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ABSTRACT: Damage progression and fracture of built-up composite structures is evalu-
ated by using computational simulation. The objective is to examine the behavior and re-
sponse of a stiffened composite (0/ +£45/90)., laminate panel by simulating the damage ini-
tiation, growth, accumulation, progression and propagation to structural collapse. An
integrated computer code (CODSTRAN was augmented for the simulation of the progres-
sive damage and fracture of built-up composite structures under mechanical loading.
Results show that damage initiation and progression to have significant effect on the struc-
tural response. Influence of the type of loading is investigated on the damage initiation,
propagation and final fracture of the build-up composite panel.

KEY WORDS: laminated thin shells; laminated cylinders; composite structures; compu-
tational simulation; structural analysis; finite element analysis; damage; degradation;
durability; fracture; stiffened panel; structural degradation.

INTRODUCTION

IRCRAFT, MARINE AND automotive vehicle industries use extensively stif-

fened composite panels, because of their low weight and high stiffness and
stability features. Design considerations with regard to the durability of stiffened
panels require a priori evaluation of damage initiation and propagation
mechanisms under expected service loading. Concerns for safety and survivabil-
ity of critical components require a quantification of the composite structural
damage tolerance during overloads. Characteristic flexibilities in the tailoring of
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composite structures make composites more versatile for fulfilling structural
design requirements. However, these same design flexibilities render the assess-
ment of composite structural response and durability more complex, prolonging
the design and certification process and adding to the cost of the final product. It
is difficult to evaluate composite structures because of the complexities in pre-
dicting their overall congruity and performance, especially when structural
degradation and damage propagation take place. The predictions of damage ini-
tiation, damage growth, and propagation to fracture are important in evaluating
the load carrying capacity, damage tolerance, safety, and reliability of composite
structures. The most effective way to obtain this quantification is through inte-
grated computer codes that couple composite mechanics with structural analysis
and damage progression modelling. The COmposite Durability STRuctura
ANalysis (CODSTRAN) computer code has been developed for this purpose by
integrating and coupling the following disciplines: (1) mechanics of composites,
(2) structural analysis (FEM) and (3) damage progression/tracking. COD-
STRAN was used to simulate the damage progression in a variety of composite
structures such as: stiffened adhesively bonded composite structures [1], adhe-
sively bonded concentric composite cylinders {2], damage progression in bolted
composite structures [3], progressive damage and fracture of adhesively bonded
pipe joints {4], damage tolerance of composite pressurized shells [5] and [6] and
dynamic damage progression of a containment structure hit by an escaping blade
[7]. The objective of the present paper is to investigate the response of the
stiffened composite panel by computationally simulating using CODSTRAN
computer code the damage progression and final fracture of the panel subjected
to bending loads.

BRIEF DESCRIPTION OF CODSTRAN

CODSTRAN is an integrated computer code that was written in FORTRAN 77
computer language for unix operating system at NASA Lewis Research Center.

CODSTRAN was developed by coupling the following three modules.

(1) ICAN is a computer code [8] that provides the constituent (fiber and matrix)
material properties using an available databank, computes the ply properties and
the composite properties (effective properties) of the laminate in a hygrothermal
environment. The theory of the code is based in the micromechanics of compos-
ites and the classical laminate theory. ICAN has the ability to compute the ply
stresses by knowing the stress resultants (force per laminate thickness, where
force can be a concentrated load, a bending or a twisting load). In ICAN failure
criteria were established Figure 1, for the detection of the ply failures as follows:
(a) the maximum stress criterion, in which failure occurs when the individual ply
stress g, fori,j = 1,2,3, exceeds the respective ply strength S, ,; fori,j = 1,2,3;
and (b) the modified distortion energy criterion, in which the combination of the
ply stresses is taken into account. In both criteria the ply stresses are refered to
the material axes 1, 2, 3, and the direction of the 0° fibers are along the direction
of the material l-axis. In ICAN the described failure modes of the plies are: fail-
ure due to the fiber fracture in tension or in compression; damage due to the
matrix fracture in tension or in compression; and damage due to shear fracture.
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Figure 1. Ply failure criteria.

(2) MHOST is a finite element computer code for the solution of structural
analysis problems. The code has the capability to perform linear or nonlinear
static and dynamic analysis. MHOST has a library with a variety of elements and
for the present work the four node shell element was used. By supplying the
boundary conditions, the desire type of analysis, the applied loads and the lami-
nate properties (using ICAN) MHOST performs the structural analysis. In addi-
tion MHOST provides the computed stress resultants to ICAN code; and then
ICAN computes the developed ply stresses for each ply and checks for ply fail-
ure.

(3) A module that keeps track the composite degradation for the entire struc-
ture and cooperates with ICAN.

The integrated picture of CODSTRAN simulation cycle is shown in Figure 2.
In this figure, from the left side along the clockwise direction the material prop-
erties of the constituents (fiber and matrix) are provided by ICAN’s database next
the ply properties are computed by using the micromechanics theory, and contin-
uing the laminate properties are computed using the laminate theory. These prop-
erties in conjunction with the finite element mesh, the loads and the boundary
conditions are incorporated into MHOST. MHOST performs the structural anal-
ysis and provides the computed stress resultants in ICAN (in the right side of the
Figure 2), where ICAN proceeds to compute the ply stresses using the laminate
theory and checks for ply failure.

The nonlinear structural analysis is MHOST code is performed in conjunction
with an incremental load algorithm. The load is increased in small increments
(equilibrium positions). Within each equilibrium position a number of iterations
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(incremental damages) are performed (Figure 3). In each iteration, the structure
is checked for ply failure. If damages is detected in the structure, the laminate
properties of the structure are updated, a new finite element analysis is performed
and the above iterations continues until no further damage occurs (equilibrium
position). Then, the load is increased and the above procedure is repeated until
the final failure of the structure. Following the above procedure we are able to
monitor the damage progression, fracture and colapse of the structure.

FIBER COMPOSITE BUILT-UP STRUCTURE

The investigated structure is a composite panel stiffened by a hat type stringer
that is adhesively bond to the skin. The finite element model, shown in Figure 4,
uses a four node shell element. The geometry and the cross section of the stif-
fened panel with the physical dimensions is shown in Figure 5. The pancl as well
as the hat of the structure are made of the same high strength AS-4 graphite fibers
(Table 1) in a high-modulus, high-strength epoxy matrix HMHS (Table 2). The
skin laminate of the structure consists of forty-cight 0.132 mm (0.00521 in.) plics
resulting in a composite thickness of 6.35 mm (0.25 in.). The width of the stif-
fened panel is 330.2 mm and the length is 279.4 mm. The fiber volume ratio is
0.60. The laminate configuration is (0/ £45/90),,. The 0° plies are in the axial
direction of the stiffener, along the x axis (Figure 4). The stiffener is adhesively
bonded to the skin at all surfaces of contact. A negative bending load (with re-
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Figure 2. Integrated composite analysis.
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Figure 3. CODSTRAN load incrementation.

spect to y-axis) is applied at the free edge of the structure and increased gradually
(Figure 4). Damage initiation and progression are monitored as the panel is grad-
ually loaded. For purpose of comparison another case with positive bending load
(with respect to y-axis) was examined. The damage progression of the stiffened
panel as a function of the normalized applied load (maximum catastrophic load
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Figure 4. Finite element model.
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GEOMETRY AND MATERIALS
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Figure 5. Geomelry of the built-up structures.

is 2.208 KN-m due to the positive bending load) is shown in Figure 6. In
CODSTRAN damage is defined as the volume of the damaged plies divided by
the total volume of the structure. In Figure 6 the depicted points of the damage
versus bending load are equilibrium points that we discussed previously. The dis-
cussion of the damage initiation and progression follows:

(1) The damage initiation started at 0.4288 of the catastrophic positive bending
load (2.208 KN-m or 19.54 Klb-in) for both loading conditions at the front part
of the panel, at the contact area of the panel and the stiffener.

In the case of the negative bending load (Figure 7): at the Ist load increment,
damage occured due to matrix failure in tension (MFT) in the 4th and 5th (90°)
plies while failure happened due to fiber fracture in compression (FFC) in the
48th (0°) ply. At the 2nd load increment damage occured due to MFT in the 2nd
and 3rd (£45°) plies and at the 12th and 13th (90°) plies, and failure due to FFC
occured in the 4th and Sth (90°) plies. At the 3rd load increment failure due to
FFC occured in the 12th and 13th (90°) plies.

In the case of the positive bending Figure 8: At the Ist load increment failure
due to FFC occured in the Ist (0°) ply, and damage due to MFT occured in the
44th and 45th (90°) plies.

At the 2nd load increment damage due to MFT occured in the 36th and 37th
(90°) plies, 43th and 47th (—45°) plies and the 46th (45°) ply and failure due
to FFC occured at the 44th and 45th (90°) plies.
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Table 1. AA-4 graphite fiber properties.

Number of fibers per end = 10,000
Fiber diameter = 0.00762 mm (0.3E-3 in)
Fiber Density = 4.04E-7 Kg/m® (0.063 Ibfin%)
Longitudinal normal modulus = 227 GPa (32.9E + 6 psi)
Transverse normal modulus = 13.7 GPa (1.99E + 6 psi)
Poisson’s ratio (v1;) = 0.2
Poisson’s ratio (vzs) = 0.25
Shear modulus (G1,) = 13.8 GPa (2.E + 6 psi)
Shear modulus (G.;) = 6.9 GPa (1.E + 6 psi)
Longitudinal thermal expansion coefficient = 1.E-6/°C (- 0.55E-6/°F)
Transverse thermal expansion coefficient = 1.E-6/°C (—0.56E-6/°F)
Longitudinal heat conductivity = 43.4 J-m/hr/m?/°C
= (580 Btu-in/hr/in%/°F)

Transverse heat conductivity = 4.34 J-m/hr/m?/°C

= (58 Btu-in/hr/in?/°P)
Heat capacity = 712 J/Kg/°C (0.17 Btu/lb/°F)
Tensile strength = 3,723 MPa (540 ksi)
Compressive strength = 3,351 MPa (486 ksi)

Table 2. HMHS epoxy matrix properties.

Matrix density = 3.4E-7 kg/m? (0.0457 Ib/in®)

Normal modulus = 4.27 GPa (629 Ksi)

Poisson’s ratio = 0.34

Coefficient of thermal expansion = 0.72/°C (0.4E-4/°F)
Heat conductivity = 1.25 Btu-in/hr/in%/°F

Heat capacity = 0.25 Btu/lb/°F

Tensile strength = 84.8 MPa (12.3 Ksi)

Compressive strength = 423 MPa (61.3 Ksi)

Shear strength = 148 MPa (21.4 Ksi)

Aliowable tensile strain = 0.02

Allowable compressive strain = 0.05

Allowable shear strain = 0.04

Allowable torsional strain = 0.04

Void conductivity = 16.8 J-m/hr/m?/°C (0.225 Btu-in/hr/in?/°F)
Glass transition temperature = 216°C (420°F)
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Figure 6. Damage vs. applied load.
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(2) The damage progressed slowly in the front area of the panel until the ap-
plied load becomes equal to 0.74 of the catastrophic load. Increasing the load fur-
ther the damage and the fracture propagates rapidly until the load becomes equal
to 0.78 of the catastrophic load.

(¢) The catastrophic load for the stiffened panel subjected to the negative bend-
ing load was 0.88 of the catastrophic load due to positive bending load. When that
load was reached the front part of the panel broke due to the extended fracture
of the fibers. The display of the fractured panel subjected to the negative bending
load 1s shown in Figure 9.

For the negative bending, the computed ply stresses were plotted using
PATRAN computer code for the damage initiation stage, at the top (0°) and the
3rd (—45°) plies respectively.

At the top ply (0°) (the direction of the fibers are parallel to the x-axis) the ply
stresses were plotted in the longitudinal (Figure 10) and in the transverse direc-
tion of the fibers (Figure 11). In both figures high stresses appeared in front of the
panel and at the contact region with the stiffener.

At the 3rd ply (—45°) (the direction of the fibers forms —45° with respect to
the x-axis) the ply stresses were plotted in the longitudinal (Figure 12), and in the
transverse direction of the fibers (Figure 13), and also the plane shear stresses
(Figure 14). The results show that high stresses occured in front of the panel and
at the contact region with the stiffener.

DEFORMED STIFFENED PANEL, AT FRACTURED LOAD, 1.97 KNm (17.29 Kibin)
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Figure 9. Fractured built-up panel due to the negative bending load.
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SUMMARY

The significant results from this investigation in which CODSTRAN (COm-
posite Durability STRuctural ANalysis) is used to evaluate structural response of
a stiffened (0/ +45/90),, laminate composite panel, considering damage initiation
and progression effects, are as follows:

. Damage initiation started for both bending loads, at applied load equal to
0.4288 of the catastrophic positive bending load at the front part of the panel,
at the edge of the panel stiffener. In the case of the negative bending the
damage started at the 4th and 5th (90°) plies due to matrix fracture in tension
and the 48th (0°) ply due to the fiber fracture in compression. In the case of
the positive bending load the damage started at the 1st (0°) ply due to the fiber
fracture in compression and at the 44th and 45th (90°) plies due to the matrix
fracture in tension.

The damage progressed slowly until the applied load was 0.74 of the cata-

strophic load. and when the load increased further the damage growth propa-

gated very rapidly until the load was 0.78 of the catastrophic load.

3. The collapse load due to the negative bending load was 0.88 of the collapse
load due to the positive bending load. When that negative bending load was
reached the front part of the panel broke due to the extended fracture of the
fibers.

[3%)
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