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Continued Development of the Discontinuous Galerkin Method

for Computational Aeroacoustic Applications

H. L. Atkins*

NASA Langley Research Center
Hampton, VA, 23681-0001

Abstract

The formulation and the implementation of

boundary conditions within the context of the

quadrature-free form of the discontinuous Galerkin

method are presented for several types of bound-

ary conditions for the Euler equations. An impor-
tant feature of the discontinuous Galerkin method

is that the interior point algorithm is well behaved

in the neighborhood of the boundary and requires
no modifications. This feature leads to a simple

and accurate treatment for wall boundary conditions

and simple inflow and outflow boundary conditions.
Curved walls are accurately treated with only minor

changes to the implementation described in earlier
work. The "perfectly matched layer" approach to

nonreflecting boundary conditions is easily applied
to the discontinuous Galerkin. The compactness of

the discontinuous Galerkin method makes it better

suited for buffer-zone-type methods than high-order

finite-difference methods. Results are presented for

wall, characteristic inflow and outflow, and nonre-

flecting boundary conditions.

Introduction

Much of the recent work in computational aeroa-

coustics (CAA) has focused on improvements to tra-
ditional finite-difference methods to increase the ac-

curacy and to implement specialized boundary con-
ditions. While this approach has promoted a rapid

growth of the field, these methods place constraints
on the mesh smoothness that make their application

to highly complex geometries problematic. Further-
more, the improved spatial operators are not appli-

cable in the neighborhood of some critical flow phe-
nomenon, such as shock waves, with out substantial

modifications. The goal of this work is to develop
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robust and efficient methods that _ive accurate so-

lutions independent of grid smoott_ hess.

The discontinuous Galerkin me_hod is a highly

compact formulation that provides a method of ob-

taining the high accuracy required !br CAA on non-

smooth unstructured grids. The :_bility to use an

unstructured grid greatly simplifies the largest ob-

stacle in computing the flow around complex geome-

tries: the generation of the grid. h_ reference 1, the
discontinuous Galerkin method w:_s formulated in

a quadrature-free form that reduc--d the computa-
tional effort and storage requireme_,ts. In that work,

the method was described in detail along with basic

benchmark cases that demonstrate Lhe accuracy and
robustness of the method for the scalar advection

equation and for the linear Euler ._quations. That
work focused on the new impleme_ttation of the in-

terior point scheme and addressed only periodic do-
mains.

In this article, the formulation _md implementa-

tion of several types of boundary conditions for the

linear Euler equations are describe_l. Also discussed
are features of the discontinuous ;3alerkin method

that make the application of bouadary conditions
relatively straightforward and robast. These ben-
eficial features are all attributabl, to the inherent

compactness of the discontinuous (;alerkin method.

Most methods used for CAJ,_ today fall in

the category of high-order finite difference meth-

ods such, as the widely used di:persion-relation-

preserving (DRP) scheme. 2 Effort:. to develop spe-

cialized boundary conditions for l:roblems particu-
lar to aeroacoustics have focused o:_ finite-difference

methods, but much of the work is dso applicable to
the discontinuous Galerkin metho, l. In some cases,

such as the work on wall bound_ ry conditions by

Tam and Dong, 3 special boundmy conditions are
needed to counter errors associaled with the ap-

plication of finite-difference methods near a bound-

ary: errors that do not occur in :he discontinuous

Galerkin method.

The most problematic boundat J in CAA is the

boundary that is produced when a:_ infinite or semi-

Z
2



infinite domain is truncated to a finite computa-

tional domain. In this case, precise flow conditions

are not known at the boundary of the computational
domain, and the boundary condition becomes more

of a goal than a precise mathematical statement. In

particular, the boundary condition seeks to make

the flow field behave as if the computational domain

were larger; waves are allowed to exit the computa-

tional domain with no nonphysical side affects. In
CAA, the boundary conditions appropriate for this

type of boundary are referred to as nonreflecting

boundary conditions.

Boundary conditions used for steady and unsteady

aerodynamic calculations have relied primarily on

characteristic formulations, such as the simple rela-

tions proposed by Jameson et al. 4 to ensure that the

correct information enters and leaves the domain;

however, these methods become less accurate as the

size of the computational domain is reduced. Efforts

to improve on this have taken many forms, which

range from efforts to analytically solve a simplified
equation in the infinite domain outside the computa-
tional domain 5, 6 to methods that solve specialized

equations at the boundary or in a small region near
the boundary. 2' 7, 8, 9, 10, 11 The methods work well

when an acoustic wave exits the domain normal to

the boundary; however, in other cases these meth-

ods produce predictable reflections that depend on

the angle of incidence in a manner that is fairly well
understood in most cases.

Two exceptions to this are the perfectly matched
layer (PML) method of Hu 10 and the asymp-

totic method of Hagstrom 8 and Goodrich and

Hagstrom. 11 Hagstrom's approach is similar to that

of Engquist and Majda 7 Giles 9 and many others,

except that the use of a Pad6 series approximation

leads to a convergent sequence of equations in which
the error associated with the wave incidence is re-

duced as more terms are retained. In the PML ap-

proach, a split and damped form of the governing

equations is solved in a finite region near the bound-

ary. Under certain constraints, no reflection of a

wave of any incidence occurs at the interface be-

tween the main computational domain and the re-

gion where the PML method is applied. Within the

PML region, waves are damped such that any reflec-

tion of the wave off the outer boundary of the PML

zone is insignificant. Because of the compact na-
ture of the discontinuous Galerkin method, the PML

method is more easily implemented for the discon-
tinuous Galerkin method than for finite-difference

methods.

The first section of this article briefly describes the

discontinuous Galerkin method and the quadrature-

free form of the implementation; the reader is re-

ferred to reference 1 for complete details. The second

section describes issues related to boundary condi-

tions and outlines the general approach to applying

boundary conditions. The remaining sections deal

with special issues of curved-wall and nonreflecting

boundary conditions. Treatment of curved walls re-

quires a minor modification to the basic formulation.

Two types of nonreflecting boundary conditions are
presented: a simple characteristic approach and the
PML method.

Discontinuous Galerkin Method

The discontinuous Galerkin method is applicable

to systems of first-order equations of the form

OU
07 + v . _(v) = o (t)

defined on some domain Q with aboundary 0_,
where U = {u0,ul,...} and F = {f0,fa,...}. The

domain is partitioned into a set of nonoverlapping
elements 12i that cover the domain Q = LA _i.

vi
Within each element, the following set of equations
is solved:

f. 0¼bk--_-Ji dn - / Vbk . J_ XFi(V)Ji dR
12, [2,

+] bkS?l f R . J_ = 0 (2)
012,

fork= 1,2,...,N, where{bk, k= 1,2,...,N}isa
set of basis functions,

N
0(z, y, z)

U '_ Vi - E vi,jbj, Ji -

j=_ o(_,,, ¢)'

and Ji = IJij. Equation set (2) is obtained by pro-

jecting equation (1) onto each member of the basis

set and then integrating by parts to obtain the weak

conservation form. In the present work, the basis set

is the set of polynomials that are defined local to the

element and are of degree _< n. In two dimensions,
for example, the basis set is {1,_, rl,_2,_rl, r]2,...},

where (_, r/) are the local coordinates. The solu-

tion U is approximated as an expansion in terms of
the basis functions; thus, both V and 16 are discon-

tinuous at the boundary between adjacent elements

(hence, the name discontinuous Galerkin). The dis-
continuity in V between adjacent elements is treated

with an approximate Riemann flux, which is denoted

._R; Ji is the Jacobian of the transformation from

the global coordinates (x, y, z) to the element coor-

dinates ((, 7/, () of element i. Research has shown 12



that theupwindbiasprovidedbytheRiemannflux
playsan importantrolein ensuringthestabilityof
thediscontinuousGalerkinmethod.

In the usualimplementationof the discontinu-
ousGalerkinmethodYthe integralsareevaluated
with quadratureformulas.This approachisprob-
lematicforevenmoderatelyhigh-orderimplementa-
tionsin multidimensionsandhaslimitedmostef-
forts to n = 2 or 3. The difficulties arise in part

because the number of quadrature points in multidi-

mensional formulas of the required accuracy usually

exceeds N (the number of terms in the expansion) by

a considerable margin. In the quadrature-free form,

the integral evaluations are reduced to a summa-
tion over the coefficients of the solution expansion,

which is an operation of order N. To implement the
quadrature-free approach, the flux bn must also be

written as an expansion in terms of basis functions:

N

f(u) d(v,) = )f
j----1

(a similar expansion is made for the approximate

Riemann flux fiR.) This procedure is trivially ac-

complished for linear equations, such as those of in-

terest here. Several approaches to treating nonlinear

equations are discussed and demonstrated in refer-
ence 1. With the additional assumption that Ji and

Ji are constant within each element, the integrals

can be evaluated exactly, and the equation set can
be rewritten in matrix form as

Ji M i -_

rr_,

k=l

where mi is the number of sides around element i,

gi,k is the outward unit normal on side k, Vi =

v,,1 .jr, G .]r and d"
[ff_k.0, g_k,1,'' .]T The mass matrix Mi and the vec-

tor matrix Ai are NxN matrices given by

M, = [mk,,],

f
mk.t = J bkbt dl2,

f_,

for l < k,l <_ N.

ffk,t = f b_Vbk df_

Derivation of the boundary integral terms is com-

plicated only by the fact that the solutions on ei-
ther side of the element boundary are represented

in terms of different coordinate systems. This prob-

lem is resolved by expressing the solution on both

sides of the element boundary in te: ms of a common

edge-based coordinate system (a smple coordinate

transformation). This allows the b)undary integral

to be expressed in terms of an edge laatrix Bi,k times
a vector that is composed of the cgefficients of the

approximate Riemann flux express( d in terms of the

edge-based coordinate system dR (instead of the,#
local element coordinate system _s in the case of

di).
In addition to the requirement that Ji and Ji

be constants within the element, host elements are

constrained to shapes that map i!_to one of a few

fixed simple computational elemen! s (such as a unit

square or an equilateral triangle in i.wo dimensions).

With this last constraint, the mat_,ices Mi, -_i and

Bi,k are the same for all elements of a given type,

and the products M-1A and M-iI3k can be pre-

computed and stored at a consid.-rable savings in
terms of both computer storage a_d computational

time. This constraint is only to facilitate an efficient

implementation and can be relaxe_l at selected ele-

ments if the need arises (e.g., to treat curved walls).

A detailed derivation of the matrices M, A, and

Bk is given in reference 1. The st ecial case of ele-
ments with curved sides is describ<d in a later sec-

tion. Because equation (3) is of ti_e same form for
all elements, the element index i will be dropped for

clarity.

Equation (3) is advanced in time by using
the three-stage Runge-Kutta metaod of Shu and
Osher. 16 Analysis of the stability of this approach

can be found in reference 1.

General Features of Boundary Conditions

The first two terms of equation (:;) depend only on
the solution within the element, and communication

between adjacent elements occurs only through the
Riemann flux _n. An important 5-ature of the dis-

continuous Galerkin method is thai the approximate

Riemann flux is the only mechanism through which

an element communicates with it _urroundings, re-

gardless of whether the element b,,undary is in the
interior of the domain or coincides with the domain

boundary. A notable consequence is that the usual

interior algorithm is valid in elen,ents adjacent to
the boundary. In contrast, the in_.erior point oper-

ator of most high-order finite-diff.-rence and finite-

volume methods cannot be applied at points near
the boundary without some modifications. These

modifications usually result in redu_'ed accuracy, and

careful attention is required to prevent the introduc-
tion of instabilities. 17 Thus, by us, of the discontin-

uous Galerkin method, a major so_rce of error corn-

= =
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mon to many high-order finite-difference and finite-

volume methods is completely avoided.

Because each element communicates with its

neighbors only through the approximate Riemann

flux, most boundary conditions will be imposed via

the approximate Riemann flux. In this respect, the

imposition of boundary conditions for the discon-
tinuous Galerkin method is quite similar to that of

low-order finite-volume methods. This similarity is

especially true for the quadrature-based discontinu-

ous Galerkin method, in which the approximate Rie-
mann flux is evaluated at discrete boundary points

and then numerically integrated. In the quadrature-

free form of the discontinuous Galerkin method, the

approximate Riemann flux is a polynomial function

of the edge coordinate and is never evaluated at spe-

cific points. Thus, boundary conditions are applied

to each component of the flux polynomial, rather

than to the flux at specific points.

Boundary conditions can be imposed either by

providing the exterior side of the Riemann flux with

a complete solution or by reformulating the bound-
ary flux subject to the specified boundary conditions

such that only the interior data is needed. However,

either approach can be expressed exactly in terms of

the other when the equations are linear. The first

approach seems trivial to implement; however, this

approach has the drawback that in most cases the

complete solution is not known. Instead, the com-

plete exterior solution must be reconstructed from

the given boundary condition data and the interior
solution. The work involved in a carefully derived re-

construction procedure is usually equivalent to the

work required to evaluate a completely reformulated

flux, although the use (or misuse) of simple extrap-

olation formulas is common. In this work, the ap-

proximate Riemann flux on the boundary is replaced

by a reformulated boundary flux.

In the following discussion and examples, the lin-

ear Euler equations in two dimensions will be used:

U

p-P

P
U

1)

#=MU+

0

iP

jP

(4)

where M = [M_, My], _" = [u, v], and i and j are the

Cartesian unit vectors [1,0] and [0, 1], respectively.

The components of U are normalized perturbation

quantities from a free-stream condition about which

the linearization has been performed. The compo-

nent of the flux normal to the boundary is given by

0

v.
F(U) = #(U). ff = M,_U + c_P (5)

13P

where M, = /Q .if, V, = _7 .if, _ = i.ff, /3= j.6,

and ff = J-lXJds is the boundary-normal vector for

an arbitrary edge.

Wall Boundary Conditions

Wall boundary conditions correspond to the case

in which M, = 0 and Vn is specified. Both

symmetry-plane and hard-wall boundary conditions

state that no flow passes through the boundary;
thus, V,, = M. = 0. The symmetry-plane bound-

ary condition should be simply a special case of a

general, hard-wall boundary condition in which the

wall is planar; however, most finite-difference and

finite-volume methods must treat the two differently
in order to obtain accurate results. With the dis-

continuous Galerkin method, the treatment of the
two is identical because the discontinuous Galerkin
method is valid without modification in the element

next to the boundary.

A transpiration wall condition is one in which fluid

passes through the boundary at a specified rate. An

example is a flow in which blowing or suction is ap-

plied to a surface. Another example that is relevant

to aerocoustic applications occurs when a flow is
separated into incident and scatter components and

each component is simulated individually. Occasion-

ally, the form of the incident wave is known exactly,

so that only the scattered wave needs to be simu-

lated. With these assumptions, the flux through the

boundary is given by

0

F(U)wa,t = V'_ (6)
_P

ZP

The flux is evaluated by using the pressure from the
A

interior element and a specified function for V,_. The
function for V,_ must be expressed as a polynomial

of the edge coordinates. This expression can be ob-

tained by either a Taylor's expansion or a projection

procedure. Because the solution within each element

is a known polynomial function, the interior solution

at the edge is always available without the use of ex-

trapolation formulas.

Figure 1 illustrates a simple application of wall

boundary conditions. An acoustic pulse is generated

by a pressure disturbance in the initial condition of



anotherwiseundisturbedMach0.5flow. Theini-
tial pressuredisturbanceis aGaussiandistribution
withahalf-widthof0.05,centeredat (-0.25,0.25)in
thedomain0 < x, y < 1. A hard-wall condition is

specified on the y = 0 boundary, and through-flow

boundary conditions (to be discussed later) are spec-
ified on the other three sides of the domain. The re-

sults shown are for a discontinuous Galerkin method

with n = 4 (fifth order) and with the domain parti-

tioned by an 18 x 18 triangulated grid. At t = 0.4,

the incident pulse has reached the lower wall and

has produced a reflection. In this case, the hard-wall

boundary is equivalent to a symmetry plane. Figure

l(b) shows similar results in which the computation
included the mirror image of the original compu-
tational domain. The maximum difference between

the solutions is less that 0.1 percent and is attributed

to the treatment of the flux at y = 0. In the first case

in which y = 0 is a wall, the flux at y = 0 is given

by F(U) = [0, 0, 0, flp]T. In the case for which the

y = 0 line is within the domain, the flux is evaluated

by using the Lax-Friedrichs flux as the approximate
Riemann solver 1

.T(U_,, Ut) - [F(U,,) + F(Ut) - )_(U,, - Ut)]/2

where subscripts u and l denote the upper and lower
sides of the flux and ,k is greater than or equal to the

OF Assure-magnitude of the largest eigenvalue of y-ft.

ing that the solution above and below y = 0 evolve

symmetrically, Uu is the same as Ul except for the

v component, which is an odd function of y. Thus,

the flux at y = 0 becomes

7(u., u_) = [0,0, 0, ZPu + _v.]

Because of the symmetry of the solution and the

convergence properties of the discontinuous Galerkin

method, vu goes to zero at the rate of Axn+l; thus,
both formulas are accurate representations of the

flux and exhibit the expected convergence proper-
ties as the mesh is refined. Note, however, that a

low-order error may be introduced if the solution

is not symmetric, and if wall boundary conditions

are implemented by retaining the approximate Rie-

mann flux and evaluating the exterior solution with
a reflection of the interior solution (as is commonly

done on low-order finite-volume methods.) The spe-

cific form of the error depends on the form of the

approximate Riemann solver.

Conditions at Curved Walls

Walls that are smoothly curved can be mod-
eled with at least second-order accuracy by straight

line segments. To improve the accuracy requires a

few simple modifications to the im )lementation de-

scribed previously. The first than :e is to compute
distinct matrices M-I_, and M -I Bk for each ele-

ment and each side of that eleme Lt that lies on a

curved boundary. The only other :hange is simply

to recognize that the edge normal vector d_ is now

a polynomial function instead of a constant vector;

thus, c_P and /3P in equation (6) are products of

polynomials. Illustrated for triax_gles in figure 2,

a general triangle with one curve_! side is mapped

(with constant Jacobian) to a sim_,le regular trian-

gle in which the deviation of one si te from its usual

straight line path is approximated by a polynomial

r/(_)w,n. Because the Jacobian J i_ constant within
the element, it can be taken out._ide the integral;

thus all integrations, matrix inver._ions, and matrix

multiplications can be done in adv:_nce of the simu-
lation as in the usual implementat )n. The primary
overhead associated with a curved, lement is the ad-

ditional storage required to store _ distinct copy of
the matrices for each curved elem_ tt.

Figure 3 shows two solutions in '.. hich an acoustic

pulse has passed over a cylinder o produce a re-
flection. In the extreme case show,, the cylinder is

modeled with only two elements, in figure 3(b) the

curved sides are approximated by c_:bic polynomials.

In this test case, the cylinder ha-. a radius of 1/2,

and the incident pulse is produce 1 by a Gaussian

pressure disturbance in the initial _olution at x = 3,

y = 0. This case is similar to pr,:,blem 2 of Cate-

gory I of the recent workshop The :4econd Workshop
on Benchmark Problems for CAA, 1_ except that the
Gaussian half-width of the initial disturbance has

been increased to 1.6 (8 times lager) so that the

incident pulse is well resolved on :_'xtremely coarse

grids and the error is dominated b3 the resolution of
the cylinder. Figure 4 gives the co _vergence history
of the solution as the resolution i- increased. The

average length scale of an element is defined as

i area ofdomdnAs = number of eleiaents

and the error is measured relative .o reference solu-

tion computed on a fine grid (A: = 0.0498). The
error is defined as the the L2 nort_ of the difference

in pressure at a large number of poi ats uniformly dis-

tributed in the region 0.63 < r < 2.0, 0 < 0 < rr/2.
The case with the cubic approxim ttion for the wall

maintains a fifth-order rate of con .'ergence over the

range of grids tested. The rate cf convergence for
the case with the linear approxim Ltion for the wall

drops to less then third order as t] _ mesh is refined.



Inflow and Outflow Boundary Conditions

Inflow, outflow, and nonreflective boundary con-

ditions are often treated as different entities; how-

ever, for any system of equations such as the Euler

equations at subsonic conditions, characteristic in-

formation simultaneously enters and leaves the do-

main through these boundaries. Typically, inflow

and outflow boundary conditions have concentrated

on ensuring that the correct information enters the

domain; nonreflective boundary conditions have con-

centrated on ensuring that waves that are leaving the
domain can do so as if the boundary did not exist.

The simplest form of an inflow and outflow bound-

ary condition is obtained by splitting the flux into
characteristic components and grouping the compo-

nents according to whether their associated wave

is entering or leaving the domain. The splitting is

given by

F = P[A]P-1U

= P [,k+] P-1Uinterior + P [)_-] P-1Uexterior

where P and [)q are the eigenvector matrix and the

diagonal matrix composed of the eigenvalues of OFg-ff
respectively, and [_+] are diagonal matrices com-

posed of just the positive or negative elements of

[)q. The exterior solution is usually set to zero; how-

ever, the solution could be set to any desired value

to accommodate the case in which a specified wave

is to enter the domain. This approach has been used

in the results shown thus far and provides a crude,
nonreflective boundary condition in that waves that

are nearly aligned with the boundary will exit with
little reflection. The method of Thompson 19 is an

analogous procedure formulated for finite-difference
methods.

The reason for the reflection is that when an out-

going wave that is not aligned with the boundary is
decomposed into boundary-normal and boundary-

tangent characteristic components, the inbound
boundary-normal characteristic component is not

exactly 0. Yet in almost all characteristic-based

boundary conditions the inbound boundary-normal

component set set either to 0 or to some specified

value that has no relation to any outgoing wave that

might exist. Most attempts to improve the nonre-
flective boundary condition involve derivation of a

means to reconstruct an inbound boundary-normal

characteristic contribution associated with outgoin!_
79 itwaves. The most accurate of these methods ' '

involves the solution of an additional partial differ-

ential equation along the boundary. Thus far, these

boundary conditions have only been formally de-

rived for smooth (if not planar) boundaries for which

the mean flow is strictly inflow or outflow over the

entire boundary.
Another approach, the finite-wave model, 20 pro-

vides a simple (algebraic) method for improving the

accuracy in some cases. This boundary condition

was developed to deal with nonlinear effects of the

Euler equations; however, the method also accounts

for wave orientation in a way that is applicable to

the linear case. The linear analog of the finite-wave
mode is a simple modification to the standard char-

acteristic approach and will be referred to as the

modified characteristic method. The directionality

inherent in the usual characteristic splitting arises

because the boundary flux is the flux in the direc-

tion of the boundary normal. The direction associ-

ated with the flux cannot be altered; however, char-

acteristic decomposition could certainly be based on

another direction. In fact, because the boundary of

the domain may not have any relation to the sound

produced within the domain, other directions should
be considered for the characteristic decomposition.

If a single identifiable acoustic source is assumed,

then the finite-wave model performs a characteristic

decomposition along the assumed path of the wave.

The decomposition is obtained from the characteris-

tic variables associated with the flux in a prescribed
direction:

Fw(U) - F(U) . t_ = MwU +

0

V_

o_wP

_ P

where u_ is a unit vector in a prescribed direc-

tion and other quantities are defined as in equa-

tion (5) with ff replaced by u_. The solution at

the boundary associated with waves that are leav-

ing the domain in the direction of t_ is given by

Ub = Pw [I +] p_lUinterior, where Pw are the eigen-

vectors of _ and [I+] is a diagonal matrix withou

elements equal to 1 if the corresponding eigenvalue

of _ is positive and equal to 0 otherwise. The flux
through the boundary is given by evaluating equa-

tion (5) with the solution Lb.
The standard and modified characteristic meth-

ods are compared in figure 5. The test case is the

cylinder problem previously described with the non-

reflecting boundary conditions imposed at r _ 5.3.

At time ¢ = 10 most of the physical waves have

exited the domain, and the remaining disturbances

are caused by unwanted reflections. The modified

characteristic boundary condition has reduced the
reflection to less than half that of the standard char-

acteristic boundary condition but the general form

of the reflection is unchanged.



The PML Method

The PML method is a buffer-zone technique

that solves a modified set of equations in a region

that surrounds the primary computational domain.

The modified equations are obtained by splitting

the equations in boundary-normal and boundary-

tangent directions and adding low-order damping to

the boundary normal equations. For example, at

boundaries aligned with either _ or j,

and

OU---!+ - -(7x U1 (7)
Ot Ox

OU_____£+ - -%U2 (8)
Ot Oy

where U = U1 +0"2. The damping coefficients a_ and

a_ must be chosen such that the component of cr that

is tangent to the boundary does not vary along the
boundary. This condition leads to the constraint on

a in corner regions illustrated in figure 6. Research
has shown that, 10 for the ideal case of plane waves

and straight boundaries that intersect at right angles

(i.e., rectangular domains), no reflection of acoustic
or convective waves will occur at the interface be-

tween the primary computational domain and the

PML zone, regardless of the angle at which waves
strike the interface. The underlying theory places
no constraint on the variation of (7 in the direction

normal to the boundary, but in applications to finite-

difference methods (7 must vary smoothly. In numer-

ical tests by Hu, 10 the boundary-normal component

of (7 was increased quadratically as a function of the
distance from the interface.

When the PML method is applied to the discon-
tinuous Galerkin method, cr does not need to be var-

ied smoothly. Furthermore, using a constant value

of (7 throughout a PML zone is advantageous. In

the present application of the PML method to the
discontinuous Galerkin method, the equations are

solved in a different, but equivalent, form. In PML

zones that border on the physical domain, the sum

of the two split equations is solved in combination
with the boundary-tangent equation. For example,

on a boundary where x = Constant, (Tu = 0 and the

equations can be rewritten as

O_.__UU+ V. #(U) = -ax(U - U2) (9)
0t

and

00
0U_____2+ - 0 (10)
Ot Oy

The first equation is the standard nterior operator

modified only by a zeroth-order , issipation term;

thus, this equation is easily implen ented within the

existing program structure. In a c_rner region, the
sum of the split equations is solw. I in conjunction

with either equation (7) or (8):

0[/

Ot
---i-V. if(U)-- -o'_U-t-(a_.- o'y)U2 (11)

and

OU___.._2+ = - ayU2 (12)
Ot Oy

Note, however, that if (Tx = qu = ( instant through-

out the corner region, then the ii dividual compo-

nents U1 or U2 do not contribute io equation (11);

thus, only equation (11) needs to [e solved.

In figures 7 and 8, solutions o_tained with the

PML method are compared with those obtained

with characteristic boundary conditions. The test

problem is a square domain (-50 - : x, y < 50) with
hard-wall boundary conditions apl)lied on the top,

bottom, and left boundaries and el'her a PML zone

or a characteristic boundary condition applied at the

right boundary. The unsteady flov is initiated by
a unit Gaussian pressure disturbance with a half-

width of 3, positioned at x = 25, g = 0. The pri-

mary domain is partitioned with aa 18x18 triangu-

lated grid; the PML case has two l:_yers of elements
in which the values of _r are constant: (7_ = 0.2 and

(Tu = 0. The solutions are compa_'ed with a base-
line case in which the right bounda;y is extended to

x _ 161. Figure 7 shows the sol_tions at t = 40,
which is just after the initial pulse has reached the

boundary. The solution obtained _ ith characteristic

boundary conditions has weak reflections, and the
solution obtain with the PML m, thod agrees well

with the baseline. Figure 8 show_ the solutions at

a much later time (t = 180) when eflections off the

solid walls have produced a complex wave pattern.
The solution obtained by using the PML method

still agrees well with the baselin- solution, while
the standard characteristic method shows additional

features that can only be attributed to nonphysical

reflections off the right boundary.

Figure 9 shows the effect of increasing the thick-
ness of the PML layer (Xb- 50) and varying the

values of (Tx. The error metric is _he maximum de-

viation of pressure from that of _he baseline solu-
tion measured along the line x = 48 for t < 200.
The solid line denotes the case in which (7_ was var-

ied quadratically, as described in reference 10; the
dashed lines denote cases in which _x is fixed at one

of several values. Note that the d ta at xb = 50 re-

=



sult from use of the standard characteristic bound-

ary condition.

Finally, the PML method is applied to the cylinder

problem show earlier in the region r > 5.3. Figure
10 shows the maximum pressure difference from the

baseline solution measured at r = 5, t < 12. In this

case, the PML method is implemented by assigning
a normal direction to each element in the PML zone.

Even though the boundary is curved and the normal

direction varies in each element, the PML method
shows a considerable improvement over the modified

characteristic method (rb _-, 5.3).

Concluding Remarks

The application of several types of boundary con-

ditions for the discontinuous Galerkin method is pre-

sented. Because of the compact form of the method,

the discontinuous Galerkin method is applicable

near boundaries without modification; this feature

eliminates a major difficulty encountered by most
high-order methods. As a consequence, boundary

conditions such as symmetry-plane, curved-wall, and

characteristic inflow outflow, are easy to implement

and highly accurate. With modified characteristic
boundary conditions that account for the direction

of wave propagation, reflections are reduced to about
half that of the standard characteristic method. The

perfectly matched layer (PML) method is easily ap-

plied to the discontinuous Galerkin method. The

discontinuous Galerkin method allows the damping

parameters to be abruptly turned on and then held
constant within the PML zone. Reflections are re-

duced by an order of magnitude below that of char-

acteristic boundary conditions, even in cases with
curved boundaries.

.
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a. Wall condition at y -- O.

b. Computed mirror image of pimary domain.

Figure 1. Reflection of cylindrical pressure pulse off

a flat wall compared with direct c, reputation of pri-

mary domain plus mirror image.



Figure 2. Mapping of curve-wall element.
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Figure 4. Convergence of solution error with grid

refinement.

a. Linear wall segments.

b. Cubic wall segments.

Figure 3. Reflection of cylindrical pressure pulse off

of solid cylinder.

a. Standard characteristic boundary conditions.

b. Modified characteristic boundary conditions.

Pmi, = -0.0914 _11 _j Pm,x = 0.021

Figure 5. Comparison of nonreflecting boundary

conditions applied at r _ 5.3: pressure at t = 10.
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a. Baseline solutiol_.

PML zones

o x= 0 _ '__
Oy= g(y)

zone interfaJe_

Ox= Oy= 0

physical domain

,_= f(x)

Oy= g(y)

o x = f(x)

(Sy= 0

Figure 6. PML zones with consistent, values of or.

b. Characteristic boundary condition.

c. PML zone.

Figure 7. Comparison of pressl_¢e with different
treatment of right boundary: t = =_0.
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a. Baselinesolution.
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b. Characteristic boundary condition.

c. PML zone.

Figure 9. Effect of thickness of PML layer and value

of (r for flow shown in figures 7 and 8.
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Figure 10. Effect of thickness of PML layer and value

of a for flow shown in figure 5.

Figure 8. Comparison of pressure with different

treatment of right boundary: t = 180.
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