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Fault injection is important to evaluating the dependability of computer

systems. Researchers and engineers have created many novel methods to

inject faults, which can be implemented in both hardware and software.

ependability evaluation involves the study of
failures and errors. The destructive nature of

a crash and long error latency make it difficult
to identify the causes of failures in the operational
environment. It is particularly hard to recreate a
failure scenario for a large, complex system.

To identify and understand potential failures, we

use an experiment-based approach for studying the
dependability of a system. Such an approach is
applied not only during the conception and design
phases, but also during the prototype and opera-

tional phases, t;
To take an experiment-based approach, we must

first understand a system's architecture, structure,
and behavior. Specifically, we need to know its tol-

erance for faults and failures, including its built-in
detection and recovery mechanisms, 3and we need
specific instruments and tools to inject faults, create
failures or errors, and monitor their effects.

DIFFERENT PHASES, DIFFERENT TECHNIQUES

Engineers most often use low-cost, simulation-
based fault injection to evaluate the dependability
of a system that is in the conceptual and design

phases. At this point, the system under study is only
a series of high-level abstractions; implementation
details have yet to be determined, Thus the system

is simulated on the basis of simplified assumptions.
Simulation-based fault injection, which assumes

that errors or failures occur according to-predeter-

mined dismbutio_ is mefd, for evaluating theeffe¢-!
tiveaemof fault-toleran__ and a_

whid/hre:difflcult to_supp_

measurements. Testing a prototype, on the other
hand, allows us to evaluate the system without any
assumptions about system design, which yields more
accurate results. In prototype-based fault iniection,

we inject faults into the system to

• identify dependability bottlenecks,

• study system behavior in the presence of faults,
• determine the coverage of error detection and

recovery mechanisms, and
• evaluate the effectiveness of fault tolerance

mechanisms (such as reconfiguration schemes)
and performance loss.

To do prototype-based fault injection, faults are
injected either at the hardware Level (logical or elec-
trical faults) or at the software level (code or data

corruption) and the effects are monitored. The sys-
tem used for evaluation can be either a prototype or

a fully operational system. Injecting faults into an
operational system can provide information about
the failure process. However, fault injection is suit-

able for studying emulated faults only. It also fails
to provide dependability measures such as mean
time between failures and availability.

Instead of injecting faults, engineers can direcdy
measure operational systems as they handle real
workloads. 2Measurement-based analysis uses actual
data, which contains much information about nat-

urally occurring errors and failures and sometimes'

aboulDrecovery attempts. Analyzing these data can-!
_ovide uaderstanding.obactuat error and failure

_e_'csaad imighgfm=,anaiyticat models.. _

'_ d'_. Furthemaor_dammust be collected_
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infrequently. Field conditions can vary, widely, thus

casting doubt on the statistical validity of the result.
Although each of the three experimental methods

has its limitations, their unique values complement
one another and allow for a wide spectrum of depend-

ability, studies.

FAULT INJECTION TECHNIQUES

Engineers use fault injection to test fault-tolerant
systems or components. Fault injection tests fault
detection, fault isolation, and recontiguration and

recovery capabilities.

ramm_

Figure 1 shows a fault injection environment, which

typically consists of the target system plus a fault injec-
tor_ fault library,, workload generator, workload library.,
controller, monitor, data collector, and data analyzer.

The fault injector injects faults into the target system

as it executes commands from the workload generator
(applications, benchmarks, or synthetic workloads).
The monitor tracks the execution of the commands and

initiates data collection whenever necessary. The data
collector performs online data collection, and the data
analyzer, which can be offline, performs data process-

mg and analysis. The controller controls the experiment.
Physically, the controller is a program that can run

on the target system or on a separate compute_ The
fault injector can be custom-built hardware or soft-

ware. The fault injector itself can support different
fault types, fault locations, fault times, and appropri-
ate hardware semantics or software structure--the
values of which are drawn from a fault library. The

fault library in Figure 1 is a separate component,
which allows for greater flexibility and portability.

The workload generator, monitor, and other compo-
nents can be implemented the same way.

1lSmellm mmtlm Im Ininmama

Choosing between hardware and software fault

injection depends on the type of faults you are inter-
ested in and the effort required to create them. For
example, if you are interested in stuck-at faults (faults
that force a permanent value onto a point in a circuit),

a hardware injector is preferable because you can con-
trol the location of the fault. The iniection of perma-
nent faults using software methods either incurs a high

overhead or is impossible, depending on the fault.
However, if you are interested in data corruption, the
software approach might suffice. Some faults, such as

bit-flips in memory ceils, can be injected by either
method. In a case like this, additional requirements,
such as cost, accuracy, intrusiveness, and repeatabil-
ity may guide the choice of approach. Table 1 sum-

marizes commonly studied faults and injection
methods.

HARDWARE FAULT INJECTION

Hardware-implemented fault injection uses addi-
tional hardware to introduce faults into the target sys-

tem's hardware. Depending on the faults and their
locations, hardware-implemented fault injection meth-
ods fall into two categories:

• Hardware fault iniection with contact. The injec-
tor has direct physical contact with the target sys-

tem, producing voltage or current changes
externally to the target chip. Examples are meth-

ods that use pin-level probes and sockets.
• Hardware fault injection without contact. The
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injector has no direct physical contact with the

target system. Instead, an external source pro-
duces some physical phenomenon, such as heavy-
ion radiation and electromagnetic interference,
causing spurious currents inside the target chip.

These methods are well suited for studying the

dependability, characteristics of prototypes that
require high time-resolution for hardware triggering
and monitoring (fault latency in the CPU, for exam-
ple) or require access to locations that cannot be eas-

ily reached by other fault injection methods.
Engineers generally model hardware methods on

low-level fault models; for example, a bridging fault

might be a short circuit. Hardware also triggers faults
and monitors their impact, thus providing high time-
resolution and low perturbation. Normally, the hard-
ware triggers faults after a specified time has expired
on a hardware timer or after it has detected an event,

such as a specified address on the address bus.

Injectionwith contact

Hardware fault injection using direct contact with
circuit pins, often called pin-level iniection, is prob-
ably the most common method of hardware-

implemented fault injection. There are two main
techniques for altering electrical currents and volt-

ages at the pins:

• Active probes. This technique adds current via
the probes attached to the pins, altering their elec-
trical currents. The probe method is usually lim-

ited to stuck-at faults, although it is possible to
attain bridging faults by placing a probe across
two or more pins. Care must be taken when using

active probes to force additional current into the
target device, as an inordinate amount of current

can damage the target hardware.
• Socket insertion. This technique inserts a socket

between the target hardware and its circuit
board. The inserted socket injects stuck-at, open,

or more complex Logicfaults into the target hard-
ware by forcing the analog signals that represent
desired logic values onto the pins of the target

hardware. The pin signals can be inverted,
ANDed, or ORed with adjacent pin signals or
even with previous signals on the same pin.

Both of these methods provide good controllabil-
ity of fault times and locations with little or no per-

turbation to the target system. Note that because
faults are modeled at the pin level, they are not iden-
tical to traditional stuck-at and bridging fault models

that generally occur inside the chip. Nonetheless, you
can achieve many of the same effects, like the exercise
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of error detection circuits, using these iniection meth-
ods. Active probes attached to the power supply hard-
ware inject power supply disturbance faults. However,

this can damage the injected device or increase the risk
of destructive injection.

Illgllll mlllll emlllgt

These faults are injected by creating heavy-ion radi-
ation. An ion passes through the depletion region of

the target device and generates current. Placing the
target hardware in or near an electromagnetic field
also injects faults. Engineers like these methods
because they mimic natural physical phenomena.
However, it is difficult to exactly trigger the time and

location of a fault injection using this technique
because you cannot precisely control the exact

moment of heavy-ion emission or electromagnetic
field creation.

l_SUlll INil

Messaline, 4developed at LAAS-CNRS, in Toulouse,

France, uses both active probes and sockets to con-
duct pin-level fault injectaon. Figure 2 on the next page
shows Messaline's general architecture and its envi-
ronment. Messaline can inject stuck-at, open, bridg-

ing, and complex logical faults, among others. It can
also control the length of fault existence and the fre-

quency. Signals collected from the target system can
provide feedback to the injector. Mso, a device is asso-
ciated with each injection point to sense when and if
each fault is activated and produces an error. It can

also inject up to 32 injection points simultaneously.
This tool has been used in experiments on a central-

ized, interlocking system employed in a computerized
railway control system and on a distributed system

for the Esprit Delta-4 Project.
FIST s(Fault Injection System for Study ofTransient

Fault Effect), developed at the Chalmers University of
Technology in Sweden, employs both contact and con-
tactless methods to create transient faults inside the

target system. This tool uses heavy-ion radiation to
create transient faults at random locations inside a

chip when the chip is exposed to the radiation and
can thus cause single- or multiple-bit-flips. The radi-
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Figure2. General

architectureof

Messaline.

ation source is mounted inside a vacuum chamber

together with a small two-processor computer sys-

tem. The computer is positioned so that one of the

processors is exposed directly under the radiation.

The other processor is used as a reference for detect-

ing whether the radiation results in any bit-flips.

Figure 3 illustrates the FIST environment.

FIST can inject faults directly inside a chip, which

cannot be done with pin-level injections. It can pro-

duce transient faults at random locations evenly in a

chip, which leads to a large variation in the errors seen

on the output pins. In addition to radiation, FIST

allows for the injection of power disturbance faults.

This is done by placing a MOS transistor between the

power supply and the Vcc pin of the processor chip to

control the amplitude of the voltage drop. Power sup-

ply disturbances usually affect multiple locations within

a chip and can cause gate propagation delay faults. The

experimental results show that the errors resulting from

both methods cause similar effects on program con-

trol-flow and data errors. However, heavy-ion radia-

tion causes mostly address bus errors, while power

supply disturbances affect mostly control signals.

MARS _ (Maintainable Real-Time System) is a dis-

tributed, fault-tolerant architecture developed at the

Technical University of Vienna. In addition to using

heavy-ion radiation as is used in FIST, 2vLARS uses

electromagnetic fields to conduct contactless fault

injection: A circuit board placed between two charged

plates or a chip placed near a charged probe causes

fault injection. Dangling wires that act as antennas

placed on individual chip pins accentuate the electro-

magnetic field effect on those pins. Researchers com-

pared these three methods (heavy-ion radiation,

pin-level injection, and electromagnetic interference)

in terms ot their capability, to exerc:se the ,MARS error

detection mechanisms. Results showed that the three

methods are complementary and generate different

t'ypes of errors. Pin-level iniections cause error detec-

tion mechanisms outside the CPU to be exercised more

effectively than heavy-ion radiation or electromag-

netic interference. The latter two methods were bet-

ter suited for exercising software and application-level
error detection mechanisms.

SOFTWAREFAULTINJECTION
In recent years, researchers have taken more inter-

est in developing solk'ware-implemented fault injec-

tion tools. Software fauh-iniection techniques are

attractive because they don't require expensive hard-

ware. Furthermore, they can be used to target appli-

cations and operatang systems, which is difficult to do

with hardware fault injection.

If the target is an application, the fault injector is

inserted into the application itself or layered between

the application and the operating system. If the target

is the operating system, the fault iniector must be

embedded in the operating system, as it is very difficult

to add a layer between the machine and the operating

system.

Although the software approach is flexible, it has

its shortcomings.

* It cannot inject faults into locations that are inac-
cessible to software.

• The software instrumentation may disturb the

workload running on the target system and even

change the structure of original software. Careful

design of the injection environment can minimize

perturbation to the workload.
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• The poor time-resolution of the approach may

cause fideli_ problems. For long latency faults,
such as memory, faults, the low time-resolution

may not be a problem. For short latency faults,
such as bus and CPU faults, the approach may fail
to capture certain error behavior, like propagation.

Engineers can solve this problem by taking a
hybrid approach, which combines the versatility.
of software fault injection and the accuracy of

hardware monitoring. The hybrid approach is well
suited for measuring extremely short latencies.

However, the hardware monitoring involved can
cost more and decrease flexibility, by limiting
observation points and data storage size.

We can categorize software injection methods oh
the basis of when the faults are injected: during com-

pile-time or during runtime.

Compile-timeInjectlN
To inject faults at compile-time, the program

instruction must be modified before the program

image is loaded and executed. Rather than injecting
faults into the hardware of the target system, this
method iniects errors into the source code or assem-

bly code of the target program to emulate the effect
of hardware, software, and transient faults. The mod-
ified code alters the target program instructions, caus-

ing injection. Injection generates an erroneous soft-
ware image, and when the system executes the fault

image, it activates the fault.
This method requires the modification of the pro-

gram that will evaluate fault effect, and it requires no
additional software during runtime. In addition, it

causes no perturbation to the target system during
execution. Because the fault effect is hard-coded, engi-

neers can use it to emulate permanent faults. This
method's implementation is very simple, but it does

not allow the injection of faults as the workload pro-

gram runs.

Runtlmeinjections

During runtime, a mechanism is needed to trigger
fault injection. Commonly used triggering mecha-
nisms include:

• Time-out. In this simplest of techniques, a timer

expires at a predetermined time, triggering injec-
tion. Specifically, the time-out event generates an
5.n=errupt to invoke fault injection. The timer
can be a hardware or software timer. This

method requires no modification to the applica-
tion or workload program. A hardware timer
must be [inked to the system's interrupt handler
vector. Since it injects faults on the basis of time
rather than specific events or system state, it pro-

April 1997



"["

Fault injection
specifications

Injection strategy:
Random
Stress-based

CPU parameters:
Register set

Memory parameters:
Kernel/user space
Text/d ata/h ea p/

stack space

I/0 parameters:
Disk controller

error set

Workload I

specifications _ WeOrek_O(d

Faults _: Workload

CPU Memory

Workload 1

.... a..ct!v!_ .... _ _ (_1 _ Normalize d

Measure

Workload

specifications

Composition
relative mix of):

CPU function

Memory function
I/0 function

Level of dataflow
between functions

Intensity of functions

Figure4. Ftape
environment. duces unpredictable fault effects and program

behavior. It is, however, suitable for emulating
transient faults and intermittent hardware faults.

• Exception�trap. In this case, a hardware excep-
tion or a software trap transfer control to the

fault injector. Unlike time-out, exception/trap can
inject the fault whenever certain events or con-
ditions occur. For example, a software trap
instruction inserted into a target program will
invoke the fault injection before the program exe-

cutes a particular instruction. When the trap exe-
cutes, an interrupt is generated that transfers
control to an interrupt handler. A hardware

exception invokes injection when a hardware-
observed event occurs (when a particular mem-

ory location is accessed, for example). Both
mechanisms must be linked to the interrupt han-
dler vector.

• Code insertion. In this technique, instructions are

added to the target program that allow fault
injection to occur before particular instructions,
much like the code-modification method. Unlike

code modification, code insertion performs fault

injection during runtime and adds instructions
rather than changing original instructions. Unlike
the trap method, the fault injector may exist as

part of the target program and run at user mode
rather than system mode.

$eiKtN tul$

Ferrari r (Fault and Error Automatic Real-Time

Injection), developed at the University. of Texas at
Austin, uses software traps to inject CPU, memory,
and bus faults. Ferrari consists of four components:
the initializer and activator, the user information, the

fault-and-error injector, and the data collector and

analyzer.
The fault-and-error injector uses software trap and

trap handling routines. Software traps are triggered
either by the program counter when it points to the

desired program locations or by a timer. When the
traps are triggered, the trap handling routines iniect
faults at the specific fault locations, typically by chang-
ing the content of selected registers or memory, loca-
tions to emulate actual data corruptions. The faults

injected can be those permanent or transient faults
that result in an address line error, a data line error,

and a condition bit error.

Experiments conducted on Sun SparcStations
showed that error detection is highly dependent on
the fault type. Faults in the task memo_ resulted in
the highest level of detection, due mainly to the

repeated injection of faults when trap instructions
were placed in program loops. Also, many faults
injected into I/O routines and system libraries went
undetected because these routines were less frequently
exercised?

The Fault Tolerance and Performance Evaluator

(Ftape), s developed at the University, of Illinois, con-
sists of the components shown in Figure 4. Engineers
can inject faults into user-accessible registers in CPU
modules, memory, locations, and the disk subsystem.
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The faults are injected as bit-flips to emulate error as
a result of faults.

Disk system faults are injected by executing a rou-
tine in the driver code that emulates 1/O errors (bus

error and timer error, for example). Fault injection dri-

vers added to the operating system inject the faults,
so no additional hardware or modification of appli-

cation code is needed. A synthetic workload genera-
tor creates a workload containing specified amounts

of CPU, memory, and I/O activity, and faults are
injected with a strategy that considers the character-
istics of the workload at the time of injection (which

components are experiencing the greatest amount of
workload activity, for example). Ftape has been used
on several Tandem fault-tolerant computers and serves
as the basis of a benchmark for fault tolerance, which
measures the occurrence of system failures and the

amount of performance degradation under fault con-
ditions.

Doctor _ (Integrated Software Fault Injection
Environment), developed at the University of

Michigan, allows injection of CPU faults, memo_
faults, and network communication faults. It uses three
triggering methodsmtame-out, trap, and code modifi-

cation-to trigger fault injection. Time-out triggers
memory fault injection. Once time-out occurs, it trig-

gers the fault injector to overwrite the memory con-
tent to emulate occurrence of a memory fault. For

nonpermanent CPU faults, traps trigger fault injection.
For permanent CPU faults, fault injection is done by

changing program instructions during compilation to
emulate instruction and data corruptions due to the
faults. Doctor has been used on Harts, a distributed,

real-time system, to investigate the effect of intermit-

tent message losses between two adjacent nodes and
the effect of routing using failure data. The researchers
used experimental results to validate a message deliv-

ery model and to evaluate different message delivery,
methods.

Xception, _° developed at the University of
Coimbra in Portugal, takes advantage of the

advanced debugging and performance monitoring
features present in many modern processors to inject
more realistic faults. It requires no modification in

application software and no insertion of software
traps. Xception, in fact, uses a processor's built-in
hardware exception triggers to trigger fault injection.
The fault injector is implemented as an exception

handler and requires modification of the interrupt
handler vector. Xception faults are triggered based
on access to specific addresses (rather than on a time

period following an event), so the experiments are
reproducible. The following events can trigger fault

injection:

• opcode fetch from a specified address,
• operand load from a specified address,

• operand store to a specified address,
• a specified time passed since start-up, and
• a combination of the above fault triggers.

Each fault has a specified fault mask: a set of bits
that determines which corresponding bits in the tar-

get location will be injected. Bits in the fault mask set
to 1 can use several bit-level operations: stuck-at-zero,

stuck-at-one, bit-flip, and bridging. Xception has been

implemented on a Parsytec parallel machine based on
the PowerPC 601 processor. Experiments revealed the

deficiency in the error detection mechanisms by show-

ing that up to 73 percen¢ of injected faults resulted in
incorrect results that were undetected for certain

processor functional units.
Table 2 classifies the hardware and software fault

injection methods.
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he contrast between the hardware and software

methods lies mainly in the fault injection points
they can access, cost, and level of perturbation.

Hardware methods can inject faults into chip pins

and internal components, such as combinational cir-

cuits and registers that are not software-addressable.

On the other hand, software methods are convenient

for directly producing changes at the software-state

level (memory, register, for example). Thus, we use

hardware methods to evaluate low-level error de.tec-

tion and masking mechanisms and software meth-

ods to test higher level mechanisms. Software

methods are less expensive, but they also incur a

higher perturbation overhead because they execute

software on the target system. "_'
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