasmallanomalythatresultedin a0.2° increasein
anticipatedyawangleatthetimeof peakloadthatwas
simplyacceptedin theseflighttests.

Thesethreecasesthereforeincludeanumberof dis-
persionsfromtheexpectednormsfor acrosswindland-
ing but representthe typesof eventsthat couldbe
encounteredin actualflight.Thesedispersionscouldbe
addedtogetherinaroot-sum-squared(RSS)mannerthat
wouldresultin a morebenignsetof speed,load,and
yaw-angletimehistories,butit wasdecidedthatthese
dispersionswereindependent,andtheproblemswere
likely to cascadeunderhigh-crosswindconditions.
Therefore,thedispersionswerelinearlycombinedto
defineaworst-caselandingprofile.Thetesttirewould
thushavetosurvivetheworstoftheseprofilestoverifya
20-knotcrosswindcapability.

LSRA procedures. For each flight using the LSRA,
a new test tire was installed on the aircraft test fixture

and inflated to 340 psi at ambient conditions. The aircraft

normally conducted a preroll on the test tire in which the
tire was loaded to about 60 000 lb and rolled 10 000 ft

with zero yaw. This preroll was designed to heat up and

work the nylon carcass cords to precondition the carcass
in case the tire's first landing (in Orbiter use) was an

RTLS abort. The technique helps to ensure tire surviv-

ability under those conditions. Although a first-landing
RTLS abort was not a concern during the LSRA testing,

it was desirable to treat each test tire as if it were a flight

tire on the Orbiter. After the preroll, the aircraft was

either parked overnight to allow the test tire to cool down

to ambient temperatures (the test-tire temperature would

normally climb over 140 ° F during the preroll), or the tire

was sprayed with cool water for approximately 45 min to

reduce the temperature to about 90 ° to 95 ° F.

For a typical test run, the pilot made a normal takeoff
with the test tire retracted, flew a closed loop around the

SLF, and set up for a test landing by aligning the aircraft
with the desired 10- to 12-ft-wide test strip. Most tests

required a test-tire touchdown speed of 225 knots that

required the LSRA test pilot to land the vehicle 5 knots
faster. After LSRA touchdown, the pilot derotated the

aircraft and at the proper speed gave a start test com-
mand. The test conductor onboard the aircraft then

enabled the test-control computer to perform the test as

programmed. The pilot steered the aircraft to keep the

test tire on the test strip (for all tests, the test pilot never

once strayed out of the 10- to 12-ft-wide test strips) and

decelerated the LSRA to match the desired speed profile,

thus simulating the rollout and stop of the Orbiter. The

test conductor monitored the test to ensure that the con-

trol computer was following the desired profiles. A video

operator was responsible for observing the LSRA land-

ing gear and the test tire and for monitoring aircraft fire-

suppression systems should they be needed.

Since these tests were known to be near the maxi-

mum wear capability of the tire, the crew was constantly
aware of the test progress. If the test tire failed because of

excessive wear (which it did several times), the crew

executed procedures to retract the test tire, and depend-

ing on the speed and position of the LSRA, either per-
formed a takeoff or brought the aircraft to an emergency

stop.

The results of a test-tire failure with personnel near it

would be catastrophic because of the tremendous poten-

tial energy stored in the tire. After a test, the test-tire

wear condition was evaluated by using the onboard video

coverage. If the tire remained inflated but had worn into

8 or more of its 16 cord layers (the tire would normally

fail if wear progressed into layer 9 or 10), the aircraft was

parked, and a robotic device was used to approach the

test tire and drill a hole into the tire sidewall by using an

ordinary cordless drill, thus deflating the tire. If wear was

not severe, the tire-wheel assembly was allowed to cool
for an hour and was then dismounted from the aircraft

and removed from the test axle.

LSRA touchdown positions and the touchdown posi-
tion of the test tire itself were marked and measured on

the SLF runway surface by ground observers. Rollout

lengths were measured and recorded. Comparisons of the

desired-versus-actual time histories of the test parameters

were produced almost in real time during the test so that
decisions about the next scheduled test could be made

quickly.

The LSRA was also used to conduct limited wet-

runway tests. For these tests, the control computer was

normally programmed to load the Orbiter test tire to 75,

100, 150, and 200 percent of its rated load and yaw the

tire in a stair-step fashion at each load. The tire was

yawed rapidly and then held at the desired yaw angle

(normally +1 o, 2o, 4 o, and 7 °) for a short period to let the
side force stabilize at each steady yaw angle. Such tests

were conducted at speeds ranging from 50 to 200 knots.

Because of limited resources and time during the LSRA

testing, wet-friction tests were conducted on the smooth-
est version of the full-scale test strips. In the touchdown

zones, the wet tests were conducted on the Skidabrader TM

surface because it was assumed that it would display the

highest friction loss of the two possible touchdown zone
modifications. In the center section of the runway, wet

tests were conducted on the rotopeened test strip because

that strip had the smoothest feel and also was expected to

lose more friction capability when wet, as compared to
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theothertwotexturesin therunwaycentersection.The
purposeof the tests was to demonstrate satisfactory wet-
friction characteristics even on the worst surfaces so that

the friction loss on the rougher surfaces, caused by wet-

ness (increased roughness almost always provides more

protection against friction loss from wetness) could be

ignored as a disqualifying factor for selection of those

textures as potential solutions to the wear problem. For

each test, a water-tank truck wet down the runway just

prior to an LSRA landing. The tank truck was driven at

approximately 30 mph next to the intended test strip and
allowed water to drain from a 4-in. valve and wet the lat-

eral half of the test strip closest to the runway centerline.

The runway crown in that area (1 percent) caused the

other lateral half of the strip to be wet prior to LSRA test-

ing, which usually occurred within about 3 to 4 min. The

wetness condition was approximately the same as for the
ITI'V wet-friction tests.

Data Reduction

ITTV Wear Tests

Data collected for the ITTV wear testing consisted of

(1) recording the distance traveled during each test (nor-

mally 400 ft), (2) recording the weight loss caused by tire

wear after approximately every second test, and (3)

recording the various environmental data for later analy-

sis, if necessary. The tire weight loss was measured in

grams but will be presented in this report as ibm to pro-

vide easy-to-understand plotted data. Wear rates in Ibm/

ft will be presented as the slope of the last measured
weight for each test tire.

ITTV Wet-Friction Tests

Data collected during the ITI'V wet-friction testing

consisted of test-tire yaw angle, vertical load, and side

force. The side-force friction coefficient _t for each test

was calculated by dividing the average steady side force

(produced by the test tire) by the average vertical load on

the test tire during each test. The _t values for the 2 °, 4 °,

and 8 ° tests on each wet surface were compared to the

values for a dry concrete surface at the same yaw angles.

For each surface and yaw angle, the wet _t value was

divided by the dry }.t value to give a percentage of the

average dry value. The three values of the percentage of

average dry values for each surface were then averaged

to give a single value for each wet surface. This averag-
ing was done for both speed conditions.

LSRA Wear Tests

Data collected during the LSRA wear testing

included test-fire yaw angle, vertical load, side load,

tread temperature, vehicle speed, and video coverage of
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the tread area of the tire. These parameters were the most

important in terms of quantifying Orbiter main gear tire
wear; however, a wealth of other information was col-

lected. Other instrumentation defined, controlled, and

tracked many support functions on the aircraft and

allowed the testing to be conducted. The side loads pro-

duced by the tire as a result of rolling under various com-

binations of vertical load and yaw angle are critically

important in the wear phenomenon.

A parameter known as side energy was previously
developed (ref. 4) in which tire wear can be expressed as

a function of the work that the tire performs in the lateral

direction during cornering. The side energy can be calcu-
lated as

T

F s (sin v)Vdt (1)E

0
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work term defined by the equation can be

thought of as a force acting through a distance; the work

is the integrated product of the side force and the lateral

component of the longitudinal distance traveled. This

work or energy term has been used with success in pro-

viding a tool for predicting tire wear under different com-

binations of speed, load, and yaw angle on a given

surface. Note that it appears that the technique might

allow prediction of wear caused by braking since that

also can be thought of as a force acting through a dis-

tance. However, one must be careful when applying the

phenomenon to braking because during braking, most of
the energy is absorbed by the brake, whereas for corner-

ing all the energy is absorbed by the tire.

Using the LSRA onboard recorded data, time histo-

ries of side force, yaw angle, and speed were used

according to the above equation to provide a time history

of the side energy for the test fire. The videotape of the

test as seen from the front of the test tire was reviewed,

and the time at which different carcass cord layers
became visible was recorded to be correlated later with

the side-energy time history. As the first and successive

cord layers of the test-tire carcass become visible

because of wear, a bull's-eye pattern is produced that

makes the interpretation of tire wear reasonably easy.
Figure 21 shows a photograph of a typical bull's-eye



pattern.Asstatedearlier,otherdatawereanalyzeddur-
ingthesetests,but the wear data became the most impor-

tant on which to base a runway modification decision.

LSRA Wet-Friction Tests

Data relied upon for these tests were the same as for

the wet ITTV tests. A single yaw angle of 4 ° was used

during these tests. The side forces obtained during these

tests were compared to the side force obtained on dry

concrete (which could be predicted accurately by the cor-

nering model) at 4 ° and at the different vertical loads
tested. The side forces for the wet tests were then divided

by the dry side-force values to yield a wet behavior for
the different surfaces tested. The wet behavior is

expressed as a percentage of the dry-friction value to

allow wet runways to be easily modeled in Orbiter roll-

out simulators. A wet runway usually can be modeled

satisfactorily by multiplying dry friction by a percentage

and dividing by a velocity term which reduces friction

values even further as speed increases.

Results and Discussion

Note that certain testing was conducted by using
both the Mu-meter and the skid trailer to help character-

ize the wet-friction performance of the ITTV test strips.

Those data helped in understanding how different tech-

niques for measuring surface friction relate to each other

and also provided background information as to which
kinds of tests can be conducted. Also note that texture

measurements made by using the British Pendulum

Tester and the Outflow Meter provide background infor-
mation about the various methods developed to quantify

surface texture. Data generated by these four devices,
however, were not used in the decision-making process

for selecting full-scale test strips on which LSRA tests
were conducted and thus are not discussed in this section.

ITTV Wear Tests

Each modification applied to the KSC SLF runway

used a technique which was sensitive to the original sur-

face texture. For example, the Skidabrader TM machine
was used to smooth each of the original textures on the

runway, but the device was also used elsewhere to

roughen the surface. Therefore, both original textures on

the runway surface were treated as different runways,

allowing for the possibility that the technique chosen to

modify the touchdown zones might not be the same tech-

nique chosen for modifying the center section.

Average values of test-tire wear rate for each surface

type are presented in table 4. Figure 22 presents a plot of
test-tire wear as a function of distance (at a yaw angle of

8 °) for the 20 × 4.4 test tires on modifications applied to

the corduroy touchdown zone texture. The figure shows

that the original corduroy surface produces the highest
wear rate. These data suggest that any reasonable attempt

at smoothing the surface would result in better tire-wear

performance. The figure shows that the 5 blades/in.

diamond-grinding technique improves the wear perfor-
mance of the surface but not to the same degree as some

of the other techniques do. This result was expected

because the original surface was created by using exactly

the same technique with a slightly wider (rougher) blade

spacing of 4 1/2 blades/in. Two modification techniques

provided extremely similar tire-wear behavior, including
the Skidabrader TM machine at both 100 and 150 ft/min

and the rotopeener (with a new belt). These two methods

of modifying the surface produced a noticeably different

feel to the touch but had extremely similar ATD's
(0.0104 in. to 0.0115 in.). The similar ATD's suggest

that there may be a strong link between surface-wear
characteristics and ATD. The remaining data plotted in

figure 22 show the wear behavior of the test tire on the

original corduroy touchdown-zone surface treated with a

single coat of methacrylate. The plot shows that the

methacrylate-coated surface produced the least tire-wear
rate of any modification tested on the touchdown-zone

textures.

Figure 23 presents a plot that confirms this strong
link and shows the wear rate for the test tires on both the

transversely grooved center section and the corduroy

touchdown zone with their respective modifications plot-

ted as a function of ATD. The figure, however, does not

completely explain the wear phenomenon. As seen in

table 2, the ATD for the 5 blades/in, diamond grinding

that is applied to the corduroy touchdown zone is

0.0108 in. This ATD is virtually identical to the values

for the Skidabrader TM and rotopeening techniques, yet

the wear on the 5 blades/in, diamond-grinding surface

was worse and provides evidence that there must be other

parameters such as sharpness qualities that the ATD

technique does not measure but that are important never-
theless. The values in table 2 for the BPT of these sur-

faces also show that the BPT cannot discern a significant

difference among these four surfaces. Table 2 shows that

the surface with the single coating of methacrylate had an

ATD of 0.0123 in. This apparently small change in the

ATD, as compared to the Skidabrader TM and rotopeened

surfaces (since it reflects an even rougher surface), is fur-
ther evidence of the existence of other unmeasured

parameters. Although equivalent side loads were pro-

duced on all these surfaces during tests, one could hear

an unusual noise as the test tire traversed the methacry-

late test strip. The low-pitched sound gave the

impression that the tire was slipping on this test surface
more than on the other test surfaces.

The similar wear behavior measured on the 100 and

150 ft/min Skidabrader TM test strips, combined with the

11



data in table 2 that shows similar ATD values for them as

well as for the 220 ft/min Skidabrader TM test strip, led the

test team to decide that no advantage was likely to be

gained by conducting time- and resource-consuming
tests on the 220 ft/min Skidabrader TM test surfaces either

on the original corduroy touchdown zone or on the origi-

nal center section. Likewise, very little difference in the

ATD was measured for the various techniques of using

the rotopeener (new-versus-old belts or longitudinal-

versus-lateral installation); therefore, only the one appli-

cation for the rotopeener that applied to the corduroy
touchdown zone was tested. The number of available test

tires was such that some narrowing-down of possibilities
was necessary in real time during the testing.

The test strip produced by the solid-head-cutter dia-

mond grinding was exceedingly smooth (table 2); the test
team was convinced that the wear tests on that surface

would have shown the lowest tire-wear values of any of
the test surfaces. Since this surface was smoother than

other ungrooved runway surfaces that are known to have
unacceptable wet-friction characteristics, it was felt that
the surface would not meet the wet-friction criteria later

in the testing; thus, wear tests were not performed on this

surface. The results of this testing phase indicated that

the anticipated reduction of tire wear to one-half the orig-

inal value was possible on the corduroy touchdown zone

and that at least three of the proposed methods could
accomplish that goal: using the Skidabrader TM machine,

rotopeening, and applying a single coating of methacry-
late.

The results of the 20 x 4.4 tire-wear testing on the

original or transversely grooved center section are plot-
ted in figure 24, which shows test-tire wear as a function

of distance. Again, tests on the original surface were con-
ducted to define the baseline wear behavior that was to

be improved upon. Data were collected on the test strips
in the original center section, which had been modified

by the Skidabrader TM at both 100 and 150 ft/min. The

results showed that the forward speed of that device did

not have a significant effect on ATD or tire wear (figs. 22

and 24); therefore, the decision was made to refrain from

further testing on the strip produced by the Skidabrader TM

machine at 220 ft/min.

Data collected on the test strip modified by using the
rotopeener longitudinally showed results similar to those

experienced on the corduroy touchdown zone wherein

the longitudinally rotopeened surface produced the same

wear as the Skidabrader TM surfaces. The laterally roto-

peened test strip in the original center section produced
significantly lower tire wear than the Skidabrader TM sur-

faces (fig. 24). Even though the data in table 4 show

nearly identical ATD's for the laterally versus the longi-
tudinally rotopeened surface, the tire wear was signifi-

cantly lower for the lateral case. The laterally rotopeened

surface did have a noticeably smoother feel as compared
to the longitudinally rotopeened surface. This result

again implied that there are other unmeasured qualities
which influence tire wear.

In figure 24, the lowest wear surface shown is the

one produced by using the solid-head-cutter diamond-

grinding technique. Although this surface surely would

have been too slick (when wet) for the corduroy touch-
down zone tests, it had some merit as a modification

technique in the original center section because trans-

verse grooves remain after the technique has been

applied, and it is known that providing an escape path for

water in the tire footprint reduces the severity of the

friction-versus-speed penalty for wet surfaces. Tests on
that surface showed a 2/3 reduction in tire-wear rate for

the original center section that exceeded the 50-percent

reduction deemed necessary to achieve a 20-knot cross-

wind Orbiter landing capability. Thus it appeared that

two techniques had the capability to reduce tire wear in

the original center section to acceptable levels: solid-

head-cutter-diamond grinding and lateral rotopeening.

Note in table 4 that the wear rate for the original cen-

ter section and the corduroy touchdown zone are nearly
identical, as are their ATD's. This result suggests that for

rollout conditions (countering crosswinds and steering as

opposed to spinup), the transverse grooves in the center

section do not cause increased tire wear. However, the

grooves are shown to be one of the primary tire-wear fac-

tors during the spin-up process (ref. 2).

ITTV Wet-Friction Tests

As mentioned earlier, the wet-friction performance

of a surface usually decreases with increasing speed and

with reductions in surface roughness. The Orbiter rollout

simulator has shown that a 50-percent decrease in wet-

friction performance of a runway can be accepted since

vehicle control is achieved not only by using tire forces
but also by using aerodynamic forces generated by con-

trol surfaces. Figure 25 presents the result of extremely
limited testing (by using the IT1W) of some of the candi-

date strips. The figure shows the percentage of dry-

cornering values obtained on the wet test strips as a func-
tion of speed.

Although the ITFV test speed of 50 knots does not

adequately permit the prediction of surface performance

at 200 knots, the data were used to provide some insight
into general friction trends. The data show that the

original two-surface textures (the original center section

and the corduroy touchdown zone) retain the highest

level of wet performance at slow speed. The 150 ft/min

Skidabrader TM surface on both the original surfaces

showed good retention of friction at low speed. The
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solid-head-cutterdiamond-grindingteststripandthesin-
gle-coatmethacrylateteststripsdisplayedmoreperfor-
mancelossatslowspeedthantheothersurfaces,aswas
expectedbecauseof theirsmoothnature.Themethacry-
latestripwasnot testedat themaximumIqTV speed
becauseit wasassumedthatit wouldlosetoomuchper-
formanceathighspeed.Thesolid-head-cutterdiamond-
grindingtechniqueappliedtotheoriginalcentersection
wastestedatabout50knotsandshowedwhatappeared
to bea gainin performanceascomparedto its slow-
speedvalue.Basedonwhatis knownaboutwet-surface
frictionbehavior,suchgainsarenotlikelyto occurcon-
sistently;thus,thesedataprovideanindicationof the
accuracylevelof this typeof testing.The 150ft/min
SkidabraderTM surfaces on both original textures were

tested at about 50 knots. The data show very little perfor-

mance loss for the technique as applied in the center sec-

tion, but a relatively large loss of about 15 percent of the

dry performance for the technique as applied on the cor-

duroy touchdown zone. This trend, if it continued lin-

early up to 200 knots, would suggest that too much

performance loss would occur for a Skidabrader TM modi-
fication of the corduroy touchdown zone. However, since

the Orbiter has a wealth of aerodynamic control in the

early phase of landing (because of speed) when it is tra-

versing the touchdown zone, the need for high friction in
that zone is somewhat diminished.

LSRA Wear Tests

Time and cost were two important considerations in

determining what modification techniques should be

applied in full-scale test strips for LSRA testing. The

methacrylate treatment is a very costly one, and concerns

arose regarding its uniqueness. No other runway experi-

ence had been gained by using that treatment, and there
was a reluctance to have the KSC SLF be the test case for

the technology. The application cost for the Skida-
brader TM device was about $1.00/yd 2 and the cost for

rotopeening was about $1.20/yd 2, making both treat-

ments very economical. The application rate and there-

fore the time for the treatments are quite different. The
Skidabrader TM machine travels at 150 ft/min, modifies a

swath 78 in. wide, and provides an application rate of

about 108 yd2/min. The rotopeener device is controlled

manually, travels at 50 ft/min, modifies a swath just over

10 in. wide, and provides an application rate of about

5 yd2/min.

Based on the wear behavior of the test surfaces mea-

sured by using the ITI'V, the limited wet-friction perfor-
mance measurements, and the cost and schedule

requirements, a recommendation was offered and

accepted to initially apply two full-scale test strips near
the KSC SLF runway centerline for LSRA full-scale

Orbiter tire testing. Sketches of these test strips are

shown in figure 13(d) and are denoted as test strips 1

and 2. As described previously, test strip 1 (west strip)
consisted of an 8000-ft center section modified with the

rotopeener used in a lateral direction with a 3500-ft
entrance on each end that was produced with the

Skidabrader TM machine at 150 ft/min. Test strip 2 (east

strip) was produced with the Skidabrader TM machine at
150 ft/min.

Figure 26 shows a wear-performance plot of the

Orbiter tires on the original surface prior to any modifi-

cation. The plot shows tire wear as a function of side

energy (eq. (1)). Tire wear is shown both in cord layers

and inches, with the first cord layer the closest to the tire

tread. As shown in figure 7, about 9/32 in. of wear is

required to expose the first cord layer. The Orbiter tire

has been extensively tested, and a wear limit of 6 cords

(of the available 16) has been established as a safe wear
condition for the tires at the end of a rollout. The band

denoting the existing KSC runway represents the range

of experience of tire wear on that surface, as tire wear

variability can be as high as several cord layers at equiv-

alent energies. The two vertical bands represent the

energy the tire may be required to absorb for both a 15-

and a 20-knot crosswind landing. The bandwidth repre-

sents the reasonable range of energy that may be experi-

enced in each crosswind condition, depending on pilot

performance and atmospheric uncertainties. The lower

energy level of each band shows the energy required dur-

ing a perfect landing in which no anomalies are experi-

enced and no steering (other than that necessary just to

counter the steady crosswind) is performed. The 20-knot

crosswind band shows that approximately twice as much

energy is required to be absorbed by the tire than for the
15-knot crosswind case.

Figure 27 shows a bar chart of various dispersions

shown in table 3 that increase the energy requirement of

the tires. The right edge of the bands in figure 26 repre-

sent the energy requirements when all dispersions are

present (at 20-knot crosswind). Note that these studies

were conducted assuming that steady crosswinds and

actual flight rules use maximum winds, including gusts,

so that a 20-knot steady-crosswind capability (as mea-

sured during these tests) includes some margin in capa-

bility, as compared to a real flight where steady winds
are almost never encountered.

The data in figure 26 indicate that the unmodified
surface is unable to support even a 15-knot crosswind if

significant dispersions are present. To verify this obser-
vation, note that a vertical line at the right edge of the
15 knot band will intersect the lower curve at about 3

cords of wear and will intersect the upper curve at about

9 cords of wear. Prudent judgment leads to the conclu-

sion that it is likely that the defined safe limit of 6 cords
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will beexceeded.Testinghasalsoshownthatthetire
usuallyfailsin the9- to 10-cordregionof wear.Thus,a
tirefailureunder15-knotcrosswindconditionsisapossi-
bility thatmustbeconsidered.Figure26alsoshowsa
banddenotingthesideenergyassociatedwiththerun-
wayas modifiedby theSkidabraderTM machine. The

improvement resulting from this technique is quite evi-

dent. A 15-knot crosswind landing can be accommodated

easily. A 20-knot crosswind-landing capability is feasi-

ble except for the most severe conditions, and even then
the likelihood of actual tire failure is low. These results

were encouraging and suggested that further studies of

the Skidabrader TM modification technique would be
beneficial.

Figure 28 shows the result of a number of tests con-

ducted on two full-scale test strips shown in figure 13(d)

(test strips 1 and 2). The figure shows tire wear as a func-

tion of side energy, with tire wear scaled in both inches

and cord layers. The upper shaded region shows tire-

wear behavior on the original surface under high landing
speed and high crosswind conditions. The lower shaded

region shows tire-wear behavior at more benign landing

conditions, including touchdown speeds up to 200 knots

and crosswinds lower than 15 knots. The legend shows
each run as having been conducted under either case 9,
case 10, or case 11 conditions from table 3. An LSRA

calibration run is shown as the open square data symbols
in figure 28. This run was used to verify that the LSRA

could produce repeatable wear results before examining
the modified surfaces. The data points represent the

energy levels retrieved from the flight data at the point

when each cord layer became visible on the time-

correlated flight videotape. Connecting the data points

shows the progression of tire wear as side energy was

accumulated by the tire. The data for both test strips

show that a significant reduction in tire wear is achieved

by smoothing the original textures. The data indicate that

the tire wear on test strip 2 was slightly less than for test

strip 1. This result seems contrary to the idea that less
wear would be observed on the smoother surface, which

in this case was test strip 1 (the strip with the rotopeened

center section). The ATD for test strip 1 was 0.008 in.,
while the ATD for test strip 2 was 0.010 in. In addition,

test strip 1 was noticeably smoother to the touch than test

strip 2.

When observing the tire damage after each test, it

appeared that more discoloration and tread delamination

occurred during the testing on test strip 1 than occurred

during the testing on test strip 2. These findings are

indicative of higher tread temperatures on the test strip 1

tires. Subsequent analysis of the tread temperature data

for those flights confirmed that slightly higher average

tread temperatures were present. The higher temperature

causes parts of the tread rubber to revert nearly to their
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uncured state and to lose adhesion to the textile carcass.

These delaminations cannot support the high shear loads

during cornering and rip off and expose the carcass to the

runway and cause more overall damage to the tire. It was

surmised that the higher temperatures were caused by the

increased smoothness of test strip 1 itself. By causing

less initial tire wear because of the surface smoothness,

the tire must retain more of the hysteretical heat created

by yawed rolling and deflection caused by vertical load.

The rubber that would have carried away some of the

heat (as it is worn away on a rougher runway surface) is

now retained and causes the heat damage described
above.

To evaluate this theory, test strip 3 (the far west strip

shown in fig. 13(d)) was installed on the runway. This

test strip used the Skidabrader TM texture in the corduroy
touchdown zone as an entrance to the new center section

texture created by using a diamond-blade-grinding tech-

nique with a 7 blades/in, spacing. Test strip 3 had an

ATD of 0.003 in. and was intended to represent the

smoothest test strip that could be installed quickly and

inexpensively. Since the ATD was so low, it was hoped a
clear change in the wear behavior of the tire would be

observed. Figure 29 shows the wear results for test strip
3. Results from figure 28 are repeated in figure 29, but in

a lighter shade so that the results of the testing on test

strip 3 can be discerned easily. The energy bands associ-
ated with 15- and 20-knot crosswinds are also shown.

Figure 29 shows that the texture in test strip 3 did not

result in a clear decrease of tire wear as compared to the

results on test strips 1 or 2. Instead, test strip 3 sometimes
showed more wear and sometimes less wear than test

strip 2. Subsequent testing that used the LSRA on the

smooth, ungrooved runway at Edwards Air Force Base,
California, confirmed these results. Nevertheless, the

results of the LSRA wear testing at the KSC SLF showed
that using the Skidabrader TM machine at a nominal 150 ft/

min rate on both the corduroy touchdown zone and on

the original center section produced a surface that

appeared capable of increasing the Orbiter tire cross-
wind-landing capability to 20 knots (fig. 26).

LSRA Wet-Friction Tests

The LSRA was used to conduct tests on the full-

scale test strips to provide assurance that sufficient wet-

friction capability would be retained for Orbiter direc-

tional control and braking. Because of limited time and

test resources, only two sets of tests were conducted. The

first tests were conducted on the rotopeened center sec-

tion of test strip 1 prior to the conclusion of the wear
studies and before it was known that the modification

recommendation would be to use the Skidabrader TM

machine. The results of these tests are presented in figure
30. The plots show the percentage of dry friction retained



whentheaircraftis operatingat differentspeedsonthe
testsurfaces.Thedatain theuppercurveshowthatthe
rotopeenedcentersectionretainsvirtuallyall its dry
capabilityevenwhenwet.Thisresultis largelybecause
oftheretentionofthetransversegroovesin theteststrip.
Thisresultprovidesconfidencethattherougherteststrip
2,producedbyusingtheSkidabraderTM, would also have

satisfactory wet-friction performance under full-scale
conditions. The middle curve for tests conducted on the

corduroy touchdown zone that was modified with the
Skidabrader TM machine shows the same trend identified

by the ITI'V test on that surface in which a decrease in
friction level (as speed is increased) is observed. The

tests using the LSRA at low speed corroborate the results

obtained by the ITI'V at its maximum speed. The data
show that the friction on the Skidabrader TM surface that is

applied to the touchdown zone decreases to about 40 per-
cent of the dry value at approximately 200 knots. This

decrease was deemed acceptable and was significantly

better than the wet Edwards runway surface behavior, as

shown in the lower curve. For the wet Edwards runway,

the friction level drops to only 25 percent of the dry

value when aircraft are operating at 200 knots. This

severe reduction in friction levels was reported to be

unacceptable, and any runway modification would have

to perform better than the Edwards wet runway.

Final Recommendation

Based on the ITTV wear testing, the ITTV wet-

friction testing, the LSRA wear testing, and the LSRA

wet-friction testing, a recommendation was made to and

accepted by the Shuttle Program Office to modify the
entire KSC SLF runway by using the Skidabrader TM

machine operated at 150 ft/min. The runway modifica-

tion was performed in September 1994 (see aerial view

in fig. 31 ), and numerous Orbiter landings have been per-

formed on it at crosswinds as high as 12 knots to date,

with wear results as predicted by the curves shown in fig-

ure 26. The STS program will continue to monitor tire
wear as a function of side energy as opportunities to land

in higher crosswinds arise. Providing the tire-wear capa-

bility for 20-knot crosswind landings will permit the pro-

gram to realize an increase in the statistical probability of

meeting short launch-window opportunities and also will

provide an increased safety margin for normal end-of-

mission landings under crosswind conditions.

Concluding Remarks

An experimental investigation was performed to
define a texture modification for the existing Kennedy

Space Center (KSC) Shuttle Landing Facility (SLF) run-

way which would provide an increase in Orbiter main

gear tire-wear capability that is sufficient to support

Orbiter landings in crosswinds as high as 20 knots. Tests

were conducted by using an instrumented vehicle to

compare the friction and wear characteristics, at small

scale, of a number of proposed texture modifications

placed into the SLF runway surface itself. A strong link

between surface average texture depth (ATD) and tire
wear was observed. Based on these tests, three candidate

surfaces were chosen to be tested at full-scale by using a

highly modified and instrumented transport aircraft capa-

ble of duplicating full Orbiter landing profiles. Test strips
for the three candidates were prepared for the entire

length of the 15 000-ft runway.

The full-scale Orbiter tire testing revealed that tire

wear could be reduced approximately by half by using

either of two treatments. Full-scale testing also revealed

a phenomenon which caused increased tire damage when

aircraft are operating on a runway smooth enough to pre-

vent sufficient wear to carry away excess tire heat. For

the Orbiter tire, it appears that a balance between surface

texture and tread heating can be achieved to minimize

tire wear or damage. A device known as the Skida-
brader TM was shown to be effective at reducing the tex-

ture of the existing KSC SLF runway while retaining

adequate wet-friction performance. The reduced texture

approximately doubled the capability of the tire to absorb

side energy, thus enabling the tire to withstand 20-knot

crosswind landings while retaining some wear margin to
allow for various landing dispersions. The Skidabrader TM

shotpeening machine was used to modify the entire KSC
SLF runway. Since completion of the modification in

September 1994, numerous landings have been con-
ducted to date with no tire-wear anomalies. The runway
surface texture will continue to be monitored as will

Orbiter tire-wear behavior, as opportunities to land in

higher crosswinds arise.

NASA Langley Research Center
Hampton, VA 23681-0001
December 15, 1996
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Table 1. Description of Test Surfaces

Original
Test surface surface Texture modification

1
2
3

4
5

6

7
8

9
10

11
12

13

14
15
16
17
18

aLG

LG
LG

bTC
LG

TG

LG
TG

LG
TG
LG

LG

TG
LG

TG
LG
LG
TG

Methacrylate: double coating
Methacrylate: single coating

CSkidabrader_: 100 ft/min

SkidabraderrU: 100 ft/min
SkidabraderrM: 150 ft/min
SkidabraderrM: 150 ft/min

SkidabraderrU: 220 ft/min
SkidabraderrM: 220 ft/min

Rotopeening: longitudinal

Rotopeening: lateral
Rotopeening: longitudinal, new belt
Rotopeening: longitudinal

Rotopeening: longitudinal
Solid head-cutter diamond grinding

Solid head-cutter diamond grinding

Diamond-saw grinding: 5 blades/in.
Original corduroy TD zone
Original center section

aLongitudinal grinding (corduroy touchdown zones)
bTransverse grooving (center section)
CSkidabraderrU shotpeening machine (Humble Equipment Company)
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Table 3. LSRA Test Conditions

(a) Nominal conditions

Crosswind, knots ............................. 20

Target touchdown speed, knots ................. 205

Start of derotation, knots ..................... = 175

Tire peak load, lb ........................ 120000

Centerline tracking .................... No steering

(b) Types of dispersions

Type Dispersions

A

B

C

D

E

F

225-knot touchdown speed

Additional 0.4 ° touchdown yaw to model drift

Simulator error of 0.2 ° additional slip near peak load time

Aggressive steering; 3 ° additional yaw triangular pulse 4.5 sec

long immediately after peak load

High-rate derotation increases tire vertical load to 142000 lb

Right crosswind forces vehicle to assume yaw to counter tire

ply-steer (extra 0.6 ° at wheelstop)

(c) Case definitions

Case Nominal landing plus types of dispersions included

9 A,B,C,E, F

10 A, B, C, D, E, F

11 A,B, C,D,E
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Table4.InstrumentedTire-TestVehicle(ITTV)Test-SurfaceWearSummary

Descriptionof texture Wearrate, ATD,
Testsurface modification lbm/ft in.

7
8
9

10
11
12
13
14
15
16
17
18

Methacrylate:doublecoating
Methacrylate:singlecoating

aSkidabraderrM:100ft/min
SkidabraderrU:100ft/min
SkidabraderrU:150ft/min
SkidabraderrM:150ft/min
SkidabraderrM:220ft/min
Skidabrader_:220ft/min
Rotopeening:longitudinal
Rotopeening:lateral
Rotopeening:longitudinal,
Rotopeening:longitudinal

newbelt

Rotopeening: longitudinal

Solid head-cutter diamond grinding

Solid head-cutter diamond grinding

Diamond saw grinding, 5 blades/in.

None, original corduroy TD zone

None, original center section

308.4E-6

330.4E-6

418.5E-6

330.4E-6

506.6E-6

242.3E-6

330.4E-6

440.5E-6

198.2E-6

418.5E-6

616.7E-6

594.7E-6

.0056

.0123

.0104

.0130

.0115

.0159

.0119

.0136

.0083

.0108

.0104

.0088

.0119

.0046

.0062

.0108

.0210

.0192

aSkidabraderrMshotpeening machine (Humble Equipment Company)
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150

Vertical load,
Ib

0

x 103

Yaw angle,

deg

225

Ground speed,
knots

Time, sec
60

Figure 5. Typical time histories of inputs for LSRA test fixture.
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(a) ITTVtesttires.

26

(b) Orbitermaingeartire used during LSRA testing.

Figure 6. Test tires.
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16 carcass cord

layers

9/32

Undertread

/ Tread rib

Tread groove

Figure 7. Cross section of modified Orbiter main gear tire. Dimensions are in inches.
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(a) Mu-meter and tow vehicle.

(b) Skid trailer and tow vehicle.

Figure 8. Other test vehicles.
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Figure 9. British pendulum tester (BPT).

Figure 10. Outflow meter.
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Figure 11. Grease sample texture-measurement kit.
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(a) New versus worn tire-profile comparison.
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(b) Tire scan images.

Figure 12. Computer tomography examples.
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Figure 14. Diamond-blade-grinding machine.

il !t!i!!i_i ii!ii

Figure 15. Diamond-blade-grinding machine cutting heads.
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Figure16.Largediamond-blade-grindingmachine.

Figure17.Typicalappearanceofcorduroytexture.
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"I'MFigure 18. Skidabrader machine in operation.
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(a) Lateralapplication.

Rotopeening

38

(b) Surface after rotopeening.

Figure 19. Rotopeener machine.



(a) Application to corduroy surface.

(b) Appearance of methacrylate after drying on surface.

Figure 20. Methacrylate coating.
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Figure21.Typicalbull's-eye appearance of spin-up wear spot after cornering.
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Figure 22. Tire-wear behavior on modifications to touchdown zone surface.
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Figure 23. Relationship between wear rate and average texture depth (ATD).
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Figure 25. Effect of speed on wet-cornering performance for various textures.
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Figure 27. Tire side energy required for nominal 20-knot crosswind landing with and without piloting dispersions.
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Figure 30. Effect of speed on wet-friction behavior on modified surfaces.
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Figure 31. View of Skidabrader TM machines modifying entire SLF runway.
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