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ABSTRACT

Autocorrelation based spectral moment estimators are typically derived using

the Fourier transform relationship between the power spectrum and the autocor-

relation function along with using either an assumed form of the autocorrelation

function, e.g., Gaussian, or a generic complex form and applying properties of the

characteristic function. Passarelli has used a series expansion of the general com-

plex autocorrelation function and has expressed the coefficients in terms of central

moments of the power spectrum. A truncation of this series will produce a closed

system of equations which can be solved for the central moments of interest.

The autocorrelation function at various lags is estimated from samples of the

random process under observation. These estimates themselves are random vari-

ables and exhibit a bias and variance that is a function of the number of samples

used in the estimates and the operational signal-to-noise ratio. This contributes to

a degradation in performance of the moment estimators.

This dissertation investigates the use autocorrelation function estimates at higher

order lags to reduce the bias and standard deviation in spectral moment estimates.

In particular, Passarelli's series expansion is cast in terms of an overdetermined sys-

tem to form a framework under which the application of additional autocorrelation

function estimates at higher order lags can be defined and assessed. The solution

of the overdetermined system is the least squares solution. Furthermore, an overde-

termined system can be solved for any moment or moments of interest and is not

tied to a particular form of the power spectrum or corresponding autocorrelation

function.

As an application of this approach, autocorrelation based variance estimators

are defined by a truncation of Passarelli's series expansion and applied to simulated

Doppler weather radar returns which are characterized by a Gaussian shaped power
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spectrum. The performance of the variance estimators determined from a closed

system is shown to improve through the application of additional autocorrelation

lags in an overdetermined system. This improvement is greater in the narrowband

spectrum region where the information is spread over more lags of the autocorrelation

function. The number of lags needed in the overdetermined system is a function

of the spectral width, the number of terms in the series expansion, the number of

samples used in estimating the autocorrelation function, and the signal-to-noise ratio.

The overdetermined system provides a robustness to the chosen variance estimator

by expanding the region of spectral widths and signal-to-noise ratios over which the

estimator can perform as compared to the closed system.
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CHAPTERI

INTRODUCTION

Problem Statement

The need to measure power spectrum parameters is found in many fields in-

cluding meteorology, seismology, acoustics, and astronomy. The power spectrum

is defined as the Fourier transform of the autocorrelation function associated with

a stationary random process. Parameters associated with the power spectrum in-

clude, but are not limited to, the total power, the mean frequency, the frequency

spread (variance), and the skewness. Measurements of these moments can be made

in the frequency domain by applying discrete centroiding techniques to approximate

the moment definitions. The Fourier based techniques require an estimate of the

power spectrum using traditional or modern spectral estimation techniques. Often

the amount of data to be processed is quite large, and this places a considerable

burden on modern signal processing equipment to meet the real-time requirements.

Fortunately, for spectral moment estimates, Rummier [28, 20] has shown that in-

formation compression can be achieved through the autocorrelation function (ACF).

Using the relationship between the characteristic function defined in probability the-

ory and the Fourier transform relationship between the autocorrelation function and

the power spectral density (PSD), Rummler developed the well-known pulse-pair

mean and width estimators which require only estimates of the zeroth and first

autocorrelation lags. Zrnic and others [37, 38, 40, 19, 31, 32] have compared the

pulse-pair estimators to Fourier based estimators and established under what con-

ditions each is optimum. Other autocorrelation based estimators can be derived

from an assumed form of the PSD and associated autocorrelation function. In me-

teorological processing, the Doppler return (PSD) is often Gaussian shaped [9] with
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a correspondingGaussianshapedautocorrelation function. This fact hasbeenap-

plied to the developmentof an autocorrelationbasedvarianceestimator for Gaussian

shapedspectra [38].

The pulse-pair estimatorshavebeenusedextensivelyin many fieldedsystems,

but Passarelli [26] hasshownthat the pulse-pairestimators area subsetof a much

larger set of autocorrelation based moment estimators that can be derived from

a McLauren seriesexpansionof the complex autocorrelation function. Passarelli

shows that the coefficientsof the McLauren seriesexpansioncan be expressedin

terms of momentsabout the mean of the power spectral density. This seriesex-

pansion can be truncated and a closedsystem formedwhich can be solvedfor the

momentor momentsof interest.

The autocorrelation basedspectral momentestimatorsarea function of the es-

timated autocorrelation function at various lagsobtainedfrom the observedrandom

process. In general,there aretwo estimatorsusedfor estimating the autocorrelation

function from an ergodicrandomprocess. Oneis unbiasedbut hasa largervariance

especiallyat the higher lags values, and the other is asymptotically unbiasedand

tends yield a lowervariancein the estimate. The unbiasedestimator is alsoknown

to yield an autocorrelation sequenceestimate that may not reach its maximum at

the zeroth lag. The variance in the autocorrelation lag estimatesis a function of

the numberof samplesusedin the estimateand the signal-to-noiseratio.

It follows then that the autocorrelation basedspectral momentestimator's per-

formancewill be a function of the quality of the autocorrelation lag estimates. In

fieldedsystems,both the numberof samplesavailablefor estimating the autocorrela-

tion function at various lagsand the signal-to-noiseratio of the systemaredriven by

constraints of the physical environment and system requirementsfor detection and

parameterestimation. Therefore,onemay be limited in onesability to improve the

quality of the autocorrelation function estimate.
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In measurementsystemswhich allow for the estimation of the autocorrelation

function at lags beyond the zeroth and first, the opportunity to usemore lags may

provide improvementsin spectral moment estimator performance. The useof ad-

ditional autocorrelation lagsin the caseof an overdeterminedsystem hasbeenused

in autoregressivemoving average(ARMA) spectral estimation to improve spectral

resolution for a given (n,m) ARMA model [4]. In addition, higher order lags have

been usedin ARMA modeling for coefficient estimation [34, 5], and Bruzzoneand

Kaveh [3] havedefineda relative information index to measurethe information pro-

vided by the autocorrelation function at different lags under various signal-to-noise

conditions. Basedon the relative information index, a designcriterion is definedfor

selectingthoselagswhich contribute information to thespectral estimate. Also, the

useof additional autocorrelation lags hasbeenapplied in the caseof meanestima-

tion through the poly-pulse-pair [35,21] to reducethe variancein the estimate. The

poly-pulse-pairestimator caneasilybederivedfrom Passarelli'sexpansion. In cases

where the autocorrelation function is defined in closedform, such as the Gaussian

shapedPSD, a fit of the measureddata to the shapeof the autocorrelation function

has beenapplied [1, 27]. However,there are caseswherethe useof additional lags

hasprovento be of little merit. Srivastava and Jameson[33]haveattempted to ap-

ply a poly-pulse-pair like approachto the autocorrelation basedvarianceestimators

derived for the caseof an assumedGaussianshapedPSD without success.

This work takes Passarelli'sexpansionwhich providesa mechanismfor relat-

ing the central momentsof the PSD to the autocorrelation function and cast the

closedsystemsdefinedby a truncation of the seriesexpansioninto overdetermined

systems. The additional lags in the overdeterminedsystemare usedto improvees-

timator performancethrough a reduction in estimator bias and standard deviation.

Passarelli'sautocorrelation function expansionis not basedon an assumedform of

the autocorrelation function (e.g.,Gaussianshaped,etc.) which, therefore, allows

this approachto be applied to any random process.
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To assessthe framework defined by the overdeterminedsystem for improving

momentestimator performance,the varianceestimator ischosenfor evaluation. The

square root of the varianceis definedas a width estimate in meteorologicalsignal

processingandis usedto measurethe turbulenceassociatedwith an event. Autocor-

relation basedmomentestimatorsareapplied in many meteorologicalmeasurement

systems. Pulsed Doppler weather radars allow meteorologiststo measurerainfall

rates (proportional to estimated averagereturn power), averagevelocity (estimated

mean Doppler shift), degreeof turbulence (a function of the estimated variance in

the Doppler shift), and other physical attributes associatedwith suchphenomena

as windshear, tornados, thunderstorms, wake vortices, and other natural or man-

induced atmospheric conditions. But with the ranging and Doppler extraction ca-

pabilities associated with pulsed Doppler radars over large volumes of space, comes

the requirement to process large quantities of data in real-time. The autocorrela-

tion based moment estimators allow one to process the data in real-time without

the need to perform the transformation from the autocorrelation domain to the

frequency domain. In addition, the Gaussian shaped power spectrum and corre-

sponding autocorrelation function are found to model the power spectrum for many

signals including the Doppler return from meteorological events. Therefore, in eval-

uating the overdetermined variance estimators simulated Doppler weather returns

will be used to measure performance.

Contribution to the Field

This work contributes to the field by defining a framework in which to im-

prove the performance of autocorrelation based spectral moment estimators through

the inclusion of estimates of the autocorrelation function at higher order lags. The

framework is defined as an overdetermined system in terms of a truncation of Pas-

sarelli's series expansion. It is shown that the solution of the overdetermined system

in terms of Passarelli's expansion yields a least squares solution. The overdetero

mined system is. shown to reduce estimator bias and standard deviation for variance
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estimators defined by Passarelli's expansionin the narrowband caseand assum-

ing a Gaussianshapedspectrum. Performancebounds are defined for several of

the overdeterminedvarianceestimatorsand related to observedperformance. The

overdeterminedsystemis robust in that it extendsthe operating region of variance

estimators over a larger region of spectral widths and signal-to-noiseratios. It is

shown that the number of lags usedin the overdeterminedsystem is a function of

the quality of the autocorrelation function estimate (basedon the numberof samples

usedin the estimateand the signal-to-noiseratio), the number of terms in the series

expansion,and the spectral width.

Organization

This dissertation is organized into five chapters. The current chapter serves to

describe the problems addressed and the resulting contributions to the field. Chap-

ter 2 defines autoregressive moving average spectral estimation techniques. This

chapter also defines the overdetermined Yule-Walker equations for an AR model and

illustrates how they are used to improve spectral estimates. This chapter, therefore,

serves as a foundation for casting Passarelli's series expansion in an overdetermined

system. Chapter 3 is an overview of Fourier and autocorrelation based spectral

moment estimators. This chapter also includes a derivation of Passarelli's autocor-

relation based moment estimators and serves as the basic structure from which to

build the overdetermined system. Chapter 4 defines the overdetermined system for

Passarelli's series expansion and shows how the additional lags can be used to im-

prove estimator performance. Chapter 5 discusses the key results of this dissertation

and defines potential future work in this area.



CHAPTER II

ARMA SPECTRAL ESTIMATION

Introduction

This chapter is an overview of autoregressive moving average (ARMA) spectral

estimation. The ARMA parameter estimation techniques discussed in this chapter

include the overdetermined Yule-Walker equations which are used to increase the

amount of information extracted from the autocorrelation function estimate. The

application of an overdetermined system in ARMA spectral estimation serves as

a basis for extending the overdetermined system to autocorrelation based spectral

moment estimators in order to improve estimator performance.

In Appendix A, the Fourier based methods of spectral estimation are defined.

These methods assume a realization of N samples of an ergodic random process from

which lags -N <_ k < N of the autocorrelation function can be estimated. It is

observed that these methods show a tendency toward a large variance in the spectral

estimate. The Blackman-Tukey method offers a reduction in the variance of the

spectral estimate by windowing the autocorrelation estimate. However, windowing

in Fourier based techniques reduces the frequency resolution of the estimator and

biases the estimate. ARMA spectral estimation techniques provide a means for

increasing the spectral resolution while using fewer autocorrelation lags and, thereby,

reducing the variance of the estimate.

The spectral factorization property, in Appendix A, states that the power spec-

trum of a random process can be viewed as the power spectrum of the output of a

stable and causal linear system driven by white noise. For the special case where

Pxx (z) can be expressed as a rational polynomial function in z

2g(z)

PxxCz)= (1)
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Equation 1 can be expressed as

Pxx(Z) = a 2A(z) A'(--fi)
B(z) S*(_:)

where the linear system's transfer function is defined by

(2)

A(z)

H(z)- -B--'_" (3)

This assumed form of the power spectral density lends itself to a class of models

termed the autoregressive moving average (ARMA) models. The parameters asso-

ciated with these models may be obtained from the autocorrelation function estimate

as described in the following sections. Two important differences arise when com-

paring Fourier based spectral estimation techniques and ARMA modeling. The first

difference is that the ARMA models do not assume a finite length autocorrelation

function as implied by the windowing in the Fourier based methods. This exten-

sion of the autocorrelation function leads to spectral estimators which exhibit higher

spectral resolution over Fourier based methods. The second difference is that the

order of the ARMA models determines the number of autocorrelation lags required

to estimate the power spectral density. The number of autocorrelation lags required

is usually much lower than that for Fourier based methods.

ARMA Modelin$

Theory

ARMA modeling techniques have been successfully used to estimate the PSD

and associated parameters in radar signal processing [11], in speech signal processing

[18], and in other fields where the signal of interest may be characterized as a random

process. The ARMA model consists of a linear system driven by a white noise

source, u(n), as shown in Figure 1. The transfer function, H(z), for an ARMA

process is expressed as

H (z) -
boz M A- blz M-1 -1-"" A7 bM-lZ "4-bM B (z)

z N+alz N-l+'''+aN-tz+aN A(z) "
(4)



u(n) H(z) y(n)

Figure 1. A pictorial of an autoregressive moving average model.

This is a rational transfer function which contains, in general, both poles and zeros.

The order of the numerator and denominator is determined by the process being

modeled.

The ARMA model can be subdivided into two models having distinct, desirable

qualities. The first model is an all-zero model termed the moving average (MA)

model. The transfer function for the moving average model is

H (z) -" boz M -_ bl zM-1 +... -{- bM-lZ q- bM (5)

and the corresponding difference equation is

y(n) =bou(n) ÷blu(n-1) ÷...-{-bM_lu(n- M ÷ l)-{-bMU(n- M) (6)

which is a finite impulse response (FIR) filter.

random processes whose PSD's are smooth or have well defined valleys.

model is an all-pole model termed the autoregressive (AR) model.

function for the AR model can be expressed as

z N

H (z) = zn + alzN_l +... + an-lz + an

and the corresponding difference equation is

y(n) =aly(n- 1) +...+an-ly(n- Y + 1) +any(n- N) + u(n)

The MA model is used to model

The second

The transfer

(8)

which is an infinite impulse response (IIR) filter. The AR model is used to model

random processes whose PSD's contain well defined peaks. The question of which
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model to usein representinga randomprocessis partially answeredby Kolmogorov

and Wold. I_olmogorov[16] and Wold [36] haveshownthat both an infinite order

AR(c_) model and an infinite order MA(co) model can be used to representany

order ARMA model. Therefore,one is freeto usehigher order AR or MA models

to approximate any randomprocess.

As definedin Appendix A, the z-transform of the secondorder statistics for the

input and output of a linear systemare related to the systemtransfer function by

Now, if H(z) is evaluated at z = exp(j2rf), then the associated PSD is

PARMA (f) "-- 0-2 S (f) 2 (10)

where a 2 is the noise power associated with the input white noise process, and A(f)

and B(f) are the transfer function polynomials evaluated at z = exp(j27r.f). The

PSD for a MA process can be expressed as

PMA (f) -- 02 [S (f)]2 (11)

and, the PSD for a AR process can be expressed as

IlL'PAR (I) -- a2 _ (12)

An explicit relationship between the ARMA model parameters and the second-

order statistics (the ACF) can be obtained. Letting

then

PrY (z) A (z) = A-'-:-_)

Pyy(z)A(z)=H*(1)B(z)a 2

and taking the inverse z-trarisform of the left side of Equation 14 yields

N

ryy [k]. =Z: a,ryy - II •
/=0

(13)

(14)

(15)
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Now, taking .the inverse z-transform of the right side yields

M

=o5Z b,h"[l- k]
l=0

(16)

Therefore, the ARMA(M,N) process can be expressed as

.2 _M_,h"[l]b[1+ k]
- Z_, .,ryy [_- t]+ v _,=o{k]ryy
- _.l=lN atryy [k - l]

for k = 0, 1, ... ,M

fork>_M+l

(1T)

where h(n) is a causal sequence. Equation 17 results in a set of nonlinear equations

to be solved for the ARMA parameters (a s, ak for k = 1,..., N, and b_ for k = 0,..., M).

For the MA process, let ak = 6(k) and h(n) = bn which yields

a 2E_o kb*[llb[l+k] fork=O, 1,...,Mryy [k] = 0 for k > M + 1 (is)

Again, this is a set of nonlinear equations that must be solved for the MA parameters

(a 2, bk for k = 0,..., M). For the AR process, let bk = 6(k) which yields

N [k l]+a 2 fork=0
-- _l=l a_ryy --

r_ [k]= EL, a,r_y[_- t] for_ >__1 (19)

Equation 19 is termed the Yule-Walker equations. Note that this is a set of linear

equations which can be written in matrix form as

ryy[0] ryy[-1] ... ryy[-(N- 1)]

ryy[l] ryy[O] ... ryy[-(N- 2)]

i : "'. :

ryy[Y- 11 ryy[Y- 2] -.. ryy[O]

(al

a2
---" m

aN

ryy[1]
ryy[2]

ryv[N]

(20)

Also, note that for a complex WSS random process the correlation sequence is con-

jugate symmetric, r(-k) = r*(k). Therefore, the correlation matrix in Equation 20

is Hermitian symmetric and Toeplitz since all the diagonal elements are equal. This

set of equations can be extended to include the white noise variance where

ryr[1] rrr[-(N- 1)]

_Y[-ll ...
ryy[0] -."

: : ".. :

ryy[g] r},y[Y- 1] .-. ryy[0]

1

al

aN

(7 2

0

o
(21)
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Of the threemodels,the AR, with its set of linearequationsrelating the ACF to

the modelsparameters,is the simplestto solve. The AR model is usedextensively

in the literature and is usedin lieu of an ARMA or MA model due to the difficulty

in estimating the zero locations. In addition, for most physical systems,the poles

contain most of the relevant information (harmonic location, spectrum width, etc.).

Also, asstated previously, the fact that the AR(oo) is capableof representingany

ARMA or MA model supports the usean AR model of higher order over the MA

and ARMA given the difficulties in estimating the zero locations.

The Yule-Walker equationsresulting from the AR model can be solvedusing

common matrix analysis techniquessuchas Gaussianelimination or by exploiting

the properties of the Hermitian Toeplitz matrix. Gaussianelimination techniques

requireon the order of O(N a) operations. Levisonand Durbin [10] havedeveloped

an algorithm basedon the Hermitian and Toeplitz nature of the Yule-Walkerequa-

tions which allowsfor the solutionof the Yule-Walkerequationsin O(N 2) operations.

Given the Yule-Walker equations in Equation 21, they can be modified to form

ryy[O] r_y[l] ... r_y[N] 1 a2N ]

rvv[1] rvv[0] ... r_,y[(N- 1)] a N 0

: : ".. : i - i (22)

rvy[Yl rvy[Y- 11 ... ryy[O] a N 0

ryy[Y + I] ryy[Y] ... ryy[O] 0 _N .

Given the Hermitian Toeplitz nature of the. Yule-Walker equations, Equation 22 can

be written in an equivalent form as

ryy[O] ryy[1] ... ryy[N + 11 0 _/v

rpy[1] rvv[0] ... rvy[(Y)] aN 0

: : "'. : i = ! (23)

r_.y[N] r_,y[N- 1] ... ryy[1] a__ 1 0

r_y[N + I] r_y[N] ... ryy[O] 1 _ a21v
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Taking the complex conjugate of Equation 23 and scaling it by a complex number

yields

/_N+I

ryy[0] r_y[1] ... r_y[i+ 1]

ryy[1] rgy[0] -.. r_y[(N)]

: : ••. :

rvy[i] rvv[N- 1] ... rpv[1]
rvv[N + 1] rvv[N] "" rvv[O]

0

aN

aN_l

1

S

_N
0

-- _N+I

0

(24)

The complex number t¢ is often termed the reflection coefficient• Adding Equations

21 and 24 yields

' 1

a N

RN+I i

0

0 ' *' " 0 -2

aN 0
+ _N+I .: ' "-- •:

aN o
1 CN

q" KN+I

_N

0

0

. a_r

(25)

where

Now, letting

r ryy[O] r_,y[l]

[ rvv[l] ryv[O]

RN+I = " : :

rry[N] ryy[N- 1]rvy[N + 1] ryy[N]

• .. r_,v[N+ I] ]

• .. r_,y[(N)] .

•o°

•.. r_y[1]
• "" ryy[O]

(26)

(27)

Equation 25 can be written as

RN+laN+ 1 -- 0"2+i[I 0 ... 0] T (28)

where

and

aN+ 1 -_-

1

alN+I

: [-.,N+I
_N-1

L

C N
I

i + _N+_

£N
N

)

' ,D

0

aN

: I

41
1 j

(29)

_+, = o'_v[1 -I_.+xl = . (30)
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Table I. Levison Durbin Recursion

1. Initialize the routine.

(a) a° = i

(b) ao2 = rxx(O)

2. 2. fori-0,1,...,N-1

(a) _, = rxx(i + 1) + _=t a_rxx(i - k + 1)

(b) _,+,=-_

(c) For k = 1, 2,..., i,

(d) ,,i+tt'i+ 1 "-- P_i+l

(e) a_+ i = a_v+l = a_v [1 -I_N+ll 2]

4+, =_ + _+,<:_+,

The result of this exercise is a recursive algorithm for obtaining the AR filter coeffi-

cients of order N+I using the coefficients at order N. The algorithm is given in Table

I.

There are many sub-optimal approaches in the literature for estimating the AR

parameters. This list includes the Yule-Walker equations, the Burg algorithm, and

the least squares approach just to name a few. There are also sequential methods

based on the time series data which include the gradient adaptive least mean squares

algorithm and the recursive least squares. With all the attention given to the area

of spectral estimation over the past 10-20 years, there are several excellent text

describing these different techniques [14, 29]. This dissertation will not explore the

different techniques but will concentrate on the Yule-Walker equations which directly

employ an estimate of the autocorrelation matrix.
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Model Order Determination

Model order determination is a critical factor in representinga random pro-

cess. Too low an order yields a smoothed spectrum, and too high an order may

yield spuriouspeaks. Most algorithms, which attempt to estimate the modelorder

from an observeddata set, focus on observing a minimum in the estimated white

noisevariance,b 2. Akaike [29] has proposed two methods for estimating the order

of a process. The first method, termed the final prediction error method (FPE),

estimates the order based on the minimization of the following equation

FPE(k)- N+kA2
N__a (31)

where N isthe number of samples collectedand k isthe current order of the model

used to representthe process. A second method proposed by Akaike for estimating

the model order is termed the Akaike information criterion(AIC) and isbased on

minimizing the followingequation

AIC (k) = Nln (52) + 2k. (32)

High Resolution

ARMA modeling offers an enhanced capability over Fourier based methods in re-

solving closely spaced signals. These techniques are often termed "high resolution"

spectral estimators. ARMA modeling is able to enhance its resolution capability

through the fact that the ARMA model does not window the autocorrelation func-

tion. Equation 17 does not assume the autocorrelation function goes to zero after

a specified number of lags as assumed in the Fourier based methods. In addition,

the lack of any implied window function prevents the normal sidelobes introduced

by a window function in the spectrum.

Effect of White Noise

In most physical systems, the random process under observation contains signal

plus additive observation noise. The observation noise should not be confused with
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the white noise source used to drive the ARMA model. In modeling a random pro-

cess, an appropriate model must be chosen which can characterize the total process

including the observation noise. Exclusion of the observation noise from the model

will result in a biased estimate. Since AR models are often used to characterize

a random process, it is of benefit to observe what happens to an AR process when

white observation noise is added. Given an AR process with PAR(Z) and additive in-

dependent white noise with its corresponding P,_(z) = a 2, the resulting z-transform

description can be written as

Pyy (z) = PAR(Z)+ (33)

or

(72
2 (34)

Pyy (z) = [A (z)[ 2 + aw

and adding the two terms yields

a 2 + a_ [A (z)[ 2 = PARMA (Z) (35)
Pyr(Z) = IA(z)l 

The addition of white observation noise has changed the AR process to an ARMA

process[12]. From Equation 35, as the signal-to-noise ratio (SNR) increases, the

zeros of the system move to the poles of the system resulting in a flat or smoothed

spectrum. Kay [14] has given four methods of removing the effects of the observation

noise in AR modeling. The four methods are:

1. use an ARMA model in lieu of an AR model to better represent the process;

2. use a filter to reduce the SNR;

3. adjust the model parameters to compensate for the noise [13]; and

4. use a higher order AR model to better approximate the ARMA process.
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The Autocorrelation Function

Introduction

The AR model serves as a compact tool for relating properties of an autocorrela-

tion function to the power spectrum. This section will define the Fourier uncertainty

principle and use a first order AR model to illustrate the property. This section will

also discuss white and colored noise properties and methods for removing the noise

from the ACF before estimating the PSD.

The Uncertainty Principle

The uncertainty principle [2, 23] of the Fourier transform states that the duration-

bandwidth product Av Aw must meet the following constraint

1
Ar Aw > - (36)

-2

with equality for the Gaussian distribution function. The uncertainty principle will

be used in Chapters III and IV to explain performance issues related to the auto-

correlation based moment estimators.

yield the general form of the autocorrelation function for that process.

first order AR(1) process, the Yule-Walker. equations can be written as

First Order AR Model Example

An ARMA model consists a set of difference equations which can be solved to

For a real

rxx(k) - -alrxx(k - 1) + 0-2 for k : 0 (37)

rxx(k) - -alrxx(k- 1) for k _: O. (38)

Solving the difference equations for rxx (k) yields

_y2

1- (-al)lkl"rxx(k) (39)

Since al is required to be inside the unit circle for a stable system, the resulting

autocorrelation function is a decaying function (lall _< 1). Also, if al is positive,



- 17

the function oscillatesbetweennegativeand positive values,and if at is negative,

the function is positive for all k. Examples of both cases are given in Figures 2 and

3. The corresponding PSD can written as

(7 2

Pxx(W) = ]1 + al exp(-jw)l 2 (40)

since the AR process is the output of linear system driven by white noise

Pxx(Z) = a2 g(z)g*(1) (41)

and the system transfer function is defined as

H(z) - z (42)
z+al

Given the AR(1) PSD in Equation 40, if the coefficient is negative, then the

PSD represents a lowpass process. The bandwidth of the lowpass process is de-

termined by the distance of the pole in Equation 42 from the unit circle. The

bandwidth dependence is illustrated in Figures 4 and 5 for the cases where al = 0.9

and a_ = 0.5, respectively. The closer the pole is to the unit circle the narrower

the bandwidth. The corresponding autocorrelation functions are given in Figures

6 and 7. In comparing the autocorrelation functions to their corresponding PSD's,

an inverse relationship is seen between the duration in the correlation domain and

the bandwidth in the frequency domain. These examples imply that narrowband

processes have autocorrelation functions that decay slowly compared to wideband

processes. This can be explained through the Fourier uncertainty principle.

The Noise Autocorrelation Function

Any real measurement system has an associated noise source or sources due

to the random motion of electrons within the components forming the system. In

addition to noise sources within the measurement system, there are other sources

of contamination which are usually labeled as clutter and are a part of the mea-

sured signal. The clutter is usually an undesired portion of the measured signal
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Figure 2. The autocorrelation function associated with an AR(1) process with

al = -0.9.
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and may cause a bias in parameters extracted from the measurement. A priori

knowledge of the noise or clutter signal aids in designing methods for noise or clut-

ter rejection/suppression. In the case where little knowledge is known about the

noise source, matched filters based on the transmit signal are used to enhance signal

detection.

In physical systems, the noise is often additive and statistically independent of

the "signal". A random process, Y, containing signal, X, plus additive independent

noise, N, will yield an autocorrelation function which is the sum of the individual

autocorrelation functions

ryy(k) = rxx(k) + rNN(k) . (43)

Since the Fourier transform is a linear operator, the PSD for the total process is

Pvv(w) = Pxx(W) + PNN(W) . (44)

A special case exist when the PSD of the noise is constant for all w

PNN(W) = a 2 for all w. (45)

This is termed a white noise process. The resulting autocorrelation function is a

delta function at lag k = 0

rNN(k) = a 2 _(k). (46)

In this case, all the information about the noise is contained in the zeroth auto-

correlation lag. In traditional and modern spectral estimation techniques where

estimates of the autocorrelation function are used to estimate the power spectral

density, the noise contained in the zeroth autocorrelation lag estimate will bias the

power spectrum estimate of the signal.

Compensation for or removal of the noise bias is possible using correlation sub-

traction techniques. In the case of white noise, an estimate of the noise power,

fNN (0), is subtracted from the total power to obtain an estimate of the signal power

_xx(O) = fvv(O) - PNN(O) . (47)
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Estimatesof the noisepowerareobtainedduring periodswhenthe signalof interest is

known to beabsent. The white noisecaseis an optimum noisesuppressionscenario

in that all the noisepower is containedin the zerothautocorrelation lag. However,

there areother caseswherethe noiseprocessis non-white (or colored).

Colored noisecontainscorrelatednoisesampleswhich result in non-zerovalues

in the ACF awayfrom lag zero. Correlationsubtraction routinescanalsobeusedin

this casewhena priori knowledgeof the noisesourceis available. An exampleis the

casewhere a white noise source has been passed through a known noise suppression

filter to improve the SNR.

Information Relative to Lag Index

The Yule-Walker equations, as defined in Equation 19, represent a system of

equations with N+I unknowns and potentially an infinite number of equations. In

practice, however, the first N+I equations starting with k = 0 are assumed when

referring to the Yule-Walker equations. Considering the general case, the Yule-

Walker equations represent a set of N+I unknowns and M equations (M > (N + 1))

which may be used to form an overdetermined set of equations (M > (N + 1)).

Bruzzone and Kaveh [3] have shown that the number of autocorrelation lags, M,

required in estimating the parameters of an AR model of fix order N, is a function

of the information contained in each autocorrelation lag. As a measure of the infor-

mation contained in a set of autocorrelation lags, Bruzzone and Kaveh have defined

a relative information index (RII), R,

R = II,-(O)l (4S)
11 ,(e)l

where/'_(_) is Fisher's information matrix for the pole positions based on the auto-

correlation estimates, and Iv(0 ) is Fisher's information matrix for the pole positions

based on the observed data set. The range of R is 0 <_ R < 1 with equality of one

indicating that the autocorrelation estimates are sufficient in estimating the pole



26

kl,,O,k2=2

!q V" //

Figure 8. A plot of the RII fora AR(2) process with poles located at 0 = +0.25_"

as a function of the pole magnitudes and the autocorrelationlags{ki,k2} used in the

estimate. (Source: (_)1984IEEE, Bruzzone and Kaveh, "Informaiton Tradeoffs in

Using the Sample Autocorrelation Function in ARMA Parameter Estimation", IEEE

Trans. on ASSP, August 1984.)

positions. Bruzzone and Kaveh illustrateseveralexamples for an AR process. A

discussionof some ofthese examples ispresented here in order to illustrateBruzzone

and Kaveh's conclusions.

The firstexample is an AR(2) process with the poles located at angles of

0 = :h0.25_'. Figure 8 shows the relativeinformation index as a function of pole

magnitude and as a function of the autocorrelation lags {ryy(k), kz <_k2} used to

compute the pole locations. As seen in Figure 8, wideband processes,(]PJ < 0.8),

require the inclusionof the firstfew autocorrelationlagsin order to accurately esti-

mate the pole locations.

The second example isan AR(2) process with additive independent white noise.

Figure 9 is a plot of the relativeinformation index as a function of SNR and pole

radius, JP[,when lags zero through four are used. As seen in Figure 9, the relative
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Figure 9. A plot of the RII for the case of a AR(2) model with poles located

at 0 ---±0.251r and additive white noise as a function of SNR and pole magnitude

[ P I. The AR(2) model estimate is made using lags zero through four. (Source:

(_)1984 IEEE, Bruzzone and Kaveh, "Informaiton TradeoITs in Using the Sample

Autocorrelation Function inARMA Parameter Estimation", IEEE Trans. on ASSP,

August 1984.)

information index fallsoffquickly as a function of SNR in the case of a narrowband

processes (IPI _> 0.8). In a similar example containing additive white noise and

using an AR(2) process, the relativeinformation index in Figure 10 isplotted as a

function of the number of lags,(/Co- 0 to k2), used in the estimate and the pole

locationsin Ir-radiansfor a 6xed radius of 0.95. This example illustratesthat the

higher lags of a narrowband process contain additional information which can be

used in the spectralestimate.

In theseexamples, the white noiseisconcentrated inthe zeroth lag. In selecting

the autocorrelation lags to use in the AR model estimate, one might avoid using

the zeroth lag entirelyto reduce the noise bias. Figure 11 contains plots of the

relativeinformation index computed for a AR(2), with poles located at a radius of

0.95 and an angle of 0.251rradians, as a function of fiveautocorrelationlags with

differentinitialindices. For a SNR above approximately 18 dB, the inclusionof
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Figure 10. A plot of the 1_(I for the AR(2) model with a pole magnitude of 0.95

(narrowband) as a function of the number of lags used in the estimate and the

pole angle in radians. (Source: (_)1984 IEEE, Bruzzone and Kaveh, "Informaiton

Tradeoffs in Using the Sample Autocorrelation Function in ARMA Parameter Esti-

mation", IEEE Trans. on ASSP, August 1984.)

the zeroth lag,even though itcontains the noise power, isoptimum for obtaining a

good spectralestimate. However, when the SNR drops below 18 dB, the estimator

isoptimum when using the lagsstartingat index k = 1. Also, note that the latter

lags startingas lateas index four stillcontain some information about the process

in the narrowband example.

For the wide-band case, itcan be shown that most of the information iscon-

rained in the initiallags. Figure 12 isa plot of the relativeinformation index fora

AR(2) with poles located at a radius of 0.4 and an angle of 0.251rradians. Again,

the set of autocorrelationlags used in the estimate consistsof fivelagswith different

initialindices. As seen in Figure 12, the latterlagscontain littleinformation about

the wide-band process. The zeroth lag provides a great deal of information about

the wideband process provided the SNR isgreater than 5 dB. At lower SNR, the

noise power dominates the zeroth lag causing a bias in information. However, only



29

o J,7

-20.00 -I0,00 0 IO.IS ,_.Ol SO.OB

Figure II. A plot of the RII for the case of a AR(2) process with poles located

at 0 - :I:0.25_rand a magnitude of 0.95 plotted as a function of the SNR and

lags (/el,k2_ used in the estimate. (Source: (_)1984 IEEE, Bruzzone and Kaveh,

"Informaiton Tradeoffs in Using the Sample Autocorrelation Function in ARMA

Parameter Estimation", IEEE Trans. on ASSP, August 1984.)

the zeroth lag contains the noise power, and therefore,lagsone through fivecan be

used at the lower SNR.

Based on their analysis,Bruzzone and Kaveh have developed a criterionfor

selectingautocorrelationlags for use in AR model estimation. The followingisa

summary of some of the criticalissuesdefined by Bruzzone and Kaveh.

1. The zeroth and firstautocorrelation lags are important in both the wide

and narrow band cases and provide a substantial portion of the available

information.

2. Fewer lags are needed for wideband processes.

3. In the case of narrowband processes,estimators using a large number of au-

tocorrelationlags issuggested.

Cadzow [4]has also investigatedusing additional lags of the autocorrelation

function inestimating ARMA model parameters. Cadzow's paper treatsthe overde-

termined case of the Yule-Walker equations and shows that additional lags can be
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Figure I_2. A plot of the RII index for the case of an AR(2) process with a mag-

nitude of 0.4 (wideband) and an angle of 0 = +0.251r, as a function of SNR and

lags {kt,k2} used in the estimate. (Source: (_)1984 IEEE, Bruzzone and Kaveh,

"Informaiton Tradeoffs in Using the Sample Autocorrelation Function in ARMA

Parameter Estimation", IEEE Trans. on ASSP, August 1984.)

used to improve estimator performance. In order to show how the additional lags

could be used to improve the spectral estimate,Cadzow simulated ten realizations

of a signalconsistingof two sinusoidsembedded in white noise with normalized fre-

quencies of 0.2 and 0.215. Figure 13 isa plot of the spectralestimate using a 20th

order AR model. The large model order isused since the additive white noise man-

dates an ARMA model. Note that the two sinusoids are not distinguishable. In

Figure 14, the model order has increased to twenty-four,and the two sinusoidsare

startingto separate. Cadzow demoustrates in Figure 15 that an AR model of size

20 using 50 equations in the overdetermined system yieldsa better estimate of the

two sinusoid locationsthan the higher order AR model using the basic Yule-Walker

equations.
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In this section, a case was made for the use of additional autocorrelation lags

in AR modeling. In Chapter IV, this overdetermined approach will be extended to

autocorrelation based moment estimators in order to improve estimator performance.
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Figure 13. Ten realizationsof a 20th order AR power spectrum estimate for two

sinusoidsembedded in white noise. (Source: (_)1982IEEE, Cadzow, "SpectralEs-

timation: An Overdetermined Rational Model Equation Approach", Proceedings of

the IEEE, September 1982.)

Figure 14. Ten realizationsof a 24th order AR power spectrum estimate for two

sinusoidsembedded in white noise. (Source: (_)1982IEEE, Cadzow, "Spectral Es-

timation: An Overdetermined Rational Model Equation Approach", Proceedings of

the IEEE, September 1982.)
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Figure 15. Ten realizationsof a 20th order overdetermined AR power spectrum

estimate based on 50 equations fortwo sinusoidsembedded in white noise. (Source:

(_)1982IEEE, Cadzow, "Spectral Estimation: An Overdetermined Rational Model

Equation Approach", Proceedings of the IEEE, September 1982.)



CHAPTER III

SPECTRAL MOMENT ESTIMATORS

Introduction

This chapter starts by relating moments of the power spectral density to mo-

ments defined for a probability density function. This chapter then reviews Fourier

and autocorrelation based techniques for estimating moments of the PSD. The

Fourier based techniques attempt to approximate the moment integral using discrete

centroiding techniques given a traditional or modem power spectrum estimate. The

autocorrelation based techniques include the commonly applied pulse-pair mean and

variance estimators and Passarelli's autocorrelation function series expansion which

allows one to define an infinite number of estimators including the pulse-pair. Esti-

mator performance issues for both the Fourier and autocorrelation based estimators

are also addressed.

Spectral Moments

The power spectral density can be interpreted as a function describing the dis-

tribution of power over a range of frequencies. This distribution is assured to take

on values greater than or equal to zero over all frequencies due to the positivity

constraint of the PSD. The estimated PSD can also be normalized to contain unit

area. The normalized PSD for a discrete time random process is

P_ (w) (49)

which has the properties of a probability density function where

(,,,)> o for au o., (50)

and

f x f_Narm
, ° xz (_,) 1 .

(51)
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One can now define moments of the power spectral density by

M. E [w"] w" ^ Nor.,= = P_x (_) d_. (52)

The mean frequency is defined as

F ^ Norm
# = w P;x (w) dw, (53)

and the variance of the spectral random variable can also be computed using the

relationship

a_ = E [w_] - E_ [w] . (54)

There are basically two methods for estimating the moments associated with a PSD.

Fourier based techniques which require an estimate of the PSD and autocorrelation

based techniques which take advantage of the Fourier transform pair relationship

between the ACF and the PSD and the characteristic function defined in probability

theory.

Fourier Based Spectral Moment Estimation

Given an estimate of the PSD obtained from traditional or modern spectral es-

timation techniques, the desired spectral moments can be estimated in the frequency

domain using

M. = _ _, p_o.. (_,). (55)
i

The spectral moment estimates reflect a composite estimate of the signal plus noise

contained in the sampled data set. Except for the large signal:to-noise ratio case,

noise suppression techniques are required to reduce the bias [32]. Noise suppression

techniques include spectral filtering based on a priori defined thresholds to reduce the

noise bias. Zrnic [40] has shown that Fourier methods are inferior to autocorrelation

methods (which will be defined in the next sections) at low SNR's and for narrow

spectral widths.
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Pulse-Pair Mean and Variance Estimators

Due to the large number of samples collected by some measurement systems,

a method for the estimating the spectral mean and variance was needed which re-

duced the processing time relative to that required by Fourier based spectral mo-

ment estimation techniques. The algorithm used in many present day systems is

the pulse-pair algorithm developed by W. D. Rummler in 1968 while at Bell Tele-

phone Labs [28]. The pulse-pair algorithm is based on the Fourier transform pair

relationship between the autocorrelation function and the power spectral density

and the characteristic function defined in probability theory. A derivation of the

pulse-pair algorithm will be given at this time in order to show its relationship to

similar estimators developed in later sections.

Assume that there exist a zero-mean complex stationary Gaussian process, x(t),

and an additive independent complex zero-mean Gaussian noise process, n(t). Also,

assume that the noise process is white.

autocorrelation function defined by

The total process y(t) = x(t) + n(t) has an

ryy (_') = E[y(t + v) y* (t)] , (56)

and since x(t) and n(t) are independent, the autocorrelationfunction for the total

process can be written as the sum of the autocorrelationfunctionsof the individual

processes

ryy(r) = rxx(T) +rNNCT) • (57)

The ACF for the white noise process is defined as

rNN (T) -" 0 2 t_ (T) . (58)

From probability theory, the characteristic function associated with a probabil-

ity density function is defined as

(v) = [oo f (w)exp (jwv) dw (59)
J-oo
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where f(w) is a density function. Since the noise is white, the derivation will proceed

using only the signal process, and the noise will be compensated for at the end of the

derivation, if needed. Let Pxx(W) be the PSD associated with the signal process

x(t). Then the normalized PSD can be written as

Pxx(W) (60)
Pxx (w) = fo__%Pxx (w) dw

where

f_ Pxx (_) d_ = i.
J--

This normalized PSD can now be used to define nth moment

(61)

FMn = w'=Pxx (w) d (w) (62)

of the random variable, w. As shown in Appendix A, the moments of a density

function are related to the characteristic function through the following relationship

d"_,(r)
M. = (-j)" _; (63)

with the density function Pxx(W).

Equations 59, 63, and 66 yields

M, = -j E

Therefore, calculating the first moment using

2_r drxx (7")

dT
(67)

Now, let the total energy in the signal process be defined as

/?E = Pxx (w) dw. (64)
OO

Since rxx(r) and Pxx(W) form a Fourier transform pair,rxx(T) can be written as

rxx(V)- _ Pxx(w)exp(jw'r) dw. (65)
CO

Normalizing both sidesby 21rE yields

21rrxx (_)
= f? Pxx (w)exp(jwr) dw (66)E

where the right hand side can be interpreted as the characteristic function associated
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which is the mean of the PSD.

Let the signal autocorrelation function be expressedas

rxx (r) = A(T) exp(jO(T)) (68)

where A(r) is the magnitude function and is real and even, and e(r) is the phase

function and is real and odd. Therefore, the mean can be written as

M, - -3_-_-_v'27rd [A (r) exp (je (r))] =
0

= -3_-'27r [A'(r) exp(jO(r)) + A(r)e'(r)exp(jO(r))]L=o (69)

Now the even and odd properties of the autocorrelation magnitude and phase func-

tions result in the following:

• A'(r) is odd =_ A'(0) = 0.

• O(-r) is odd =:_ 0(0)= O.

Therefore, the mean can be written as

2_ (0) e' (0) (70)

and A(0) is

'FA (O) = rxx (O) = _ oo

E

Pxx (w)exp(jwr) dw -- 2---_ (71)

Using Equations 70 and 71, the mean reduces to

M, = O'(0). (72)

Now the derivative at zero can be approximated by following first order difference

equation

O' (r) _- O (r + T) - O (0) _ e (T) (73)
T T

In terms ofwhere T is the sampling period for a given measurement system .

frequency in Hertz, the mean estimator can be expressed as

] = l__arg(rvy (T)) .
2_rT

(74)
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Note that the meanestimatedoesnot dependon the zerothautocorrelation lag and

therefore avoidsany bias due to the noisepower in ryy(0).

The varianceestimatecan alsobe obtained in a similar manner. Given that

a 2 = E{X 2} - E2{X}. (75)

Using the characteristic function, the second moment about zero is defined in terms

of the autocorrelation function as

M2 = (-j)2 E d2 [A(7-)exp(je(r))] I
47"2 r=O

2r [A" (_') exp(je(7-)) + A' (7-)0' (7-) exp(je(7-))+= (-j)2 N

A' (v)e' (7-) exp(je(7)) + A(r)O" (7-) exp(je(r)) +

A(7-) (e' (7-))2 exp(je(v))] [r= ° (76)

Using the even and odd properties of the magnitude and phase, Equation 76 reduces

to

+ [O'(O)] (77)
M2= E

Therefore, Equation 75 can be written as

a2 = -21rA" (0) (78)
E

A first order estimate of the second derivate of the phase can be written as

A" (7-) _ A(v + 2T)- 2A(7- + T) + A(7-)
T 2

(79)

Papoulis [24] has shown that

A(0) - A(T) _- A(0)- A(2T) (80)
4

for small T. Therefore, Equation 79 can be approximated as

A" (0) _ 2A(T)- 2A(0) (81)
T2
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fort = 0. Substituting this approximation of the second derivative of the correlation

magnitude at v - 0 into Equation 77 yields

-47r A(T) - A(O)
0 .2 __

E (T) 2

A(T)= 2 1 A(O)

The pulse-pair width estimator can then be expressed in terms of Hertz as

t

(82)

(83)

Accounting for the white noise power in the zeroth autocorrelation lag, Equation 83

can be written as

[ I,'Y[(T)I .ib/- (2-_) 1 - ryy(O) - rNN(0)J (84)

Equations 74 and 84 form the pulse-pair mean and width estimators which are a

function of the sampling period and the zeroth and first autocorrelation lags.

Zrnic [37] shows that the pulse-pair mean estimator performs well in the case

of narrowband symmetric spectra and is unbiased in the presence of white noise.

The variance in the mean frequency estimator is a function of the spectral width.

Zrnic states that the performance of the mean estimator is best when the width

of the spectrum is less than 0.251r [37]. The variance or width estimator (square

root of the variance) is not as well behaved. Figures 16 and 17 show the standard

deviation and bias for the width estimator, respectively, as a function of SNR and

spectral width assuming a Gaussian shaped power spectrum [37].

Estimators Based on Assumed Spectral Shape

Additional mean and width (standard deviation)estimators can be derived from

assumed PSD shapes. As previously stated, in the case of Doppler power spectra

associated with weather return, a Gaussian shaped PSD is often observed [9]. A

Gaussian shaped PSD ischaracterized by

S(w)- _exp _ (85)
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Figure 16. A plot of the normalized standard deviation associatedwith the pulse-

pair width estimator. (Source: (_)1977 IEEE, Zrnic, _Spectral Moment Estimates

from Correlated Pulse Pairs",IEEE Trans. on AES, July 1977.)
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Figure 17. A plot of the normalized bias associated with the pulse-pair width

estimator. (Source: (_)1977 IEEE, Zrnic, '_SpectralMoment Estimates from Cor-

related Pulse Pairs",]EEE Trans. on AES, July 1977.)
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where K is an energy scale factor and a is the standard deviation. The resulting

ACF is also Gaussian shaped and is expressed as

(72)r(r) = _-_exp . (86)

Two new width estimators result from this expression for the ACF. The first esti-

mator

i ["(°)1 (sT)o-= 21nLr(1)j

is a function of r(0) which represents the total energy associated with the process

including the noise power. If the noise is white, an estimate of the noise power can

be subtracted from r(0) to obtain a reduced bias estimate of the spectral width. For

cases where the slope of the autocorrelation magnitude function near zero is small,

a first order approximation of the natural logarithm in Equation 87 yields the pulse-

pair width estimator given in Equation 84. A second estimator which circumvents

the need to estimate the noise power in the white noise case is

o= Lr(2)J

Passarelli [25] has identified additional moment estimators which are based on an

assumed PSD shapes. His work includes defining PSD models for the weather, clut-

ter, and noise in a Doppler weather radar return and using these to obtain mean

estimates.

Zrnic [38] has also investigated the width estimators given in Equations 87 and

88. Figure 18 shows the standard deviation in the the log based estimator given

in Equation 87. The standard deviation of the estimator increases with decreasing

SNR and for narrow and broad spectra. The bias associated with the estimator is

shown in Figure 19. The bias is also a function of SNR, and as seen in Figure 19,

the bias increases for narrow and broad spectra. Zrnic shows that for large SNR the

standard deviation in the width estimate increases linearly with the true width below
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Figure 18. A plot of the normalized standard deviation

width estimator derived assuming a Ganssian shape. (Source:

"Spectrum Width Estimates for Weather Echos ", IEEE Trans.

1979.)

associated with the

(_)1979 IEEE, Zrnic,

on AES, September

a normalized width of 0.3. The standard deviation in the width estimator then

increases exponentially for widths greater than 0.3. Figure 20 shows the standard

deviation in the width estimator in Equation 88. Without the inclusion of the zeroth

lag in the estimate, there is an increase in the standard deviation over that in Figure

18, especially at the larger widths.

General Autocorrelation Based Moment Estimators

Passarelli [26] has derived a general expression for autocorrelation based moment

estimators in terms of a McLauren series expansion of the complex autocorrelation

function. As in the pulse-pair derivation, the Fourier transform pair relationship

between the autocorrelation function and the power spectral density is used to relate

the two domains. The following discussion steps through Passarelli's derivation.



oc

tJ

E

i

.z

_OAMa4._Jr_ P[¢'tlNM w10714w T,

Figure 19. A plot of the normalized bias associated with the width estimator de-

rived assuming a Gaussian shape. (Source: (_)1979IEEE, Zmic, "Spectrum Width

Estimates for Weather Echos ", IEEE Trans. on AES, September 1979.)
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Figure 20. A plot of the normalized standard deviation associated with the width

estimator derived assuming a Gaussian shape and using autocorrelation lags one

and two. (Source: (_)1979 IEEE, Zrnic, "Spectrum Width Estimates for Weather

Echos ", IEEE Trans. on AES, September 1979.)

For a continuous time random process, the power spectral density is defined as

/:"Pxx(O_) = rxx(r) exp(-jwT") dr (89)
CO

where the autocorrelation function for the complex WSS random process is defined

as

= E (x(t + (90)

Through the Fourier transform inverse, the autocorrelation function is stated in

terms of the PSD, as

as

*Frxx(7") = _ Pxx(ta) exp(jtor) dw. (91)
OO

For a complex WSS random process, the autocorrelation function can be written

h2@ A .Brxx(r) = exp(j g(r)) = _ + 3_-_r (92)
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whereh(r) is referred to as the magnitude and g(r) is referred to as the phase. The

real and imaginary parts, A and B, of the autocorrelation function are defined in

terms of the inverse Fourier transform where

FA(v) -- Re[27rrxx(r)] = Pxx(W) cos(wr) dw
O0

(93)

and

/?B(r) - Re[27rrxx(r)]- Pxx(_) sin(wr) _. (94)

Note that both A and B are functions of r, but henceforth, the r dependence will be

dropped for notational convenience. Therefore, the magnitude, h(v), can be written

as

h(r) = [A 2 + B2] ½ (95)

and the phase, g(_-), can be written as

(96)

Note that h(v) is an even function, and g(r) is an odd function given that in Equa-

tions 93 and 94, A is an even function of r, and B is odd function of 7-. The au-

tocorrelation function magnitude and phase can be expanded as a McLauren series

about r = 0 where

h(_) = h(0) h'(0)_ h"(0) _2 h'"(0)_30-"_.+ 1---_-+ 2[ + 3! +"" (97)

and

g(O) g'(O),,- g"(o),r2 g'"(o),,-3
g('r)= o"-T.+ 1--T-+ 2! + 3! + .... (98)

Now, since h(r) is an even function, and g(r) is an odd function, the polynomial

expansions must also be even and odd, respectively, therefore

h(0) h"(0)-,-2 h'"(0)l-'
h(7-)= 0--F+ 2! + 4! +"" (99)

and

g(_)= g'(0)_ g'"(0)_' _5I! + 3! + gv(O) (100)-- 5! + ....
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Momentsof PSD are definedin terms of a normalizedPSD where

S1 w"
Mn = _ oo Pxx(W) dw (101)

and

FPo = Pxx(w) dw . (102)
OO

Moments of the PSD can also be defined in terms of the autocorrelation function

through the characteristic function given in Equation 59 where

1 d"rxx(r) _=o (103)M. = rxx(O) (-J)" dr"

Applying Equation 103 to the definition of the autocorrelation function in Equa-

tion 92 yields,

M1 1 drxx (r) I
- rxx(0) (-j) dr ,_=o

2orr'_x(0) [/5oo -WPxX(w) sin(wr) dw ,__o+j/ioowPxx(W)cos(wr)

B' I
(104)

= o + Vol=l,=o

M_ I e_x_(r)]
rxx (0) (-J)U dr 2 I_=0

_ (-J)_
27rrxx(O) [ /2 -w2 pxx(W) c°s(wr) dWL=o

A" I
= o- Vool_=°

(105)

M3 1 • 3 darxx(r) I'= rxx(O)(-s) a_3 ,=o

_ (_j)3 [/_:w3pxx(w)sin(wr)dwl_= °
21rrxx(O)

ill

= 0 -- _ r=0

+ j -_3Pxx(_)cos@r) d_
oO 1"=0

(i06)
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and

M4
_ 1 d*rxx(T) _=0rxx(0)(-JP d_4

(_j)4
- 27rrxx(O)[/?oo_4pxx(_)cos(_r)d_=o

= 0+ p0 ,= °

_4pxx(O_)sin(wr)d__-=o]

(lO7)

for the moments M1 - M4. After several iterations, a pattern develops relating

the moments of the PSD to the derivatives of either the real or imaginary parts

of the autocorrelation function. This pattern is summarized in the following set of

(108)

A l_.=o = Po B l_.=o = 0

A'k.=o = O B'L.=o = PoM1

A"[.=o = 0 B"I.=o = -PoM3

A'I_.= o = PoM4 B"[_.= ° = 0

A_ [r=o = 0

A" l,=o = - PoM6

equations

B" l,.=o- PoM5

BU [_.=o = 0

A relationship between the coefficients of the McLauren series expansion and

the central moments of the PSD can be defined.

autocorrelation function in terms of A and B yields

Writing the magnitude of the

h- (A 2 + B2) ½ (109)

and its first derivative with respect to r is

2 -I ,
h'- (A 2 +B )_(2AA +2BB').

Now let

G = AA' + BB'.

(110)

(111)
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Then h and its derivatives can be written in terms of h and G where

h' -
-- h

h" = _(G' -(h') 2)
(112)

h'" = -_(d'- 3h'h")

hi_ __ 1 "'_(G -4h'h'"3(h") 2)

The derivatives of G are expressed in terms of A and B and their derivatives where

G = AA' + BB'

G' = AA" + (A') 2 + BB" + (B') 2

(113)

G" = AA'" + 3A' A" + BB'" + 3B' B"

G'" = AA _" + 4A'A'" + 3(A") 2 + BB" + 4B'B'" + 3(B") 2

Given the relationship between the moments of the PSD and the derivatives of

the real and imaginary parts of the autocorrelation function in Equation 108, the

derivatives of G can be expressed as

G = 0

G' = - (Po) 2M2 + (PoMt) 2

(114)

G" = 0

d" = (Po)'M4+ 3(Po)2(M2)2-4(Po)2UiM3

The derivatives of magnitude of the autocorrelation function can then be expressed

h' = 0

h" = -Po( M2- (M1)_)= -PoM2

h'" = 0

h '_ = P0(M4 + 3(M2) 2 - 4M1Ms - 3(M2 - (M1)2) 2)

= Po(M4 - 4M_M3 + 6M2M_ - 3(M1) 4) = P0.t_44

as

(115)
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Note that the relationships in Equation 115 have been expressed in terms of central

moments about the mean, M1, where

1/2M, = _o oo (w - M,)" Pxx(W) dw . (116)

The resulting McLauren series expansion for the magnitude of the autocorrelao

tion function can then be expressed as

[ M2r2 M4"/'4 (M6 - 10"h_32)'r6 ]h(r) = P0 1 2! + 4! _ + .... (117)

Passarelli did not extend the expansion in terms of central moments beyond what is

given here. He indicates that no general pattern was observed.

A similar approach can be taken in defining the McLauren series coefficients

for the expansion of the phase. Let the phase associated with the autocorrelation

function be written in terms of the real and imaginary parts of the autocorrelation

where

and its first derivative with respect to r is

g,= AB'-BA'
A2 + B2 (119)

Now, let

and

H = AB'- BA' (120)

Q = A s + B 2 . (121)

Then the higher order derivatives of the phase can be expressed in terms of H and

Q a8

g' //=

g" -- q

g.I H" - 2Q' _" _ Q" 9t-" q

(122)
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The higher order derivatives of H and Q, in Equation 122, can be expressed in terms

of A and B as
H = AB' - BA'

H' = AB"-BA"

H" = AB'" + A'B" - B'A" - BA'"
(123)

H" = AB _'_+ 3A'B i'_ - 2A'B' - BA _"

and
Q = A2+B 2

Q' = 2AA' + 2BB'

(124)

Q" = 2((A') 2 + AA"+ (B') _- BB")

Q'" = 2(AA'" + 3A'A" + 3B'B" + BB")

Using the relationships between the derivatives of the real and imaginary parts of

the autocorrelation function and the moments of the PSD defined in Equations 104

through 107, H and Q and its derivatives can be expressed as

H = P2oM,

H' = 0

I-I" = - P2 M3 + P2 M1M2

H" = 0

(125)

and

Q

Q' = 0

Q" = -2P M, +

Q"' = o

(126)
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Combining Equations 122,125,and 126yields

g - 0

g' = M1

g" - 0

ill

(127)

and

/2P0 = Pxx(w) dw .

Also, the nth centralmoment for a discreterandom process isdefined as

flr

¢Q.= /(o - _)"Pxx(O)dP
Pxx(O) J -- _r

and

Fto = &x(O) dO.
"It

Consider the nth central moment for a continuous random process where

1/5._. = -go (,,,- 0)" Pxx(_,) d,,, (129)

(130)

(131)

(132)

= -M3 + 3MIM2 - 2M 3) = -.A43

The series expansion in terms of central moments can be written as

g(r) = Mlr A43ra (.A45- 10A42A4a)r 5
3! + 5! + .... (128)

Again, Passarelli was not able to define the expansion in terms of central moments

beyond what is given here.

The preceding derivation assumed a continuous autocorrelation function; how-

ever, in the case of a coherent pulsed Doppler radar, the return pulses are sampled

resulting in a discrete-time random process. The resulting estimated autocorrela-

tion function is therefore discrete, and the corresponding power spectrum is defined

in terms of the discrete-time Fourier transform. The series expansion in Equations

117 and 128 can easily be written in terms of central moments of the PSD for a

discrete-time random process.
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Now, the power spectrumfor a discrete-time random processwith sampling period

T is related to the power spectrumof a continuoustime random processby

Pxx(W) (133)
Pxx(_) = T

provided the Nyquist condition ismet [22]. Therefore, the totalpower, }50,in the

discrete-timerandom process can be written in terms of the power spectrum of a

continuous time random process by

'__*Pxx(W) dw T = Po . (134)Po= T

The nth central moment for the discrete-time process can be expressed in terms of

Pxx( ) as

J_n 1 f_ Pxx(W) dw T= _ =T"(w-_)" T

= T"_ _(w-C_)"Pxx(w)dw

= jt4,T". (135)

Now, sampling the expansions given for the magnitude and phase of the auto-

correlation functions in Equations 117 and 128 at 1" = kT where T is the sampling

period yields

.A,4_(kT) 2 .A44(kT) 4 (.A46- 10.M_)(kT) _ ]h(kT) = P0 1 2! + 4! 6! ÷... .(136)

and

g(kT) = M1 (kT)
.A43(kT) 3 (¢t45- 10AzI2.A4s)(kT) 5

÷ + .... (137)
3! 5!

Using the relationship found in Equation 135, Equations 136 and 137 can be ex-

pressed as

h(kT)=Po[1- "C'4_wk)2. + JQ_k)4- (¢Q6 - 10¢Q_)(k)e_ +...]
(138)
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and
_3(k) 3 (M_- 10X_2_3)(k)5

g(kT) = -/Q'I(k) 3! + 5! + .... (139)

The case of additive white noise can be added to the model yielding

r
h(kT)

Y6(0) + P0 [1

where N is the noise power.

M_(k)2 M,(k) 4 (_6- 10_)(k) 6 l
2! + 4! _ +...j (140)

Passarelli proposed that a closed system of equations be formed by truncating

the series expansion found in Equations 140 and 137. The closed system of equations

are then solved to yield estimators for different moments such as the mean, h:/_,

the variance, ./Q2, and the skewness, ./Qa. Passarelli states that two factors will

contribute to the performance of the estimators:

1. The rate of convergence of the series.

2. The accuracy of the estimates of the autocorrelation function.

Passarelli also states that for broad or skewed spectra more terms will be needed

in the expansion to model the autocorrelation function. For narrow or symmetric

spectra, Passarelli states that only a few terms will be required for convergence and

that the use of additional autocorrelation lags will only add to the variance of the

moment estimator.

For purely symmetric spectra, the odd central moments are zero.

shows that for symmetric spectra the expansion reduces to

Passarelli

a¢ ( 11.;Q2.k2. (141)
h(kT) = Po _.,,- ,

n----O

and

g( kT) = .iVIlk . (142)

Poly-Pulse-Pair Mean Estimators

Lee and Strauch [35] proposed a poly-pulse-pair approach for improving the

mean estimate of weak narrow symmetric spectra. The poly-pulse-pair approach
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turns out to bean averageof the meanestimatorsderived from Equation 142. The

poly-pulse-pairmean estimator can bewritten as [26]

1 _-, g(kT)
.h_=-_,_, k (143)

k=l

Passare|li'_ Variance Estimators

Passarelli investigates his proposed approach for generating moment estimators

by assessing the performance of several estimators for the variance, .t_2. Passarelli

derives four variance estimators using a closed system consisting two equations and

two unknowns or three equations and three unknowns. The first variance estimator

is derived using

and

yielding

h(0) = rxx(0) + N

h(1) = rxx(O)[1 + -_1

(144)

(145)

and

where

]v_tl'-'4"23] = 4! (h(1) - h(2))(9h(1) - h(3)) -(h(1) - h(3))(4h(1) - h(2))
(81h(1) - h(3))(4h(1) - h(2)) - (16h(1) - h(2))(9h(1)h(3)) "

,, h(1)- h(2) (148)
[121 _2 - Z4h(1)- h(2)

F
+ JQ4[I 2 3]16h(1) - h(2)][1231 dQ2= dO_[12] _1

t

(147)

(149)

(150)

h(1) ] (146),O2 = 2 i h(_ : Y

which is the pulse-pair variance estimator. Passarelli goes on to define three other

estimators using lags (1,2), (0,1,2), and (1,2,3) and a closed system of equations.

For notational purposes these estimators will be referred to by the autocorrelation

lags used to derive them. The three additional variance estimators are
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Note that the estimators [01] and [012] requireanestimateof the noisepowerwhere

[12] and [123] do not.

Passarellievaluatedthe varianceestimatorsassuminga Gaussianshapedpower

spectrawhichcommonlymodelsweatherreturns. The testdata wasgeneratedusing

the algorithm describedby Sirmansand Bumgarner [32]for weather returns. Pas-

sarelli alsoassumedan additive white noisesource. Passarelliusedthe four variance

estimators listed in Equations 146, 147,148,and 149to estimate the varianceof a

Gaussianshapedspectrum with a standard deviation, a, between 0.05r and 0.5_r.

Passarelli used forty realizations for each standard deviation (spectral width) and

128 point autocorrelations. Passarelli measured the performance of the estimators

in terms of the normalized error in the variance estimate (normalized by the true

variance). Figure 21 shows the normalized error as a function of spectral width and

the particular estimator employed for a SNR of 10 dB.

Based on Figure 21, Passarelli points out that each estimator is optimum (min-

imum error) over a different range of spectral widths. In the case of a narrowband

process (widths less that 0.1r), the [1 2] estimator is shown to produce the minimum

error. Passarelli states that for the narrowband case, the use of the fewest number

of fundamental terms (e.g. N, h(0), h(1), h(2), etc.) in computing -_2 will yield

the optimum estimator since the series exhibits fast convergence in the narrowband

case and any additional fundamental terms only add uncertainty to the estimate.

For the wideband case, Passarelli shows that low order contiguous estimates of h(k)

are needed since the series requires more terms for convergence and the low order

terms contain most of the information resulting from a broad spectrum. In other

words, the broad spectra results in an autocorrelation function which falls off quickly

based on the uncertainty principle of the Fourier transform.
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Figure 21. A plot of the normalized errorassociatedwith four variance estimators

derived from a closed system equations at a SNR of 10 dB. (Source: (_)1983AMS,

Passarelliand Sig_ia, '°The Autocorrelation Function and Doppler Spectral Mo-

ments: Geometric and Asymptotic Interpretations",IEEE Trans. on AES, July

1977.)
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Conclusions

As noted by PassareUi, of all the autocorrelation based variance estimators pre-

sented in this chapter an "optimum" estimator resulting in a minimum bias and

standard deviation in the estimate over the entire range of spectral widths does

not exists. In addition, the range of spectral widths in the narrowband region over

which a particular variance estimator derived from Passarelli's expansion is optimum

is less than 0.05_r. There exist the need to develop variance estimators that exhibit

a small bias and standard deviation over a larger range of spectral widths. In other

words, a more robust variance estimator is sought.



CHAPTER IV

THE OVERDETERMINED SYSTEM

Introduction

Autocorrelation based spectral moment estimators provide a means for reducing

processing requirements over that of Fourier based methods and also provide better

performance under various spectral constraints and low signal-to-noise ratios [9].

However, performance of autocorrelation based spectral moment estimators is driven

by the quality of the autocorrelation function estimates. The bias and standard

deviation associated with the autocorrelation function estimates is a function of

the estimator, the number of samples used in the estimate, and the signal-to-noise

ratio. In fielded systems, the number of samples available for use in estimating the

autocorrelation function and the SNR is often limited by the physical environment

and system requirements.

In practice, estimates of the autocorrelation function at only the first few lags are

used in autocorrelation based spectral moment estimators. As seen in Chapter III,

the pulse-pair mean and width estimators and width estimators based on an assumed

Gaussian shaped power spectrum use estimates of the autocorrelation function at

lags zero through two. For variance estimators defined by Passarelli's closed systems

[26], the use of additional autocorrelation function estimates at the higher order lags

only tends to increase the bias in the variance estimate over the narrowband spectral

width region.

In this work, Passarelli's series expansion is extended to develop an overdeter-

mined system. This framework allows an assessment of the value of using additional

autocorrelation lag estimates for any spectral moment of interest and for any power

spectrum shape and corresponding autocorrelation function. The overdetermined
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system approach is supported by similar techniquesfound in ARMA spectral es-

timation to extract additional information from the available autocorrelation lags

[4, 34, 5, 3].

In order to investigate the application of an overdetermined system to increase

the performance of a given autocorrelation based spectral moment estimator and to

identify under what conditions the overdetermined system might be applied, the vari-

ance spectral moment estimator is chosen for evaluation for the case where the power

spectrum is Gaussian shaped. The Gaussian shaped spectrum is an interesting case

and finds application in many fields including Doppler processing of meteorological

returns. In order to investigate the contribution of the overdetermined system to

estimator performance, the overdetermined variance estimators will be applied to

simulated Doppler weather radar returns under various signal-to-noise conditions

and at different spectral widths [15]. Since both the SNR and the number of sam-

ples used in the estimate of the autocorrelation function effects the quality of the

autocorrelation estimates, the number of samples will be chosen to be a fixed, and

the SNR will be varied to evaluate performance. In this work, the overdetermined

variance estimators will be shown to improve estimator performance by extending

the range of spectral widths and SNR's over which an estimator can perform. In

addition, the overdetermined system based on Passarelli's series expansion is shown

to yield the least squares solution. The resulting pseudo-inverse is also shown to be

pre-computable and can be stored for use in a real-time environment.

It needs to be stressed that the overdetermined system is not limited to variance

estimators, but improvements in performance for other moments such as the mean,

skewness and kurtosis might be obtained under this framework. However, the scope

of this work does not include the investigation of other spectral moments. This work

is meant to define a framework upon which additional analysis might be performed.

This approach is not limited to the Gaussian shaped spectrum case; however, the
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Gaussianshapedspectrais seenin radar meteorologicalreturns and is applicablein

other fields as well.

Overdetermined Systems

This section casts Passarelli's truncated autocorrelation expansion as an overde-

termined set of equations to be solved for different moments of interest. A solution

of this overdetermined system using the pseudo-inverse is shown to be the least

squares solution.

Defining the Overdetermined System

A truncated version of Passarelli's expansion in Equations 140 and 139 can be

written in terms of a closed system of equations in matrix form as

1 0 -.. 0

1 _ • r-1 _N 1<_2-_- "" _ J (2N)!

: : : :

1 tKz_DJ. (--IIN(N-I) (2N)
-- 2! "'" _, ! (2N)!

(N) 2 [ I_N_1 "'" _-_J (2N)_

al

aN

h(0)
h(1)

h(N- 1)

h(N)

(151)

and

(I)(2M-I)
I __.,3 ... (--1)(M-I) (2M-I)'

(2)(2M-*)
2 __.,a ... (--I) (M-I) (2M-I)'

: : : :

__(M-l) s . ( I_(M-1)(M'-,1)(2M-D
M - I 3! "" _'-- ! (2M-I)[

M _k_.,' r l/(M-I) (M) (2M-*)"" _- _ (2M-0!

bo
bl

bM-1

g(1)

g(2)

g(M- I)

g(M)

(152)

where ao = P0, ax = P0_,t2, b0 = #, bl = .A43, and so forth. This closed set of

equations can then be cast as an overdetermined system by considering the case of

NoD equations for the magnitude function, h(k), based on a system with (N+I)

unknowns (terms in the series expansion) where Nov > (N + 1) and MOD equations

for the phase function, g(k), based on a system with M unknowns where Moo > M.
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The overdetermined systems can be expressed in matrix form as

1 0 ... 0

I ... , (_N)!

: : : :

1 --N_2,_ ... [-I IN(N)(2N)! (2N)!

1 N+L_-t_ "" (--l_N (N+I)(2N)
-- 2! " _ _/ (2N)!

1 _C_..t_ ... (--I_N(N+2) ¢2N)
2! x -] (2N)!

• : : :

1 (NopP t_I_N (NOD)(2N)
-- 2! " " " _, "_] (2N)!

a0

al

aN

h(0)

h(1)

h(N)

h(Y + 1)

h(N + 2)

h(YoD)

and

(I)(2M-I)
I -L_,.3 "'" (-I) (M-l) (2M-Z)!

2 -- 23L_I.3 "'" (--I) (M-I) (2M-I)!

: : : :

M _ ." {_I_(M-1) (M)(2M-I)
-- _. " _ ] (2M-I)!

M + 1 (M+Ip I I_(M-I)(M+I) (_'-_)
-- _ " " " _,-- _] (2M-I)!

M + 2 _ (--I) (M-I) (M+2)(2M-z)
-- 3! " " (2M-l)!

: : : :

MOD --(M°D)3 " (I) (M-I)(MpD)(_M-z)3[ " " -- (2M- 1)!

I bo

bz

bM-I

(153)

g(1)

g(2)

g(M)

g(M + 1)

g(M +2)

g(Moo)

(154)

Solution of the Overdetermined System

In general, an overdetermined system is defined in matrix form as

`A_-b (155)

where A is a matrix of dimension ((n x m) : n > m), x is a vector of dimension (m x

1) and h is a vector of dimension (n x 1). An approach to solving the overdetermined

system is to multiply both sides by the transpose of the ,4 matrix, ,AT , to form the

system

,AT_= ,ATb_. (156)

Now, if the square matrix ,AT,A has full rank, then the system in Equation 156 has

only one solution. Also, it can be shown that if ,A has full column rank [7, 8], then
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`4T`4has full rank. However,if the matrix ,4 does not have full column rank, then

there are an infinite number of solutions.

For the case where .,4 has full column rank, the solution can be expressed as

and is often termed the least squares solution. In Equation 155, the vector b may

not lie in the space spanned by the columns of ,4. Note that since the rank of ,4

is not equal to n, the columns of ,4 do not span _R'_ space in which b lies. If one is

trying to find the solution x_ that minimizes the norm of the error vector (i.e. the

least squares solution) defined by

IIe__I1=(_b-.__)T(_b-̀ 4._) (15s)

where the error is defined as

e__= (b- `4._) (159)

then taking the partial derivative of the norm of the error vector with respect to x_,

setting it equal to zero, and solving for x yields

= [,4_,4]-',4Lb (16o)

which is equivalent to the answer given in Equation 157.

often termed the pseudo-inverse.

In general, this form is

Least Squares Solution

The overdetermined systems defined in Equations 153 and 154 can be shown to

have full column rank and therefore yield the least squares solution. To prove the

property of full column rank consider the following square matrix

1 0 0 0

i _ _ _
i x_ x_ X_
I _ _ _

(161)
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This is a matrix with a similar form as that given in Equation 151 but with some

of the normalizations removed from each column. This matrix is similar to the

Vandermonde matrix used to fit a polynomial to sampled data [8]. We will seek

to prove that this square matrix has full rank and then extend the results to the

overdetermined system in Equation 153. To prove that the matrix has full rank,

it will be shown that the determinant of the matrix is not zero provided that xi #

xj for i # j and x_ # 0 for all i.

The first step is to perform the following column operations -x 2 • Cn-1 + Cn,

-x_ • C,_-2 + Cn-1, ..., -x_, C2 + (73 which yield

1 0 0 0

1 x_ 0 0

1 x 2 22_XlX 2 _ X 4 2 4--XlX 2 A- X_

1 x_ 22 24-zlz3 + x 4 + z_--XlX 3

(162)

and grouping terms yields

1 0 0 0

I x_ 0 0

1 x 2 2 2 X2(X 2_xl 2)_2(_2- _2) 4
1 x 2 2 2 Z3(:T3 __ X 2)x3(3:a- 3:_) 4 2

(163)

Next, perform the following column operations -3:2 * Cn-1 + C,_, -x] • Cn-2 + C_-1,

..., -3:] * Ca + (74 which yield

1 0 0 0

1 3:_ 0 0

1 X 2 2 2 3:2) 0x2(-x 1 +

--X2(3:3(--3:1 "4" X2)) "_ 3:3(--3:1 -_"1 3:] 3:_(_3:,_, + 3:2) 2_ , _ , 3:2)

(164)

and grouping terms yields

1 0

1 x_

0 0

0 0 (165)
i x2 2 23:2(3:2- 3:3) 0

3:3 (3:31 3:2 2 2 -- 3:2)(3:2 -- 3:2)xa(_a3:_1)2 2

Since Equation 165 islower triangular,the resultingdeterminant isthe product of

the diagonal elements which yields

det = 2 2 2 2XlX2X3(X 2 -- X21)(X 2 -- X2)(3:2 -- 3:2) . (166)
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Equation 166 states that the matrix has full rank, or the determinant is nonzero

provided that x, # xj for i # j and x, # 0 for all i.

This approach can be applied to any square matrix (NxN) of the form

1 0 ... 0

1 x 2 ... x_ N

: • . :

1 z__, ... z_N_I

yielding the following expression for the determinant

(167)

det= H x2 H(x2- x_)fori > j andi # j, i,j,k= 1,...,N .

This approach can also be extended

Xl

X2

XN

where the resulting determinant can

to the following matrix form

... xV

: : :

be expressed as

(168)

(169)

det - I'[xk n(x_ - x 2) for i > j and i # j, i,j,k = 1,...,N . (170)
k i,j

Now, since the square matrices in Equations 167 and 169 have been shown to

have full rank provided the elements xi are not zero or equal, then one can add

additional rows to these matrices while maintaining full column rank and yielding

an overdetermined system defined by

1 0 ... 0

: : : :

1 ___ ... _N
1 ...
: : : :

1 X20 D 2N•., X No D

(171)
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and
xl x? ... xV-1
x2 ... -1

... -1
XN+I X3+l _2N-1• • • :_N+I

: : : :

X No D X3o D _2N-I•.. XNo D

(172)

Now the columns of Equations 171 and 172 can be multiplied by nonzero scale factors

without changing the rank of the matrix. With the appropriately chosen scale fac-

tors, Equations 171 and 172 can be transformed into Equations 153 and 154 without

changing the rank of the matrices• Therefore, it has been shown that the overde-

termined systems in Equations 153 and 154 have full column rank, and therefore,

the solution to the overdetermined system will be the least squares solution.

Overdetennine4 Variance Estimators

As previously stated, autocorrelation based spectral moment estimators are a

function of the estimated autocorrelation function which is obtained from samples of

a random process. The quality of the autocorrelation function estimates therefore

directly affects the performance of the moment estimators. The overdetermined

systems in Equations 153 and 154 will be shown to improve autocorrelation based

spectral moment estimator performance. To focus in on how this improvement in

performance might be achieved, the overdetermined system will be applied to several

of the variance estimators obtained from a truncation of Passarelli's series expansion

for the case of a Gaussian shaped spectrum.

The variance estimators investigated by Passarelli [26] were obtained from closed

systems formed from a truncation of the series expansion. In investigating variance

estimator performance, Passarelli assumed a Gaussian shaped spectrum due to its

applicability to meteorological returns. The corresponding magnitude function as-

sociated with a Gaussian shaped autocorrelation function can be defined as

R(k) = Po -a2k2
_--_ exp(_) (173)
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where P0 is the total power in the spectrum and a is the spectral width. The four

variance estimators defined by Passarelli in Chapter III can be applied to samples of

this function to yield performance bounds in the presence of complete knowledge of

the autocorrelation function. Figure 22 is a plot the normalized error in the variance

estimate as a function of normalized spectral width when applied to samples of the

autocorrelation function defined in Equation 173. The normalized error is defined

as the absolute value of the difference between the estimated variance and the true

value which is then normalized by the true value.

0.9

0.8

_0.7

_0.6

0.4
0.3

0.2

0.1

0
0

01

.... 012

• .... 12 ........

- - 123 s

...-" ._

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
normalized Ilpeotrlll width

Figure 22. The normalized error in the variance estimate using estimators [01],

[12], [012], and [123] and assuming a Gaussian shaped autocorrelation function.

As seen in Figure 22, the four variance estimators yield their minimum error at

the smaller spectral widths. The [0 1 2] estimator, which includes the zeroth lag and

contains the largest number of terms in the series expansion, outperforms the other

estimators over the entire range of spectral widths. This performance is due to the

fact that more terms in the series expansion allow for a better representation of the

Gaussian shaped autocorrelation function. At the larger spectral widths, the higher
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order derivativesof the autocorrelation function are much larger than at the smaller

spectral widths, and therefore, the McLauren series expansion converges more slowly

and requires more terms in the expansion as noted by Passarelli [26]. This explains

the degradation in performance as the spectral width increases.

However, one never obtains an unperturbed estimate of the autocorrelation

function. The bias and variance in the autocorrelation lag estimate results in a per-

turbation in the true shape of the autocorrelation function. In an effort to represent

the effects of perturbations in the autocorrelation function estimate, a random term

is added to the true Gaussian autocorrelation function to yield

Do r -u2k2

R(k ) = _ exp(_) + arl(k) (174)

where rI is uniformly distributed between -_ and ½, and the perturbation factor a is

used to scale the standard deviation of the random term. The standard deviation

of rl(k) is therefore a_r_l_. This form of the autocorrelation function is used for

illustrative purposes only. In the next section, analysis will be performed using

estimates of the autocorrelation function obtained from simulated Doppler weather

radar returns embedded in white noise.

Figure 23, shows a comparison of the unperturbed and perturbed Gaussian

autocorrelation functions for normalized spectral widths of 0.01 and 0.2, where _r is

normalized to one. The perturbation factor, a, equals 0.01 in this example. Again,

the perturbation factor is a relative number used for illustrative purposes only. As

seen in the figure, a change in the slope caused by a bounded size perturbation

a(between _q to 7) is larger for the the autocorrelation function associated with the

smaller spectral width where the unperturbed slope is small.

Figure 24 is plot of the normalized error in the four variance estimators using a

perturbation factor of 0.005 and averaged over 30 iterations. As seen in this plot, the

four estimators exhibit a large error in the estimate at the smaller spectral widths.

However, at the .larger spectral widths only a slight change in the normalized error is
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Figure 23. A plot of the unperturbed and perturbed Gaussian shaped autocorre-

lation functions with normalized spectral widths of 0.01 and 0.2.

observed over that seen in Figure 22. This is due to the fact that the perturbation

has less of an effect on the slope of the autocorrelation function over the lags of

interest.

The following analysis focuses on the narrow band spectral width region. There

are several reasons for focusing in on variance estimators operating in this region.

Note that in Figure 22 the closed systems using only a few terms in the series ex-

pansion yield their best estimates of the variance at the smaller spectral, widths.

Therefore, from a closed system point of view, the number of autocorrelation esti-

mates needed to obtain acceptable performance is small. "Acceptable" performance

is a loose term that is dependent upon the application and how well one needs to

estimate the variance. Assuming that a low order closed system will yield some

degree of acceptable performance, then if an overdetermined system is to be ap-

plied, the minimum number of equations needed is equal to the number required

by the closed system. From an implementation standpoint, one would like to use

additional lags but at the same time place a limit on the number in order to keep
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Figure 24. The normalized error in the variance estimate using estimators [01],

[12], [012], and [123] and assuming a Gaussian shaped autocorrelation function with

a perturbation factor of 0.005.

computational requirements to a minimum. In contrast,the largerspectral width

regions require more terms in the seriesexpansion for convergence and thereforea

largerclosed system estimator.

Additional autocorrelationfunction estimates at the higher order lags are ap-

plied assuming that lags away from the center of the autocorrelationfunction also

contain information which can be used by the estimator. The rate at which the

autocorrelation function fallsoffis an indicator of which lags may contain useful

information, and based on the Fourier uncertainty principle,narrowband spectra

exhibit a slow roll-offof the autocorrelationfunction which willbe exploited in this

case to extract additionalinformation. Finally,the spectralwidth of a process may

effectthe performance of other moment estimators. The pulse-pairmean estima-

tor is known to exhibit a bias due to large spectral widths [40]. In this chapter,

variance estimators are applied to Gaussian shaped power spectral densitieswith



spectral widths (standard deviations) less than or equal to a normalized width of 0.2

where Ir is normalized to 1.

Figure 25 is a plot of the normalized error as a function of the number of equa-

tions (or lags) used in the overdetermined [0 1] variance estimator assuming that a

perfect estimate of the Gaussian autocorrelation function is available. The overde-

termined system is applied over the region of normalized spectral widths from 0.01

to 0.2 in steps of 0.01 as seen in the figure legends. As a reference point, the small-

est spectral width is represented by the bottom curve in each of the figures. Each

curve represents a bound on the obtainable performance of the overdetermined [0 1]

variance estimator. Figure 25 shows that the closed system, the first point on each

curve, yields the smallest error in the variance estimate when the autocorrelation

estimate is unperturbed. The rate at which the normalized error increases with re-

spect to the number of equations in the overdetermined system is proportional to the

spectral width. The [0 1] estimator is a good approximation to the Gaussian au-

tocorrelation function at the lower spectral widths. Therefore, the overdetermined

system is able to apply a least squares fit of the model to a range of autocorrelation

lags while maintaining less than a 20% normalized error in the variance estimate. A

20% normalized error in the variance estimate corresponds to approximately a 10%

normalized error in the width estimate (the square root of the variance estimate).

In the absence of an unbiased estimators the degree of acceptable bias over which

meaningful information may be obtained is very application specific.

Figure 26 is a plot of the normalized error in the [0 1 2] variance estimator

applied as an overdetermined system. As noted in Figure 22, the [0 1 2] estimator

is a better estimator of the variance at the smaller spectral widths than the [0 1]

estimator. In Figure 26, the normalized error is reduced over the entire range of

spectral widths as compared to that observed in Figure 25 for the [0 1] overdeter-

mined variance estimator. Figures 27 and 28 are the performance bounds for [1 2]
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and [1 2 3] overdeterminedvarianceestimatorsusing the Gaussianshapedautocor-

relation function. The performancecanbe characterizedin terms of an initial bias

due to the closedsystemand the slopeof the performancecurve. The more terms

usedin the seriesexpansion,the smaller the slopeof the performancecurves. One

might assumethat the overdeterminedsystem employinga large number of terms

in the seriesexpansionwould alwaysyield the best estatimator. In the following

sections,this will beshownnot to be the casefor all spectral widths.
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Figure 25. The normalized error in the variance estimate using the [0 1] estimate

in an overdetermined system for a Gaussian shaped autocorrelation function.

Figure 29 is a plot of the [0 1] overdetermined variance estimator applied to the

exact autocorrelation function in Equation 173 and the perturbed autocorrelation

function with a perturbation factor of 0.01. For normalized spectral widths less than

0.15, the perturbation of the autocorrelation function has a significant impact on the

performance of the closed system (the initial point on each of the curves). However,

as more equations are used in the overdetermined system the averaged normalized

error is reduced. The least squares fit minimizes the effects of the perturbations



73

0.8 "

._ 0.60.4

0.2

0
0 10 20

toO.01

_0.0
.... %. ......

"" 0.04

"--'_0.05

30
number of equatlonI

1_ 0.8 ! --O.ll

.¢=: 0.8 ....... i " , _0.1-2,

; -- 0.130.4; ....... i ........
i i • 0.14

o.2 ..! _ OlS _

o
o 1 o 20 30

number of equations

1

"_ 0.8

._ 0.8

0.40.2

0
0

0.8

._; 0.8

_0.4

0.2

0

............ i .......... i

• "/ .*_

v'11"

10 20

e-_:_ : -

,. 0.o8.
• 0.09

--0.1

30
number of equations

....... /_ .......... l'--0.1-7

/Y : _- I-0.18
/_...,_ .....I:0;!"

___/ i I-°-=°
0 10 20 30

number of equltlonl

Figure 26. The normalized error in the variance estimate using the [0 1 2] estimate

in an overdetermined system for a Gaussian shaped autocorrelation function.

1 , 1 •

,o,............i..................o,... ..........
: / .. . _"I- o.o3.- i_ ..._-I -o.'9e--.

=.o.4 ......... _,-:. r -...-o.o4_....... _ o.4 . _-____._ 1-:•.o.o,'o. 4o 1o =o 3o °o _ i i F °'110 20 30
number of equetlone number of equmUonl

"I_ 0 18 .... .......... i ..... O' l"II" ' O.e

. O.8o.4"_ __: i -- O.13 ___. I_" 0 "18o.4 _,, -o.!3
• _' i i 1'''0-14 _ : _0.19

|o.= ;z__'...oi;5 | o.= .............!.............i -0.=o
: 0

O0 10 20 30 0 10 20 30
number of equetlonI number of equetlone

Figure 27. The normalized error in the variance estimate using the [1 2] estimate

in an overdetermined system for a Gaussian shaped autocorrelation function.



74

.O.8

._ 0.60.4

_0.2

0
0

1

0.8

=: 0.6

_0.4

_0.2

1 i ..-

! /...._'_ |. 0.09

°.o= I-o.,
10 20 30 0 10 20 30

number Of equatlone number Of equations

1

;o:
_0.4

0.2

0

__ "0.i 1

o.13.
_:',/" ; ! --o14

..... _/----_.-.;',_..... i- ............. :. - .__0.15

10 20 30

number of equations

0
0 0 10 20 30

number of equations

Figure 28. The normalized error in the variance estimate using the [1 2 3] estimate
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as more autocorrelation lags are used in the overdetermined system. There is a

point where the performance of the estimator reaches that achievable for the overde-

termined variance estimator applied to the true Ganssian shaped autocorrelation

function. The number of equations required to best fit the observed data to the es-

timator is a function of the spectral widths. However, in the spectral width region

from 0.05 to 0.15 only a few additional autocorrelation lags are required to reach the

minimum obtainable error. Also, as seen in Figure 29, the number of equations re-

quired for the error to reach a minimum tends to group near an optimum number for

a given region of spectral widths. The grouping can be explained by the separation

and slope of the performance curves for the [0 1] overdetermined variance estimator

in Figure 25.

In Figure 30, the overdetermined [0 1 2] variance estimator is applied to the

perturbed autocorrelation lag estimates. The number of equations needed for the

unperturbed and perturbed curves to intersect has increased over that given in Fig-

ure 29. However, the [0 1 2] estimator is a better estimator at the smaller spectral



- 75

widths, and therefore, the obtainable normalized error may be lower when applying

the overdetermined system. This represents a tradeoff between the size of the closed

system and the number of additional lags needed in the overdetermined system to ob-

tain a certain level of performance. Additional lags imply additional computations

required by the signal processor. This will be investiaged further using simulated

Doppler weather radar returns.
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Figure 29. The normalized error in the variance estimate using the [0 1] estimate

in an overdetermined system for an Gaussian shaped autocorrelation function with

a perturbation of 0.01.

Doppler Weather Radar Example

The variance estimator is often used in meteorological processing to measure

the turbulence associated with an event, and much of the literature has focused on

the bias and standard deviation observed in autocorrelation based variance estima-

tors. As seen in Chapter III, autocorrelation based variance estimators are known

to exhibit a bias and standard deviation that increases for narrow and wideband

spectra as a function of SNR and the number of samples used to estimate the auto-



76

0.8 ....... _0.0i ' '

'toO. 4 ..... i ...: ........

0 10 20 30

number of equation==

.=_0.8 ....... .........__.....

..; 0.4_-. _ ....... _.-.---_.>f _ •

to.:l. _ _¢___....
o_

0 10 20

_o..._-_-

= 0.08
-0.09

_0.1

number of equations
30

,, , f.....f.... ,'

go.: .............iF:::J I°-:[S.................}
0 10 20 30 0 10 20 30

number of equation == number of equations
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a perturbation of 0.01.

correlation function. This section focuses on the overdeterrnined system applied to

variance estimators which are used to measure turbulence associated with Doppler

weather radar returns. The perturbations in the autocorrelation function estimates

as noted in the previous section will be introduced into the autocorrelation function

through a simulation of Doppler weather radar returns embedded in white noise.

The performance of the overdetermined variance estimators will serve to support

the case for the possible inclusion of adclitional autocorrelation lags in estimating

other moments in order to improve performance.

As in the previous section, the analysis will be limited to the narrow band case

and an assumed Gaussian shaped power spectrum. The narrowband case is impor-

tant because Zmic has suggested that weather radar systems should be designed

such that the observed normalized spectral width is constrained to be less than 0.25

in order to reduce the bias in the moment estimates [37]. This can be achieved

through the proper selection of the pulse repetition rate (i.e. sampling rate). As
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previously noted, Passarelli's expansion is not based on any assumed form of the

power spectrum or corresponding autocorrelation function. However, the data used

in this analysis assumes a Gaussian shaped spectrum as is often observed in mete-

orological returns [9] and as is often used throughout the literature for evaluating

estimator performance. The data is simulated using the approach given by Zrnic

and Bumgarner [39, 32] (Appendix B).

As with any autocorrelation based or Fourier based moment estimator, the

estimator can only approach it's optimum performance in the absence of noise and

clutter (returns from objects not associated with the target of interest). Before

applying any autocorrelation based moment estimator, it is necessary to reduce the

noise through correlation subtraction or filtering in the frequency domain. For this

analysis, the noise is assumed to be white, and an a priori average noise power

level will be subtracted from the zeroth autocorrelation lag in order to remove the

estimated noise power. In radar systems, the average noise power may be estimated

during periods when the radar is not transmitting or receiving.

In this analysis, the random process is assumed to be stationary or at least

locally stationary and ergodic in the autocorrelation over the time of observation.

A pulsed Doppler radar collects tens to hundreds of range samples from spatial cells in

a small time interval over which the process is assumed to be stationary. Therefore,

the autocorrelation lag estimates in this analysis are based on 100 complex data

samples using the asymptotically unbiased autocorrelation lag estimator defined in

Appendix A. As a Monte Carlo measure of performance, the results presented in this

dissertation are based on estimates averaged over 40 independent iterations.

A key result of Passarelli's analysis is that a single variance estimator is not

optimum over the entire range of spectral widths. Passarelli formed a closed sys-

tem of equations for four variance estimators using the following sets of lags (0,1),

(0,1,2), (1,2), and (1,2,3). The bias exhibited in Chapter III for these autocorre-

lation based variance estimators warrants the application of additional lags in an
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attempt to improve estimator performance in the narrow spectrum width region.

This analysis will also lead to a better understanding of the information contained

in the added lag values of the autocorrelation function and to how they may used

by an overdetermined system to increase estimator performance.

Reduction in Bias

The performance of the variance estimators evaluated in this section is measured

in terms of the bias (or normalized error) and the standard deviation in the estimate.

Figure 31 shows the averaged normalized error in the variance estimate as a function

of the number of equations used in the overdetermined system. This system is

defined by the truncated autocorrelation series expansion in Equation 153 using

only two terms, [0 1], (this is the traditional pulse-pair variance estimator). In this

figure, the signal-to-noise ratio (SNR) is 5 dB. The initial estimate in all the plots

(at N equations) represents Passarelli's results for a closed system of size (N x N).

In each sub-figure, the plot contains five curves each representing the estimates for

a given normalized spectral width ranging from 0.01 to 0.2 as given in the figure

legends.

As seen in Figure 31, the number of equations required to obtain the minimum

normalized error increases as the spectral width decreases. This can be explained

by the following discussion based on the rate of series convergence and the Fourier

uncertainty principle. The series coefficients of the autocorrelation function expan-

sion are defined as the derivatives of the magnitude of the autocorrelation function

evaluated at zero. Therefore, the information is contained in each lag of the auto-

correlation function to some degree as noted by the series expansion of h(k) in terms

of the coefficients. The autocorrelation function falls off at a rate that is inversely

proportional to the spectral width as explained by the Fourier uncertainty principle,

and so for the narrowband case, these overdetermined systems are attempting to

estimate the value of a small number (the derivative or slope of the autocorrelation
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function at zero) from the corrupted autocorrelation lag estimates. The additional

equationsrequired at the smallerspectral widths are neededby the overdetermined

system to extract the information from the perturbed autocorrelation lags whose

slope(information content) may besignificantly changedbetweentwo samplesfrom

that given in the true autocorrelation function. At the higher spectral widths the

slope of the autocorrelation function is much steeperand the perturbations in the

lag estimateshavelessof an effecton the slopeof the autocorrelation function.

From Figure 31, it is evident that the varianceestimatesfor the spectral widths

less than or equal to 0.15 benefit from the use of additional lags. The knee or

minimum in the curve is representativeof the overdeterminedvarianceestimator

having extracted all the information it can from the availabledata. It is observed

that the number of additional equationsneededto obtain the minimum normalized

error tends to group over a range of spectral widths. In the region of normalized

spectral widths from 0.03 to 0.05, the number of equations needed to obtain the

minimum normalized error is seven to eleven. In the range of normalized spectral

widths from 0.06 to 1.0, the number is three to six, and in the range from 0.11 to 0.15,

the number of equations is three to four. In comparing Figures 5.13 and 5.7, the

tendency for the minimum errors to group around a common number of equations

over a region of spectral widths is due to the slope and spread of the performance

curves for the overdetermined system. If the range of observable spectra! widths

could be known a priori, then an average number of equations needed in that region

to reach the minimum error could be applied to improve estimator performance.

The overdetermined system is able to extend the [0 II estimator over a larger region of

spectral widths than would have been possible using just the closed system estimator

(the initial point on each curve).

One approach in a real system might be to use the overdetermined system to

get a first cut estimate of the region in which one is operating and then apply a

more optimal estimator for that region which may be derived from either a closed or
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overdeterminedsystem. Passarellinoted that to usethe closedsystemvariancees-

timators in an optimal fashion,onewould needto either estimate the spectral width

region in which oneis operating or have a priori knowledgeof the expectedspectral

widths. An overdeterminedsystemcanallow operation overa larger regionof spec-

tral widths by reducing the observedbias and the observedstandard deviation as

will be seenin the following section. Also, for implementation purposes,it should

be noted that the matrix in Equation 153 doesnot dependon the estimated auto-

correlation lags, and therefore, the pseudo inverse,[.ATA]-I.AT, can be computed

off-line and stored for use in a real-time environment.
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Figure 31. The averaged normalized error in the variance estimate for the 5 dB

SNR case using two terms in the overdetermined system.

Passarelli's [26] work shows that estimators derived from different size closed

systems are optimal over different spectral width regions. The effect of more terms

in the series expansion can be also be evaluated for the overdetermined system.

Figure 32 is a plot of the averaged normalized error in the variance estimate for the
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casewhere three terms in the expansion, [0 1 2], are used to form the overdetermined

system with a SNR of 5 dB. One can see that for spectral widths between 0.11 and 0.2,

the use of additional terms in conjunction with an overdetermined system results in

a reduction in estimate error over that in Figure 31. The additional terms, however,

require a higher order overdetermined system to reach this minimum error. This

is due to the fact that the least squares solution must satisfy the minimum error

constraint using more terms in the series expansion. However, more terms do not

produce minimum errors that are measurably better in the region of spectral widths

from 0.01 to 0.1, and more equations are required for the same performance. For

the spectral widths in the region 0.11 to 0.2, the addition of more terms provides a

better model of the autocorrelation function and when used in conjunction with the

overdetermined system yields less estimate error in this spectral width region.

These two examples (Figures 31 and 32) have shown that the best model for

the autocorrelation function in a particular spectral width region obtained from

Passarelli's expansion can be used in conjunction with additional autocorrelation

lags in an overdetermined system to improve estimator performance. However, the

"best" model is not the same for all spectral widths as noted by Passarelli. The [0

1 2] estimator is a better estimator at the larger spectral widths where the slope of

the performance curve (in Figure 26) permits more equations to be used in trying

to obtain the minimum error or the most information extraction.

Reducing the Effects of a Low SNR

The overdetermined system can be used to reduce the effects of operating at a

lower SNR when estimating the autocorrelation lags from a fixed number of samples.

Figure 33 is a plot of the average normalized error in the variance estimate for a SNR

of 0 dB using an overdetermined system containing two terms in the series expan-

sion, [0 1]. As previously stated, an average white noise power estimate has been

subtracted from the zeroth autocorrelation lag, but the minimum obtainable error
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Figure 32. The averaged normalized error in the variance estimate for the 5 dB

SNR case using three terms in the overdetermined system.

has increasedforeach of the spectralwidths due to an increasein the variance of the

estimated autocorrelation function. This increase in the variance of the estimated

autocorrelationfunction could be reduced by using additionalsamples in computing

the autocorrelationfunction,but in pulsed Doppler radar systems confined by the

pulse repetitionrate and the observation time, thismay not be an option. Even

though the estimate error has increased in allspectralwidth regions,the minimum

error stilloccurs near the same number of equations as that in Figure 31. In the

0.15 to 0.2 spectralwidth region, additional equations (lags)are needed to reduce

the estimate erroras compared to Figure 31 where the minimum was reached for the

closedsystem case (NxN). Even though the minimum errorsreached in Figure 31 are

not obtained here,the overdetermined systems are stillable to significantlydecrease

the error over the (2 x 2) closed system (the initialpoint on each curve). In terms

of the performance bound in Figure 25, the noise produces sufficientdegradation in

the autocorrelationfunction estimates such that the overdeterrnined system isnot

able to compensate and extract as much information.
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Figure 34 is a plot of the average normalized error for the 0 dB SNR case using

three terms, i0 1 2], in the series expansion. The additional terms tend to improve

performance in the spectral width region from 0.11 to 0.2 over that in Figure 33. The

improved performance is attributable to the three terms of the series expansion used

in the overdetermined system which provide a better model of the autocorrelation

function in this region. In comparing Figure 33 and 34 in the spectral width region

from 0.01 to 0.1, the noise has narrowed the performance gap between the two

estimators, [0 1] and [0 1 2]. However, the number of equations needed to reach a

minimum is larger in the [0 1 2] case than in the [0 1] case since the overdetermined

system is fitting the data to a different model containing additional terms in the

series expansion.
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Figure 33. The averaged normalized error in the variance estimate for the 0 dB

SNR case using two terms in the overdetermined system.
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Gaussian Fit

As a comparison to previous work in fitting an assumed Gaussian autocorrelation

function to measured data in order to estimate the variance [1, 27], a least squares

fit of a Gaussian shaped autocorrelation function is applied to the data. Figure 35

is a plot of the average normalized error in the variance estimate as a function of the

number of lags used in the least squares fit. As one can see from Figure 35, the least

squares fit is needed over the entire range of spectral widths to reduce estimator error.

The achievable minimum errors in the spectral width region of 0.01 to 0.1 are higher

than the those presented in Figures 31 and 32. This can possibly be explained by

the fact that the Gaussian model represents an infinite series expansion which may

not yield the best estimator (model) for the very narrow widths when applied in

an overdetermined system. In the spectral width region from 0.11 to 0.2, the least

squares fit yields comparable results to that in Figures 31 and 32. Theoretically,

the performance curve for the overdetermined system using perfect knowledge of

the autocorrelation function would be flat with zero error over the entire range of
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equationsappliedto the system. However,the overdeterminedsystemmust fit what

is equivalent to an infinite seriesexpansionto the data. There are effectivelymore

terms that must be estimated. Another important note is the lack of a clustering

or grouping of minimum errorsarounda commonnumberof equationsin the 0.01to

0.1 spectral width region. This would be important in terms of an implementation

scheme. Another point that shouldbe made hereis that one may not alwayshave

a closedform of the autocorrelation function to which to fit the data. Passarelli's

expansionis not limited to the Gaussiancaseand thereforemomentestimatorsbased

on the overdeterminedsystemis a more robust approach.
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Figure 35. The averaged normalized error in the variance estimate for the 5 dB

SNR Gaussian case.

Reduction in Standard Deviation

As seen in the previous section,the use of additional equations in an overde-

termined system can reduce the estimator bias (normalized error). In this section,

the overdetermined system willbe shown to reduce the standard deviation in the
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estimate. Figure 36 shows the standard deviation (std) in the variance estimate for

the 5 dB case using only two terms in the series expansion. The standard deviation

is computed for the variance estimate in terms of the normalized frequency (0 to 1).

As seen in Figure 36, the standard deviation is reduced as more equations are used

in the estimate. Figure 37 is plot of the standard deviation in the estimate for the

5 dB case using three terms in the series expansion. As Passarelli had expected,

the larger closed system with more terms in the series expansion results in a larger

standard deviation in the estimate. But note that the use of additional equations

in the overdetermined system results in a decrease in the standard deviation over

that initially observed for the (N x N) closed system. Figures 38 and 39 are plots

of the standard deviation for the 0 dB SNR case with two and three terms in the

autocorrelation expansion, respectively. As expected, the decrease in SNR results

in an increase in the standard deviation which can be reduced by the overdetermined

system. The reduction in the standard deviation is most critical at the smaller spec-

tral widths where the standard deviation may be on the order of the quantity being

estimated.

The Zeroth Lag

In each of the overdetermined systems presented thus far, the zeroth lag was

included. However, Passarelli has shown that for certain spectral widths and a

low SNR, the omission of the zeroth lag in the closed system may be of benefit.

Remember that in the white noise case, the zeroth lag contains the noise power, and

an a priori estimate of the noise power must be subtracted from the zeroth lag which

may introduce additional errors in the estimate. Figure 40 is a plot of the normalized

error in the variance estimate for the 5 dB SNR case using two terms in the series

expansion starting with lag one. The minimum normalized error in the spectral

width regions from 0.01 to 0.15 is similar to that observed in Figure 31 which included

the zeroth lag in the overdetermined system. Therefore, the [1 2] estimator in the
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using two terms in the overdetermined system.
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overdeterminedsystemyieldsa result similar to that observedfor the [0 1]estimator.

This shouldbeexpectedwhencomparingthe performanceboundsseenin Figures25

and 27overthis region. However,the [0 1] and [1 2]estimator's performancedid not

track in Figure 21 when the closedsystem approachwasapplied over this region.

The overdeterminedsystem has improved the performanceof the two estimators

and causedthe two estimators to yield comparableperformanceover this region.

However,in the spectralwidth region0.16to 0.2, the minimum normalizederror has

increasedover the casein Figure 31containing the zeroth lag. Again, in comparing

the performanceboundsin Figures 25and 27, the overdeterminedsystemfor the [1

2] estimator cannot reachthe performanceof the [0 1] estimator.

Figure 41 is a plot of the normalizederror varianceestimate for the 5 dB SNR

caseusing three terms in the seriesexpansionstarting with lag one. In this case,

the normalizederror hasbeenreducedoverthat observedin Figure 40 in the spectral

width region from 0.16to 0.2and is comparableto that observedin Figure 32. This

analysisrevealsthat the zeroth lag is important in the region0.16 to 0.2when only

a few terms are used in the expansion. The zeroth lag contains a major portion

of the information in these "medium" width cases. The use of additional terms,

however, tends to compensatefor the omissionof the zeroth lag. In the spectral

width region 0.01 to 0.15, the zeroth lag is less important due to the fact that the

autocorrelation falls off much slower, and the information is spread over a larger

numberof autocorrelation lags. In the region0.01 to 0.1, the performanceof the [1

2 3] estimator in an overdeterminedsystemis similar to the [0 1 2] estimator.

ClosedSystemPerformance

Onemight askthe question, "Why choose an overdetermined system instead of

a larger closed system?". Figure 42 is a plot of the normalized error in the variance

estimate using closed systems of size (NxN) and a SNR of 5 dB. The number of

equations as defined by the horizontal axis represents the dimension of the closed



9O

1

1_0.8

"_ 0.6

_o4

_0"2

0

0.8

0.6

0.4
• 0.2

o

" 't.... : .......i...... " -o.o:_
' "= 0.02.

._ 0.04

--o.os

5 10 15 20 25
number of equRtlona

i : ! i

_ i i ¸o.14
--0.15

1_ 1

0.8

"i 0.0

0.4
• 0.2

0

1_ 1

0.8

"i 0._

0.4
• 0.2

0

\ . l_'""__ ,. .... 007
._ /._t ..... ,......... - 008

5 10 15 20 25
number of equations

..... 0.,17,

-- 0.18

• .0.19

0.20

5 10 15 20 25 5 10 15 20 25
number of equatlone number of equations

Figure 40. The averaged normalized error in the variance estimate for the 5 dB

SNR case using the [1 2]estimator in an overdetermined system.

i°'l_:_ |o= _-. t°°"
_°=r_-1_°5-_ _ _ : .... _ o

°L 5 10 15 ;zo 25 5 10 15 20 25

number of Nu==tione number of equetione

o._ _..... __ ..... " =0.it .... _ o..
_ o.e .....__i ...... i.... _*= .... .i o.e __.,.-o.._7..
!o. :._ ..... i. -".,= _o. _ .... -.o,8
.o.2 _' ":-:.....i _O.Ys' • • _'_: ........--:0_20

o 0
5 10 I S 20 25 _ 10 15 20 25

number of eclu==tione number of equetione

Figure 41. The averaged normalized error in the variance estimate for the 5 dB

SNR case using the [I2 3] estimator in an overdetermined system.



91

system. As one can observe, the larger closed systems only result in an increase in

the normalized error. For the narrowband case, it has been observed that, in general,

it is better to use an estimator based on a few terms in Passarelli's expansion in an

overdetermined system, than to include additional lags based on more terms in a

larger closed system.
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CHAPTER V

CONCLUSIONS

Motivation

This research was motivated by the need to improve the performance of au-

tocorrelation based spectral moment estimators. In general, the performance of

autocorrelation based spectral moment estimators is limited by the quality of the

autocorrelation function estimate. The current suite of autocorrelation based spec-

tral moment estimators is derived using an assumed model of the autocorrelation

function, the characteristic function defined in probability theory, and the Fourier

transform relationship between the autocorrelation function and the power spec-

trum. Autocorrelation based spectral moment estimators are important because

for certain moments such as the mean and variance, they are shown to exhibit bet-

ter performance at narrow spectral widths and low signal-to-noise ratios as compared

to Fourier based methods. Also, autocorrelation based spectral moment estimators

provide a means for reducing the computational load over that of the Fourier based

techniques which require an application of the discrete Fourier transform and discrete

centroiding techniques.

Passarelli has defined a series expansion of the general complex autocorrelation

function which relates central moments of the power spectrum to coefficients in the

series expansion. A truncation of Passarelli's series expansion results in a closed

system of equations that can be solved for the moment or moments of interest. A

comparison of this closed system of equations to the Yule-Walker equations defined

in autoregressive spectral estimation is made. Autoregressive spectral estimation is

based on the spectral factorization property which states that the power spectrum

associated with a random process can be represented as the output of a linear sys-

tem driven by white noise. The autoregressive model represents the case where the
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linear systemis assumedto be modeledasan all pole filter. The Yule-Walkerequa-

tions areobtained from the AR model by computing the secondorder statistics (the

autocorrelation) of the system. The Yule-Walkerequationsresult in a set of linear

equationsrelating the coefficientsof the linear systemto lagsof the autocorrelation

function. In an effort to improvethe spectral estimate for a given modelorder, the

overdeterminedYule-Walkerequations[4] havebeendefined. The overdetermined

Yule-Walkerequations are an attempt to extract additional information from the

autocorrelation function estimate at higher order lags.

This researchfocuseson adapting techniquesdevelopedin the field of mod-

ern power spectral estimation for use in the field of autocorrelation basedspectral

momentestimation to improveestimator performance. In particular, an overdetero

minedsystemin terms of a truncation of Passarelli'sseriesexpansionof the complex

autocorrelation function can bedefinedfor improving estimator performancesimilar

to that in modern spectral estimation for the Yule Walker equations. Someinitial

attempts havebeenmadeat usingestimatesof the autocorrelation function at higher

order lagsto improveautocorrelationbasedspectral momentestimator performance,

but, other than the poly-pulse-pairmean estimator which is usedto reduceestima-

tor variance,no rigorouswork hasbeen publishedon the relationship betweenuse

of additional lags and estimator performancein an overdeterminedsystem.

Summary of Results and Contributions

This dissertation has defined a framework in which to incorporate additional

estimates of the autocorrelation function at higher order lags into autocorrelation

based spectral moment estimators in order to improve estimator performance. In

particular, this work defines the structure in terms of an overdetermined system

applied to a truncation of Passarelli's series expansion for the general complex auto-

correlation function.
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This work starts by relating the overdeterminedsystem techniquesfound in

the field of modern spectral estimation to the field of autocorrelation basedspec-

tral momentestimation in order to improvespectralmomentestimator performance.

Chapter II is a reviewof modernspectral estimation techniques. In Chapter II, the

overdeterminedYule-Walkerequations aredefined, and the useof additional auto-

correlation lags to improve the power spectrumestimate is presented. In Chapter

III, the current suite of autocorrelation basedmomentestimators is defined includ-

ing Passarelli'sseriesexpansion. The performanceof autocorrelationbasedspectral

momentestimatorspresentedin Chapter III is a function of the quality of the auto-

correlation function estimate.

An overdeterminedsystem,definedin terms of Passarelli's series expansion, has

no solution, but solutions yielding minimum norms can be defined. It is shown

here that the overdetermined system defined by a truncated version of Passarelli's

expansion yields a matrix having full column rank. This implies that the system

of equations can be solved using pseudo-inverse techniques which yields the least

squares solution.

The overdetermined system defined in this work is shown to improve autocor-

relation based spectral moment estimator performance. There are theoretically an

infinite number of moments that could be assessed under this overdetermined frame-

work. However, in fielded systems the spectral moments of primary interest are the

zeroth moment (the power), the first moment (the mean), and the second central

moment (the variance). The spectral variance estimator is chosen in this analysis

because it is particularly vulnerable to bias and large standard deviations over a

range of spectral widths in the presence of low SNR's and where a limited number

of observations are available. The variance estimate or its square root (the width

estimate) is typically used in meteorological processing as a measure of turbulence.

The premise here is to show that an overdetermined system can be used to improve

the performance of autocorrelation based spectral estimators over estimators derived
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from the traditional closedsystem approach. However,it is not intended here to

exhaustivelyassessall the possibilities.

Even though variouspowerspectral shapesmight be considered,an exhaustive

assessmentis not presented. In this work, the Gaussianshapedpower spectrum is

chosenfor assessingoverdeterminedvarianceestimatorsability to improveestimator

performance. The Gaussianshapedspectrum is found to model Doppler weather

radar returns [9].

For the overdeterminedvarianceestimator, it isshownthat the narrowbandcase

offersthe most opportunity for additional information extraction sincethe informa-

tion is spreadof over a larger numberof autocorrelation lags. This is explainedby

the Fourier uncertainty principle. The narrowbandcaseis alsoimportant as noted

by Zrnic in reducing the bias in moment estimates. Basedon his analysis, Zrnic

hasproposedthat any fielded systemshouldemploy autocorrelation basedspectral

moment estimatorsonly when the normalizedspectral widths areconstrainedto be

lessthan 0.25_r.

The overdeterminedvarianceestimatorsevaluatedin this work aredefinedby a

a truncation of Passarelli'sseriesexpansionusing different numbersof terms in the

expansion. The performanceof the estimatorsis assessedin terms of the overdeter-

mined systemsability to reducethe bias and standarddeviation in the estimateover

that of the estimator definedby the closedsystem. This work definesperformance

bounds for the normalized bias in the varianceestimate whenoverdeterminedvari-

anceestimatorsare appliedto the caseof Gaussianshapedspectra. The slopeand

separationof the performancecurves,asa function of both the numberof equations

used in the overdeterminedsystem and the spectral width, are relevant in charac-

terizing the behavior of the estimator. In order to assessthe performanceof the

overdeterminedvarianceestimators, simulated Doppler weatherradar returns were

generatedat different spectral widths and signal-to-noiseratios.
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Especially at the narrow and wide spectral widths, the bias in the closedsys-

tem variance estimators is shown by Passarelli to be a function of quality of the

estimateof the autocorrelation function. Here it is shownthat the overdetermined

systemscould be usedto reducethe bias in the varianceestimate by incorporating

additional estimatesof the autocorrelation function at higher order lags. The per-

formanceof the overdeterminedvarianceestimatorsappliedto the simulatedweather

radar returns is shownto be bound by the performancecurvesderived from perfect

knowledgeof the autocorrelation function. The slopeof the performancecurvesis

an indicator of how quickly the truncated seriesexpansiondegradesin modelingthe

true autocorrelation function. Therefore, the slope is an indicator of how quickly

the overdeterminedsystemmust extract information beforethe model fails to repre-

sent the autocorrelation function, and the bias increasesbeyondsomeunacceptable

level. The separation betweenperformancecurvesin a given spectral width region

is an indicator of the variation in the number of equations needed in the overde-

termined system to reduce the bias in the estimate. This is relevant in defining

a single overdetermined variance estimator to operate over an extended region of

spectral widths.

Ithas been shown that the o_,'erdeterminedvariance estimators could be used to

reduce the bias in the narrow band spectralwidth region. The number of terms to

use in the seriesexpansion and the number ofequations needed inthe overdetermined

system isa function of the spectral widths and degradation of the autocorrelation

estimate. However, itisshown that a singlevariance estimator can be made more

robust by applying additionallags in an overdetermined system. As noted by Pas-

sarelliand as observed in thiswork, the use of largerclosed systems incorporating

additional estimates of the autocorrelation function at higher order lags only con-

tributes to increasethe bias in the estimate. The overdetermined system actually

uses the higher order lagsby applying a leastsquares fitto the data in a manner that

allows one to extract additional information. It was also shown that the standard
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deviation in-the variance estimates could be reduced by incorporating additional

aut0correlation function estimates at the higher order lags.

Using the estimator bias and standard deviation as a measure of performance,

this work showed that an overdetermined system using only a few terms in the series

expansion could be used to increase the region of spectral widths over which a given

variance estimator might perform. In an application, the overdetermined variance

estimator might be applied over the region of narrowband spectral widths in order

to obtain an estimate of the region in which one is operating. An overdetermined

or closed system variance estimator might then be applied in a more defined region

to improve estimator performance.

This work has shown that an overdetermined system in terms of Passarelli's

series expansion can be used to define spectral moment estimators which are able

to use the available autocorrelation function estimates in a manner that extracts

more of the available information. The overdetermined system is not limited to

a particular moment or shape of the autocorrelation function. Potential areas for

continued work using this framework are discussed in the following section.

Future Work

Future work in this area would involve the application of the overdetermined

system to other central moments of interest and to other power spectrum shapes.

One example would be the application of the overdetermined system to the mean

estimator. As noted previously, the poly-pulse-pair mean estimator was shown to

exhibit a reduction in the variance of the estimate by averaging over successive lags

of the phase of the autocorrelation function. However, the overdetermined system

using one term in the series expansion, yields the

v, No D

MI = ,.,,,=1kg(k) (175)
X-'NoD k 2
l-_k--1

estimator which is a different estimator than poly-pulse-pair estimator in Equation

143 and yields the least squares estimate and not just a weighted average. The
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overdeterminedsystemcould also be applied to the estimation of spectral skewness

which is limited due to the fact that one is trying to measurethe third derivative

of the phasefunction at zero from discrete estimatesof the autocorrelation func-

tion. However,since this information is embeddedin the autocorrelation function

at eachlag asnoted by Passarelli'sseriesexpansion,the overdeterminedsystemmay

allow oneto extract the desiredinformation by incorporating the higherorder lags.

In addition, the investigation of adaptive techniquesfor determining the optimum

numberof equationsmight beapplied. Techniquesfound in robust linear regression

analysismay lend someinsight into developingadaptive techniques.
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Appendix A

Probability Theory and Random Processes

Introduction

This chapter includes a review of probability theory and random processes. The

autocorrelation function and its Fourier transform, the power spectrum, are defined.

Also, basic probability measures such as moments and characteristic functions which

will be used to relate the autocorrelation and spectral domains are defined. In

addition, estimator performance issues are addressed.

Probability Theory

Probability Assignment

Probability theory is the branch of mathematics used to described random events

in some meaningful way. A random event is the outcome, c_, of some experiment

whose possible outcomes can be defined, but the knowledge of which outcome will

result on a given experiment is unknown until the experiment has been performed.

Probability theory attempts to characterize the likelihood of an event or events at

the outcome of a given experiment. A common example is the roll of a dice where

the possible set of outcomes on a single roll of the dice is the set {1, 2, 3, 4, 5, 6} and

the likelihood of a particular result is 1/6. The collection of all possible outcomes

is called a probability space, ft. A grouping of possible experimental outcomes is

termed an event, A, or a subset of the space.

The partitioning and grouping of subsets in the probability space can be de-

scribed in terms of set theory. Set theory provides for the partitioning of the prob-

ability space into subsets where the event A is a subset of the probability space

denoted as A C ft. A special subset of all probability spaces is the null set or

empty set denoted {#t}. Subsets of the probability space can be related through the

union and intersection operators which are both commutative and associative. The
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Figure A-1. Venn diagram representingthe intersectionof two sets.

union operator, U, combines two subsets into a singleset. For example, given the

two subsets A and B of a probabilityspace, then

C-'AUB (A-l)

forms a new subset, C, containing the elements of A and B. The intersection operator,

n, selects only the elements common to two sets and forms a new set from the overlap.

This is best visualized through the use of a Venn diagram as shown in Figure A-1

where the hatched area is the new set containing the intersection of the sets A and

B. Two sets which have as their intersection the null set

AAB={@} (A-2)

are said to be mutually exclusive or having no common elements.

In a probability space, each event, A, in the probability space, _, is assigned a

real number between 0 and 1 as an indicator of its likelihood of occurrence. This
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probability assignment is denoted P(A) where

and

P (A) >_ 0 (A-3)

P (fl) = 1 (A-4)

if (ANB)={¢} thenP(AuB)=P(A)+P(B) . (A-5)

In the general case, the probability of the union of two events can be written as

P(AU B)= P(A) + P(S)- P(ANB) . (A-6)

Besides the probability assignment given to unions and intersections, probabili-

ties can be defined in terms of an event A conditioned on an event B. The conditional

probability, P(A [ B) is defined as

P(A[B)= P(AAB) (A-7)
P(B)

Two important theorems result from the conditional probability. The first theorem

is the total probability theorem which states that if the probability space, _, can be

partitioned into a set of mutually exclusive sets {A1, A2,..., A,,}, then any event B

in _ can be written as

P(B) = P(B [ A1)P(A1) + P(B [ A2)P(A_) +... + P(B [ A,,)P(A_,) (A-8)

using Equation A-7.

that

The second important theorem is Bayes theorem which states

P(A [B) = P (B IA) P (A) (A-9)
P(B)

The probability P(A) is often termed the a priori probability which indicates that

this value is known before the experiment, and P(A [ B) is termed the a posteriori

probabilitywhich indicatesthat the value isonly known afterthe experiment. In

the case where two events are independent of each other, then

P(A O B) - P(A)P(B) . (A-10)
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The independenceof two eventsresults in Equation A-7 being written as

p(AIB) = P(A)P(B)
P(B) =P(A). (A-11)

Random Variables

A random variable is a mapping, X(a), of all possible outcomes, c_, of an exper-

iment which are contained in gt to the real number line. If the mapping is from a

countable number of outcomes, then the random variable will take on only discrete

values along the real number line. Events or subsets of the probability space can

be defined as intervals on the real number line where

{X < x} (A-12)

is an event or subset of the samples containing the possible outcomes mapped to the

real line in the region less than some value x. The random variable is any function

satisfying the following two conditions

1. {X < x} is an event for all x.

2. P(X = oo) = 0 and P(X = -oo) = O .

For future reference, a complex random variable is defined as

Z = X + jY (A-13)

where j = _ and X and Y are real random variables.

The probability assignments given to the events associated with f_ are now

defined as a mapping from the real line (defining the events) to the output of a

cumulative distribution function (CDF), Fx(x), where

fx(x) = P({X < x}). (A-14)

A statement listing all the properties of the CDF would be of considerable length;

however, a few of the more general ones are worth listing. Properties of a CDF

include:
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1. Fx(+_v) = 1 and F(-o¢) = 0 .

2. Fx (x) is a non-decreasing function.

3. P(xl < X < x2) = Fx(X2) - Fx(xl) •

4. P(X = x) = Fx(x) - Fx(x-).

The derivate of the cumulative distribution function

dFx(x) (A-15)
.fx(x) = dx

is termed a probability density function (PDF) for the random variable X and has

the following properties:

1. fx(x) > 0

2. f_°°oofx(x) dx = 1

3. Fx(X2)- Fx(xl) = f;7 Ix(x) dz

A PDF may be a continuous or discrete function depending on the type of random

variable. There are many probability density functions defined in the literature

which model random events. One of the most commonly applied PDF is the Gaus-

sian PDF. The Gaussian PDF is continuous function

1 ((x_a_'2) for -co<x< co (A-16)Ix(x)- _exp__ _ _

and is defined by two parameters,/_ and a.

Expectation

Often, one would like to characterize a random variable by the value it is most

likely to take on. This value is often termed the "expected" value or mean, _t, of

the random variable. The expected value of a random variable is computed as the

first moment of its probability density function, where

/?= E{X} = x fx(x) dx. (A-17)
oO

Higher order moments can also be defined as

'X n
M,, = E{X"} = .fx(x) dx . (A-18)
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Another important moment used to characterizea random variable is the second

moment about the mean which is often termed the variance, a 2, of the random

variable. The variance is defined as

a 2 = E{(X- #)2} = E{x 2} _ #_. (A-19)

Characteristic Function

The Fourier transform of a probability density function is defined as the char-

acteristic function. The characteristic function offers some useful properties and

completely characterizes the random variable without any loss of information. This

is due to the Fourier transform pair relationship. The characteristic function is

defined as

/2¢(w) = fx(X) exp(jwx) dx (A-20)
OO

and the inverse relationship as

fx(X) = _ O(w) exp(-jwx) dx. (A-21)

The characteristic function offers a method for calculating moments using deriva-

tives. Taking the first derivate of Equation ,4,-20 with respect to w yields

Fd¢(w._____._)_ jx fx(x) exp(jwx) dx (A-22)
dw

and evaluating at w = 0 yields

Fd_(w) I,_=o- jx fx(X) dr, -- j# (A-23)
dw

which equates the mean of the random variable to the derivative of the characteristic

function evaluated at zero. In general, higher order moments are related to the

characteristic equation through

M.=(-j)" L=o. (A-24)
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Joint Random Variables

In many cases, an experiment will result in an outcome consisting of two or

more random variables. An example is the blind selection of objects from a bag

containing plastic objects varying in shape (e.g. square, round, triangular, etc.)

and also varying in color (e.g. red, blue, green, etc.). The experiment outcome

will consists of two random variables X and Y representing the shape and color of

the objects, respectively. Probability theory defines the joint occurrence of the two

random variables in terms of joint PDF's and CDF's. The probability associated

with two random variables is defined as the probability that the condition on X and

the condition on Y will be jointly satisfied or in other words

P{X < x and Y < y} = P{X < x, Y <_ y} .

This joint probability is defined in terms of a joint CDF as

Fxy(x,y) = P{X <_ x, Y < y}

and the corresponding joint PDF is

fxy(X'y) =
dfxy(Z,y)

dx dy

(A-25)

(A-26)

(A-27)

and the joint PDF is defined as

dFx,,x2 .....xM(Xl,X2,... ,xn)

dxl dx2 ... dxn
(A-29)

Moments are also defined for joint random variables. For the two dimensional

case, the expected value of two random variables, X and Y, is defined as

= (xr} = f f (A-30)

(A-28)F(x,,x, .....xN)(xl, x2,..., x,,) = P(X1 < xl, X2 < x2, ..., XN < x_v)

where the joint CDF is defined as

The joint CDF and PDF can be extended to N random variables {X1, X_,..., XN}
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which is termed the correlation between X and Y. This can be easily be extended

to N random variables. Another important moment in the two random variable

case is the covariance which is defined as

Cxv = E{(X- #x)(Y- #y)} . (A-31)

An important property of random variables is that of statistical independence.

Statistical independence implies that the probability associated with one random

variable does not depend on the probability associated with another random variable

or

P{X <_x, Y <_y} = P{X <_x} P{Y <_y} (A-32)

or in other words the two events occur independent of one another. Statistical

independence is expressed in terms of the CDF and PDF as

Fxv(z,y) = Fx(z) fv( ) (A-33)

and

respectively.

fxr(x,y) = fx(X) fy(y) (A-34)

Another property associated with joint random variables is the notion

of correlation as defined in Equations A-30 and A-31. Two random variables are

said to be uncorrelated if the covariance defined in Equation A-31 is

cxv = 0. (A-35)

It can be shown that statistically independence implies uncorrelated; however, the

converse is not necessarily true.
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Functi0n_ of Random Variables

Functions of One Random Variable

As is often the case, the random variable under observation is a function of

another random variable with known PDF. The problem becomes one of defining

the PDF for the observed random variable. The mapping between the two random

variables is defined as

y=g(x)

where X has a known PDF, J:x (x), and known CDF, Fx (x).

also restricted to be monotonically increasing or decreasing.

{Y _< y} is related to X through the inverse transformation where

or

P(Y < y) = P(X <_ g-*(y))

(A-36)

The function g() is

The probability that

P(Y <_ y)

(A-37)

= Fy(y) (A-38)

- P(X <_ g-_(y)) (A-39)

= Fx(g-t(y)). (A-40)

The probability density function for Y can be obtained through the definition of the

PDF and the chain rule

fv( )._ dFy(y) (A-41)
@

dFx(x) Idx] (A-42)- dx ]g-'(_) _y

Idxl (A-43)= fx(g-l(u)) "_y •

Finding g(x)

Often one is interested in transforming a random variable with known PDF to

another random variable with known PDF. An example is the generation of real-

izations of a random variable on a computer. Uniformly distributed samples are
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easily obtained from simple algorithms on a computer. However, one is usually in-

terested in obtaining samples which have some other distribution such as Gaussian,

Rayleigh, exponential, etc.. With two known PDF's, the question becomes what

transformation to use. This can be obtained by equating

P(Y <_ y) = P(X <_ x) (A-44)

or

and solving for

f ffx(a) doz = fr(a) doz (A-45)
O0 OO

= = g(x). (A-46)

Functions of two random variables

Functions of two random variables are also common in physical systems.

general, the mapping is defined as

In

z = g(x,y). (A-47)

The CDF for Z can be obtained from the joint PDF of X and Y where

Fz(z) = f fD._(x,,} .fxr(x,y) dxdy (A-4S)

and Dz is the set of all points {x, y} for which {Z _< z}. A very common situation

is the case where the signal, X, is a random variable with additive noise, Y. The

resultant random variable is Z = X + Y. If the signal and noise are assumed to be

statistically independent, then their joint PDF is

fxy(x,y) =/xO:) Iv(y). (A-49)

The CDF of Z is then obtained by

/2fFz(z) = fr(y) dyfx(x) dx . (A-50)
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Computing the integral on dy yields

Fz(z) = oo[Fy(z- x)- Fy(-cc)] fx(x) dx . (A-51)

Now, differentiating Fz (z) to obtain the PDF yields

fz(Z) = fr(z- x) fx(X) dxdz . (A-52)
O0

This states that the resultant PDF is a convolution of the individual PDF's if the

random variables are statistically independent.

The Central Limit Theorem

The PDF for a sum of N statistically independent and identically distributed

(i.i.d.) random variables can be shown to approach a Gaussian distribution in the

limit that N --+ c¢. More precisely, the Central Limit Theorem [17] states that if

the x_ are i.i.d, and SN N= _i=t X_, then SN is distributed such that

lim p(SN aN# < s)=/__1 .-or 2N_oo _/Ya - _-_exp(-_--) da . (A-53)

which is a Gaussian distribution with mean zero and variance one.

Estimation Theory

Parameter Estimation

There are a large number of density functions which can be used to model ran-

dom events found in the physical world. Each density function has an associated

parameter or parameters which define the density. The allowable ranges for the

parameters associated with a particular density function form a family of density

functions. In order to characterize a set of observations {xt,x2,... ,x,,} obtained

by sampling a random event with a known form of the density function (i.e., Gaus-

sian, uniform, Rayleigh, etc.), an estimate of the density function parameters must

be obtained from the observed sample data. The density function, fx(x), and its

parameter, 0, or parameters is often expressed as

/x(x; O) = Ix(x). (A-54)
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The parameterestimate is a function of the observedsampledata which consistsof

independent and identically distributed random variables {X1,X2,... ,XN}. This

parameter is therefore a function of random variables

0 = g(X,, x2,..., XN) (A-55)

and is termed a statistic.

Since 0 is a function of random variables, it is also a random variable. To what

degree this random variable is able to estimate the parameter is best measured in

terms of properties of random variables. One of the most important properties of

an estimator is that its expected value equal the true value of the parameter being

estimated. The degree to which the expected value of the estimator approaches the

true value is measured in termed of a bias

Bias = E{O} - 0 (A-56)

where 0 is the true value, and an estimator is said to be unbiased if

E{0} = 8. (A-57)

An estimator may also be defined as asymptotically unbiased when

lim E{0N} = 0 (A-58)

where N is the number of samples used in computing the estimate.

Estimator Variance

In comparing unbiased estimators, one wants to consider the variation in the

estimator about its mean or expected value. A "good" estimator is one which has

a small variance. However, in comparing two unbiased estimators, one estimator
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can be declared more efficient than another by comparing the varianceof the two

estimators. For example, if 01 and 02 are two unbiased estimators and

Var(O,) < Var(02)

then 01 is more efficient than 0z. The Cramer-Rao lower bound (CRB) puts a limit

on the minimum variance obtainable for an estimator. The Cramer-Rao bound is

A derivation of the Cramer-Rao lower bound can be found in Larsen [17]. In the

case of equality in Equation A-59, the estimator is termed an efficient estimator.

An seen in Equation A-59, the variance associated with the CRB decreases

as a function of the number of samples used in the estimate. The variance of an

estimator therefore should converge to zero as N tends to infinity

lim Var{0N} = lim E _ 0N- E_0N_]2_ =0. (A-61)
t _ JI J

For use in defining an ergodic process in later sections, mean square consistency

will be defined here. An estimator is said to be mean square consistent if the mean

square error tends to zero in the limit

(A-62)
N-_oo tl IJ

Methods for Obtainin$ Estimators

There are three commonly used methods for developing parameter estimators.

The three methods are: Bayesian estimators, maximum likelihood estimators, and

estimators based on the method of moments. A brief discussion of each will follow

in order to fully develop this section on parameter estimation.
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Bayesianestimation assumesthat the parameter to be estimated is no longera

constant but a random variable with a known density function, .fo(O). This allows

for the useof a priori information. The parameter estimate is then the expected

valueof the parametergiventhe observedvalueswhere

/7 .....= E{OIx,,x,,...,XN} = 0 ' dO. (A-63)
fXl,X2 .....xN(Xl,X2, . ,",Iv)

A maximum likelihood estimator is based on finding the value of the parameter

that maximizes the likelihood function which is defined as

fx,,x2 .....xN(Xl,X2,...,XN; O) = fx,(Xl;O)fx2(x2;O).., fxN(xN, O) . (A-64)

Since the logarithm is a monotonic function, the value of 0 that maximizes the

likelihood function also maximizes the log of the likelihood function. Therefore, the

log-likelihood function is often used in practice where the maximum is obtained by

0 ln[fx_,x2 .....x_ (xl, x2,..., xN; 0)] = 0 (A-65)
08

and solving for 0. It can be shown that if the maximum likelihood estimator can

be found, then maximum likelihood estimator variance will equal the CRB [14].

The method of moments is based on equating the theoretical moments to the

sample moments and solving the system of equations for the unknown parameters.

The sample moments are defined as

1 N k (A-66)
i----1

where k indicates the k-th sample moment. The system of equations to be solved

is expressed as

__N__Xik ._ X k IX(X; 01, 02, ... , OM) ) d.T for k = 1 .... M (A-67)
i=1 oo
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Random Processes

Random Processes Defined

In order to characterize the outcome of an experiment over time, random pro-

cesses have been defined which describe each outcome as a new random variable

indexed by time. Given the direction of this dissertation, only discrete-time ran-

dom processes will be discussed; however, the concepts given here can easily be

extended to continuous-time random processes. A discrete-time random process is

denoted by a set of random variables, X, which are indexed by the time sample index,

n, or {X(n) : n E Integers} . Each random variable, X(n), has a corresponding

CDF

and corresPonding PDF

Fx(n) = P{X(n) <_x} (A-68)

dFx(,)(x) (A-69)
fx(,) = dx

In order to characterize the total process, the joint CDF is required

fx(1).x(_).....X(k)(X,,X_,...,Xk) = P(X (1) < _:_,X (2) < x2,...,X (k) < xk)

and the corresponding joint PDF

fx(1),x(2) .....x(_)(zl, z2, . . . ,xk) =

(A-r0)

dFx(,),x(2) .....x(_) (z, , z2, . . . , zk )

dxl dx2 ... dxk
(A-71)

The possible set of output waveforms of a random process form a family or ensemble

of waveforms.

Expectations

Since each time indexed output represents a random variable, the moments

defined in Section A can be applied to yield

M,,(n) = E {X'_ (n)} . (A-72)
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With Equation A-72, one is able to calculate the mean and variancefor eachran-

dom variable'associatedwith the random process. Besidescalculating momentsfor

individual random variables comprising the process,joint moments between ran-

dom variablesmay alsobe defined. Two commonlyusedmomentsdefinedfor joint

random processesare the autocorrelationdefinedas

rxx(k,l) = E{X(k)X*(l)} (A-73)

and the autocovariance defined as

Cxx(k,l) = E([X(k) - #(k)][Z(l) - #(/)]*} (A-74)

which should be noted are functions of the time-indices. When comparing two ran-

dom processes, X(n) and Y(n), similar moments can be defined where

rxy(k,l) = Z{X(k)Y*(l)} (A-75)

is termed the cross-correlation and

Cxy(k,l) = E{[X(k) - i_(k)][Y(l) -/_(/)]'}

is termed the cross-covariance.

if

(A-76)

Two random processes are said to be uncorrelated

Cxv(k, l) = 0 for all k and 1. (A-77)

This property shows that if two random processes, X(n) and Y(n), are uncorrelated,

then the sum of the two random process

Z(n) = X(n) + Y(n) (A-78)

yields an autocorrelation function that is the sum of the individual correlation func-

tions

rzz(k,l) = rxx(k,l) + ryy(k,l) . (A-79)

This is a useful property when dealing with additive noise that is uncorrelated with

the random process under observation.
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Stationarity

Random processes can be divided into classes based on the form of the under-

lying joint densities. For the case of discrete-time random processes, if the PDF's

of the random variables comprising the random process all have the same PDF

(A-80)

then the process is termed a first-order stationary process. In this case, all first

order statistics, (i.e., mean, variance, etc.), will be equivalent for each time-indexed

random variable. For the case of a joint PDF consisting of two random variables, if

the joint PDF is independent of absolute time

fx(,_+_),x(n)(x.,xk) = fx(m+_),x(m)(x,_,xk) for all re,n, and k (A-81)

and just depends on the separation in time between the two random variables,then

the process istermed a second-order stationaryprocess. Therefore, the second order

statisticsare independent of absolute time and justdepend on the differencebetween

the time-indexes. An example isthe autocorrelationfunction where

rxx(k, l) - rxx(k - l, O) (A-82)

or for easier notation

rxx( k, l) = rxx( k - l) . (A-83)

A random process having constant mean and an autocorrelation function that de-

pends only on the distance between random variables is termed a wide sense station-

ary (WSS) random process. This is an important type of random process because

the autocorrelation function is commonly used in process analysis. Other forms of

stationarity exist, but will not be discussed here.
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Ergodicity

Up to this point, the moments and correlations have been defined in terms

of ensemble averages. However, seldom does one have more than one realization

of a random process, and the ensemble averages are not known a priori. There

are, however, random processes which exhibit a relationship between the ensemble

averages and the sample averages that is of interest. Ergodic random processes are

stationary processes for which the sample averages converge to the ensemble averages

in the mean square sense. A random process may be ergodic in one moment and not

another. Therefore, different types of ergodicity have been defined. Two commonly

used types of ergodicity are ergodic random processes in the mean (mean ergodic)

and ergodic random processes in the autocorrelation (autocorrelation ergodic). A

WSS random process is mean ergodic if

where

and # is the ensemble mean.

lim E{I#N--#I s}=0
N---,oo

where

(A-84)

1 N

#N = _ _ x, (A-85)
i----1

A WSS random process is autocorrelation ergodic if

lim E {IrN(k) - r(k)l 2} = 0
N._,oo

(A-86)

rN(k) = _ x_ xh_ (A-87)
i----1

and r(k) is the ensemble autocorrelation.

Gaussian Random Pr0cess_

A very common random process is the Gaussian random process whose joint

PDF is defined as

)fX(X_) = (27c)21Cli/2 exp (x_- m___)T C -i (x- m__) (A-88)
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where the me.an vector, m__:, is defined as

= [E{X1},E{X2},...,E{XN}] T (A-89)

and the covariance matrix, C, has elements ckt defined by

ckt = E{ (x_ - mk)(x, - m,) } = c(k, l) . (A-90)

In the case of a WSS Gaussian random process, the mean vector reduces to

m_: = E{X} [1, 1, 1,...IT (A-91)

and the covariance matrix elements are defined as

Ckl = c(k - l) . (A-92)

Autocorrelation Matrices

The covariance and autocorrelation matrices are used in many areas of process

analysis and are worthy of a discussion, especially in the case of a WSS random

process. The autocorrelation matrix for a WSS random process is defined as

rxx(O) r'x(1) ... r*x(N)

r,x(1) rxx(O) ... r;x(N- 1)
E{xx H} = : : : (A-93)

,,,

r,x(Y) r,z(N- 1) ... rxx(O)

where H represents conjugate transpose. The covariance matrix is related to the

autocorrelation matrix by

C=R-_m_. (A-94)

There are several useful properties of the autocorrelation matrix when the process

is assumed to be wide sense stationary. It is easily shown that the autocorrelation

matrix is conjugate symmetric (Hermitian) since

r,,(k) = E{xn+kx_,} (A-95)
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and

X*rxz(-k) = E{x, ,+k} (A-96)

then

=r;,(-k). (A-97)

Also, since the values along the diagonal are all equal, the autocorrelation matrix is

also defined to be Toeplitz. Another useful property of the autocorrelation matrix

is that it is nonnegative definite (or positive semi-definite).

matrix is one for which

bHRb >_0

A nonnegative definite

(A-98)

for any vector b. A simple proof is

bHR_ = bE{x_.xH}b (A-99)

= E{bxx x _} (A-100)

= E{IbXxl 2} (A-101)

and since IbH xl 2 is greater than or equal to zero for any b then bZ_Rb >_ 0.

Power Spectrum

The Power Spectral Density

For a wide sense stationaryrandom process,the second-order moments, (i.e.,the

autocorrelationfunction),have been defined as a function of time (or delay). Since

the autocorrelationfunction isa deterministicquantity,one can apply Fourier anal-

ysisto the function in order to gain insightintothe spectral content of the random

process. The power spectrum or power spectral density (PSD) for a discrete-time

random process isdefined as

OO

Px(W) = _ rxx(k) exp(-jwk) (A-102)
k=-oo
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and the corresponding Fourier inverse is

1 ,_

rxx(k) = _ f_ Px(w)exp(jwk)dw. (A-103)

In terms of system analysis, the z-transform of the autocorrelation function is defined

as

OO

Px(z) = _ rxx(k) z -k . (A-104)
k=-oo

Note that Equation A-102 is the z-transform of the autocorrelation function evalu-

ated along the unit circle.

Linear System Analysis

In many cases, a random process is observed at the output of a linear system.

One can characterize the output in terms of a known or assumed input and the system

response. Let x(n) represent a realization of a WSS random process as input to a

linear system with impulse response h(n). The output of the system, y(n), is defined

through the convolution sum where

OO

y(n) = _ x(k)h(n- k). (A-105)
k=-_

Taking the expectation of both sides yields

OO

S{y(n)}= _ E{x(k)}h(n-k). (A-106)

Therefore, the expected value of the output is the mean of process weighted by the

total energy of the system impulse response

OO

E{v(n)} = l,x 2E h(n- k). (A-10T)
k=-_

The expected value of the output does little to describe the information content

of the random process over time. The time dependence is observed in the auto-

correlation function.

expressed as

E{y(n+k)y*(n)}=

The second order statistics associated with the output are

OO

E{y(n + k)x*(l) }h*(n - t) . (A-108)
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Equation A-108 canbe expressedin terms of a correlation function where

oo

ryy(k) = _ ryx(n + k - l)h*(n- l) .
k=--oa

Now, let m = l - n and change the index of summation such that

(A-109)

oo

ryy(k) = ryx(k - m)h'(-m)
DI_--O0

(A-110)

or

ryy(k) = rxy(k) • h*(-k). (A-111)

Now, computing ryx(k) yields

E{y(n+k)x'(n)}=

oo

E{x(n + k - l)x*(n) }h(l)
k_moo

(A-If2)

and therefore

Oo

ryx(k) = _ rxx(k - Oh(l) (A-113)
k=-oo

-- rxx(k) * h(k) . (A-114)

Therefore, the second order input-output relationship of a random process passing

through a linear system is expressed as

ryy(k) = rxx(k) * h(k) • h'(-k) . (A-115)

Note, that the z-transform of h'(-k) is expressed in terms of the z-transform of h(k),

H(z), such that

, 1
Z{h'(-k)} = H (-_) .

A simple proof follows. Let the z-transforms of h*(-k) be defined as

Hi(z) = E h'(-k) z -k .
k

Now, conjugating both sides yields

(A-116)

(A-117)

H;(z) = E h(-k) z *(-k) .
k

(A-IlS)
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Let m = -k, .and summing over m

g'_(z) = E h(m)z"-(-ml
rn

1 (-m)

= _ h(m)_:
771

Conjugating both sides yields

Hi(z) = h(m) z" J

(A-119)

(A-120)

. 1 (A-121)= H (_=).

Using this relationship and Equation A-115, the second-order input-output z-transform

P_(z) = P_,(z)H(z)H*(1) .

relationship is written as

(A-122)

When the transfer function is evaluated along the unit circle, z = exp(jw), Equation

A-122 becomes

P_y(w) = P_(w) [g(w)l 2 (A-123)

This equation defines the power spectral density of the output as the product of

the power spectral density of the input times the magnitude squared of the transfer

function frequency response.

Positivity

A power spectrum describes the distribution of power over frequency and since

power is defined to be a positive quantity, the power spectrum must be positive for

all w. Now the power spectrum is defined as the discrete-time Fourier transform

of the autocorrelation function. Therefore, using the discrete-time Fourier inverse

relationship, the average power in a realization of a random process, y(n), can be

written as

1 /_ Pyy(W)ryv(0) = E{ly(n)l 2} = _ d_. (A-124)
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The magnitude squared of y(n) constrains ryy >_ O. Now, assume that the real-

ization y(n) is the output of a linear time-invariant system with input x(n). Then,

ryy(0) can be written as

'F j2ryy(O) = E{ly(n)l 2} = _ IH(w) Pxx(_)d_. (A-125)

The filter can be defined as an ideal bandpass filter where

H(w) = 1 forwl <_w<w2

= 0 for [w,] and ]w2] _ 0.

Therefore, Equation A-125 can be written as

1

f_" Pxx(w) dw .rry(0) = E{ly(n)l 2} = _ ,

Since ryy(0) is defined to be

ryy(O) >_ 0

Pxx(W) must be

Pxx(w) >_o

for wl _< w _< w2 and IH(w)I _ = 1. Now, Pxx(w) and IH(w)l 2

be positive or equal to zero for wl _< w _< w2.

Pyy(W) is constrained such that

(A-126)

(A-127)

(A-128)

(A-129)

(A-130)

are constrained to

Therefore, given Equation A-123,

Pyy(W) >_0 (A-131)

for wl _ w < w_. Now the bandwidth of the filter is allowed to take on any value

between -lr and _r, therefore the condition

Pyy(W) >_ 0 (A-132)

must hold for all w. This says that the power spectral density is a positive semi-

definite function provided it is the discrete-time Fourier transform of a true autocor-

relation function.
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Spectral Factorization

"Spectral factorization is a property of the power spectrum which allows any

power spectrum to be represented as the output of a causal and stable filter driven

by white noise. The power spectrum was defined as

oo

Pxx(W)= _ rxx(k)exp(-jwk) (A-133)
k----oo

which is a real-valued positive function that is periodic in 2_r. The z-transform can

be obtained by replacing exp(jw) with z

oO

Pxx(Z) - _ rxx(k) z-k (A-134)
k=-oo

where Pxx(Z) is analytic in the annulus p < Izl _< _ which includes the unit circle.

Taking the logarithm of Pxx(Z), ln[Pxx(Z)], yields another analytic [6] function in

the annulus. This function can be expressed in terms of a Laurent series expansion

[30] about zero where
oo

ln[Pxx(Z)] = _ ak z -k . (A-135)
k-----_

The coefficientsof the Laurent series,ak, can be obtained by evaluating the series

at z = exp(jw)
OO

ln[Pxx(W)] = _ ak exp(-jwk) (A-136)
k_--O0

and observing that this is the Fourier series representation of the periodic function

ln[Pxx(Z)]. The coefficients are defined by

1 _r

ak = _ /_ ln[Pxx(w)]exp(jwk) dw. (A-137)

Since the power spectrum is real, the coefficients are conjugate symmetric, ak = a'_.k

and ao is defined as

ao = _ ln[Pxx(w)ldw. (A-138)

The power spectrum can now be written in terms of the expansion as

OO --I

Pxx(Z) - exp(ao) exp()"_ ak z -k) exp( _ ak z-k). (A-139)
k--1 k=-oo
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Now, let
OO

H(z) - exp(y_ ak z -k) (A-140)
k=l

which is analytic in the region [z I > p. H(z) may now be expanded in a power

series such that

g(z)- 1 + h(1)z -1 + h(2)z -2 +... (A-141)

where

h(O) = lirnz_ooH(z) = 1 (A-142)

given the definition of H(z). Since the region of convergence includes the unit circle,

H(z) is stable filter. Also, H(z) is causal given that c(k) = 0 for k < 0. Using the

conjugate symmetry of the Laurent series coefficients, Equation A-139 can be written

as

Pxx(Z) = a s g(z) g*(1) (A-143)

where a 2 = exp(a0). Evaluating Pxx(Z) on the unit circle yields

Pxx(oa) = a2 IH(oa)l= (A-144)

which is the frequency response obtained from the output of linear system driven by

white noise.

Power Spectrum Estimation

Autocorrelation Sequence Estimation

The definition of a power spectral density for a random process is conditioned

on the assumption of WSS. However, in physical systems, the random process under

observation is usually only locally WSS stationary. Locally WSS being defined as

only slight variations in rxx[k] with respect to the time index n in Equation A-

81 over a finite observation of the random process. Such physical systems include

human speech, atmospheric returns from radar, and oceanographic returns from

sonar. In addition to the WSS requirement, the autocorrelation lags of the process
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are not known a priori and must be estimated from a finite number, N, of samples

of a realization. In order to estimate the autocorrelation lags, the assumptionof

ergodicity must be exercised. With only N observations,one can at best obtain

estimatesof the autocorrelation function for lagsbetween-N < k < N. Assuming

an autocorrelation ergodic process and an estimate of the autocorrelation function,

÷xx(k), the PSD estimate is defined as

N --1 1
P==(f) = _ f==[k]exp(-j27rfk) -- < f < (A-145)

k=-N 2 - - 2"

There are two commonly used estimators for the autocorrelation function. The

first one is an unbiased estimator of autocorrelation function defined as

 xx(k) =
1 N-k

N-k _x(n+k)x.(n) for -(N-1)<k<N-1. (A-146)
r_=0

Taking the expectation of both sides yields

N-k

E{f xx(k)} = N _------_rxx(k) = rxx(k) (A-147)

which is a statement of unbiasness. The variance of the estimator is approximately

[29]

Varffxx(k)}
y OO

(N - k) 2 E (r2xx(l) + rxx(l + k)rxx(l - k)) (A-148)

for a real Gaussian random process and N >> k. Another commonly used autocoro

relation estimator is

1 N-k

fxx(k)=_x(n+k)x'(n) for -(N-1)<k_<N-1
n=O

(A-149)

which is a biased estimator where

N-k

E{_xx(k)}= N rxx(k). (A-150)

However, the autocorrelation estimator in Equation A-149 is asymptotically unbiased

where

Y_k

lim E{_xx(k)} = lira _rxx(k)=rxx(k). (A-151)
•N-_ N-_ Y
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The variance of the estimator in Equation A-149 is approximately [29]

1

Yar{_xx(k)} _ _ _ (r_xx(l) + rxx(l + k)rxx(l- k)) (A-152)

In most physical environments and especially at the higher order lags, Marple [29]

states that the sum of the variance and the squared bias is larger for the unbiased

estimator in Equation A-146 than for the biased estimator in Equation A-149.

Another problem is that the estimator in Equation A-146 may yield invalid

autocorrelation sequences. For a WSS random, it can be shown that

rxx(O) >_ Irxx(k)l for all k (A-153)

A simple proof follows from the positivity constraint and the definition of the power

spectrum. From the definition, let

1/:rxx(k) = _ Px(w) exp(jwk) dw. (A-154)

Using the Schwartz inequality and the positivity constraint, it follows that

Irxx(k)l <_ [Px( o)l lexp(jwk)l (A-155)

-- ex( o) (a-is6)

Noting that Equation A-156 is the definition for rxx(0), then

Irxx(k)l <_ rxx(O) for all k. (A-157)

If the condition in Equation A-153 is not met, the autocorrelation sequence

is invalid. It can be shown that this condition will always be met by the biased

estimator given in Equation A-149. Let x represent a vector containing N samples

of a realization from an ergodic random process where

x_.= [x,,x2,... ,XN] T . (A-158)
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Also, definea shift operator S k which shifts a vector k samples up or down and fills

the empty elements after the shift with zeros. For example S 1{x} yields

Sl{x_} = [O,x,,x2,...,XN-1] r • (A-159)

The biased autocorrelation sequence estimate in Equation A-149 can be written in

terms of the shift operator as

fxx(k) = NSk{x_(n)}Tx_*(n) for - (N- 1) <_ k < N- 1. (A-160)

Let Y-k = Sk{ x--} for any k, then the biased autocorrelation estimate can be written

as

÷xx(k) = NY.kTx*(n) for --(N- 1) < k _< N- 1. (A-161)

Applying the Schwartz inequality yields

1 T
IIf'xx(k)ll < _11_1111x*(n)ll for - (N- 1) < k < N- 1. (A-162)

The norm operator Ilxll is defined as

Ilxll=mT (A-163)

Now, the norm of

of the elements of x and all other elements have been set to zero.

Therefore, for the case when k = 0,

is less than or equal to the norm of x_ since Y-k contains a subset

and for k # 0

Now, since the II_zll- I1 11then

1 T

1 T

exx(k)=

(A-164)

(A-165)

ixx(O) >_ _xx(k) for all k. (A-166)
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This condition does not hold for all estimatesof the autocorrelation function

using the unbiasedestimator in Equation A-146. This can be shown by a simple

example. Let x = [1.1 1.05 1.07] T, then the unbiased autocorrelation estimate is

_xx(O) = 1.15 (A-167)

_xx(1) = 1.14 (A-168)

÷xx(2) = 1.18. (A-169)

Note that lag two in the autocorrelation estimate is greater than the zeroth lag.

Therefore, the autocorrelation estimate is not a valid one based on the property

given in Equation A-153. Since the unbiased autocorrelation estimate may lead to

an invalid autocorrelation sequence, and since the biased estimator is asymptotically

unbiased and its variance tends to zero in the limit, this dissertation will hence

forth use the term "autocorrelation estimator (or estimate)" to refer to the biased

estimator of the autocorrelation sequence. If the unbiased estimator is used, it will

be stated explicitly.

Power Spectrum Estimation Techniques

Spectralestimation techniques can be divided intotraditionaland modern tech-

niques. The traditionalspectral estimation techniques focus on the use of the dis-

crete Fouriertransform (DFT) and an estimate of the ACF. These techniques include

the periodogram method and the Blackman-Tukey method for spectral estimation.

The Blackman-Tukey method applieswindow functions to the estimated autocorre-

lation function to reduce the variance in the spectral estimates. It can be shown

that the Blackman-Tukey method reduces to the periodograrn method when using

a rectangularwindow. The modern spectralestimation techniques are based on an

assumed model for generating the random process. These techniques include au-

toregressivemoving average modeling (ARMA) which seeks to model the random

process as the output of a linearsystem driven by white noise and Prony's method
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which seeks go apply a deterministic exponential model to the data.

develops in some detail the ARMA modeling process.

Chapter 3

Periodogram Method

The periodogram estimate of the power spectral density is computed as the

magnitude squared Fourier transform of a finite length realization of the random

process. The periodogram estimate is

N-1 [2

1 n_=ox(n)exp(-jwn) (A-170)

This is an unbiased estimator of the power spectral density. This can be shown by

changing the summation index such that

1 x(n) exp(-jwn) (A-171)
Pxx(w) = 2M + 1 n=-M

Now, let M -_ oo and taking the expectation of both sides yields,

1
lim EfPYx(W_]',,. , ,, =

M-+oo 2M + 1

1

2M+ 1

Letting k = n - m yields

lim E{Pxx(W)} =
M--_oo

and in the limit,

M M

__, x(n)exp(-jwn) __, x*(m)exp(jwm_A-172)
n=- M rn=- M

M M

__, __, rxx(n-m)exp(-jw(n-m)).(A-173)
n=-M rn=-M

1 2M

(2M + 1 -Ik[)rxx(k)exp(-jw(k){A-174)
2M + 1 k=-2M

1 2M

2M + 1 _ (2M + 1 -[kl)rxx(k)exp(-jw(k)_A-175)
k=-2M

liraE{Pxx(w)} = Pxx(W)
M...._oo

(A-176)

which states that the periodogram is an unbiased estimator. However, it can be

shown that the variance of the estimator does not approach zero as the number

of samples increases.

approximately,

Kay [14] has shown that the variance of the periodogram is

Var[Pxx(W)] _ P_x(¢O) . (A-177)
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However,an _veragingof periodogramsgeneratedfrom M non-overlapping,indepen-

dent, and identically distributed finite realizationsof the randomprocesscanbe used

to reducethe variancein the estimate. The averagedperiodogramcan beexpressed

as

1 M ^

Dxx(w)a,9 = -'_ _=l PTx(W) " (A-178)

The variance of the average periodogram estimator is reduce by a factor of M over the

periodogram estimator given in Equation A-170. Since several realizations of the

random process are seldom available in practice, a single realization is partitioned

into M non-overlapping sequences of length N. The variance of the periodogram

estimate is, however, no longer reduced by M, but by a factor slightly less than M

[14].

Blackman-Tukey Method

The Blackman-Tukey method for spectral estimation is an attempt to reduce

the variance of the estimate through data windowing. The Blackman-Tukey power

spectral density estimator is defined as

N--I

F)x_x(W) --- __, _xx(k)w(k)exp(-jwk) (A-179)
k=-(IV-i)

where w(k) is a time-domain weighting function. The weighting function is applied

to reduce the variation in the latter lags of the estimated autocorrelation sequence.

Since the latter lags are estimated using fewer and fewer samples, the weighting

has the effect of reducing the variance of Blackman-Tukey estimator. Kay [14] has

shown the variance to be approximately

N

Var[Px_x(W)] _ P_x(W) _,, w2(k) (A-180)
N

k-_- N

However, an additional bias is imposed due to the corresponding convolution oper-

ation occurring in the frequency domain due to the windowing operation. Further

discussion of Fourier based estimators can be found in [14].
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Appendix B

Generation of Gaussian Shaped Spectra

Zrnic [39] has developed a method for generating in-phase and quadrature data

based on a specified shape for the power spectrum. This technique has been used in

weather echo analysis where the Doppler return is often Gaussian shaped [9]. This

appendix contains the simulation algorithm proposed by Zrnic.

The complex return from weather plus white noise can be modeled as

i(m) = s(m)cos[¢(m)]+ (B-l)

and

QCm) = s(m)sin[¢(m)] + ,_(,_)sin[¢(,_)] (B-2)

where I(m) and Q(m) are the in-phase and quadrature returns, respectively. The

signal and noise return envelopes s(m) and n(m) are Rayleigh distributed and the

signal and noise phase terms ¢(m) and ¢(rn) are uniformly distributed between 0

and 2_r. This signal can be written in terms of its power per frequency bin through

the discrete Fourier transform where

1 N-1 .2r

I(rn) + jQ(m) = --_ __, P_12exp(jOk)exp(-l--_rnk) .
k=0

(B-3)

The power Pk per frequency bin can be shown [9] to be exponentially distributed

The density functionand the phase Ok isuniformly distributedbetween 0 and 2_r.

for Pk can be written as

F(Pk) = Sk + W exp S_W" (B-4)

where Sk is the signal power per frequency bin and W is the white noise power per

frequency bin. Samples from a uniform density function are easily generated on

most computers. A transformation from a uniformly distributed random variable

to an exponentially distributed random variable as given in Equation B-4 is needed
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in order to generatesamplesof Pk. The transformation is obtained by equating

probabilities over the domains of the two density functions. This is expressed as

1 -Pk
f0P_Sk + W exp (S_¢.) dPk=fo x_' dXk. (B-5)

Computing the integrals and solving for Pk yields

P_ = -(Sk + N)ln(1 - X_). (B-6)

The shape of the signal spectrum, Sk, is arbitrary and for the purposes of this

dissertation is chosen to be Gaussian shaped. The signal and noise powers can be

combined to form the signal-to-noise ratio (SNR)

SNR = E_t S_
NW (B-7)
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Appendix C

The Averaged Normalized Error
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Appendix D

The Standard Deviation in the Variance Estimate
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case using the [12 3] estimator in an overdetermined system.
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case using the [0 1 2 3] estimator in an overdetermined system.
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