
"'• i• ¸

L• i, !

ii • i_: :

NASA-TM-112758

ecent Advancesin Solar Ce_.lTechnology•A. Landis, S. G. Barley,M. P_szczorJr.

• , _i:_: _!

,t'

Reprinted from

JournalofPropulsionandPower
Volume12,Number5, Pages835-841

A publication of the
AmericanInstitute of Aeronauticsand Astronautics,Inc.
1801 Alexander Bell Drive, Suite 500

Reston, VA 22091

https://ntrs.nasa.gov/search.jsp?R=19970022218 2020-06-16T02:33:38+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42773869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


_!" ,,

, ,?,

JOURNAL OF PROPULSION AND POWER

Vol. 12, No. 5, September-October 1996

Recent Advances in Solar Cell Technology

Geoffrey A. Landis,* Sheila G. Bailey,t and Michael E Piszczor Jr.$

NASA Lewis Research Center, Cleveland, Ohio 44135

The advances in solar cell efficiency, radiation tolerance, and cost over the last decade are reviewed.
Potential performance of thin-film solar cells in space are discussed, and the cost and the historical trends
in production capability of the photovoltaics industry are considered with respect to the requirements of
space power systems. Concentrator cells with conversion efficiency over 30 %, and nonconcentrating solar
cells with efficiency over 25 % are now available, and advanced radiation-tolerant cells and lightweight,

thin-film arrays are both being developed. Nonsolar applications of solar cells, including thermophoto-
voltaics, alpha- and betavoltaics, and laser power receivers, are also discussed.

Introduction

OR future space solar arrays, improved performance is
desired in five solar cell parameters: 1) energy conversion

efficiency, 2) weight, 3) tolerance to the space radiation en-

vironment, 4) cost, and 5) high-volume cell production and

array assembly.

Improvements have been made in each of these parameters;
however, not all of these have been achieved in the same cell

type. Recent progress is reviewed by Flood and Weinberg)

There are three approaches to large-area photovoltaic arrays

in space. The conventional approach, used on all existing sat-

ellites, is to make fiat-plate arrays from individual crystalline

solar cells. The material used on spacecraft in the past is sil-

icon (Si). Silicon is still used for some new satellites, but gal-

lium arsenide (GaAs) solar cells, with improved efficiency,

have now widely replaced Si in applications where high effi-

ciency is required. An alternative cell material, indium phos-

phide (InP), is also under development, but is not yet in use.
This cell has a considerably higher tolerance to radiation.

An alternative approach is to use solar concentrators with

extremely high efficiency solar cells. Such an approach has

yielded the highest conversion efficiencies achieved to date.

A third approach is to use thin-film, integrally connected

solar cells, adapting technology that has been developed for
use in low-cost terrestrial solar arrays. Thin-film materials used

include amorphous silicon (a-Si), cadmium telluride (CdTe),

and copper indium diselenide (CulnSe2). This approach has the

potential for low weight and low cost, and has been demon-

strated to have extremely high tolerance to radiation; but is

unlikely to achieve the high efficiency of single-crystal tech-

nologies. Thin-film technology has not yet been used in space,

although individual solar cells have been tested in space, con-
firming the high tolerance to radiation.

Research is ongoing to increase the efficiency, lower the

cost, and increase the specific power (W/kg) for all three of

the approaches discussed.

Single-Crystal Cells

Table 1 summarizes the air-mass zero (AM0) efficiencies

achieved in the laboratory of a variety of single junction solar
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cells, both without concentration (one sun) and concentrator.

For many decades, the solar cell technology of choice was the

conventional silicon solar cell) Over the last few years, for

missions where high efficiency is required, this technology has

been supplanted by solar cells made of GaAs, typically pro-

duced on germanium substrates, which have higher efficiency

and somewhat higher cost than silicon ceils. Progress in effi-

ciency of terrestrial solar cells is reviewed. 3

While currently used Si solar cells only have efficiency of
about 14%, over the last decade tremendous advances have

been made in Si solar cell efficiency. Advanced Si solar cells

have been manufactured with efficiency approaching 21%

AM0. 4 These solar cell designs are not yet space qualified,

however, and preliminary tests indicate that they are not tol-

erant of radiation damage: Future ultrathin, light-trapping Si

cell designs may be both highly efficient and radiation toler-
ant. 6

The state-of-the-art Si space solar cell is a large area (8 ×
8) cm cell, 0.2 mm thick, covered with a 0.125-mm-thick

ceria-stabilized glass microsheet. This cell, 10-1)-cm base re-

sistivity, with dual antireflective coating and a back surface
field, has an average efficiency of 14.5% at 28°C, beginning

of life (BOL). These cells are currently in production for the

power system for the International Space Station. 2
III-V materials have efficiency routinely produced in (small

area) laboratory cells in excess of 20%. 7 Larger-area commer-

cial GaAs solar cells are available at 18.5% AM0 efficiency,

with higher efficiency available by special order. The desire to

reduce cost and breakage has led to the production of III-V

cells on germanium (Ge) substrates. 8 The current cost of 5-cm

Table 1 Achieved efficiency of single-crystal solar cells
under space (AM0) conditions

Cell area,
Cell type cm 2 Efficiency at 25°C, %

One sun cells
Conventional Si"
Advanced Si
GaAs
InP
Ge
GalnP/GaAs
GalnP/GaAs/Ge
A1GaAs/GaAs
A1GaAs/GaAs/InGaAsP

Concentrator cells
GaAs
GalnP/GaAs
GaAs/GaSb

64 14.6
4 20.8
4 21.8
4 19.9
4 9.0

0.25 25.7, monolithic cascade
4 23.3, monolithic cascade

0.5 23.0, monolithic cascade
0.5 25.2, b mechanical stack cascade

0.07 24.6, 100X AM0 concentration
0.25 26.4, 50X AM0 concentration
0.05 30.5, 100X AM0 concentration

aGridded back-contact commercial space cell. bAperture area•
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semiconductor grade wafers for solar cell production is $3.00

for Si, $65.00 for Ge, $100.00 for GaAs, and $200.00 for InP.
The current costs for a GaAs (on Ge) cell is roughly twice the

cost of an Si solar cell of the same area. Cell cost, however,

is only a small component of the cost of an array, and in many

missions the increased efficiency is more important than the
cell cost increase.

The solar cell selected for the next generation of space solar

cells is a tandem (cascade) structure using a high-bandgap

gallium-indium phosphide (GalnP) top element grown di-
rectly on a GaAs bottom layer. 9 The best GalnP/GaAs to date

has 25.7% AM0 efficiency, _° and 4 cm 2 cells are now being

manufactured with efficiencies of 21.5%• A program is now

under way to bring this cell design to manufacturing readiness,

with a target of achieving 22-24% conversion efficiency in

mass production. An obvious next step for this material system
will be to make an active Ge bottom cell. Such a bottom cell

should allow efficiencies to increase to over 30% in the lab-

oratory, and over 25% in production. Currently, three-junction
GalnP/GaAs/Ge cells have been produced with efficiency as

high as 23.3%, t] and a significant amount of research on the

material system is in progress.
Nearly as high efficiency has been achieved on a three-cell

cascade using an A1GaAs/GaAs tandem stack over an In-
GaAsP bottom cell. _2 However, the mechanically stacked con-

figuration used is extremely complex, and unlikely to be useful
for a commercial cell. Without the bottom InGaAsP element,

the best efficiency achieved of this combination is 23%.
Missions requiring radiation tolerance have led to the de-

velopment of InP cells. These cells may be of great signifi-
cance for commercial satellites in high-radiation orbits. _3 InP

solar cells potentially have efficiency equivalent to that of

GaAs, with vastly superior tolerance to radiation, as shown in

Fig. 1. _ (Note that 10 _5 e-/cm 2 corresponds to approximately

10-15 years in geosynchronous orbit with typical shielding

thicknesses.) InP solar cells tested on the LIPS satellite have

shown no degradation after five years in space. A difficulty
with InP is the cost of the material. Several methods of grow-

ing InP on low-cost substrates are currently under develop-
ment. InP solar cells are not yet being manufactured commer-

cially, although several thousand InP solar cells were produced

by the Japanese to power a lunar orbiter on the Japanese Space

Agency scientific satellite MUSES-A.

% I 1 I
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Degradation caused by the radiation of InP, GaAs, conventional (8 mii) Si, and thin (3 mil) Si solar cells.

Growth of InP on Si and GaAs are efforts to develop a less

expensive InP cell by using a lower-cost substrate. Efforts are
also in progress to remove the thin InP solar cell structure from
a reusable substrate by mechanical techniques ]4 or preferen-

tially etched epitaxial liftoff. _s Both of these techniques also
apply to other III-V structures and hold great promise for fu-
ture crystalline thin-film solar cells.

Concentrator Arrays

In missions requiring a minimum array area and a high de-

gree of protection for the photovoltaic device, concentrator

arrays provide a promising alternative to planar structures. The

advantages of the concentrator systems rely on minimizing the

cell area and replacing it with high-efficiency, light-concen-

trating optics. For a given temperature, properly designed pho-
tovoltaic devices are more efficient under concentration. Since

cell area is significantly reduced (typically by a factor of 15-

100, depending upon the system concept), it is also much eas-

ier to protect the cell from the natural radiation environment.

Thus, the capability exists to design relatively lightweight ar-

rays that survive in extremely harsh radiation orbits. There is

also significant potential for cost reduction based on reducing
the total amount of semiconductor area and replacing it with

relatively low-cost optics.
Concentrator systems require more precise tracking of the

sun than fiat-plate systems, which produce significant power

even when pointed off-sun by 45 deg or more. The precision

required is typically on the order of a few degrees and is highly

dependent upon the specific design, the desired cell concen-
tration ratio, and whether the primary concentrator is a line or

point-focus design. For example, the two-axis pointing re-
quirements for the minidome Fresnel concentrator utilizing an

optical secondary, are -2-_3.5 deg. 16 Although more restrictive

than a fiat-plate array, this is still an order of magnitude less

stringent than the pointing required by solar dynamic concen-

trating systems, and well within the capability of modern track-

ing systems.
Photovoltaic concentrator concepts were looked at a number

of years ago for civilian missions. During the 1980s that work

transitioned into military programs where the emphasis was

survivability from man-made threats. While many concepts

were proposed, most of the work centered on systems using
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line-focus and point-focus reflective optics. Changes in the

world political structure eventually eliminated those programs,

or changed their emphasis to high-performance/low-cost sys-
tems. Much of the recent work on concentrator systems has

centered on the use of domed-refractive optics. 16The refractive

concentrator system uses a domed lens design that has high

optical efficiency and is extremely insensitive to shape errors

and thermal distortions. A point-focus version of this concept

is currently flying on the photovoltaic array space power plus

diagnostics (PASP Plus) flight experiment. Results to date have

shown no significant performance degradation of the lens or

cells. 17 A design using a linear refractive element is now being

developed for flight. The line-focus design eases the require-

ment for precise tracking to a single axis and is much simpler
to manufacture than domed systems, which implies reduced

array costs. 18

Early cell-development work designed to support the first
concentrator systems centered on single-junction GaAs cells.

The best laboratory GaAs concentrator cells have reached

AM0 efficiencies approaching 25% at concentrations of 100

suns. w However, it was not long before higher-efficiency mul-

tijunction devices were being considered, in which a lower

bandgap solar cell is placed underneath an infrared (IR)-trans-

parent higher bandgap cell. A mechanically stacked gallium

arsenide/gallium antimonide cell 2° has achieved efficiency in
excess of 30%. 21 (Note that the cell efficiency of 30.5% does

not account for optical losses in the concentration system, pro-

jected to be about 15% for current lenses without antireflective

coatings.) Adaptation of the recently developed planar GalnP/
GaAs monolithic devices to concentrator designs is also start-

ing. While the type of cell chosen is highly dependent upon

the mission requirements and total system cost, concentrator

arrays offer an opportunity for faster implementation of newer,

higher efficiency photovoltaic devices and allow these devices
to become cost competitive with current photovoltaic array

systems.
While concentrator arrays have yet to be flown as a primary

power source, significant interest is being shown by commer-

cial and government users because of the potential for in-

creased performance at lower cost. Other benefits, such as re-
duced momentum control and plasma interaction effects, offer

advantages at the spacecraft system level. Data from the PASP-

Plus flight experiment indicate that concentrator arrays have
minimal interactions with the space plasma, even when biased

to high voltages. Thus, concentrator arrays may make high-

voltage arrays practical. Despite these advantages, flight data
are needed to address concerns regarding pointing and track-

ing, lens material survivability, and long-term system perfor-

mance.

Thin-Film Solar Cells

An alternative to the conventional single-crystal solar cell is

the thin-film solar cell. Thin-film solar cells are made from

thin (1-5 Arm) semiconductor layers deposited on an inert sub-
strate or superstrate material. The semiconductors have a high-

absorption constant; the high-absorption constant allows es-

sentially complete absorption of the light within the first
micron or so of the material. Recently, thin-film solar cells

have been the topic of a considerable research effort for low-
cost terrestrial electricity production. Initial research efforts fo-
cused on a-Si; recently, copper indium selenide (CuInSe2) and
CdTe have shown extremely good progress. Figure 2 shows

progress in efficiency of CuInSe2 and CdTe cells.
For technologically well-developed materials, such as Si and

GaAs, achieved efficiencies are very close to the theoretical

predicted limits. For thin-film materials, achieved efficiencies
fall well below these values. There are two reasons for this

disparity. First, Si and GaAs have received the benefit of ex-
tensive materials development for the electronics industry and

are technologically very well understood materials; thin-film

materials have been comparatively little researched. Second,

because thin-film materials are polycrystalline or amorphous,

there are additional sources of efficiency loss because of the

effects of structural disorder and grain boundaries. It is not
known whether the ultimate efficiencies of these materials can

ever approach those of the single crystals.

In general, all of the thin-film solar cell types have excep-

tionally high radiation tolerance compared to conventional sin-

gle-crystal cells. A review of radiation damage effects in thin-
film cells can be found in Ref. 22; later data can be found in

Refs. 23 and 24.

Advantages of thin-film solar cells are: high radiation tol-

erance; high specific power (potentially in the kilowatt/kilo-

gram range); large-area arrays with integral series intercon-

nections; the potential for thin, flexible blankets; and low cost.

Disadvantages are, lower efficiency, lack of spacecraft expe-
rience, and the fact that they are not currently produced in

volume on lightweight substrates.
Reviews of thin-film solar cell research for terrestrial appli-

cations can be found in Refs. 25 and 26. Reviews of appli-

cations for space can be found in Refs. 27-29.

Experimental measurements on thin film solar cells are typ-
ically quoted for a solar spectrum filtered by passage through

the atmosphere (air mass 1.5, or AM1.5 spectrum). Very few
measurements have been made of cells under the space (AM0)

spectrum. Efficiency measured under space sunlight is lower

than that under terrestrial sunlight because most of the added

energy available in space is in the IR and uv regions, to which

solar cells are generally not very responsive. The conversion
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factor from AMI.5 to AM0 efficiency is typically a decrease

in efficiency by 15 to 20% for cells with bandgaps in the range

of interest, varying with the spectral response of the solar cell

in question. For an amorphous Si cell, for example, conversion
of AM1.5 efficiency to AM0 is by a multiplicative factor of

0.80. 30 For a copper indium gallium selenide (CulnGaSe2) cell,

an efficiency of 11.1% AM1.5 was measured as 10.0% AM0, 31

resulting in a multiplicative factor of 0.90. In Fig. 2, we used

a multiplicative factor of 0.8 to convert measured AM1.5 ef-

ficiency to estimated AM0 efficiency.

While thin-film technologies have not yet been demonstrated

in space, there is a very large (by space standards) manufac-

turing base on the Earth. Amorphous silicon production is cur-

rently at a level of tens of megawatts per year. Commercial

production of CulnSe2 modules has been slower than expected;

however, a factory for production of CulnSe2 arrays at the

level of hundreds of kilowatts to megawatts per year has been

announced, and two companies commercially produce CdTe

at the level of a hundred kilowatts per year, with increases in

capacity expected. 32

The active thickness of thin-film cells are typically a few

microns, compared to several hundred microns thickness re-

quired for conventional Si solar cells. The technology could
potentially be extremely lightweight, if the cells can be de-

posited on lightweight substrates (or superstrates). However,

current technology development programs are directed at glass

substrates, inexpensive and rugged, but not lightweight. There

is only a small research effort on alternative, lightweight sub-

strates. Four-cm 2 CulnSe2 cells have been produced on 50-/xm-

thick flexible glass substrates. 33 Kapur and Baso134 have re-

ported small-area CulnSe2 cells of efficiency as high as 9%

(AM1.5, corresponding to about 7% AM0 efficiency) fabri-

cated on thin molybdenum foils. Technology to manufacture

a-Si solar cells on lightweight thin substrates has been dem-

onstrated by several organizations, 35-37 and one company even

produces a-Si solar cells on flexible substrates as a commercial

product with a specific power corresponding to about 220 W/

kg at AM0.

Flexible substrate a-Si arrays are not being made with space-

qualified materials, and to date only a very small amount of

testing has been done under space conditions. There is some

interest in lightweight, high specific-power a-Si arrays for

space. 38

Future high-efficiency thin-film arrays could be produced in

multibandgap cascade structures. This could potentially allow

efficiencies of 15-20%, with the lightweight and high-radia-
tion tolerance characteristic of thin-film cells. 28'29 The best

a-Si solar arrays often use a cascade structure, because this
allows thinner subcells and decreases the amount of light-in-

duced degradation. The lower cell elements typically use

amorphous Si-Ge, an alloy with a lower bandgap than a-Si. 39

The best demonstrated thin-film cascade 4° uses an a-Si top cell

on a CulnSe2 bottom cell, with an efficiency of 12.5% AM0

(estimated from AM1.5 measurement). In this cell the two el-

ements are deposited on separate substrates, and the two ele-

ments coupled with transparent encapsulant. For higher spe-

cific power, it would be desirable to eliminate the intermediate

layer by depositing the a-Si cell directly on the CulnSe2. In

the seven years since this reported result, little work has been

done on multibandgap cascade thin-film cells, despite signifi-

cant improvements in efficiency of the individual cells. How-

ever, the potential efficiency improvement of cascade cells is

so large that it is unlikely that the approach will not be taken

up again in the future.

The light weight of thin-film materials allows new designs
for solar power satellites. Landis and Cull 4_ have proposed

using an extremely light thin-film solar cell to reduce the mass

of a solar power satellite by integrating the solar cells with a

solid-state transmitter• Such a technique could potentially de-

crease the mass of a solar power satellite by a factor of 10 to

100. This approach requires considerable additional study be-

fore it will be ready for engineering design.

Cost and Production Readiness

Despite revolutionary decreases in the cost of terrestrial so-

lar cells, solar arrays for space applications have not decreased

in cost significantly over the past 20 years. Space solar arrays
currently cost on the order of $1000/W, whereas terrestrial

array costs are as low as $2/(peak) W, with costs of under $1/

W quoted as actual manufacturing costs for the generation of

manufacturing plants currently under construction, assuming

that the demand exists to run these plants at full capacity.

Space array costs are high because there is only a weak

incentive to try to reduce them. Even at $1000/W, for example,

the 6-kW array of an Intelsat-VI satellite represents only a

small portion of the $250,000,000 cost of building and launch-

ing the satellite.

Some of the cost difference between terrestrial and space

arrays is because of the fact that space arrays use more efficient

cells, have more stringent weight requirements, and have many

more inspection steps to assure reliability. Custom array design

and fabrication costs for a particular mission also drive up

costs; such costs could be reduced if many arrays can be fab-

ricated according to a single template. Space power systems

are also subject to far more stringent requirements than terres-

trial systems, including the requirement to survive repeated

deep thermal cycling (a typical cycle might be -150 to
+80°C), radiation, and uv exposure, to withstand launch vi-

bration and acoustic loads, and to have highly reliable deploy-

ment mechanisms. A significant portion of the cost of a sat-

ellite solar array is the cost of interconnecting the cells. Two-

by 4-cm cells are still in use on satellite arrays, considerably
smaller than the 10 cm 2 and larger cells used in terrestrial

arrays. In this respect, the solar arrays for the space station,

using 8 × 8 cm cells and a rear-side printed-circuit intercon-
nect, are a considerable advance. Use of thin-film cells, with

the interconnections made on large-area sheets during cell

manufacture, could also considerably reduce this expense.

Over the last 10 years, the terrestrial photovoltaic industry

has made great advances in production capability, with single-

crystal Si, polycrystalline Si, and a-Si all having well over a

megawatt per year of production capability, and with several

factories recently announced to produce both CdTe and copper

indium selenide. Figure 3 shows the historical trend of world

shipments of photovoltaic-generating capacity. While the pro-

duction capability is growing, the cumulative production of

solar panels over the last 25 years only totals slightly over 500

MWp, roughly the power capacity of a single nuclear electric

plant. Note also that solar cell production quantities are quoted

in terms of peak megawatts, the power produced with the sun

directly overhead. Actual power production on the Earth's sur-
face is lower because of night and cloud coverage. On the

same graph, the world usage of solar cells for space, well

under 1 MW/year, would not even be visible.

Several new production plants have been announced for

completion in the near future, and production capacity is ex-

pected to continue to grow. Capacity by the year 2000 should

be over 100 MWp of new photovoltaic generating capability

per year.

Nonsolar Use of Solar Cells

A nonsolar area of interest for photovoltaic space power

systems is the development of thermophotovoltaic (TPV) cells
based on solar cell technology. In a TPV cell, IR radiation

emitted from a heat source is converted into electricity by a

photovoltaic cell. This can be used, for example, as a conver-

sion mechanism for radioisotope power systems. Another pro-

posed use is to heat the emitter with concentrated solar energy.
Such a system has two potential advantages over conversion

of the solar energy directly by the solar cell: first, it allows the

possibility of energy storage in the form of heat, eliminating
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the requirement for batteries, and second, it allows the use of

recycling unused energy (i.e., photons of wavelength too long
or too short to be efficiently converted) by reflecting them back

to the source, resulting in higher efficiency.

In principle, any heat source could be used for TPV con-

version. In practice, 1000-1500°C emitters are used. Lower

temperatures tend to put out too little optical power to convert

efficiently, typically in extremely long wavelengths, while

higher temperature emission surfaces are difficult to maintain

without degradation.

Since IR sources emit radiation at wavelengths considerably

longer than those emitted by the sun, at roughly 6000 K emis-

sion temperature, TPV cells require lower bandgap semicon-

ductors than solar cells for optimum conversion efficiency.

Thermophotovoltaic converters have made significant ad-

vances recently, 42"43primarily because of the development of

GaSb and InGaAs solar cells originally designed as the low-

bandgap elements of tandem cells for solar conversion. Ge and

InGaAsSb solar cells are also being developed for TPV appli-
cations.

Another technology that is beginning to see application to
TPV cells is the selective emitter. 43 A selective is a heat source,

or a coating applied to a heat source, that emits IR only in a

narrow, well-defined band of wavelengths. A solar cell is then

chosen that has peak conversion efficiency at this band. Use

of a selective emitter can significantly reduce the amount of

energy emitted in wavelength ranges to which the solar cell is

not responsive, greatly increasing the performance.
Thermophotovoltaic conversion has been proposed, for ex-

ample, as an advanced power system for the proposed Pluto

Fast Flyby mission, to convert power from general-purpose
heat source (GPHS) 238PUO2 bricks operating at 1200°C. The

proposed system requires larger radiator fins than a thermo-

electric generator, because of the lower operating temperature

of photovoltaic elements, but by increasing the conversion ef-

ficiency to 26%, has a system-level increase in specific power

by a factor of 2.44

Development of TPV cells may extend the range of useful-
ness of solar cell technology to the outer planets, and to other

missions where solar illumination is weak or unavailable.

Photovoltaic cells may also be operated directly from radi-

ation from nuclear sources. Cells can be operated from electron

or alpha-particle emission, for example, and are referred to as

betavoltaic and alphavoltaic cells, respectively. 45'46

Finally, solar ceils can be used as receivers of laser radiation

for beamed power systems. 47 Solar cells are somewhat more

efficient operating under laser illumination of the optimally

chosen wavelength than under the solar spectrum; in most ex-

amples, this roughly doubles the efficiency. 48 A wide variety

of applications of laser power beaming are possible. 49

Conclusions

Significant advances have been made in solar cell efficiency

over the last few years, and solar arrays for future missions

are expeced to be significantly different than the silicon arrays
that have dominated the satellite power industry since 1958.

Concentrator cells with conversion efficiency over 30%, and

nonconcentrating solar cells with efficiency over 25% are now
available. Advanced radiation-tolerant InP solar cells have ef-

ficiences approaching 20%, although they are not yet ready for

commercial production. In addition, thin-film arrays are being

developed that could be extremely radiation tolerant, low-cost,

and lightweight, although not highly efficient. Solar cells also

have possible nonsolar applications in space, including use as

converters for thermal, alpha, beta, and laser power sources.
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