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1 Summary

Electrophoresis has long been recognized as an effective analytic technique for the separation

of proteins and other charged species, however attempts at scaling up to accomodate commercial

volumes have met with limited success. In this report we describe a novel electrophoretic separation

technique - Binary Oscillatory Crossflow Electrophoresis (BOCE). Numerical simulations indicate

that the technique has the potential for preparative scale throughputs with high resolution, while

simultaneously avoiding many problems common to conventional electrophoresis. The technique

utilizes the interaction of an oscillatory electric field and a transverse oscillatory shear flow to

create an active binary filter for the separation of charged protein species. An oscillatory electric

field is applied across the narrow gap of a rectangular channel inducing a periodic motion of

charged protein species° The amplitude of this motion depends on the dimensionless electrophoretic

mobility, a = Eo_ where Eo is the amplitude of the electric field oscillations, # is the dimensional
wd '

mobility, w is the angular frequency of oscillation and d is the channel gap width. An oscillatory

shear flow is induced along the length of the channel resulting in the separation of species with

different mobilities. We present a model that predicts the oscillatory behavior of charged species

and allows estimation of both the magnitude of the induced convective velocity and the effective

diffusivity as a function of a in infinitely long channels. Numerical results indicate that in addition

to the mobility dependence, the steady state behavior of solute species may be strongly affected by

oscillating fluid into and out of the active electric field region at the ends of the cell. The effect is

most pronounced using time dependent shear flows of the same frequency (cos(wt) flow mode) as

the electric field oscillations. Under such conditions, experiments indicate that solute is drawn into

the cell from reservoirs at both ends of the cell leading to a large mass build up. As a consequence,

any initially induced mass flux will vanish after short times. This effect was not captured by the

infinite channel model and hence numerical and experimental results deviated significantly. The

revised model including finite cell lengths and reservoir volumes allowed quantitative predictions of

the time history of the concentration profile throughout the system. This latter model accurately

describes the fluxes observed for both oscillatory flow modes in experiments using single protein

species. Based on the results obtained from research funded under NASA grant NAG-8-1080.S, we

conclude that binary separations are not possible using purely oscillatory flow modes because of

end effects associated with the cos(wt) mode. Our research shows, however, that a combination of

cos(2wt) and steady flow should lead to efficient separation free of end effects. This possibility is

currently under investigation.
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1 Introduction.

The separation and purification of biochemicals is vital to many industries. For example,

whey proteins and other macromolecules are concentrated from cheeses and used to fortify

certain milk products in the dairy industry. Additionally, many biochemicals represent

active ingredients in drugs and medicines produced as pharmaceuticals. Techniques for

producing pure proteins, for example, such as density centrifugation and crystallization,

although capable of large throughputs, are particularly harsh on solute species and can

result in denaturation. In 1937, Tisilius [1] demonstrated experimentally that electrophoresis

could be used to isolate very similar blood proteins under much milder processing conditions,

i.e. separations could be conducted in actual biological mediums preventing the potentially

damaging effects of denaturation. Since this discovery, the technique has received widespread

attention and various versions of the original approach have emerged, all with the intent of

increasing both throughput and resolution. While high resolution has been achieved on a lab

scale, scaleup has experienced limited success. Consequently, electrophoresis has remained

a primarily analytical technique.

Recently, our research group has developed a novel approach to electrophoretic sepa-

rations, Binary Oscillatory Crossflow Electrophoresis (BOCE). The technique uses the in-

teraction of an oscillatory electric field and a transverse oscillatory shear flow to create an

active binary filter for the segregation of charged species. An oscillatory electric field is ap-

plied across the narrow gap of a rectangular channel inducing a periodic motion of charged

protein species. The amplitude of this motion depends on the dimensionless electrophoretic

mobility, a = E__ where Eo is the amplitude of the electric field oscillations, # is the dimen-wd '

sional mobility, w is the angular frequency of oscillation and d is the channel gap width. An

oscillatory shear flow is induced along the length of the channel resulting in the separation

of species with different mobilities. Preliminary results indicate that the technique may

achieve larger throughputs than conventional electrophoretic methods while retaining the

high resolution achieved on a laboratory scale. The primary goal of the research conducted

under NASA grant NAG-8-1090.S was to develop the BOCE technique for large scale protein

separations.

2 Background.

Electrophoresis describes the motion of charged particles or molecules relative to the

bulk fluid under an external electric field. Smoluchowski(1903) and Huckel(1924) [2] showed

that the velocity of a charged species was proportional to the electric field strength and the

electrophoretic mobility, #. The mobility was defined as the velocity per unit field strength,

and was determined to be related to the size and charge of the particle as well as properties of

the surrounding fluid. Tisilius later used the information to experimentally demonstrate the

utility of electrophoresis for protein separations [1] in 1937. Since that time, the technique

has been widely acknowledged as an attractive method for both analytical and preparative

biochemical separations due mainly to the mild processing conditions. A review of the

history and progress of modern electrophoresis is given by Ivory [4].



2.1 Conventional Electrophoresis Techniques.

One attractive form of electrophoresis is thin-film continuous free-flow electrophoresis

(CFFE). In a typical continuous free-flow device, mixed solute is fed into a stream of carrier

electrolyte flowing through a thin 0.5 to 1.0 mm gap between two electrodes that bound

the gap width, and an electric field applied transverse to the carrier flow separates the

solute into zones. The distance each molecule moves between the electrodes is proportional

to the magnitude of the electric field and the species electrophoretic mobility, which is

O(10-6_). The small solute velocities require carrier flow rates and channel lengths such

that experimental times are approximately one hour [4] and, consequently, throughputs are

usually limited to a few milligrams of purified solute in that time span.

The throughput in a CFFE device may be increased by increasing the electric field

strength (which increases the solute velocities), however power dissipation, or Joule heat,

in the fluid is proportional to Eo2a, where Eo is the electric field magnitude and a is the

conductivity of the carrier fluid. The heat may be removed by wall cooling, however temper-

ature gradients in the fluid may lead to buoyancy driven instabilites. Viscous stabilization

can be increased with smaller gap thicknesses, however this further diminishes the through-

put. Even if buoyancy driven instabilites are eliminated, crescent dispersion, electroosmosis

[4] and electrohydrodynamic mixing [5], [6] may limit the resolution of the CFFE system.

If the electric field is applied across the narrow dimension of the gap, the effects of

crescent dispersion and electroosmosis can be reduced. However this configuration requires

larger electric fields to separate solute because the distance species must migrate before

exiting the device is significantly decreased. Consequently, the increased electric fields may

destabilize the system. Philpot [8] overcame these difficulties and created one of the more

successful high throughput CFFE devices. His device uses an electric field across the annular

gap of a rotating Couette device with the channel aligned vertically. The centrifugal forces

and the vertical alignment stabilize the effects of large electric fields and, consequently,

buoyancy driven mixing is reduced_ A commercially available separator based on this design

is capable of processing about 10g of protein per hour, however difficulties involved with

extracting the narrow bands of solute from the device limit the resolution.

2.2 Field Flow Fractionation Techniques.

Another approach similar to electrophoresis is Electrical Field Flow Fractionation (EFFF)

[7]. This technique combines laminar flow of carrier electrolyte in a channel with a trans-

verse electric field to separate components of a complex mixture. As the field is applied,

protein species are focused into regions near the wall. The distance these zones extend away

from the wall is due to an equillibrium balance between the focusing effect of the electric

field and diffusion, hence elution of a species from the device is inversely proportional to the

species' electrophoretic mobility. While this technique experimentally agrees with theory at

low electric field strengths, the resolution is poor. The large electric fields required for a

sharp separation were found to effectively immobilize proteins in the device [3]. Attempts

have been made to improve this technique by experimenting with different channel geome-

tries [9], or by introducing transverse pH gradients [10], however little progress has been



made. Consequently,EFFF remainsa small scalebatch elution technique.
In order to improvethe throughput of EFFF, Giddings [11]proposeda method to elimim

nate the immobilization of speciesat high valuesof the appliedfield. This technique,termed
Cyclical Electric Field Flow Fractionation, or CEFFF, usesa cyclical electric field to induce
periodic motion of solute. The induced solute motion when coupled with a steady flow
leadsto a time averagedsolute velocity through the cell that is a function of the mobility.
Becausethe migration acrossthe gap is not limited by the ratio of the moleculardiffusivity
to the electrophoreticmobility, larger electric fields and hencethroughputs are potentially
achievable.

2.3 Novel methods.

Shmidt and Cheh proposed a new technique similar to CEFFF applicable to continuous

separations[12]. In addition to a steady flow and a transverse periodic electric field, Shmidt

and Cheh proposed a third direction of motion - a periodic pulsating flow - acting perpen-

dicuar to both the steady flow and the field. The system was modelled numerically, ignoring

the effect of diffusion. Numerical results indicate that their method is capable of separating

solute species whose electrophoretic mobilities differ by 0.1_ These predictions have yetVsec "

to be verified experimentally.

Chandhok and Leighton [13] recently proposed a' technique similar to that of Shmidt

and Cheh. In this method, an oscillatory - rather than pulsed - crossflow is coupled with an

oscillatory electric field. By using an oscillatory flow it is possible to induce the migration

of species with different electrophoretic mobilities in opposite directions. Chandhok and

Leighton developed an analytical model for the motion of solute species in the absence of

diffusion. In addition to ignoring diffusion, their solution neglects the no flux boundary

conditions at the walls. This simplifies the model, however it also limits the possible oper-

ating parameters of the system. Nevertheless, they were able to show that the separation

could be optimized for a given combination of oscillatory electric field and crossflow modes.

Furthermore, since the solute molecules migrate to a particular streamline regardless of the

initial position, then solute could be fed across the entire width of the gap. The resulting

throughput represents a large increase over conventional devices that feed solute at only one

point.

Although the proposed methods of Shmidt and Cheh and Chandhok and Leighton seem

promising, an actual experimental device implementing either would be difficult to design

because it requires precise control of simultaneous fluid flow in two directions. Our re-

search group has recently developed a novel technique that combines the most desirable

features of Chandhok and Leighton's method while avoiding the complexity of controlling

fluid flow in two directions. This technique, Binary Oscillatory Crossflow Electrophoresis,

is theoretically capable of separating one component from a complex mixture while having

the potential for significant improvements in throughput and resolution over conventional

CFFE techniques. This method relies on the interaction of an oscillatory electric field and

a transverse oscillatory shear flow, shown in Figure (1). As mentioned earlier, an oscillatory

electric field applied across the thin dimension of a rectangular channel induces a periodic

3



motion of chargedprotein species. The amplitude of this motion dependson the dimen-
sionlesselectrophoreticmobility, a = _oU where Eo is the amplitude of the electric field, #

rod '

is the dimensional electrophoretic mobility, w is the angular frequency of oscillation and d

is the channel gap thickness. An oscillatory shear flow is induced along the length of the

channel resulting in the separation of species with different mobilities. Appropriate selec-

tion of frequency and phase of oscillation of the two interacting driving forces provides an

effective filter that will allow proteins either higher or lower than a chosen electrophoretic

mobility to pass through the device. The technique could be used for both analytical and

preparative work by programming the filter setpoint to change with time and collecting the

purified species that pass through _the device at each setpoint. For continuous isolation of a

particular fraction from a complex mixture feed, a network of these devices could be used.

Electric Field Oscillation

Cross Flow

Figure 1: Direction of motions in a binary oscillatory crossflow electrophoresis cell.

In the next section, the effect of coupled oscillatory electric and flow fields on the motion

of charged solute species is modelled for a thin channel geometry. The analytical solution

presented is possible in the limit of zero diffusion. It will be shown that for a particular

choice of oscillatory electric field, the only modes of a general Fourier series that lead to solute

migration are a steady mode, cos(wt) mode and cos(2_t). These results closely resemble

the work of Chandkok and Leighton [13]. The applicability of the model is extended using

numerical simulations including diffusion for the case of an infinitely long channel, and the

induced migration velocity and effective axial diffusivity are calculated as a function of the

dimensionless mobility a and the dimensionless diffusivity A = D for purely oscillatory
d2¢0

flows. Included is a comparison of the predicted performance of the BOCE system with

conventional CFFE units in the infinite channel limit.

In section four, we describe the experimental system used to verify the model predictions.

Single protein experiments using Bovine Serum Albumen (BSA) and Bovine Hemoglobin

(BHb) were conducted and are shown to agree well with our model for one choice of oscil-

latory shear flow - _ = Axwcos(2wt), where Ax is the oscillatory tidal displacement, while

large discrepancies are observed for oscillatory shear flows at half this angular frequency.

Reasons for this discrepancy are discussed in section five. It will be shown that oscillating

fluid into and out of the active electric field region has a large effect on the time history of

the concentration profile. Using a revised numerical model including the cell end regions,

quantitative agreement with experiments under both sets of flow conditions is observed. We

conclude with a summary of results and conclusions.
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3 Theory.

3.1 Analytical Model.

In the following analysis, we examine the effect of two oscillatory driving forces, an

electric field and a shear flow, on the motion of charged solute species in the absence of

diffusion. Here we have chosen the x-axis to be along the channel length and the y-axis

to be across the thin gap (between the electrodes). The motion of charged species in the

y-direction is a function of the electrophoretic mobility, #, and the time dependent electric

field:

__ _. #Eo d , ,_
dy _ #Eoh(wt) - wdt g_w_) (1)
dt

where y is the solute position in the gap, t is the time, w is the frequency of oscillation, Eo

is the electric field strength, h(wt) describes the oscillation of the electric field, and g(wt)

describes the oscillatory motion of the solute in the y direction. If we integrate equation

(1), the time dependent solute position in the gap is given by:

v = (2)
d

Here we have defined c_ = _Eo as the dimensionless electrophoretic mobility for gap thickness
wd

d.

The convective motion in the x direction can be written as

ux=numaxd(1-d) f(wt ) (3)

where Ux is the fluid velocity in the x direction, umax is the velocity of the center line, and

f(wt) is the oscillatory component to the flow. If we substitute the solute position from

equation (2) into equation (3) and take the time average over one period of oscillation, we

have an equation describing the motion of a solute molecule in the absence of molecular

diffusion:

-dt = 4umaxa ((g(wt)f(wt)) - a (g(wt)2f(wt)}) (4)

where (.) is the time average over one period. Here we see that the velocity of a particular

solute species through the channel is a function of the interaction between the two time

dependent functions, f(wt) and g(wt), and the electrophoretic mobility, a.

3.2 Analytical Results.

With equation (4) we may evaluate the solute velocity across the channel for combinations

of arbitrary choices for f(wt) and g(wt). Chandhok and Leighton [13] chose g(wt) = 1 -

cos(wt) and showed that the only modes of a general Fourier series f(wt) that contributed

to solute migration (in the x direction) were a steady flow, cos(wt), and cos(2wt). The time

averaged velocity for each of these three individual modes using the above choice of g(wt) is

given by:

I _tt } ]steady = 2°1(2- 3°_)
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and are shownin Figure (2) as a function of the dimensionlessmobility a.
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Figure 2: Plot of dimensionless velocity versus dimensionless electrophoretic mobility in the

absence of cross-streamline diffusion.

Note that the steady mode leads to positive solute velocities for all values of a, while

the cos(wt) and cos(2wt) modes lead to negative velocities. For a binary separation, the

velocity must change sign at some critical value of a. Thus species with mobilities less than

the critical value will be retained in the device, and those with larger mobilities will be

allowed to pass, or vice versa. Although none of the choices for f(wt) satisfy this constraint

individually, the structure of our equations allows us to combine the flow modes to produce

a separation. The velocity for one combination, f(wt) = cos(wt) - cos(2wt), is shown in

Figure (3). Note that in addition to satisfying the above criteria for a binary separation,

d(_/uma_) through the critical mobility is large, a condition for sharp separation. A more
de

detailed analysis concerning the optimal choice of modes for a given separation is given in

[13].
Although the analytical model provides the qualitative system performance, it is limited

in several ways. First, neglecting diffusion places a serious limitation on the range of appli-

cability of the model. Aris and others [14], [15] have shown that diffusion in the direction

of fluid motion can be enhanced by several orders of magnitude in the presence of steady

and oscillatory shear flows. Additionally, the above analytical solution confines solute po-

sitions to 0 _< y _< d. For our choice of g(wt), this limits the dimensionless mobilities to

0.0 _< a < 0.5. Consequently, optimal operating parameter ranges may be omitted.



Dimensionless velocity as a function of a for h(o)t) = sin((ot) and f(_t) = cos(o_t) - cos(2cot) with no diffusion
0.25

0.2

0.15

0,1

s 0.05

-0.05

-0.1

-0.15

-0

0.05 0.1 0.15 0.2 _oP-0"25/ ¢_:10"3 0.35 0.4 0.45 0.5

Figure 3: Plot of dimensionless velocity versus dimensionless electrophoretic mobility for

a flow waveform that satisfies the criteria for a binary separation in the absence of cross-

streamline diffusion.

3.3 Numerical Results for an Infinite Channel.

In order to better characterize solute motion, we performed numerical simulations using

a discretized form of the Langevin equation including appropriate boundary conditions.

At each time step, we added a random walk of length _, where _ D-- d2w, to the

electrophoretic motion of 1000 molecules and recorded the mean position and variance of

the solute distribution. The data was used to determine the time averaged solute velocity

and the effective diffusion coefficient in the direction of motion of the solute. We ran the

simulation until the mean position and variance became linear in time.

For our simulation, we considered a protein molecule with with dimensional mobility #

and diffusivity D. We chose to fix _he gap width d and the angular frequency w and adjust

the electric field amplitude to achieve desired values of a. Consequently, our choice of the

above parameters fixed the dimensionless diffusivity, t. For the flow, we chose the purely

oscillatory modes cos(cot), cos(2wt), and cos(cot) - cos(2cot) waveforms, and for the electric

field sin(cot) - 0.05. The small steady bias to the electric field was added to refocus the

solute toward the lower wall at the beginning of each time period. The simulated solute

velocity as a function of c_ and A for f(wt) = cos(cot)-cos(2cot) is shown in Figure (4) along

with the A = 0 result. Note that the shape of both curves is similar, however the numerical

results are shifted because of the electric field bias used in the simulations. A more detailed

discussion of the role of the bias is given in later sections.

The calculated dispersion produced by the combined oscillatory mode cos(cot) -cos(2cot)

is depicted in figure (5). Note the increased diffusive enhancement for solute that spends

longer times at short distances from the wall for c_ < 0.5. In these regions, the competing

action of electrophoretic migration, bias focusing and diffusion in the y direction approach

similar magnitudes. The sudden drop around c_ = 0.5 is caused by a much stronger fo-

cussing at both the upper and lower walls resulting from the unconstrained amplitude of the

7
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electrophoreticmotion exceedingthe dimensionof the gap. The dispersionacts to reduce
the selectivity of the binary separator.

3.4 Characteristic Performance.

To determine the characteristic throughput of our system, we performed order of magni-

tude calculations. Consider a cell with a separation chamber with length L, width W, and

thickness d connecting two well mixed reservoirs located at x = 0 and x = L (subscripts 1

and 2), respectively, shown in Figure (6). Let V_ and V2 and c1 and c2 represent the vol-

Figure 6: Diagram of a characteristic electrophoretic system.

umes and solute concentrations in the reservoirs at these locations. If the reservoir volumes

are much greater than the cell volume, then the concentration profile in the cell will reach

pseudo steady-state. With this approximation the dimensionless flux is thus given by:

u'L* "_
c_(t*)exp _ -c_(t*)

N*(t)=u* \ _H] (5)

exp V-L-.. - 1\ o::)

where u* ---: -_ , k_-- = _, L* = _-_, N* - cl(0)uma_N_and Umax = Axw where Ax is the
Umax JJo ._.max/02

amplitude of fluid oscillation.

Figure (7) shows a plot of N x as a function of (_ for an effective channel length L* =

2.5, and time dependent shear flow components f(wt) = cos(wt)- cos(2wt) and f(wt) =

cos(2wt)-cos(wt). For maximum throughput, one reservoir is held at constant concentration

(either cl or ce) while the other is flushed with buffer to maintain a concentration of 0.

Finally, values of u* and k'if are taken from Figures (4) and (5) for a dimensionless diffusivity

A = 5e -4. Clearly the flux dramatically changes near the critical mobility at a N 0.45 for

both choices of f(wt). For a 10% change in a about this point, the flux increases two orders

of magnitude. Note the small peak present for low a values using the cos(2wt) - cos(wt)

waveform. This peak represents the effect of large dispersion and simultaneous low induced

velocity at low values of a. Under these conditions, larger tidal displacements decrease the

distance over which concentration gradients develop, leading to higher effective diffusive

fluxes. To avoid the potentially damaging effects of this peak on resolution, care must be

taken in choosing operating parameter ranges for high mobility separations.
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We can compare the predicted throughput of our system with typical CFFE devices

using a two protein mixture. For this case we use 1.0wt% solutions of Hemoglobin (Hb) and

Serum Albumin (SA) proteins with characteristic dimensional mobilities of #Hb = 17.4e -5

and #SA = 8.0e-Sf-_ _ [16]. Using w = 0.136s -1, d = 0.1crn, and Eo = 45V/em, the

dimensionless mobilities are aHb = 0.575 and aSA = 0.25. For a cell of length L = 20.0crn

and width W = 6.0cm, we calculate throughputs of 4.59g/hr for SA protein using f(cot) =

cos(wt)-cos(2wt) and 4.61g/hr for Hb protein using f(wt) = cos(2wt)- cos(wt) (the second

protein in each case had essentially zero flux). These throughputs represent several orders

of magnitude improvement over typical CFFE devices using concentrations far below the

solubility limits of these proteins[4].

4 Experimental.

4.1 Experimental Setup.

To verify the analytical and numerical results of the BOCE technique, an experimental

system including a single binary separation cell, two reservoirs and an electrolyte bath was

constructed. The separation cell is similar to that of Giddings [7], and allows continuous flow

of solute in a buffer solution through a thin separation chamber between two membranes.

The cell used in our earliest experiments contained a separation channel 20.0 cm long, 5

crn wide and 0.1 cm thick. Solute and buffer were fed through small syringes at the inlet

and outlet of the cell. The design was eventually abandoned due to fluctuations in channel

volume caused by the large pressure drops across the syringe and insufficient membrane

support.

The redesigned BOCE cell is much smaller than the original version, and isbeing used

10



for all of our current work. The central separationchamberof this cell is 10 cm long, 3 crn

wide, and 0.1 cm thick and was machined from a plastic sheet divided into two halves to

accomodate solute feed across the entire 3.0 cm channel width. Fluid is introduced at either

end of the separation chamber through plexiglass manifolds connected to the reservoirs via

small polypropylene fittings and tubing. The separation chamber is sandwiched between

two stretched regenerated cellulose membranes directly supported by electrode screens. The

layers are clamped between two plexiglass blocks each with a central rectangular opening

approximately the size of the separation chamber. The separation cell is shown in Figure

(8).

Figure 8: Diagram of the BOCE separation cell

Gas bubbles and Joule heat are removed by submerging the entire cell in an electrolyte

bath open to atmosphere. The bath accommodates up to 6 liters of electrolyte fluid and

copper cooling coils that control the temperature difference between the bath and the exit

reservoir. The cell is positioned in the bath with the 5.0 crn side forming the vertical axis,

and gas bubbles generated from electrode reaction are removed from the electrodes through

the rectangular openings in the cell block halves.

The oscillatory electric fields were generated by driving constant amplitude currents in

the electrolyte using a KEPCO BOP100-4M bipolar power supply controlled by LabVIEWs

software. Bulk fluid conductivity and temperature data were measured with a Cole-Parmer

conductivity meter. The data was simultaneously fed into LabVIEWs and the amplitude

of the current waveform was adjusted to maintain a constant electric field amplitude. The

flow waveforms were delivered by a specially designed syringe pump using a Galil DMC-1500

motion controller and software. Position data from the syringe pump was fed back into Lab-

VIEW allowing phase locking of the two driving forces to within a few milliseconds. The pH

was measured using an Omega PHH-3X meter accurate to +/- 0.1 units. Protein concen-

tration was analyzed using a Varian UV-VIS spectrometer using refractive index matched

cuvettes allowing 80% transmission at 200rim. Absorbance intensities were measured in the

range of 0.1 to 1.0 cm -1 with accuracy of +/- 0.002 cm -1.

4.2 Results.

The focus of our preliminary experiments was to test the predictions of our model in two

ways. First, we sought to examine the phase dependence of the flux on our waveforms. In
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addition to checkingour model, wewould be demonstratingthe utility of the techniquefor
both high and low mobility separations.Next, we soughtto demonstratethat changingthe
dimensionlessmobility, a, by changing either the amplitude of the electric field Eo, or the

angular frequency w, would change the sign and magnitude of the flux of the protein. This

would verify the existence of a binary filter point as well as give quantitative comparisons

to theory. To this end preliminary single protein experiments were conducted using Bovine

Hemoglobin (BHb) dissolved in a sodium acetate/acetic acid buffer of pH 4.5 and conductiv-

ity of approximately 325.0 vA. Based on results from Douglas et. al. [16] the dimensional
cm

electrophoretic mobility of BHb was approximately 20.0e -5 cm2 The syringe, which servedVsec"

as the inlet reservoir, was filled with approximately 15mL of protein solution, while the

outlet reservoir contained approximately 4OraL of the same solution. In all experiments, the

concentration of the outlet reservoir was monitored with time.

Phase Dependence. The initial experiments were conducted using the larger sepa-

ration cell. The choice of waveforms included h(wt) = sin(wt) - 0.05 for the electric field

f(wt) = 2 cos(2wt) and -2 cos(2wt) for the flow. The concentration in the outlet reservoir

was found to decrease using the -2 cos(2wt) mode and increase using 2 cos(2wt) mode. The

results are shown in Figure (9). Note that a sign change of the flux resulting from a
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o 1'

O 0.95

0.9
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0.8

Resewoir Concentration vs. Time

o

1'0 2'0 3'0 4'0 5'0 5'0 7'0 8'0 9'0 100
dimensionless time

Figure 9: Reservoir Concentration vs. Time. Experimental Conditions: Ax = 1.5crn,

w = 0.068_-_, f(wt) = 2cos(2a)t),-2cos(2wt), E = Eo(sin(21r6) - 0.05), Eo = 19.6 V, pH

= 4.5, conductivity = 3.75e -4s, Co = 2.2e -2 wt % BHb protein

180 ° phase change in the flow waveform agrees with theory. To test this phase dependence

further, we examined the effect of a time dependent phase lag produced by the electric field

waveform h(wt)= sin((2u- _)t/T)-0.05, where T is the period of oscillation. The result

of this experiment is given in Figure (10), where the dimensionless flux is plotted vs. phase

angle. Again there is a qualitative agreement with theory.

Effect of the Mobility. Because of deficiencies in the larger cell mentioned above, the

smaller cell was used in the subsequent experiments. Using this cell we examined the effect

12
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Figure 10: Measured Throughput vs. Phase Lag. Experimental Conditions: Ax = 1.5cm,

= _ , 2 V0.068_, f(wt) = 2cos(2wt), E = Eo(sin((2_ - _)_) - 0.05) Eo = 5_, pH = 4.6,

conductivity = 3.25e -4--s Co = 1.524e -2 wt % BHb protein
C77t '

of varying a on the solute flux using the complex cross-flow waveform f(wt) = 0.9 cos(wt) -

2 cos(2wt). The frequency was fixed at 0.136 1_ and the field strength varied from 5 to
sec

25 --V. The results of our initial experiments are depicted in Figure (11).
am
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Figure 11: Measured Flux vs. a. Experimental Conditions: Ax = 1.5cm, w = 0.136 tad,

f(wt) = 0.9cos(wt)- 2cos(2wt), E = Eo(sin(21r_)- 0.05), Eo = 5 to 25-_, pH = 4.5,

= 3.75e-4_, Co = 2.2e -2 wt % BHb protein
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Under theseconditions it is seenthat low valuesof the mobility led to a negative flux,
while somewhathigher valuesled to a positive flux, yielding a binary separation. Although
these results are in qualitative agreementwith our theoretical model, the actual position
of the critical mobility differs from that expected, and the magnitudes of the flux are far
lessthan theory predicts. To investigatethe sourceof thesediscrepancies,weexaminedthe
behavior of the individual crossflowmodes.

To test the performanceof the individual modes,our experimentsusedinitially uniform
concentrationsand either f(wt) = - cos(wt) and f(wt) = - cos(2wt) for the flow waveform.

The predicted flux in each case would be in the direction of the outlet reservoir, and would

thus insure that the rise in reservoir concentration would be due only to the interaction of the

two driving forces. For our experiments we chose h(wt) = sin(wt) - 0.05 for the oscillation

of the electric field, w = 0.136 for the frequency, Ax = 4.0cm for the stroke length, Eo

varying from 15 - 45V/cm for the electric field strength and reservoir volumes V1 = 15ml

and V2 = 30rnl.

The results for cos(wt) and cos(2wt) are shown in Figures (12) and (13). For comparison,
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Figure 12: Reservoir Concentration vs. Time. Experimental Conditions: Ax = 4.0cm,

w = 0.136_, f(wt) = -cos(_t), E = Eo(sin(27r t) -0.05), Eo = 15- 35_, pH = 4.5,

= 2.75e-n_m, Co = 2.2e -2 wt % BHb protein

a numerically determined concentration profile (from equation (5)) has been included in

both figures for an intermediate mobility. Note that the concentration begins to rise for all

values of the a for both waveforms, and the relative flux increase with respect to the mobility

agrees qualitatively with theory. However, after some time, the concentration in all - cos(wt)

experiments begins to decrease and furthermore the magnitudes of the flux are far less than

predicted. Conversely, Figure (12) shows that for the -cos(2wt) mode, the concentrations

increase toward a steady value that is in good agreement with theory. Additionally, mass

balance analysis following the experiment revealed a rise in concentration in the cell and a

decrease in the syringe for the -cos(wt) experiments. The apparent focusing of solute in
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Measured exit reservoir concentration vs. time, f(_t)=-cos( 2_t ), _,x = 4cm, h(cot) = sin(o)t) - 0.05
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Figure 13: Reservoir Concentration vs. Time. Experimental Conditions: Ax = 4.0cm,

w = 0.136_ d, f(wt) = -cos(2wt), E = Eo(sin(27r_)- 0.05), Eo = 15- 45_m , pH = 4.5,

a = 2.75e-4_-_, Co = 2.2e -2 wt % BHb protein

the cell appeared to increase with increasing a. Furthermore, the effect was absent for the

higher frequency mode.

Despite the discrepancies with theory, the approximate location of a separation point

could be determined from the individual mode experiments. The results of one such experi-

ment, using a binary protein mixture, is shown in Figure(14). Note that the concentration of

Bovine Serum Albumen (aBSA = 0.12) increases with time while that of BHb (OLBH b = 0.32)

decreases, indicating a binary separation. Furthermore, the relative position of the critical

mobility agrees with the experimental data of the individual modes, although not with the

theoretical predictions.

Effect of the bias. Although these results were promising, the focusing effect observed

in the cos(wt) experiments prevented the BOCE technique from being used for large scale

continuous separations in its present status. This effect is evident in the results of Figure

(14). Note that although the concentration of BHb protein decreases initially, the flux goes

to zero after a short time. In an attempt to explain the source of the focusing phenomena,

we consider the dependence of the induced migration on a for the oscillatory modes shown

in Figure (2).

To begin we examine the cos(wt) mode (here the bias is 0), noting that maximum ve-

locities are obtained when solute oscillates about one half of the channel (c_ = 0.25). For

= 0.5 however, solute will oscillate symmetrically with respect to the centerline of the

channel, and in this case, no net migration is observed. Physically this is because at times

when the solute reaches identical streamlines on each side of the centerline of the channel,

the shearing effect of the bulk flow is equal in magnitude but opposite in sign. Therefore so-

lute will always return to its beginning (x, y) position at the end of each period. Conversely,

using the cos(2wt) mode, this symmetric steady state position optimizes the performance.
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Figure 14: Reservoir Concentration vs. Time. Experimental Conditions: Ax = 4.0cm,

w = 0.136_d d, f(wt)= cos(2wt)- cos(wt), E = Eo(sin(27r t) -0.05), Eo = 25 V, pH = 4.5,

O------2.75e-4h-_m, CBHb(O) = 1.0e -2 wt 0-_,CBsA(O) ----2.0e -1 wt o_

We can conclude that the steady state position about which an individual mode oscillates

will have a large effect on the velocity induced for that mode.

The results of Figure (2), however are limited in that they do not consider the effects

of diffusion. With diffusion present, the solute distribution will eventually oscillate about

the centerline regardless of the value of the mobility for c_ < 0.5, in the absence of a bias to

the electric field. To study the competing effects of the bias and diffusion further, we ran

numerical simulations for the individual modes for different values of 5. These results are

shown in Figures (15) and (16) for the cos(wt) and cos(2wt) waveforms. For the cos(wt)

mode, the performance is optimized as the bias is increased, while the opposite is true for

the higher frequency mode. From these results we predicted that _ may be used to move

the steady state channel position of the solute distribution to improve the performance of

an individual flow mode.

To test these predictions we repeated earlier experiments for the time dependent flow

f(wt) = -cos(wt) under similar conditions using higher electric field bias. The results of

one such experiment are given in Figure (17) along with a concentration profile numerically

determined from Equation (5). In agreement with predictions, the use of a higher bias

resulted in a relative increase in the flux. This increase is attributed to the larger driving

force toward steady state oscillations that are asymmetric with respect to the centerline of

the channel. Although the observed flux has improved, the discrepancies between experiment

and the flux predicted from equation (5) are significant.
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Figure 15: Plot of the dimensionless velocity vs. the dimensionless mobility for A = 5e -4,

f(wt) = cos(wt), and h(wt) = sin(wt) - 5
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f(wt) = cos(2wt), and h(wt) = sin(wt) - c_

5 Numerical Results including Channel End Regions.

Although the numerical simulations for variable bias give important insight into the

behavior of individual time dependent flow modes, experiments indicate that the effect of

the bias alone is insufficient to explain of the discrepancies between experiments and the

model predictions. To better understand the discrepancies, it is useful to consider the
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Effect of bias on f(t)=-cos(t), c_ = 0.214, for h(t)=sin(t)-5
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Figure 17: Reservoir Concentration vs. Time. Experimental Conditions: Az = 4.0crn,

w = 0.136_-_-__, f(wt) = -cos(wt), E = 25(sin(27r t) -5)_-_, pH = 4.5, _r = 2.75e-47-_,

Co = 2.0 - 2.2e -2 wt % BHb protein

characteristic time scales governing transport in the cell.

To begin we consider the motion of a solute species distributed about the center of the

channel. The total (dimensionless) distance that the center of mass of this distribution

travels across the channel gap width in any time period is equal to twice the dimensionless

mobility a. Therefore the distance the distribution extends away from either channel wall is

1 - 2c_. In the absence of any bias or diffusion, the use of a transverse oscillatory shear flow

will (for any given a) either produce no net time averaged migration velocity for f(wt) =

cos(wt) or a maximum net velocity for a flow of twice this frequency, for reasons given

previously. If diffusion is included, the steady state position about which the distribution

oscillates will eventually move to the center of the channel, regardless of the initial position.

If we include a small electric field bias, the position of the distribution will be forced toward

one wall or another. The characteristic time to steady state can thus be expressed as

tc __=La2 The key difficulty is that solute molecules are constantly entering and exiting= (a6+_)"
the channel through the end regions. Because molecules enter the channel from a well mixed

reservoir, they will enter at a uniform concentration irrespective of the electric field. The

distribution will only reach its steady value (that for an infinite channel) after some time tc

has elapsed, which may be greater than the residence time of the solute in the channel.

To quantify the effects of the cell end regions, the earlier numerical code was revised to

include not only the finite cell length but also the reservoir volumes and concentrations. The

code made it possible to track the time history of the concentration profiles in the cell and

reservoirs, thus simulating an actual experiment. For comparison, simulations parameters

were chosen to match experimental conditions shown in Figures (12) and (13). The results

of two such simulations, together with experimental results are shown in Figures (18) and

(19).
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In contrast to earlier models, this model which explicitly includes the entrance and exit

effects does a good job of describing the observed fluxes for both oscillatory flow modes. Both

simulation and experiment show that the cos(wt) fluid oscillation mode sucks in protein from

19



the reservoirsat both endsof the cell, raising the concentration in the cell far abovethat
of the reservoirsand limiting the net rate of transport. In contrast the cos(2wt)mode does
not appearto immobilize the protein to a significantdegreeand thus yields a flux and total
transport that are muchgreater.

In order to producea binary separationof protein speciesit is necessaryto usea com-
bination of at least two Fourier modesof the fluid flow. Becauseof end effects,the cos(wt)
modeis not suitable for BOCE operation. Thus a binary separationmust be achievedusing
a combination of the cos(2wt)mode and a small amplitude steady flow. Numerical simula-
tions and preliminary experimentshaveindicated that this is a promising approachfree of
significant end effects.We arecurrently investigating this approachfurther.

6 Conclusions

In this report we have described a novel electrophoretic separation technique, Binary

Oscillatory Crossflow Electrophoresis. By imposing an oscillatory electric field across the

narrow gap of a thin rectangular channel, solute molecules will undergo periodic motion

with amplitude depending on the dimensionless electrophoretic mobility c_. With the addi-

tion of a transverse oscillatory shear flow, solute species can be made to migrate in either

direction in response to a change of phase of the oscillatory flow, even in the absence of

initial concentration gradients. For correct choice of operating parameters, the technique

can be used to separate charge species based on differences in c_. We have presented a model

that predicts the oscillatory behavior of charged species and allows estimation of both the

magnitude of the induced convective velocity as well as the effective enhancement to the dif-

fusivity as a function of a. Additionally, our model accounts for both finite cell lengths and

reservoir volumes and predicts the time history of the concentration profile throughout the

system. These latter predictions have been quantitatively supported through experiments

using single protein species.

In its present form, the BOCE technique is incapable of sustaining a binary separation

using a combination of purely oscillatory shear flows f(wt) = cos(wt) and cos(2wt) in finite

channels. This has been attributed to fluid oscillations into and out of the active electric

field regions at the ends of the cell. For time dependent flows of the same frequency of the

applied electric field oscillations, any initially induced flux will eventually vanish. However,

the technique holds great promise for use with more complex flows. For example, we have

recently modelled the effect of adding a small steady flow component to the time depen-

dent flow mode cos(2wt). Preliminary numerical and experimental results suggest that this

combination is unaffected by cell end effects and will sustain continuous binary separations.

This topic will be the focus of future research.
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