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ABSTRACT

Autocorrelation based spectral moment estimators are typically derived using
the Fourier transform relationship between the power spectrum and the autocor-
relation function along with using either an assumed form of the autocorrelation
function, e.g., Gaussian, or a generic complex form and applying properties of the
characteristic function. Passarelli has used a series expansion of the general com-
plex autocorrelation function and has expressed the coefficients in terms of central
moments of the power spectrum. A truncation of this series will produce a closed
system of equations which can be solved for the central moments of interest.

The autocorrelation function at various lags is estimated from samples of the
random process under observation. These estimates themselves are random vari-
ables and exhibi.t a bias and variance that is a function of the number of samples
used in the estimates and the operational signal-to-noise ratio. This contributes to
a degradation in perforrﬁance of the moment estimators.

This dissertation investigates the use autocorrelation function estimates at higher
order lags to reduce the bias and standard deviation in spectral moment estimates.
In particular, Passarelli’s series expansion is cast in terms of an overdetermined sys-
tem to form a framework under which the application of additional autocorrelation
function estimates at higher order lags can be defined and assessed. The solution
of the overdetermined system is the least squares solution. Furthermore, an overde-
termined system can be solved for any moment or moments of interest and is not
tied to a particular form of the power spectrum or corresponding autocorrelation
function.

As an application of this approach, autocorrelation based variance estimators
are defined by a truncation of Passarelli’s series expansion and applied to simulated

Doppler weather radar returns which are characterized by a Gaussian shaped power



iii

spectrum. The performance of the variance estimators determined from a closed
system is shown to improve through the application of additional autocorrelation
lags in an overdetermined system. This improvement is greater in the narrowband
spectrum region where the information is spread over more lags of the autocorrelation
function. The number of lags needed in the overdetermined system is a function
of the spectral width, the number of terms in the series expansion, the number of
samples used in estimating the autocorrelation function, and the signal-to-noise ratio.
The overdetermined system provides a robustness to the chosen variance estimator
by expanding the region of spectral widths and signal-to-noise ratios over which the

estimator can perform as compared to the closed system.
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CHAPTER I
INTRODUCTION

Problem Statement

The need to measure power spectrum parameters is found in many fields in-
cluding meteorology, seismology, acoustics, and astronomy. The power spectrum
is defined as the Fourier transform of the autocorrelation function associated with
a stationary random process. Parameters associated with the power spectrum in-
clude, but are not limited to, the total power, the mean frequency, the frequency
spread (variance), and the skewness. Measurements of these moments can be made
in the frequency domain by applying discrete centroiding techniques to approximate
the moment definitions. The Fourier based techniques require an estimate of the
power spectrum using traditional or modern spectral estimation techniques. Often
the amount of data to be processed is quite large, and this places a considerable
burden on modern signal processing equipment to meet the real-time requirements.

Fortunately, for spectral moment estimates, Rummler [28, 20] has shown that in-
formation compression can be achieved through the autocorrelation function (ACF).
Using the relationship between the characteristic function defined in probability the-
ory and the Fourier transform relationship between the autocorrelation function and
the power spectral density (PSD), Rummler developed the well-known pulse-pair
mean and width estimators which require only estimates of the zeroth and first
autocorrelation lags. Zrnic and others (37, 38, 40, 19, 31, 32] have compared the
pulse-pair estimators to Fourier based estimators and established under what con-
ditions each is optimum. Other autocorrelation based estimators can be derived
from an assumed form of the PSD and associated autocorrelation function. In me-

teorological processing, the Doppler return (PSD) is often Gaussian shaped [9] with



a correspondi_ng Gaussian shaped autocorrelation function. This fact has been ap-
plied to the development of an autocorrelation based variance estimator for Gaussian
shaped spectra [38].

The pulse-pair estimators have been used extensively in many fielded systems,
but Passarelli [26] has shown that the pulse-pair estimators are a subset of a much
larger set of autocorrelation based moment estimators that can be derived from
a McLauren series expansion of the complex autocorrelation function. Passarelli
shows that the coefficients of the McLauren series expansion can be expressed in
terms of moments about the mean of the power spectral density. This series ex-
pansion can be truncated and a closed system formed which can be solved for the
moment or moments of interest.

The autocorrelation based spectral moment estimators are a function of the es-
timated autocorrelation function at various lags obtained from the observed random
process. In general, there are two estimators used for estimating the autocorrelation
function from an ergodic random process. One is unbiased but has a larger variance
especially at the higher lags values, and the other is asymptotically unbiased and
tends yield a lower variance in the estimate. The unbiased estimator is also known
to yield an autocorrelation sequence estimate that may not reach its maximum at
the zeroth lag. The variance in the autocorrelation lag estimates is a function of
the number of samples used in the estimate and the signal-to-noise ratio.

It follows then that the autocorrelation based spectral moment estimator’s per-
formance will be a function of the quality of the autocorrelation lag estimates. In
fielded systems, both the number of samples available for estimating the autocorrela-
tion function at various lags and the signal-to-noise ratio of the system are driven by
constraints of the physical environment and system requirements for detection and
parameter estimation. Therefore, one may be limited in ones ability to improve the

quality of the autocorrelation function estimate.



In measurement systems which allow for the estimation of the autocorrelation
function at lags beyond the zeroth and first, the opportunity to use more lags may
provide improvements in spectral moment estimator performance. The use of ad-
ditional autocorrelation lags in the case of an overdetermined system has been used
in autoregressive moving average (ARMA) spectral estimation to improve spectral
resolution for a given (n,m) ARMA model [4]. In addition, higher order lags have
been used in ARMA modeling for coefficient estimation {34, 5|, and Bruzzone and
Kaveh [3] have defined a relative information index to measure the information pro-
vided by the autocorrelation function at different lags under various signal-to-noise
conditions. Based on the relative information index, a design criterion is defined for
selecting those lags which contribute information to the spectral estimate. Also, the
use of additional autocorrelation lags has been applied in the case of mean estima-
tion through the poly-pulse-pair [35, 21] to reduce the variance in the estimate. The
poly-pulse-pair estimator can easily be derived from Passarelli’s expansion. In cases
where the autocorrelation function is defined in closed form, such as the Gaussian
shaped PSD; a fit of the measured data to the shape of the autocorrelation function
has been applied 1, 27]. However, there are cases where the use of additional lags
has proven to be of little merit. ‘Srivastava and Jameson [33] have attempted to ap-
ply a poly-pulse-pair like approach to the autocorrelation based variance estimators
derived for the case of an assumed Gaussian shaped PSD without success.

This work takes Passarelli’s expansion which provides a mechanism for relat-
ing the central moments of the PSD to the autocorrelation function and cast the
closed systems defined by a truncation of the series expansion into overdetermined
systems. The additional lags in the overdetermined system are used to improve es-
timator performance through a reduction in estimator bias and standard deviation.
Passarelli’s autocorrelation function expansion is not based on an assumed form of
the autocorrelation function (e.g., Gaussian shaped, etc.) which, therefore, allows

this approach to be applied to any random process.



To assess the framework defined by the overdetermined system for improving
moment estimator performance, the variance estimator is chosen for evaluation. The
square root of the variance is defined as a width estimate in meteorological signal
processing and is used to measure the turbulence associated with an event. Autocor-
relation based moment estimators are applied in many meteorological measurement
systems. Pulsed Doppler weather radars allow meteorologists to measure rainfall
rates (proportional to estimated average return power), average velocity (estimated
mean Doppler shift), degree of turbulence (a function of the estimated variance in
the Doppler shift), and other physical attributes associated with such phenomena
as windshear, tornados, thunderstorms, wake vortices, and other natural or man-
induced atmospheric conditions. But with the ranging and Doppler extraction ca-
pabilities associated with pulsed Doppler radars over large volumes of space, comes
the requirement to process large quantities of data in real-time. The autocorrela-
tion based moment estimators allow one to process the data in real-time without
the need to perform the transformation from the autocorrelation domain to the
frequency domain. In addition, the Gaussian shaped power spectrum and corre-
sponding autocorrelation function are found to model the power spectrum for many
signals including the Doppler return from meteorological events. Therefore, in eval-
uating the overdetermined variance estimators simulated Doppler weather returns

will be used to measure performance.

ontributi he Fiel
This work contributes to the field by defining a framework in which to im-
prove the performance of autocorrelation based spectral moment estimators through
the inclusion of estimates of the autocorrelation function at higher order lags. The
framework is defined as an overdetermined system in terms of a truncation of Pas-
sarelli’s series expansion. It is shown that the solution of the overdetermined system
in terms of Passarelli’s expansion yields a least squares solution. The overdeter-

mined system is.shown to reduce estimator bias and standard deviation for variance



estimators de_zﬁned by Passarelli’s expansion in the narrowband case and assum-
ing a Gaussian shaped spectrum. Performance bounds are defined for several of
the overdetermined variance estimators and related to observed performance. The
overdetermined system is robust in that it extends the operating region of variance
estimators over a larger region of spectral widths and signal-to-noise ratios. It is
shown that the number of lags used in the overdetermined system is a function of
the quality of the autocorrelation function estimate (based on the number of samples
used in the estimate and the signal-to-noise ratio), the number of terms in the series

expansion, and the spectral width.

Organization

This dissertation is organized into five chapters. The current chapter serves to
describe the problems addressed and the resulting contributions to the field. Chap-
ter 2 defines autoregressive moving average spectral estimation techniques. This
chapter also defines the overdetermined Yule-Walker equations for an AR model and
illustrates how they are used to improve spectral estimates. This chapter, therefore,
serves as a foundation for casting Passarelli’s series expansion in an overdetermined
system. Chapter 3 is an overview of Fourier and autocorrelation based spectral
moment estimators. This chapter also includes a derivation of Passarelli’s autocor-
relation based moment estimators and serves as the basic structure from which to
build the overdetermined system. Chapter 4 defines the overdetermined system for
Passarelli’s series expansion and shows how the additional lags can be used to im-
prove estimator performance. Chapter 5 discusses the key results of this dissertation

and defines potential future work in this area.



CHAPTER II
ARMA SPECTRAL ESTIMATION

Introduction

This chapter is an overview of autoregressive moving average (ARMA) spectral
estimation. The ARMA parameter estimation techniques discussed in this chapter
include the overdetermined Yule-Walker equations which are used to increase the
amount of information extracted from the autocorrelation function estimate. The
application of an overdetermined system in ARMA spectral estimation serves as
a basis for extending the overdetermined system to autocorrelation based spectral
moment estimators in order to improve estimator performance.

In Appendix A, the Fourier based methods of spectral estimation are defined.
These methods assume a realization of N samples of an ergodic random process from
which lags —N < k < N of the autocorrelation function can be estimated. It is
observed that these methods show a tendency toward a large variance in the spectral
estimate. The Blackman-Tukey method offers a reduction in the variance of the
spectral estimate by windowing the autocorrelation estimate. However, windowing
in Fourier based techniques reduces the frequency resolution of the estimator and
biases the estimate. ARMA spectral estimation techniques provide a means for
increasing the spectral resolution while using fewer autocorrelation lags and, thereby,
reducing the variance of the estimate.

The spectral factorization property, in Appendix A, states that the power spec-
trum of a random process can be viewed as the power spectrum of the output of a
stable and causal linear system driven by white noise. For the special case where

Pxx(z) can be expressed as a rational polynomial function in z

Pxx(z) = 021;8 , (1)




Equation 1 can be expressed as

2 A2) A°(55)

P = Z
xx&) =B B (D) @)
where the linear system’s transfer function is defined by
_ Al

This assumed form of the power spectral density lends itself to a class of models
termed the autoregressive moving average (ARMA) models. The parameters asso-
ciated with these models may be obtained from the autocorrelation function estimate
as described in the following sections. Two important differences arise when com-
paring Fourier based spectral estimation techniques and ARMA modeling. The first
difference is that the ARMA models do not assume a finite length autocorrelation
function as implied by the windowing in the Fourier based methods. This exten-
sion of the autocorrelation function leads to spectral estimators which exhibit higher
spectral resolution over Fourier based methods. The second difference is that the
order of the ARMA models determines the number of autocorrelation lags required
to estimate the power spectral density. The number of autocorrelation lags required

is usually much lower than that for Fourier based ‘methods.

ARMA Modeling

Theory
ARMA modeling techniques have been successfully used to estimate the PSD
and associated parameters in radar signal processing [11], in speech signal processing
(18], and in other fields where the signal of interest may be characterized as a random
process. The ARMA model consists of a linear system driven by a white noise
source, u(n), as shown in Figure 1. The transfer function, H(z), for an ARMA
process is expressed as

boZM + ble_l +---+ bM_lz + bM _ B (Z)
2N +ayzV-1+---+any-_1z2+an A(z)

H(:) = @



u(n) H(z) y(n)

Figure 1. A pictorial of an autoregressive moving average model.

This is a rational transfer function which contains, in general, both poles and zeros.
The order of the numerator and denominator is determined by the process being
modeled.

The ARMA model can be subdivided into two models having distinct, desirable
qualities. The first model is an all-zero model termed the moving average (MA)

model. The transfer function for the moving average model is
H(z) = bozM + by zZM V4o bpy12 + by (5)
and the corresponding difference equation is
0 (1) = byt () + byt (n = 1) + -+ + byr_yu (n = M +1) + by (n — M) (6)

which is a finite impulse respoﬁse (FIR) filter. The MA model is used to model
random processes whose PSD’s are smooth or have well defined valleys. The second
model is an all-pole model termed the autoregressive (AR) model. The transfer

function for the AR model can be expressed as

N

z
H(z)= 7
(2) 2V +a1zV-1+---+ay1z+an M

and the corresponding difference equation is
y(n)=ay(n-1)+--+ayay(n-N+1)+aeyy(n-N)+u(n) (8

which is an infinite impulse response (IIR) filter. The AR model is used to model

random processes whose PSD’s contain well defined peaks. The question of which



model to use in representing a random process is partially answered by Kolmogorov
and Wold. Kolmogorov [16] and Wold [36] have shown that both an infinite order
AR(co) model and an infinite order MA(oo) model can be used to represent any
order ARMA model. Therefore, one is free to use higher order AR or MA models
to approximate any random process.

As defined in Appendix A, the z-transform of the second order statistics for the

input and output of a linear system are related to the system transfer function by
a!
Pey (2) = H(@ H* () Pus(2) - (9)

Now, if H(z) is evaluated at z = exp(j27 f), then the associated PSD is

2
B(j) (10)

A(f)

where o2 is the noise power associated with the input white noise process, and A(f)

Parma (f) = 0?

and B(f) are the transfer function polynomials evaluated at z = exp(j27f). The

PSD for a MA process can be expressed as
Pua(f) = *1B(A)I (11)

and, the PSD for a AR process can be expressed as

2

L (12)

A

An explicit relationship between the ARMA model parameters and the second-

Pur(f) =0o?

order statistics (the ACF) can be obtained. Letting

B* (L)
Pry (2) A(2) = —L B (2) 0* (13)
YY A‘ (z—‘)
then
Pyy (2) A(z) = H* (;1-) B(z) o? (14)

and taking the inverse z-transform of the left side of Equation 14 yields

N
ryy [k] *Qp = Z aiTyy [k - l] . (15)
=0
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Now, taking the inverse z-transform of the right side yields
1 M
z- [H" (z—) B(z) 02] =S bkt = k] . (16)
=0

Therefore, the ARMA(M,N) process can be expressed as

rov (K] = YN aryy k= + 2 TM kR (6]l + k] fork=0,1,...,.M
Yy —Eﬁ_lal’l‘yy[k—l] fOIkZM+1
(17)

where h(n) is a causal sequence. Equation 17 results in a set of nonlinear equations
to be solved for the ARMA parameters (02, a; for k=1,...,N, and b; for k =0,..., M).
For the MA process, let ax = §(k) and h(n) = b, which yields

(18)

2 N-k 1 _
Tyy[k]:{ g Tk bl + k] fork=0,1,...,M

fork>M+1
Again, this is a set of nonlinear equations that must be solved for the MA parameters
(02, b for k=0,...,M). For the AR process, let by = (k) which yields

- aryy[k-1l]+0% fork=0

ryy [k} = { ~vN aryy [k -1 for k > 1 (19)

Equation 19 is termed the Yule-Walker equations. Note that this is a set of linear

equations which can be written in matrix form as

ryy|[0] ryy[-1] oo ryy[-(N -1)] ay ryy(1]
Tyy[l] Tyy[O] tee Tyy[—(N - 2)] a9 - Tyy [2]
eV =1] rey[N=2 -« ryrl0] an ryy[N]

(20)
Also, note that for a complex WSS random process the correlation sequence is con-
jugate symmetric, r(—k) = r*(k). Therefore, the correlation matrix in Equation 20
is Hermitian symmetric and Toeplitz since all the diagonal elements are equal. This

set of equations can be extended to include the white noise variance where
Tyy[O] Tyy[—].] e ’ryy[—N] 1 0‘2
Tyy[l] Tyy[O] L T‘yy[—'(N - 1)] ay _ 0 (21)

roy[N] ryy[N=1] -« ryel0] an 0
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Of the three models, the AR, with its set of linear equations relating the ACF to
the models parameters, is the simplest to solve. The AR model is used extensively
in the literature and is used in lieu of an ARMA or MA model due to the difficulty
in estimating the zero locations. In addition, for most physical systems, the poles
contain most of the relevant information (harmonic location, spectrum width, etc.).
Also, as stated previously, the fact that the AR(oo) is capable of representing any
ARMA or MA model supports the use an AR model of higher order over the MA
and ARMA given the difficulties in estimating the zero locations.

The Yule-Walker equations resulting from the AR model can be solved using
common matrix analysis techniques such as Gaussian elimination or by exploiting
the properties of the Hermitian Toeplitz matrix. Gaussian elimination techniques
require on the order of O(N?) operations. Levison and Durbin [10] have developed
an algorithm based on the Hermitian and Toeplitz nature of the Yule-Waliker equa-
tions which allows for the solution of the Yule-Walker equations in O(/V?) operations.

Given the Yule-Walker equations in Equation 21, they can be modified to form

[ ryy[0] ryy(1] N ][ L ] K2
ryy(l] ryy[0] - [N =-1)] || el 0
z : s = - (22
Tyy[N] Tyy[N - 1] s Tyy[O] aﬁ 0
| Tyy[N + 1] Tyy[N] oo Tyy[O] 1L 0 ] | En ]

Given the Hermitian Toeplitz nature of the Yule-Walker equations, Equation 22 can

be written in an equivalent form as

Tyy[O] Tyy[l] o Tyy[N+ 1] 17 o | [ En ]
ryy(l] rey[0] - ryy[(N)] ajy 0
: : - : o= - (23)
ryy[N] iy IN=1] - ryy[l] ajy -y 0
| ryy[N+1] riy[N] - vy L 1 | 0% ]
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Taking the complex conjugate of Equation 23 and scaling it by a complex number &

yields
[ ryy[0] ryv(l] rielN+1]T 0 1
ryy(l] ryy[0] Ty (V)] ay
KN+1 : : .. : : = KN+1
ryy[N] ryy[N =1] - riy(l] ay_y
i Tyy[N + 1] Tyy[N] Tyy[O] i 1 ]

(24)

The complex number « is often termed the reflection coefficient. Adding Equations

21 and 24 yields

Ry 4

where

RN+1 =

Now, letting

Equation 25 can be written as

where

and

r 1 E 0 * 0_12v - EN *
ad’ a 0 0
: +EN$1L | : ¢ = : + KN+t
a¥ al 0 0
] 0 ] 1 1) L fN ] | U,zv
[ ryy[0] ryy(1] - ryy[N+1] ]
ryy(1] ryy (0] ryy (V)]
ryy[N]  ryy[N=1] -+ riy(l]
i Tyy[N + 1] Tyy[N ] TYY[O]
KN+1 = —g‘% .

Rys18y4 =0x[10 ... 0}

(17 TR

+ KN+1

(25)

(26)

(27)

(30)
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Table I. Levison Durbin Recursion

1. Initialize the routine.
(a) ad =1
(b) a§ = rxx(0)

2.2 fori=0,1,...,N—-1
(a) & =rxx(i+1)+ i airxx(i—k+1)
(b) ki1 = —5‘&
(c) For k=1,2,...,4, ai' =a}+Kinait,y
(d) aifi = Kkin

(e) Ui2+1 = U?v+1 =o%[l- |NN+1|2]

The result of this exercise is a recursive algorithm for obtaining the AR filter coeffi-
cients of order N+1 using the coefficients at order N. The algorithm is given in Table
L

There are many sub-optimé.l approaches in the literature for estimating the AR
parameters. This list includes the Yule-Walker equations, the Burg algorithm, and
the least squares approach just to name a fev?. There are also sequential methods
based on the time series data which include the gradient adaptive least mean squares
algorithm and the recursive least squares. With all the attention given to the area
of spectral estimation over the past 10-20 years, there are several excellent text
describing these different techniques [14, 29]. This dissertation will not explore the
different techniques but will concentrate on the Yule-Walker equations which directly

employ an estimate of the autocorrelation matrix.
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Model Order Determination

Model order determination is a critical factor in representing a random pro-
cess. Too low an order yields a smoothed spectrum, and too high an order may
yield spurious peaks. Most algorithms, which attempt to estimate the model order
from an observed data set, focus on observing a minimum in the estimated white
noise variance, 2. Akaike [29] has proposed two methods for estimating the order
of a process. The first method, termed the final prediction error method (FPE),
estimates the order based on the minimization of the following equation

N+k
_L&2

FPE(k) = 5—¢

(31)

where N is the number of samples collected and k is the current order of the model
used to represent the process. A second method proposed by Akaike for estimating
the model order is termed the Akaike information criterion (AIC) and is based on

minimizing the following equation

AIC (k) = NIn(6%) + 2k (32)

High Resolution

ARMA modeling offers an enhanced capability over Fourier based methods in re-
solving closely spaced signals. These techniques are often termed “high resolution”
spectral estimators. ARMA modeling is able to enhance its resolution capability
through the fact that the ARMA model does not window the autocorrelation func-
tion. Equation 17 does not assume the autocorrelation function goes to zero after
a specified number of lags as assumed in the Fourier based methods. In addition,
the lack of any implied window function prevents the normal sidelobes introduced

by a window function in the spectrum.

Effect of White Noise
In most physical systems, the random process under observation contains signal

plus additive observation noise. The observation noise should not be confused with
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the white noise source used to drive the ARMA model. In modeling a random pro-
cess, an appr;)priate model must be chosen which can characterize the total process
including the observation noise. Exclusion of the observation noise from the model
will result in a biased estimate. Since AR models are often used to characterize
a random process, it is of benefit to observe what happens to an AR process when
white observation noise is added. Given an AR process with P4g(z) and additive in-
dependent white noise with its corresponding P, (z) = 02, the resulting z-transform

description can be written as
Pyy (Z) = PAR(Z) + 0'3, (33)

or
2

|4 (2)[°

Pyy (Z) = + 0’3, (34)

and adding the two terms yields

o2 +0l|A (2)?

|A (Z)|2 = PARMA (Z) . (35)

Pyy (Z) =

The addition of white observation noise has changed the AR process to an ARMA
process(12]. From Equation 35, as the signal-to-noise ratio (SNR) increases, the
zeros of the system move to the poles of the system resulting in a flat or smoothed
spectrum. Kay [14] has given four methods of removing the effects of the observation

noise in AR modeling. The four methods are:
1. use an ARMA model in lieu of an AR model to better represent the process;

2. use a filter to reduce the SNR;
3. adjust the model parameters to compensate for the noise [13]; and

4. use a higher order AR model to better approximate the ARMA process.
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The Autocorreiation Function

Introduction
The AR model serves as a compact tool for relating properties of an autocorrela-
tion function to the power spectrum. This section will define the Fourier uncertainty
principle and use a first order AR model to illustrate the property. This section will
also discuss white and colored noise properties and methods for removing the noise

from the ACF before estimating the PSD.

The Uncertainty Principle
The uncertainty principle [2, 23] of the Fourier transform states that the duration-

bandwidth product A7 Aw must meet the following constraint

AT Dw > (36)

[

with equality for the Gaussian distribution function. The uncertainty principle will
be used in Chapters III and IV to explain performance issues related to the auto-

correlation based moment estimators.

First Order AR Model Example
An ARMA model consists a set of difference equations which can be solved to
yield the general form of the autocorrelation function for that process. For a real

first order AR(1) process, the Yule-Walker. equations can be written as

rxx(k) = —arxx(k—1)+o® fork=0 (37)

rxx(k) = —airxx(k—1) fork#0. (38)

Solving the difference equations for rxx (k) yields

o (—ay) . (39)

rxx(k) = 1-a?

Since a; is required to be inside the unit circle for a stable system, the resulting

autocorrelation function is a decaying function (Jaa] < 1). Also, if a; is positive,
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the function _oscillates between negative and positive values, and if a, is negative,
the function is positive for all k. Examples of both cases are given in Figures 2 and
3.  The corresponding PSD can written as

0.2

P =
XX(‘-‘)) |1 +a, exp(_jw)lg (40)
since the AR process is the output of linear system driven by white noise
1
Pxx(z) = O’ZH(Z)H*(Z—;) (41)
and the system transfer function is defined as
z
H(z) = .
()= o (42)

Given the AR(1) PSD in Equation 40, if the coefficient is negative, then the
PSD represents a lowpass process. The bandwidth of the lowpass process is de-
termined by the distance of the pole in Equation 42 from the unit circle. The
bandwidth dependence is illustrated in Figures 4 and 5 for the cases where a; = 0.9
and a, = 0.5, respectively. The closer the pole is to the unit circle the narrower
the bandwidth. The corresponding autocorrelation functions are given in Figures
6 and 7. In comparing the autocorrelation functions to their corresponding PSD’s,
an inverse relationship is seen between the duration in the correlation domain and
the bandwidth in the frequency domain. These examples imply that narrowband
processes have autocorrelation functions that decay slowly compared to wideband

processes. This can be explained through the Fourier uncertainty principle.

The Noise Autocorrelation Function
Any real measurement system has an associated noise source or sources due
to the random motion of electrons within the components forming the system. In
addition to noise sources within the measurement system, there are other sources
of contamination which are usually labeled as clutter and are a part of the mea-

sured signal. The clutter is usually an undesired portion of the measured signal
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Figure 3. The autocorrelation function associated with an AR(1) process with
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Figure 5. The power spectral density associated with an AR(1) process with a, =
-0.5.
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The autocorrelation function associated with an AR(1) process with
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Figure 7. The autocorrelation function associated with an AR(1) process with
ay = —-0.5.
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and may cause a bias in parameters extracted from the measurement. A priori
knowledge of the noise or clutter signal aids in designing methods for noise or clut-
ter rejection/suppression. In the case where little knowledge is known about the
noise source, matched filters based on the transmit signal are used to enhance signal
detection.

In physical systems, the noise is often additive and statistically independent of
the “signal”. A random process, Y, containing signal, X, plus additive independent
noise, N, will yield an autocorrelation function which is the sum of the individual

autocorrelation functions
ryy(k) = rxx (k) + ran(k) . (43)
Since the Fourier transform is a linear operator, the PSD for the total process is
Pyy(w) = Pxx(w) + Pyn(w) . (44)
A special case exist when the PSD of the noise is constant for all w
Pyn(w) =0* forallw. (45)

This is termed a white noise process. The resulting autocorrelation function is a
delta function at lag k=0
ran(k) = 0% 8(k) . (46)
In this case, all the information about the noise is contained in the zeroth. auto-
correlation lag. In traditional and modern spectral estimation techniques where
estimates of the autocorrelation function are used to estimate the power spectral
density, the noise contained in the zeroth autocorrelation lag estimate will bias the
power spectrum estimate of the signal.
Compensation for or removal of the noise bias is possible using correlation sub-
traction techniques. In the case of white noise, an estimate of the noise power,

#nw(0), is subtracted from the total power to obtain an estimate of the signal power

#xx(0) = Fyy(0) — Fxn(0) . (47)
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Estimates of the noise power are obtained during periods when the signal of interest is
known to be ébsent. The white noise case is an optimum noise suppression scenario
in that all the noise power is contained in the zeroth autocorrelation lag. However,
there are other cases where the noise process is non-white (or colored).

Colored noise contains correlated noise samples which result in non-zero values
in the ACF away from lag zero. Correlation subtraction routines can also be used in
this case when a priori knowledge of the noise source is available. An example is the
case where a white noise source has been passed through a known noise suppression

filter to improve the SNR.

Information Relative to Lag Index

The Yule-Walker equations, as defined in Equation 19, represent a system of
equations with N+1 unknowns and potentially an infinite number of equations. In
practice, however, the first N+1 equations starting with k = 0 are assumed when
referring to the Yule-Walker equations. Considering the general case, the Yule-
Walker equations represent a set of N+1 unknowns and M equations (M > (N +1))
which may be used to form an overdetermined set of equations (M > (N + 1)).

Bruzzone and Kaveh [3] have shown that the number of autocorrelation lags, M,
required in estimating the parameters of an AR model of fix order N, is a function
of the information contained in each autocorrelation lag. As a measure of the infor-
mation contained in a set of autocorrelation lags, Bruzzone and Kaveh have defined

a relative information index (RII), R,

p= L0 (48)

where I,(9) is Fisher’s information matrix for the pole positions based on the auto-
correlation estimates, and I, () is Fisher’s information matrix for the pole positions
based on the observed data set. The range of R is 0 < R < 1 with equality of one

indicating that the autocorrelation estimates are sufficient in estimating the pole
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Figure 8. A plot of the RII for a AR(2) process with poles located at § = +0.257
as a function of the pole magnitudes and the autocorrelation lags {k;, k2} used in the
estimate. (Source: (©1984 IEEE, Bruzzone and Kaveh, “Informaiton Tradeoffs in
Using the Sample Autocorrelation Function in ARMA Parameter Estimation”, IEEE
Trans. on ASSP, August 1984.)

positions. Bruzzone and Kaveh illustrate several examples for an AR process. A
discussion of some of these examples is presented here in order to illustrate Bruzzone
and Kaveh'’s conclusions.

The first example is an AR(2) process with the poles located at angles of
# = +£0.25x. Figure 8 shows the relative information index as a function of pole
magnitude and as a function of the autocorrelation lags {ryy(k), k1 < k;} used to
compute the pole locations. As seen in Figure 8, wideband processes, (|P| < 0.8),
require the inclusion of the first few autocorrelation lags in order to accurately esti-
mate the pole locations.

The second example is an AR(2) process with additive independent white noise.
Figure 9 is a plot of the relative information index as a function of SNR and pole

radius, |P|, when lags zero through four are used. As seen in Figure 9, the relative
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Figure 9. A plot of the RII for the case of a AR(2) model with poles located
at # = +0.257 and additive white noise as a function of SNR and pole magnitude
| P|. The AR(2) model estimate is made using lags zero through four. (Source:
©1984 IEEE, Bruzzone and Kaveh, “Informaiton Tradeoffs in Using the Sample
Autocorrelation Function in ARMA Parameter Estimation”, IEEE Trans. on ASSP,
August 1984.)

information index falls off quickly as a function of SNR in the case of a narrowband
processes (|P| > 0.8). In a similar example containing additive white noise and
using an AR(2) process, the relative information index in Figure 10 is plotted as a
function of the number of lags, (ko = 0 to k), used in the estimate and the pole
locations in 7-radians for a fixed radius of 0.95. This example illustrates that the
higher lags of a narrowband process contain additional information which can be
used in the spectral estimate.

In these examples, the white noise is concentrated in the zeroth lag. In selecting
the autocorrelation lags to use in the AR model estimate, one might avoid using
the zeroth lag entirely to reduce the noise bias. Figure 11 contains plots of the
relative information index computed for a AR(2), with poles located at a radius of
0.95 and an angle of 0.257 radians, as a function of five autocorrelation lags with

different initial indices. For a SNR above approximately 18 dB, the inclusion of
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Figure 10. A plot of the RII for the AR(2) model with a pole magnitude of 0.95
(narrowband) as a function of the number of lags used in the estimate and the
pole angle in radians. (Source: (©1984 IEEE, Bruzzone and Kaveh, “Informaiton
Tradeoffs in Using the Sample Autocorrelation Function in ARMA Parameter Esti-
mation”, IEEE Trans. on ASSP, August 1984.)

the zeroth lag, even though it contains the noise power, is optimum for obtaining a
good spectral estimate. However, when the SNR drops below 18 dB, the estimator
is optimum Qhen using the lags starting at index k = 1. Also, note that the latter
lags starting as late as index four still contain some information about the process
in the narrowband example.

For the wide-band case, it can be shown that most of the information is con-
tained in the initial lags. Figure 12 is a plot of the relative information index for a
AR(2) with poles located at a radius of 0.4 and an angle of 0.25« radians. Again,
the set of autocorrelation lags used in the estimate consists of five lags with different
initial indices. As seen in Figure 12, the latter lags contain little information about
the wide-band process. The zeroth lag provides a great deal of information about
the wideband process provided the SNR is greater than 5 dB. At lower SNR, the

noise power dominates the zeroth lag causing a bias in information. However, only
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Figure 11. A plot of the RII for the case of a AR(2) process with poles located
at § = £0.257 and a magnitude of 0.95 plotted as a function of the SNR and
lags {ki, k2} used in the estimate. (Source: (©)1984 IEEE, Bruzzone and Kaveh,
“Informaiton Tradeoffs in Using the Sample Autocorrelation Function in ARMA
Parameter Estimation”, IEEE Trans. on ASSP, August 1984.)

the zeroth lag contains the noise power, and therefore, lags one through five can be
used at the lower SNR.

Based on their analysis, Bruzzone and Kaveh have developed a criterion for
selecting autocorrelation lags for use in AR model estimation. The following is a

summary of some of the critical issues defined by Bruzzone and Kaveh.

1. The zeroth and first autocorrelation lags are important in both the wide
and narrow band cases and provide a substantial portion of the available
information.

2. Fewer lags are needed for wideband processes.

3. In the case of narrowband processes, estimators using a large number of au-
tocorrelation lags is suggested.

Cadzow [4] has also investigated using additional lags of the autocorrelation
function in estimating ARMA model parameters. Cadzow’s paper treats the overde-

termined case of the Yule-Walker equations and shows that additional lags can be
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Figure 12. A plot of the RII index for the case of an AR(2) process with a mag-
nitude of 0.4 (wideband) and an angle of # = +0.25n, as a function of SNR and
lags {k1, k2} used in the estimate. (Source: (©1984 IEEE, Bruzzone and Kaveh,
“Informaiton Tradeoffs in Using the Sample Autocorrelation Function in ARMA
Parameter Estimation”, IEEE Trans. on ASSP, August 1984.)

used to improve estimator performance. In order to show how the additional lags
could be used to improve the spectral estimate, Cadzow simulated ten realizations
of a signal consisting of two sinusoids embedded in white noise with normalized fre-
quencies of 0.2 and 0.215. Figure 13 is a plot of the spectral estimate using a 20th
order AR model. The large model order is used since the additive white noise man-
dates an ARMA model. Note that the two sinusoids are not distinguishable. In
Figure 14, the model order has increased to twenty-four, and the two sinusoids are
starting to separate. Cadzow demcustrates in Figure 15 that an AR model of size
20 using 50 equations in the overdetermined system yields a better estimate of the
two sinusoid locations than the higher order AR model using the basic Yule-Walker

equations.
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In this section, a case was made for the use of additional autocorrelation lags
in AR modeling. In Chapter IV, this overdetermined approach will be extended to

autocorrelation based moment estimators in order to improve estimator performance.
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Figure 13.  Ten realizations of a 20th order AR power spectrum estimate for two
sinusoids embedded in white noise. (Source: (©)1982 IEEE, Cadzow, “Spectral Es-
timation: An Overdetermined Rational Model Equation Approach”, Proceedings of
the IEEE, September 1982.)
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Figure 14.  Ten realizations of a 24th order AR power spectrum estimate for two
sinusoids embedded in white noise. (Source: (©1982 [EEE, Cadzow, “Spectral Es-
timation: An Overdetermined Rational Model Equation Approach”, Proceedings of
the IEEE, September 1982.)
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Figure 15.  Ten realizations of a 20th order overdetermined AR power spectrum
estimate based on 50 equations for two sinusoids embedded in white noise. (Source:
©1982 IEEE, Cadzow, “Spectral Estimation: An Overdetermined Rational Model
Equation Approach”, Proceedings of the IEEE, September 1982.)



CHAPTER III
SPECTRAL MOMENT ESTIMATORS

Introduction

This chapter starts by relating moments of the power spectral density to mo-
ments defined for a probability density function. This chapter then reviews Fourier
and autocorrelation based techniques for estimating moments of the PSD. The
Fourier based techniques attempt to approximate the moment integral using discrete
centroiding techniques given a traditional or modern power spectrum estimate. The
autocorrelation based techniques include the commonly applied pulse-pair mean and
variance estimators and Passarelli’s autocorrelation function series expansion which
allows one to define an infinite number of estimators including the pulse-pair. Esti-
mator performance issues for both the Fourier and autocorrelation based estimators

are also addressed.

Spectral Moments

The power spectral density can be interpreted as a function describing the dis-
tribution of power over a range of frequencies. This distribution is assured to take
on values greater than or equal to zero over all frequencies due to the positivity
constraint of the PSD. The estimated PSD can also be normalized to contain unit
area. The normalized PSD for a discrete time random process is

P..(w)

pN orm — — 49
= ) 4o )

which has the properties of a probability density function where
PNem () >0 forallw (50)

and
/ T pNom () =1, (51)
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One can now define moments of the power spectral density by

M, =E[u" = / " BNmL) (52)

-

The mean frequency is defined as
= / w PNer™ () dw ‘ (53)

and the variance of the spectral random variable can also be computed using the

relationship

o*=E [wz] - E*[w] . (54)
There are basically two methods for estimating the moments associated with a PSD.
Fourier based techniques which require an estimate of the PSD and autocorrelation
based techniques which take advantage of the Fourier transform pair relationship
between the ACF and the PSD and the characteristic function defined in probability

theory.

Fourier Based Spectral Moment Estimation

Given an estimate of the PSD obtained from traditional or modern spectral es-
timation techniques, the desired spectral moments can be estimated in the frequency

domain using

My = uf P () (55)

The spectral moment estimates reflect a composite estimate of the signal plus noise
contained in the sampled data set. Except for the large signal-to-noise ratio case,
noise suppression techniques are required to reduce the bias [32]. Noise suppression
techniques include spectral filtering based on a priori defined thresholds to reduce the
noise bias. Zrnic [40] has shown that Fourier methods are inferior to autocorrelation
methods (which will be defined in the next sections) at low SNR’s and for narrow

spectral widths.
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Pulse-Pair Mean and Variance Estimators

Due to the large number of samples collected by some measurement systems,
a method for the estimating the spectral mean and variance was needed which re-
duced the processing time relative to that required by Fourier based spectral mo-
ment estimation techniques. The algorithm used in many present day systems is
the pulse-pair algorithm developed by W. D. Rummler in 1968 while at Bell Tele-
phone Labs [28]. The pulse-pair algorithm is based on the Fourier transform pair
relationship between the autocorrelation function and the power spectral density
and the characteristic function defined in probability theory. A derivation of the
pulse-pair algorithm will be given at this time in order to show its relationship to
similar estimators developed in later sections.

Assume that there exist a zero-mean complex stationary Gaussian process, z(t),
and an additive independent complex zero-mean Gaussian noise process, n(t). Also,
assume that the noise process is white. The total process y(t) = z(t) + n(t) has an

autocorrelation function defined by
ryy (1) =Elyt+7)y" #)], (56)

and since z(t) and n(t) are independent, the autocorrelation function for the total

process can be written as the sum of the autocorrelation functions of the individual
processes

TYY (T)=’I‘xx (T)+TNN(1') . (57)
The ACF for the white noise process is defined as

ran (1) =026 (7) . (58)

From probability theory, the characteristic function associated with a probabil-

ity density function is defined as

&(r) = [ f(w)exp (jur) du (59)
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where f(w) is a density function. Since the noise is white, the derivation will proceed
using only the signal process, and the noise will be compensated for at the end of the
derivation, if needed. Let Pxx(w) be the PSD associated with the signal process

z(t). Then the normalized PSD can be written as

Pxx (w)

Pxx (w) = — 60
xx (W) ™ Prex (@) do (60)
where
o0 _
/ Pex (W) dw=1. (61)
—00
This normalized PSD can now be used to define nth moment
oo —
M, = / WPxx () d(w) (62)
-0

of the random variable, w. As shown in Appendix A, the moments of a density

function are related to the characteristic function through the following relationship

i, = (- £280 (63)

Now, let the total energy in the signal process be defined as
o0
E= / Pxx (w) dw . (64)
- J—o0
Since rxx(7) and Pxx(w) form a Fourier transform pair, rxx(7) can be written as
1 oo .
rxx ()= 5= [ Pex (w)exp (jur) dw . - (69)
T J—00
Normalizing both sides by 27 E yields

B lT) - [ P (w) eap ur) do (66)

where the right hand side can be interpreted as the characteristic function associated
with the density function Pxx(w). Therefore, calculating the first moment using

Equations 59, 63, and 66 yields

2rdrxx (1
My = o drax () (67)
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which is the mean of the PSD.

Let the signal autocorrelation function be expressed as
rxx (1) = A(7) exp (O (7)) (68)

where A(7) is the magnitude function and is real and even, and ©(7) is the phase

function and is real and odd. Therefore, the mean can be written as

My = ~2 L [A(r) e (10 ()

7=0

- - j%’ [4(r) exp(j6(r)) + A()€(7) exp(0())]

(69)

=0
Now the even and odd properties of the autocorrelation magnitude and phase func-

tions result in the following:
e A'(t)isodd = A'(0)=0.

e O(r) isodd = 6(0)=0.
Therefore, the mean can be written as

2T

My = A(0)6'(0) (70)
and A(0) is
1 g . _E
A =rxx O =5 [ Pex(w)exp(jur) dw ==, (71)
Using Equations 70 and 71, the mean reduces to
M; =6'(0) . (72)

Now the derivative at zero can be approximated by following first order difference
equation

8(r+T)-6(0) ()
/ o =
o' (r) = T T

where T is the sampling period for a given measurement system . In terms of

(73)

frequency in Hertz, the mean estimator can be expressed as

f=somarg(rvy (T)) (79)
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Note that the mean estimate does not depend on the zeroth autocorrelation lag and

therefore avoids any bias due to the noise power in ryy(0).

The variance estimate can also be obtained in a similar manner. Given that
o? = E{X?*} - E*{X}. (75)

Using the characteristic function, the second moment about zero is defined in terms

of the autocorrelation function as
2r &
E dr? r=0
B 2T " . ' 1] .
= (=3’ [A' (") exp(iO(7)) + A (B () exp(iO(7))+

M, = (=J) [A (7) exp (56 (7))]

n

A(7)8'(r) exp(jO(r)) + A(1)8' () exp(jO()) +
A()(®' (1) exp(iO(M)]]._, - (76)

Using the even and odd properties of the magnitude and phase, Equation 76 reduces

to

M; = :2%1_(9_) +[eO] - (77)

Therefore, Equation 75 can be written as

»_ —2mA"(0)
=" (78)

A first order estimate of the second derivate of the phase can be written as

A'(r) = A(r+2T) - 2?51’ +T)+ A(T) . (79)

Papoulis [24] has shown that
A(0) — A(2T)

A(0) - A(T) = 3 (80)
for small T. Therefore, Equation 79 can be approximated as
A'(0) = 2A(T) — 2A(0) (81)

T?
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for 7 = 0. Substituting this approximation of the second derivative of the correlation

magnitude at 7 = 0 into Equation 77 yields

. —4m A(T) — A(0)
7 T TE T (TP
_ A(T)
= 2[ _7@)—] : (82)

The pulse-pair width estimator can then be expressed in terms of Hertz as

1
N 2 |2
&6y = V2 1— Irxx(T)| ) (83)
(2nT) rxx(0)
Accounting for the white noise power in the zeroth autocorrelation lag, Equation 83
can be written as L
O = _\/—.2— 1- ITYY(T)l ! ' (84)
I~ (2rT) ryy(0) = ryn(0)]

Equations 74 and 84 form the pulse-pair mean and width estimators which are a
function of the sampling period and the zeroth and first autocorrelation lags.

Zrnic [37] shows that the pulse-pair mean estimator performs well in the case
of narrowband symmetric spectra and is unbiased in the presence of white noise.
The variance in the mean frequency estimator is a function of the spectral width.
Zrnic states that the performance of the mean estimator is best when the width
of the spectrum is less than 0.25« [37]. The variance or width estimator (square
root of the variance) is not as well behaved. Figures 16 and 17 show the standard
deviation and bias for the width estimator, respectively, as a function of SNR and

spectral width assuming a Gaussian shaped power spectrum [37].

Estimators Based on Assumed Spectral Shape

Additional mean and width (standard deviation) estimators can be derived from
assumed PSD shapes. As previously stated, in the case of Doppler power spectra
associated with weather return, a Gaussian shaped PSD is often observed [9]. A

Gaussian shaped PSD is characterized by

2
5@ = oo (%) (85)




41

o

L)

% 3 2 3 4
NORMALIZED SPECTRUM WIOTW, wT,

STANDARD DEVIATION /i 30(wT) |1 ¢ateT)|/BluT)

Figure 16. A plot of the normalized standard deviation associated with the pulse-
pair width estimator. (Source: (©1977 IEEE, Zrnic, “Spectral Moment Estimates
from Correlated Pulse Pairs”, IEEE Trans. on AES, July 1977.)
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Figure 17. A plot of the normalized bias associated with the pulse-pair width
estimator. (Source: (©1977 IEEE, Zrnic, “Spectral Moment Estimates from Cor-
related Pulse Pairs”, IEEE Trans. on AES, July 1977.)



42

where K is an energy scale factor and o is the standard deviation. The resulting

ACF is also Caussian shaped and is expressed as

K —oir?
T(T) = —exp ( ) . (86)

2

Two new width estimators result from this expression for the ACF. The first esti-
mator
r (0)

o= |2mn [W] (87)

is a function of r(0) which represents the total energy associated with the process
including the noise power. If the noise is white, an estimate of the noise power can
be subtracted from 7(0) to obtain a reduced bias estimate of the spectral width. For
cases where the slope of the autocorrelation magnitude function near zero is small,
a first order approximation of the natural logarithm in Equation 87 yields the pulse-
pair width estimator given in Equation 84. A second estimator which circumvents
the need to estimate the noise power in the white noise case is
o= gln [:—_%] (88)
Passarelli [25] has identified additional moment estimators which are based on an
assumed PSD shapes. His work includes defining PSD models for the weather, clut-
ter, and noise in a Doppler weather radar return and using these to obtain mean
estimates.
Zrnic [38] has also investigated the width estimators given in Equations 87 and
88. Figure 18 shows the standard deviation in the the log based estimator given
in Equation 87. The standard deviation of the estimator increases with decreasing
SNR and for narrow and broad spectra. The bias associated with the estimator is
shown in Figure 19. The bias is also a function of SNR, and as seen in Figure 19,
the bias increases for narrow and broad spectra. Zrnic shows that for large SNR the

standard deviation in the width estimate increases linearly with the true width below
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Figure 18. A plot of the normalized standard deviation associated with the
width estimator derived assuming a Gaussian shape. (Source: (©1979 IEEE, Zrnic,
“Spectrum Width Estimates for Weather Echos ", IEEE Trans. on AES, September
1979.) -

a normalized width of 0.3. The standard deviation in the width estimator then
increases exponentially for widths greater than 0.3. Figure 20 shows the standard
deviation in the width estimator in Equation 88. Without the inclusion of the zeroth
lag in the estimate, there is an increase in the standard deviation over that in Figure

18, especially at the larger widths.

ome timat
Passarelli [26] has derived a general expression for autocorrelation based moment
estimators in terms of a McLauren series expansion of the complex autocorrelation
function. As in the pulse-pair derivation, the Fourier transform pair relationship
between the autocorrelation function and the power spectral density is used to relate

the two domains. The following discussion steps through Passarelli’s derivation.
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Figure 19. A plot of the normalized bias associated with the width estimator de-
rived assuming a Gaussian shape. (Source: (©1979 IEEE, Zrnic, “Spectrum Width
Estimates for Weather Echos ”, IEEE Trans. on AES, September 1979.)
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Figure 20. A plot of the normalized standard deviation associated with the width
estimator derived assuming a Gaussian shape and using autocorrelation lags one
and two. (Source: (©1979 IEEE, Zrnic, “Spectrum Width Estimates for Weather
Echos ", IEEE Trans. on AES, September 1979.)

For a continuous time random process, the power spectral density is defined as

Prx(@) = [ rxx(r) exp(~jur) dr 9

where the autocorrelation function for the complex WSS random process is defined

as

rxx(t) = E {z(t + )z*(t)} . (90)
Through the Fourier transform inverse, the autocorrelation function is stated in

terms of the PSD, as
rxx(7) = 1 /oo Px x{(w) exp(jwr) dw . (91)
2T J-0o

For a complex WSS random process, the autocorrelation function can be written

h(r) A B

rxx(7) = —27;-63717(]' 9(m) = 2r tigr (92)
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where h(7) is referred to as the magnitude and g(7) is referred to as the phase. The
real and imaginary parts, A and B, of the autocorrelation function are defined in

terms of the inverse Fourier transform where
o0
A(7) = Re[2rrxx(r)] = / Pxx(w) cos(wr) dw (93)

and

B(r) = Re[2nrxx(r)] = /_ : Pxx(w) sin(wr) dw . (94)

Note that both A and B are functions of 7, but henceforth, the 7 dependence will be

dropped for notational convenience. Therefore, the magnitude, (), can be written
as

hr) = [4? + B7)} (95)

and the phase, g(7), can be written as

g(t) = arctan [g] . (96)

Note that h(7) is an even function, and g(7) is an odd function given that in Equa-
tions 93 and 94, A is an even function of 7, and B is odd function of 7. The au-
tocorrelation function magnitude and phase can be expanded as a McLauren series

about 7 = 0 where

_MO)  K@T K@ KOF

hr) = 1 2 T 3 (97)
and
' "2 o (0) T3
g(r):g(()?)ﬁ(f!)%g(g!” +2 (;)T T (98)

Now, since h(7) is an even function, and g(7) is an odd function, the polynomial
expansions must also be even and odd, respectively, therefore

R(0) A'(0)7%  R®(0)T*
h(r) = (()!)+ (2!) + (4! +...

and

g(r) = 9'(3)7 + gm(;) - gv(g!) ~ o (100)
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Moments of PSD are defined in terms of a normalized PSD where

1 oo
Moo= 5 /_ "~ W Prx(w) dw (101)

and

P = /_ °°°° Pxx(w) dw . (102)

Moments of the PSD can also be defined in terms of the autocorrelation function

through the characteristic function given in Equation 59 where

1 n dnTxx(T)

My = rxx(O)(—j) drn

(103)

=0
Applying Equation 103 to the definition of the autocorrelation function in Equa-

tion 92 yields,

_ 1 ~ drxx(T)
M, = TXX(O)(—J) | _,
= ———21”_;1 0) [ /; : —wPxx (w) sin(wr) dw e +3 /_ : wPx x(w) cos(wT) dw 1—=o]
= 0+ % (104)
=0
1 dQTxx( )
M2 = (0)( )2 dT2 =0
—3)2 00
= ——2751_)3(0) [/_w ~w?Px x(w) cos( ) +3 /_w —w2Pxx(w)sip(wT) dw
e
=0 -I—J-; =0
s d Txx(T)
M, = (0) (_ )3 dr3 o
= ——27er])230) [ / w3 Px x (w) sin{wr) dw - +j /_ : —w?Px x(w) cos(wT) dw T=0]
- 0- % (106)
=0
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and
_ 1 4 d41"xx(7')
M4 - TXX(O)( ]) d7'4 =0
—1}4 oo o0
= _—_—271'(7';:)2(0) [/_x w* Py x (w) cos(wT) dw » +3 /_co w* Px x (w) sin(wT) dw 'r=0]
Aiv
= 0+ — 107
B, (107)

for the moments M; - M,. After several iterations, a pattern develops relating
the moments of the PSD to the derivatives of either the real or imaginary parts

of the autocorrelation function. This pattern is summarized in the following set of

equations
[ Al,o=P Bl,_,=0 )
A reo =0 B ,.=0=P0M1
A"| _=-PM; B'|_ =0
{ 47| _ =0 B"|  =-PM; - (108)
A®| _,=PM, B" =0
A'lp=0 B°|._y = PoM;

\ Avi|T=0 = —P0M6 Bv'f:O =0

A relationship between the coefficients of the McLauren series expansion and

P

the central moments of the PSD can be defined. Writing the magnitude of the

autocorrelation function in terms of A and B yields
h = (A + B} (109)
and its first derivative with respect to 7 is
B o= %(A2 + BY)* (244’ +2BB)). (110)

Now let
G =AA +BB . (111)
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Then h and its derivatives can be written in terms of A and G where

Ko o= ¢ ’
Ro= (G = (R))
. (112)
K = H(E -3
) hiv = %(Gm—4h'hm3(h”)2) J

The derivatives of G are expressed in terms of A and B and their derivatives where

G = AA +BB )
_ G = AA" +(A)*+BB" +(B')?
> . (113)
GII = AAIH + 3141 AII + BBIII + 3BI Bll
G" = AA" +4A'A" +3(A")*+ BB" +4B'B" +3(B")? |

~ Given the relationship between the moments of the PSD and the derivatives of
the real and imaginary parts of the autocorrelation function in Equation 108, the

derivatives of G can be expressed as

G = —(P) My+ (PoMy)?

) _ - (114)
G =0

- G' = (P)*Ms+ 3(1’9)2(1\/12)2 — 4(Po)* M1 M; |

The derivatives of magnitude of the autocorrelation function can then be expressed

as
K =0 )
a R" = —Py(My— (M)?) = —-PM,
- R =0 - (115)

W = Po(My+3(Mo)” — 4MMs — 3(Mz ~ (My)*)")

Po(M4 —4M M5 + 6M2M12 - 3(M1)4) = PyM, )
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Note that the relationships in Equation 115 have been expressed in terms of central
moments about the mean, M;, where

1

Mn:Fo

/_Z (w = My)" Pyx(w) duw . (116)

The resulting McLauren series expansion for the magnitude of the autocorrela-

tion function can then be expressed as

2 4 _ 21,6
h(r) = Py [1—”’22,7 +’Vi"r _ Me é?M3)T ... (117)

Passarelli did not extend the expansion in terms of central moments beyond what is
given here. He indicates that no general pattern was observed.

A similar approach can be taken in defining the McLauren series coefficients
for the expansion of the phase. Let the phase associated with the autocorrelation

function be written in terms of the real and imaginary parts of the autocorrelation

where
B
= = 11
g = arctan [ A] (118)
and its first derivative with respect to 7 is
. AB' —BA
YN (119)
Now, let
H=AB - BA (120)
and .
Q=A>+B2. (121)

Then the higher order derivatives of the phase can be expressed in terms of H and

Qas

g = arctan [%] )
g = &
> . (122)
" _ HI_. t 7
g = g
" _ H"_2 ! II—'. [
g - Q /
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The higher order derivatives of H and Q, in Equation 122, can be expressed in terms

of A and B as

H = AB - BA )
HI - ABII _ BAII
0 (123)
HII = ABMI + AI BII _ BIAH _ BAIII
H" = AB™ +3A'B" — 2A"B' — BA™ |
and
R = A*+B? ]
Q = 24A +2BB
- (124)
Q" = 2((A)?+AA" +(B)? - BB")
QIII — 2(14‘4.IH + 3AIAII +3BIBII + BBIII) J

Using the relationships between the derivatives of the real and imaginary parts of
the autocorrelation function and the moments of the PSD defined in Equations 104

through 107, H and Q and its derivatives can be expressed as

H = PM, )
H =0
> (125)
HJ' = —P02M3+P02M1M2
HIII _ 0 )
and \
Q =R
Q@ =0
/ (126)
Q' = —-2P}M; +2PIM?
QMI = 0 )




Combining Equations 122, 125, and 126 yields

g =0
9’ = M
. (127)
gll — 0
g = —M;+3MiMy—2M})=—-M; |

The series expansion in terms of central moments can be written as

./\/13T3 + (M5 - 10M2M3)T5 ...

9(r) = My — — 5!

(128)

Again, Passarelli was not able to define the expansion in terms of central moments
beyond what is given here.

The preceding derivation assumed a continuous autocorrelation function; how-
ever, in the case of a coherent pulsed Doppler radar, the return pulses are sampled
resulting in a discrete-time random process. The resulting estimated autocorrela-
tion function is therefore discrete, and the corresponding power spectrum is defined
in terms of the discrete-time Fourier transform. The series expansion in Equations
117 and 128 can easily be written in terms of central moments of the PSD for a
discrete-time random process.

Consider the nth central moment for a continuous random process where
1 o0
M= — / (w — @) Pyx(w) dw ~ (129)
Py J-x

and

Po = /;: Pxx(w) dw . (130)

Also, the nth central moment for a discrete random process is defined as

1 [, an
M= 555 /_ (0-6)" Pxx(6) a9 (131)

and

Py= [ Pxx(6)d8. (132)
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Now, the power spectrum for a discrete-time random process with sampling period

T is related to the power spectrum of a continuous time random process by

Pxx(w)
T

provided the Nyquist condition is met [22]. Therefore, the total power, P, in the
discrete-time random process can be written in terms of the power spectrum of a

continuous time random process by

5 o0 Pxx(w) _
Po—/ S wT=h. (134)

—00

The nth central moment for the discrete-time process can be expressed in terms of

Pxx(w)as
14 = L [® _ oy Pxxw)
M, = PO/_OOT"(u oy XX T
1 [ \n
= T"E.-/_m(w—w) Pxx(w) dw
= M, T". (135)

Now, sampling the expansions given for the magnitude and phase of the auto-
correlation functions in Equations 117 and 128 at 7 = kT where T is the sampling

period yields

h(KT) = Py [1 B M2(21!cT)2 + M4il!cT)‘ _ (Ms - 1(:5./!\A§)(kT)5 ] e
and
o(kT) = My(kT) = 2T | (Ms = 10MMOKT)” | - (137)

3! 5!
Using the relationship found in Equation 135, Equations 136 and 137 can be ex-

pressed as

_ Ma(k)? Ma(k)*  (Ms = 10MD(K)®

2! 4! 6! (138)

h(kT) = P, [1



and
. My(k)® (M5 — 10MM3)(k)°
g(kT) = M, (k) - ;(,) + M 5 2Ma) (k)" (139)
The case of additive white noise can be added to the model yielding
A (k)2 v 4 S 10 AA2) (k)6
h(kT) = N56(0) + P, 1—M"’2(|) +M‘:1(,k) _ M I;M?')(k) +...| (140)

where N is the noise power.

Passarelli proposed that a closed system of equations be formed by truncating
the series expansion found in Equations 140 and 137. The closed system of equations
are then solved to yield estimators for different moments such as the mean, M,
the variance, M,, and the skewness, Mj. Passarelli states that two factors will

contribute to the performance of the estimators:

1. The rate of convergence of the series.

2. The accuracy of the estimates of the autocorrelation function.

Passarelli also states that for broad or skewed spectra more terms will be needed
in the expansion to model the autocorrelation function. For narrow or symmetric
spectra, Passarelli states that only a few terms will be required for convergence and
that the use of additional aﬁtocox_‘rélation lags will only add to the variance of the
moment estimator.

For purely symmetric spectra, the odd central moments are zero. Passarelli

shows that for symmetric spectra the expansion reduces to

00 v 2n
ART) = By Y- (-1 2 (141)
= 2n!
and
g(kT) = Mk . (142)

Poly-Pulse-Pair Mean Estimators

Lee and Strauch [35] proposed a poly-pulse-pair approach for improving the

mean estimate of weak narrow symmetric spectra. The poly-pulse-pair approach
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turns out to be an average of the mean estimators derived from Equation 142. The

poly-pulse-pair mean estimator can be written as [26]

> 1 X g(kT)
Ml—Nkz::l—k——. (143)

Passarelli’s Variance Estimators

Passarelli investigates his proposed approach for generating moment estimators
by assessing the performance of several estimators for the variance, M. Passarelli
derives four variance estimators using a closed system consisting two equations and

two unknowns or three equations and three unknowns. The first variance estimator

is derived using

h(0) = rxx(0) + N (144)
and )
A1) = rxx @)1 + 22 (145)
yielding
My =2 [1 - W(’)l)(l—-)_N] (146)

which is the pulse-pair variance estimator. Passarelli goes on to define three other
estimators using lags (1,2), (0,1,2), and (1,2,3) and a closed system of equations.
For notational purposes these estimators will be referred to by the autocorrelation

lags used to derive them. The three additional variance estimators are

[012) M, = g - h(10) [She('l) - h(ez)] (147)
[12] M, = 241‘}%__—”% (148)
and )
(123] My=M,yf12] |1+ M“E! il 12?8)_-’1;(1;)2)] (149)
where
Ma[123] = 4 (h(1) = h(2))(9h(1) — h(3)) — (R(1) = h(3))(4h(1) — h(2)) (150)

"(81A(1) — h(3))(4h(1) — h(2)) — (16h(1) — h(2))(9h(1)A(3))
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Note that the estimators [0 1] and [0 1 2] require an estimate of the noise power where
[12] and [12 3] do not.

Passarelli evaluated the variance estimators assuming a Gaussian shaped power
spectra which commonly models weather returns. The test data was generated using
the algorithm described by Sirmans and Bumgarner [32] for weather returns. Pas-
sarelli also assumed an additive white noise source. Passarelli used the four variance
estimators listed in Equations 146, 147, 148, and 149 to estimate the variance of a
Gaussian shaped spectrum with a standard deviation, o, between 0.057 and 0.57.
Passarelli used forty realizations for each standard deviation (spectral width) and
128 point autocorrelations. Passarelli measured the performance of the estimators
in terms of the normalized error in the variance estimate (normalized by the true
variance). Figure 21 shows the normalized error as a function of spectral width and
the particular estimator employed for a SNR of 10 dB.

Based on Figure 21, Passarelli points out that each estimator is optimum (min-
imum error) over a different range of spectral widths. In the case of a narrowband
process (widths less that 0.17), the [1 2] estimator is shown to produce the minimum
error. Passarelli states that for the narrowband case, the use of the fewest number
of fundamental terms (e.g. N, h(0), h(1), h(2), etc.) in computing M, will yield
the optimum estimator since the series exhibits fast convergence in the narrowband
case and any additional fundamental terms only add uncertainty to the estimate.
For the wideband case, Passarelli shows that low order contiguous estimates of h(k)
are needed since the series requires more terms for convergence and the low order
terms contain most of the information resulting from a broad spectrum. In other
words, the broad spectra results in an autocorrelation function which falls off quickly

based on the uncertainty principle of the Fourier transform.
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Figure 21. A plot of the normalized error associated with four variance estimators
derived from a closed system equations at a SNR of 10 dB. (Source: (©1983 AMS,
Passarelli and Siggia, “The Autocorrelation Function and Doppler Spectral Mo-
ments: Geometric and Asymptotic Interpretations”, IEEE Trans. on AES, July

1977.)



Conclusions

As noteci by Passarelli, of all the autocorrelation based variance estimators pre-
sented in this chapter an “optimum” estimator resulting in a minimum bias and
standard deviation in the estimate over the entire range of spectral widths does
not exists. In addition, the range of spectral widths in the narrowband region over
which a particular variance estimator derived from Passarelli’s expansion is optimum
is less than 0.05w. There exist the need to develop variance estimators that exhibit
a small bias and standard deviation over a larger range of spectral widths. In other

words, a more robust variance estimator is sought.



CHAPTER IV
THE OVERDETERMINED SYSTEM

Introduction

Autocorrelation based spectral moment estimators provide a means for reducing
processing requirements over that of Fourier based methods and also provide better
performance under various spectral constraints and low signal-to-noise ratios [9].
However, performance of autocorrelation based spectral moment estimators is driven
by the quality of the autocorrelation function estimates. The bias and standard
deviation associated with the autocorrelation function estimates is a function of
the estimator, the number of samples used in the estimate, and the signal-to-noise
ratio. In fielded systems, the number of samples available for use in estimating the
autocorrelation function and the SNR is often limited by the physical environment
and system requirements.

In practice, estimates of the autocorrelation function at only the first few lags are
used in autocorrelation based spectral moment estimators. As seen in Chapter III,
the pulse-pair mean and width estiﬁatom and width estimators based on an assumed
Gaussian shaped power spectrum use estimates of the autocorrelation function at
lags zero through two. For variance estimators defined by Passarelli’s closed systems
[26], the use of additional autocorrelation function estimates at the higher order lags
only tends to increase the bias in the variance estimate over the narrowband spectral
width region.

In this work, Passarelli’s series expansion is extended to develop an overdeter-
mined system. This framework allows an assessment of the value of using additional
autocorrelation lag estimates for any spectral moment of interest and for any power

spectrum shape and corresponding autocorrelation function. The overdetermined
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system approach is supported by similar techniques found in ARMA spectral es-
timation to extract additional information from the available autocorrelation lags
4, 34, 5, 3.

In order to investigate the application of an overdetermined system to increase
the performance of a given autocorrelation based spectral moment estimator and to
identify under what conditions the overdetermined system might be applied, the vari-
ance spectral moment estimator is chosen for evaluation for the case where the power
spectrum is Gaussian shaped. The Gaussian shaped spectrum is an interesting case
and finds application in many fields including Doppler processing of meteorological
returns. In order to investigate the contribution of the overdetermined system to
estimator performance, the overdetermined variance estimators will be applied to
simulated Doppler weather radar returns under various signal-to-noise conditions
and at different spectral widths [15]. Since both the SNR and the number of sam-
ples used in the estimate of the autocorrelation function effects the quality of the
autocorrelation estimates, the number of samples will be chosen to be a fixed, and
the SNR wili be varied to evaluate performance. In this work, the overdetermined
variance estimators will be shown to improve estimator performance by extending
the range of spectral widths and SNR’s over which an estimator can perform. In
addition, the overdetermined system based on Passarelli’s series expansion is shown
to yield the least squares solution. The resulting pseudo-inverse is also shown to be
pre-computable and can be stored for use in a real-time environment.

It needs to be stressed that the overdetermined system is not limited to variance
esfimators, but improvements in performance for other moments such as the mean,
skewness and kurtosis might be obtained under this framework. However, the scope
of this work does not include the investigation of other spectral moments. This work
is meant to define a framework upon which additional analysis might be performed.

This approach is not limited to the Gaussian shaped spectrum case; however, the
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Gaussian shaped spectra is seen in radar meteorological returns and is applicable in

other fields as well.

Overdetermined Systems

This section casts Passarelli’s truncated autocorrelation expansion as an overde-
termined set of equations to be solved for different moments of interest. A solution
of this overdetermined system using the pseudo-inverse is shown to be the least

squares solution.

Defining the Overdetermined System
A truncated version of Passarelli’s expansion in Equations 140 and 139 can be

written in terms of a closed system of equations in matrix form as

[ 1 0 0 -
" h(0) ]
2 1(2N)
1 - 12! o (=D 2N Z‘: h(1)
1] W=D (- 1)N£N__lﬂ : h(N'—l) s
2 (2Nz)n'l aN
QL S WL L | A(N)
and ,
[ _ L, _1) (M- (QE¥-D ] . -
g e T |y [
2 i (-1)¢ )(2M 1) by 9(2)
. M:—l" : M—1)(3M-1) . - :_
M-1 _.K_ﬁ_)_ cee (—1)M- I)L'(ﬁl);i)!— Bag_t g(A/(IM)l)
T R e
) ) (152)

where ag = Py, ay = PypMa, by = p, by = M3, and so forth. This closed set of
equations can then be cast as an overdetermined system by considering the case of
Nop equations for the magnitude function, h(k), based on a system with (N+1)
unknowns (terms in the series expansion) where Nop > (N +1) and Mop equations

for the phase function, g(k), based on a system with M unknowns where Mpop > M.
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10 0 7 ] )
_ay (s h(0)
. ‘2! 2Ny h(l)
: : : a0 :
N)2 N (2N) .
) _gi_”)l_y (“”Niﬁlm el I ) (153)
1 =55 (—1)”L—’—(z}v2 AN +1)
1 _&;2)_’_ (=1)N N(;:;v)”") ay h(N'+ 2)
i (Nop)? 1 N (Nop)®M) | A(Nop)
X T (-1) (2N)!
and
- (—1)M-DQHD ]
3! (2M- 1)' - -
2 —@r (=1)M-n @D g(1)
. '3! @M-1)! 9(2)
: : : bo :
M)3 _ M)(2M-1) °
Mo -4 (- ”%’MT b | _ | 9(M)
M+1 ﬂ;_'l)i (=1)M- I)Q‘!i)i’_ : g(M +1)
“9)3 ( - M+2
M+2 _gM;?) (- )(M 1)51\4(-2&:{2 ’1)" bar—1 9( - )
: ; 3 _ (2M-1) L g(MOD) ]
| Mop ..LM%F)_ (-1)M 1)%_ ]
(154)
Solution of the Overdetermined System
In general, an overdetermined system is defined in matrix form as
Az =% (155)

where A is a matrix of dimension ((n x m) :

n > m), x is a vector of dimension (m x

1) and b is a vector of dimension (n x 1). An approach to solving the overdetermined

system is to multiply both sides by the transpose of the A matrix, AT, to form the

system

AT Az = ATh. (156)

Now, if the square matrix AT.A has full rank, then the system in Equation 156 has

only one solution. Also, it can be shown that if A has full column rank (7, 8], then
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AT A has full rank. However, if the matrix .4 does not have full column rank, then
there are an infinite number of solutions.

For the case where A has full column rank, the solution can be expressed as
T 417} 4T
z=[ATA|" ATh (157)

and is often termed the least squares solution. In Equation 155, the vector b may
not lie in the space spanned by the columns of A. Note that since the rank of A
is not equal to n, the columns of .4 do not span R space in which b lies. If one is
trying to find the solution z that minimizes the norm of the error vector (i.e. the

least squares solution) defined by
lell= (- Az)" (b - Az) (158)

where the error is defined as

e=(b— Az) (159)

then taking the partial derivative of the norm of the error vector with respect to z,

setting it equal to zero, and solving for z yields
T 417} 4T
z=[ATA]" ATb (160)

which is equivalent to the answer given in Equation 157. In general, this form is

often termed the pseudo-inverse.

Least Squares Solution
The overdetermined systems defined in Equations 153 and 154 can be shown to
have full column rank and therefore yield the least squares solution. To prove the
property of full column rank consider the following square matrix

0 0 O

1

1 22 =t

1 zé zé | (161)
1 z2 zt '

I3 I3 I3
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This is a matrix with a similar form as that given in Equation 151 but with some
of the normalizations removed from each column. This matrix is similar to the
Vandermonde matrix used to fit a polynomial to sampled data [8]. We will seek
to prove that this square matrix has full rank and then extend the results to the
overdetermined system in Equation 153. To prove that the matrix has full rank,
it will be shown that the determinant of the matrix is not zero provided that z; #
z; fori#jand x; # 0 for all i.

The first step is to perform the following column operations —z2 * Cp_y + Ch,

—22 %« Cp_g + Cn-1, ..., =% * C3 + C3 which yield
1 0 0 0
1 z? 0 0
1 o2 —2222 +13 —zizd + 18 (162)
1 22 —2222 + 1§ —ziri+ 23
and grouping terms yields
1 0 0 0
1 22 0 0
163
1ot (el - o) el - ) 16)
1 73 23(zf—2l) =z3(af —2l)

Next, perform the following column operations —z2%xCpoy +Cy, ~12%Cp_2+Cn_1,

. —-.’L‘% * C3 + C4 which yield

1 0 0 0
1 22 0 0
164
1 22 z3(-2%+12d) 0 (164)
1 23 zd(-zi+c}) —azh(ad(~a} + o)) + 23(—a} + =)
and grouping terms yields
1 0 0 0
1 z? 0 0
165
1 23 z3(23 —z) 0 (165)
1 23 z}(z} - z3) z3(2f - z?) (3 - 23)

Since Equation 165 is lower triangular, the resulting determinant is the product of

the diagonal elements which yields

det = g2z2zi(22 — 2?) (2} — 23) (23 — =) . (166)
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Equation 166 states that the matrix has full rank, or the determinant is nonzero

provided that z; # z; fori # j and z; # 0 for all i.

This approach can be applied to any square matrix (NxN) of the form

1 0 ... O
2 2N
1 =z ... xy
2 2N
1 x5, ... Ty,

yielding the following expression for the determinant

det = [[22 [[(z? — ) fori>jandi#j, 4,5,k=1,...,N .
k i,j

This approach can also be extended to the following matrix form

n z} ... V!
T, z3 ... zN!
N Y ... Tt

where the resulting determinant can be expressed as

det = [J zi [[(z? — %) fori >jandi#j, 4,5,k=1,...,N .
ko g

(167)

(168)

(169)

(170)

Now, since the square matrices in Equations 167 and 169 have been shown to

have full rank provided the elements z; are not zero or equal, then one can add

additional rows to these matrices while maintaining full column rank and yielding

an overdetermined system defined by

1 0 ... O W

2 2N
1 =z T
2 2N

: L A
1 zy TN
2 2N

| 1 =N, INoD

(171)
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and oN
TR R S
T2 3 ... L3Nt
3 2N-1
TN :;:N e Ty oL (172)
3 aN-1
__eroD .Z'NOD . e xNOD J

Now the columns of Equations 171 and 172 can be multiplied by nonzero scale factors
without changing the rank of the matrix. With the appropriately chosen scale fac-
tors, Equations 171 and 172 can be transformed into Equations 153 and 154 without
changing the rank of the matrices. Therefore, it has been shown that the overde-
termined systems in Equations 153 and 154 have full column rank, and therefore,

the solution to the overdetermined system will be the least squares solution.

Overdetermined Variance Estimators

As previously stated, autocorrelation based spectral moment estimators are a
function of the estimated autocorrelation function which is obtained from samples of
a random process. The quality of the autocorrelation function estimates therefore
directly affects the performance of the moment estimators. The overdetermined
systems in Equations 153 and 154 will be shown to improve autocorrelation based
spectral moment estimator performance. To focus in on how this improvement in
performance might be achieved, the overdetermined system will be applied to several
of the variance estimators obtained from a truncation of Passarelli’s series expansion
for the case of a Gaussian shaped spectrum.

The variance estimators investigated by Passarelli [26] were obtained from closed
systems formed from a truncation of the series expansion. In investigating variance
estimator performance, Passarelli assumed a Gaussian shaped spectrum due to its
applicability to meteorological returns. The corresponding magnitude function as-

sociated with a Gaussian shaped autocorrelation function can be defined as
22
—o‘k

5 ) (173)

P,
R{K) = 5 exp(
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where P, is t_he total power in the spectrum and o is the spectral width. The four
variance estimators defined by Passarelli in Chapter III can be applied to samples of
this function to yield performance bounds in the presence of complete knowledge of
the autocorrelation function. Figure 22 is a plot the normalized error in the variance
estimate as a function of normalized spectral width when applied to samples of the
autocorrelation function defined in Equation 173. The normalized error is defined
as the absolute value of the difference between the estimated variance and the true

value which is then normalized by the true value.

-— -

[o] 0.05 0.1 0.18 0.2 0.25 0.3 0.35 0.4 0.45 0.5
normalized spectrail width

Figure 22. The normalized error in the variance estimate using estimators [01],
[12], [012], and [123] and assuming a Gaussian shaped autocorrelation function.

As seen in Figure 22, the four variance estimators yield their minimum error at
the smaller spectral widths. The [0 1 2] estimator, which includes the zeroth lag and
contains the largest number of terms in the series expansion, outperforms the other
estimators over the entire range of spectral widths. This performance is due to the
fact that more terms in the series expansion allow for a better representation of the

Gaussian shaped autocorrelation function. Aﬁ the larger spectral widths, the higher
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order derivatives of the autocorrelation function are much larger than at the smaller
spectral widths, and therefore, the McLauren series expansion converges more slowly
and requires more terms in the expansion as noted by Passarelli [26]. This explains
the degradation in performance as the spectral width increases.

However, one never obtains an unperturbed estimate of the autocorrelation
function. The bias and variance in the autocorrelation lag estimate results in a per-
turbation in the true shape of the autocorrelation function. In an effort to represent
the effects of perturbations in the autocorrelation function estimate, a random term

is added to the true Gaussian autocorrelation function to yield

Po -0 k2

2
R(k) = 57 P(—5

) + an(k) (174)

where 7 is uniformly distributed between —Tl and %, and the perturbation factor « is
used to scale the standard deviation of the random term. The standard deviation
of n(k) is therefore a\/%—. This form of the autocorrelation function is used for
illustrative purposes only. In the next section, analysis will be performed using
estimates of the autocorrelation function obtained from simulated Doppler weather
radar returns embedded in white noise.

Figure 23, shows a comparison of the unperturbed and perturbed Gaussian
autocorrelation functions for normalized spectral widths of 0.01 and 0.2, where 7 is
normalized to one. The perturbation factor, a, equals 0.01 in this example. Again,
the perturbation factor is a relative number used for illustrative purposes only. As
seen in the figure, a change in the slope caused by a bounded size perturbation
(between =2 to $) is larger for the the autocorrelation function associated with the
smaller spectral width where the unperturbed slope is small.

Figure 24 is plot of the normalized error in the four variance estimators using a
perturbation factor of 0.005 and averaged over 30 iterations. Asseen in this plot, the

four estimators exhibit a large error in the estimate at the smaller spectral widths.

However, at the larger spectral widths only a slight change in the normalized error is
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Figure 23. A plot of the unperturbed and perturbed Gaussian shaped autocorre-
lation functions with normalized spectral widths of 0.01 and 0.2.

observed over that seen in Figure 22. This is due to the fact that the perturbation
has less of an effect on the slope of the autocorrelation function over the lags of
interest.

The following analysis focuses on the narrow band spectral width region. There
are several reasons for focusing in on variance estimators operating in this region.
Note that in Figure 22 the closed systems using only a few terms in the series ex-
pansion yield their best estimates of the variance at the smaller spectral - widths.
Therefore, from a closed system point of view, the number of autocorrelation esti-
mates needed to obtain acceptable performance is small. “Acceptable” performance
is a loose term that is dependent upon the application and how well one needs to
estimate the variance. Assuming that a low order closed system will yield some
degree of acceptable performance, then if an overdetermined system is to be ap-
plied, the minimum number of equations needed is equal to the number required
by the closed system. From an implementation standpoint, one would like to use

additional lags but at the same time place a limit on the number in order to keep
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Figure 24. The normalized error in the variance estimate using estimators [01],
[12], [012], and [123] and assuming a Gaussian shaped autocorrelation function with
a perturbation factor of 0.005 .

computational requirements to a minimum. In contrast, the larger spectral width
regions require more terms in the series expansion for convergence and therefore a
larger closed system estimator.

Additional autocorrelation function estimates at the higher order lags are ap-
plied assuming that lags away from the center of the autocorrelation function also
contain information which can be used by the estimator. The rate at which the
autocorrelation function falls off is an indicator of which lags may contain useful
information, and based on the Fourier uncertainty principle, narrowband spectra
exhibit a slow roll-off of the autocorrelation function which will be exploited in this
case to extract additional information. Finally, the spectral width of a process may
effect the performance of other moment estimators. The pulse-pair mean estima-
tor is known to exhibit a bias due to large spectral widths [40]. In this chapter,

variance estimators are applied to Gaussian shaped power spectral densities with
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spectral widt_hs (standard deviations) less than or equal to a normalized width of 0.2
where 7 is normalized to 1.

Figure 25 is a plot of the normalized error as a function of the number of equa-
tions (or lags) used in the overdetermined [0 1] variance estimator assuming that a
perfect estimate of the Gaussian autocorrelation function is available. The overde-
termined system is applied over the region of normalized spectral widths from 0.01
to 0.2 in steps of 0.01 as seen in the figure legends. As a reference point, the small-
est spectral width is represented by the bottom curve in each of the figures. Each
curve represents a bound on the obtainable performance of the overdetermined [0 1]
variance estimator. Figure 25 shows that the closed system, the first point on each
curve, yields the smallest error in the variance estimate when the autocorrelation
estimate is unperturbed. The rate at which the normalized error increases with re-
spect to the number of equations in the overdetermined system is proportional to the
spectral width. The [0 1] estimator is a good approximation to the Gaussian au-
tocorrelation function at the lower spectral widths. Therefore, the overdetermined
system is able to apply a least squares fit of the model to a range of autocorrelation
lags while maintaining less than a 20% normalized error in the variance estimate. A
20% normalized error in the variance estimate corresponds to approximately a 10%
normalized error in the width estimate (the square root of the variance estimate).
In the absence of an unbiased estimator, the degree of acceptable bias over which
meaningful information may be obtained is very application specific.

Figure 26 is a plot of the normalized error in the [0 1 2] variance estimator
applied as an overdetermined system. As noted in Figure 22, the [0 1 2] estimator
is a better estimator of the variance at the smaller spectral widths than the [0 1]
estimator. In Figure 26, the normalized error is reduced over the entire range of
spectral widths as compared to that observed in Figure 25 for the [0 1] overdeter-

mined variance estimator. Figures 27 and 28 are the performance bounds for [1 2]
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and [1 2 3] overdetermined variance estimators using the Gaussian shaped autocor-
relation function. The performance can be characterized in terms of an initial bias
due to the closed system and the slope of the performance curve. The more terms
used in the series expansion, the smaller the slope of the performance curves. One
might assume that the overdetermined system employing a large number of terms
in the series expansion would always yield the best estatimator. In the following

sections, this will be shown not to be the case for all spectral widths.

number of equations

o 10 20 30
number of squations number of squations

Figure 25. The normalized error in the variance estimate using the [0 1] estimate
in an overdetermined system for a Gaussian shaped autocorrelation function.

Figure 29 is a plot of the [0 1] overdetermined variance estimator applied to the
exact autocorrelation function in Equation 173 and the perturbed autocorrelation
function with a perturbation factor of 0.01. For normalized spectral widths less than
0.15, the perturbation of the autocorrelation function has a significant impact on the
performance of the closed system (the initial point on each of the curves). However,
as more equations are used in the overdetermined system the averaged normalized

error is reduced. The least squares fit minimizes the effects of the perturbations
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Figure 26. The normalized error in the variance estimate using the [0 1 2] estimate
in an overdetermined system for a Gaussian shaped autocorrelation function.
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Figure 27.  The normalized error in the variance estimate using the [1 2] estimate
in an overdetermined system for a Gaussian shaped autocorrelation function.
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Figure 28.  The normalized error in the variance estimate using the [1 2 3] estimate
in an overdetermined system for an Gaussian shaped autocorrelation function.

as more autocorrelation lags are used in the overdetermined system. There is a
point where the performance of the estimator reaches that achievable for the overde-
termined variance estimator applied to the true Gaussian shaped autocorrelation
function. The number of equations required to best fit the observed data to the es-
timator is a function of the spectral widths. However, in the spectral width region
from 0.05 to 0.15 only a few additional autocorrelation lags are required to reach the
minimum obtainable error. Also, as seen in Figure 29, the number of equations re-
quired for the error to reach a minimum tends to group near an optimum number for
a given region of spectral widths. The grouping can be explained by the separation
and slope of the performance curves for the [0 1] overdetermined variance estimator
in Figure 25.

In Figure 30, the overdetermined [0 1 2] variance estimator is applied to the
perturbed autocorrelation lag estimates. The number of equations needed for the
unperturbed and perturbed curves to intersect has increased over that given in Fig-

ure 29. However, the [0 1 2] estimator is a better estimator at the smaller spectral
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widths, and t_herefore, the obtainable normalized error may be lower when applying
the overdetermined system. This represents a tradeoff between the size of the closed
system and the number of additional lags needed in the overdetermined system to ob-
tain a certain level of performance. Additional lags imply additional computations
required by the signal processor. This will be investiaged further using simulated

Doppler weather radar returns.
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Figure 29. The normalized error in the variance estimate using the [0 1] estimate
in an overdetermined system for an Gaussian shaped autocorrelation function with
a perturbation of 0.01 .

Doppler Weather Radar Example

The variance estimator is often used in meteorological processing to measure
the turbulence associated with an event, and much of the literature has focused on
the bias and standard deviation observed in autocorrelation based variance estima-
tors. As seen in Chapter III, autocorrelation based variance estimators are known
to exhibit a bias and standard deviation that increases for narrow and wideband

spectra as a function of SNR and the number of samples used to estimate the auto-
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Figure 30. The normalized error in the variance estimate using the [0 1 2] estimate
in an overdetermined system for an Gaussian shaped autocorrelation function with
a perturbation of 0.01 .

correlation function. This section focuses on the overdetermined system applied to
variance estimators which are used to measure turbulence associated with Doppler
weather radar returns. The perturbations in the autocorrelation function estimates
as noted in the previous section will be introduced into the autocorrelation function
through a simulation of Doppler weather radar returns embedded in white noise.
The performance of the overdetermined variance estimators will serve to support
the case for the possible inclusion of additional autocorrelation lags in estimating
other moments in order to improve performance.

As in the previous section, the analysis will be limited to the narrow band case
and an assumed Gaussian shaped power spectrum. The narrowband case is impor-
tant because Zrnic has suggested that weather radar systems should be designed
such that the observed normalized spectral width is constrained to be less than 0.25
in order to reduce the bias in the moment estimates (37). This can be achieved

through the proper selection of the pulse repetition rate (i.e. sampling rate). As
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previously noted, Passarelli’s expansion is not based on any assumed form of the
power spectrum or corresponding autocorrelation function. However, the data used
in this analysis assumes a Gaussian shaped spectrum as is often observed in mete-
orological returns [9] and as is often used throughout the literature for evaluating
estimator performance. The data is simulated using the approach given by Zrnic
and Bumgarner (39, 32] (Appendix B).

As with any autocorrelation based or Fourier based moment estimator, the
estimator can only approach it’s optimum performance in the absence of noise and
clutter (returns from objects not associated with the target of interest). Before
applying any autocorrelation based moment estimator, it is necessary to reduce the
noise through correlation subtraction or filtering in the frequency domain. For this
analysis, the noise is assumed to be white, and an a priori average noise power
level will be subtracted from the zeroth autocorrelation lag in order to remove the
estimated noise power. In radar systems, the average noise power may be estimated
during periods when the radar is not transmitting or receiving.

In this analysis, the random process is assumed to be stationary or at least
locally stationary and ergodic in the autocorrelation over the time of observation.
A pulsed Doppler radar collects tens to hundreds of range samples from spatial cells in
a small time interval over which the process is assumed to be stationary. Therefore,
the autocorrelation lag estimates in this analysis are based on 100 complex data
samples using the asymptotically unbiased autocorrelation lag estimator defined in
Appendix A. As a Monte Carlo measure of performance, the results presented in this
dissertation are based on estimates averaged over 40 independent iterations.

A key result of Passarelli’s analysis is that a single variance estimator is not
optimum over the entire range of spectral widths. Passarelli formed a closed sys-
tem of equations for four variance estimators using the following sets of lags (0,1),
(0,1,2), (1,2), and (1,2,3). The bias exhibited in Chapter III for these autocorre-

lation based variance estimators warrants the application of additional lags in an
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attempt to improve estimator performance in the narrow spectrum width region.
This analysis will also lead to a better understanding of the information contained
in the added lag values of the autocorrelation function and to how they may used

by an overdetermined system to increase estimator performance.

Reduction in Bias

The performance of the variance estimators evaluated in this section is measured
in terms of the bias (or normalized error) and the standard deviation in the estimate.
Figure 31 shows the averaged normalized error in the variance estimate as a function
of the number of equations used in the overdetermined system. This system is
defined by the truncated autocorrelation series expansion in Equation 153 using
only two terms, [0 1], (this is the traditional pulse-pair variance estimator). In this
figure, the signal-to-noise ratio (SNR) is 5 dB. The initial estimate in all the plots
(at N equatioﬁs) represents Passarelli’s results for a closed system of size (N x N).
In each sub-figure, the plot contains five curves each representing the estimates for
a given normalized spectral width ranging from 0.01 to 0.2 as given in the figure
legends.

As seen in Figure 31, the number of equations required to obtain the minimum
normalized error increases as the spectral width decreases. This can be explained
by the following discussion based on the rate of series convergence and the Fourier
uncertainty principle. The series coefficients of the autocorrelation function expan-
sion are defined as the derivatives of the magnitude of the autocorrelation function
evaluated at zero. Therefore, the information is contained in each lag of the auto-
correlation function to some degree as noted by the series expansion of h(k) in terms
of the coefficients. The autocorrelation function falls off at a rate that is inversely
proportional to the spectral width as explained by the Fourier uncertainty principle,
and so for the narrowband case, these overdetermined systems are attempting to

estimate the value of a small number (the derivative or slope of the autocorrelation
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function at zero) from the corrupted autocorrelation lag estimates. The additional
equations required at the smaller spectral widths are needed by the overdetermined
system to extract the information from the perturbed autocorrelation lags whose
slope (information content) may be significantly changed between two samples from
that given in the true autocorrelation function. At the higher spectral widths the
slope of the autocorrelation function is much steeper and the perturbations in the
lag estimates have less of an effect on the slope of the autocorrelation function.

From Figure 31, it is evident that the variance estimates for the spectral widths
less than or equal to 0.15 benefit from the use of additional lags. The knee or
minimum in the curve is representative of the overdetermined variance estimator
having extracted all the information it can from the available data. It is observed
that the number of additional equations needed to obtain the minimum normalized
error tends to group over a range of spectral widths. In the region of normalized
spectral widths from 0.03 to 0.05, the number of equations needed to obtain the
minimum normalized error is seven to eleven. In the range of normalized spectral
widths from 0.06 to 1.0, the number is three to six, and in the range from 0.11 to 0.15,
the number of equations is three to four. In comparing Figures 5.13 and 5.7, the
tendency for the minimum ertors- to group around a common number of equations
over a region of spectral widths is due to the slope and spread of the performance
curves for the overdetermined system. If the range of observable spectral widths
could be known a priori, then an average number of equations needed in that region
to reach the minimum error could be applied to improve estimator performance.
The overdetermined system is able to extend the [0 1] estimator over a larger region of
spectral widths than would have been possible using just the closed system estimator
(the initial point on each curve).

One approach in a real system might be to use the overdetermined system to
get a first cut estimate of the region in which one is operating and then apply a

more optimal estimator for that region which may be derived from either a closed or
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overdetermined system. Passarelli noted that to use the closed system variance es-
timators in an optimal fashion, one would need to either estimate the spectral width
region in which one is operating or have a priori knowledge of the expected spectral
widths. An overdetermined system can allow operation over a larger region of spec-
tral widths by reducing the observed bias and the observed standard deviation as
will be seen in the following section. Also, for implementation purposes, it should
be noted that the matrix in Equation 153 does not depend on the estimated auto-
correlation lags, and therefore, the pseudo inverse, [AT.4]~!A7, can be computed

off-line and stored for use in a real-time environment.
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Figure 31. The averaged normalized error in the variance estimate for the 5 dB
SNR case using two terms in the overdetermined system.

Passarelli’s [26] work shows that estimators derived from different size closed
systems are optimal over different spectral width regions. The effect of more terms
in the series expansion can be also be evaluated for the overdetermined system.

Figure 32 is a plot of the averaged normalized error in the variance estimate for the
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case where three terms in the expansion, [0 1 2], are used to form the overdetermined
system with a SNR of 5 dB. One can see that for spectral widths between 0.11 and 0.2,
the use of additional terms in conjunction with an overdetermined system results in
a reduction in estimate error over that in Figure 31. The additional terms, however,
require a higher order overdetermined system to reach this minimum error. This
is due to the fact that the least squares solution must satisfy the minimum error
constraint using more terms in the series expansion. However, more terms do not
produce minimum errors that are measurably better in the region of spectral widths
from 0.01 to 0.1, and more equations are required for the same performance. For
the spectral widths in the region 0.11 to 0.2, the addition of more terms provides a
better model of the autocorrelation function and when used in conjunction with the
overdetermined system yields less estimate error in this spectral width region.
These two examples (Figures 31 and 32) have shown that the best model for
the autocorrelation function in a particular spectral width region obtained from
Passarelli’s expansion can be used in conjunction with additional autocorrelation
lags in an overdetermined system to improve estimator performance. However, the
“best” model is not the same for all spectral widths as noted by Passarelli. The [0
1 2] estimator is a better estimator at the larger spectral widths where the slope of
the performance curve (in Figure 26) permits more equations to be used in trying

to obtain the minimum error or the most information extraction.

Reducing the Effects of a Low SNR
The overdetermined system can be used to reduce the effects of operating at a
lower SNR when estimating the autocorrelation lags from a fixed number of samples.
Figure 33 is a plot of the average normalized error in the variance estimate for a SNR
of 0 dB using an overdetermined system containing two terms in the series expan-
sion, [0 1]. As previously stated, an average .white noise power estimate has been

subtracted from, the zeroth autocorrelation lag, but the minimum obtainable error
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Figure 32. The averaged normalized error in the variance estimate for the 5 dB
SNR case using three terms in the overdetermined system.

has increased for> each of the spectral widths due to an increase in the variance of the
estimated autocorrelation function. This increase in the variance of the estimated
autocorrelation function could be reduced by using additional samples in computing
the autocorrelation function, but in pulsed Doppler radar systems confined by the
pulse repetition rate and the observation time, this may not be an option. Even
though the estimate error has increased in all spectral width regions, the minimum
error still occurs near the same number of equations as that in Figure 31. In the
0.15 to 0.2 spectral width region, additional equations (lags) are needed to reduce
the estimate error as compared to Figure 31 where the minimum was reached for the
closed system case (NxN). Even though the minimum errors reached in Figure 31 are
not obtained here, the overdetermined systems are still able to significantly decrease
the error over the (2 x 2) closed system (the initial point on each curve). In terms
of the performance bound in Figure 25, the noise produces sufficient degradation in
the autocorrelation function estimates such that the overdetermined system is not

able to compensate and extract as much information.
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Figure 34 is a plot of the average normalized error for the 0 dB SNR case using
three terms, .[O 1 2], in the series expansion. The additional terms tend to improve
performance in the spectral width region from 0.11 to 0.2 over that in Figure 33. The
improved performance is attributable to the three terms of the series expansion used
in the overdetermined system which provide a better model of the autocorrelation
function in this region. In comparing Figure 33 and 34 in the spectral width region
from 0.01 to 0.1, the noise has narrowed the performance gap between the two
estimators, [0 1] and [0 1 2]. However, the number of equations needed to reach a
minimum is larger in the {0 1 2] case than in the [0 1] case since the overdetermined
system is fitting the data to a different model containing additional terms in the

series expansion.
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Figure 33. The averaged normalized error in the variance estimate for the 0 dB
SNR case using two terms in the overdetermined system.
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Figure 34. The averaged normalized error in the variance estimate for the 0 dB
SNR case using three terms in the overdetermined system.

Gaussian Fit

As a comparison to previous work in fitting an assumed Gaussian autocorrelation
function to measured data in order to estimate the variance [1, 27], a least squares
fit of a Gaussian shaped autocorrelation function is applied to the data. Figure 35
is a plot of the average normalized error in the variance estimate as a function of the
number of lags used in the least squares fit. As one can see from Figure 35, the least
squares fit is needed over the entire range of spectral widths to reduce estimator error.
The achievable minimum errors in the spectral width region of 0.01 to 0.1 aré higher
than the those presented in Figures 31 and 32. This can possibly be explained by
the fact that the Gaussian model represents an infinite series expansion which may
not yield the best estimator (model) for the very narrow widths when applied in
an overdetermined system. In the spectral width region from 0.11 to 0.2, the least
squares fit yields comparable results to that in Figures 31 and 32. Theoretically,
the performance curve for the overdetermined system using perfect knowledge of

the autocorrelation function would be flat with zero error over the entire range of
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equations applied to the system. However, the overdetermined system must fit what
is equivalent to an infinite series expansion to the data. There are effectively more
terms that must be estimated. Another important note is the lack of a clustering
or grouping of minimum errors around a common number of equations in the 0.01 to
0.1 spectral width region. This would be important in terms of an implementation
scheme. Another point that should be made here is that one may not always have
a closed form of the autocorrelation function to which to fit the data. Passarelli’s
expansion is not limited to the Gaussian case and therefore moment estimators based

on the overdetermined system is a more robust approach.
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Figure 35. The averaged normalized error in the variance estimate for the 5 dB
SNR Gaussian case.

Reduction in Standard Deviation
As seen in the previous section, the use of additional equations in an overde-
termined system can reduce the estimator bias (normalized error). In this section,

the overdetermined system will be shown to reduce the standard deviation in the
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estimate. Figure 36 shows the standard deviation (std) in the variance estimate for
the 5 dB case using only two terms in the series expansion. The standard deviation
is computed for the variance estimate in terms of the normalized frequency (0 to 1).
As seen in Figure 36, the standard deviation is reduced as more equations are used
in the estimate. Figure 37 is plot of the standard deviation in the estimate for the
5 dB case using three terms in the series expansion. As Passarelli had expected,
the larger closed system with more terms in the series expansion results in a larger
standard deviation in the estimate. But note that the use of additional equations
in the overdetermined system results in a decrease in the standard deviation over
that initially observed for the (N x N) closed system. Figures 38 and 39 are plots
of the standard deviation for the 0 dB SNR case with two and three terms in the
autocorrelation expansion, respectively. As expected, the decrease in SNR results
in an increase in the standard deviation which can be reduced by the overdetermined
system. The reduction in the standard deviation is most critical at the smaller spec-
tral widths where the standard deviation may be on the order of the quantity being

estimated.

"The Zeroth Lag

In each of the overdetermined systems presented thus far, the zeroth lag was
included. However, Passarelli has shown that for certain spectral widths and a
low SNR, the omission of the zeroth lag in the closed system may be of benefit.
Remember that in the white noise case, the zeroth lag contains the noise power, and
an a priori estimate of the noise power must be subtracted from the zeroth lag which
may introduce additional errors in the estimate. Figure 40 is a plot of the normalized
error in the variance estimate for the 5 dB SNR case using two terms in the series
expansion starting with lag one. The minimum normalized error in the spectral
width regions from 0.01 to 0.15 is similar to that observed in Figure 31 which included

the zeroth lag in the overdetermined system. Therefore, the [1 2] estimator in the
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overdetermined system yields a result similar to that observed for the [0 1] estimator.
This should l;e expected when comparing the performance bounds seen in Figures 25
and 27 over this region. However, the [0 1] and [1 2] estimator’s performance did not
track in Figure 21 when the closed system approach was applied over this region.
The overdetermined system has improved the performance of the two estimators
and caused the two estimators to yield comparable performance over this region.
However, in the spectral width region 0.16 to 0.2, the minimum normalized error has
increased over the case in Figure 31 containing the zeroth lag. Again, in comparing
the performance bounds in Figures 25 and 27, the overdetermined system for the |1
2] estimator can not reach the performance of the [0 1] estimator.

Figure 41 is a plot of the normalized error variance estimate for the 5 dB SNR
case using three terms in the series expansion starting with lag one. In this case,
the normalized error has been reduced over that observed in Figure 40 in the spectral
width region from 0.16 to 0.2 and is comparable to that observed in Figure 32. This
analysis reveals that the zeroth lag is important in the region 0.16 to 0.2 when only
a few terms are used in the expansion. The zeroth lag contains a major portion
of the information in these “medium” width cases. The use of additional terms,
however, tends to compensate for the omission of the zeroth lag. In the spectral
width region 0.01 to 0.15, the zeroth lag is less important due to the fact that the
autocorrelation falls off much slower, and the information is spread over a larger
number of autocorrelation lags. In the region 0.01 to 0.1, the performance of the 1

2 3] estimator in an overdetermined system is similar to the [0 1 2] estimator.

Closed System Performance
One might ask the question, “Why choose an overdetermined system instead of
a larger closed system?”. Figure 42 is a plot of the normalized error in the variance
estimate using closed systems of size (NxN) and a SNR of 5 dB. The number of

equations as defined by the horizontal axis represents the dimension of the closed
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Figure 40. The averaged normalized error in the variance estimate for the 5 dB
SNR case using the |1 2] estimator in an overdetermined system.
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system. As one can observe, the larger closed systems only result in an increase in
the normalized error. For the narrowband case, it has been observed that, in general,
it is better to use an estimator based on a few terms in Passarelli’s expansion in an
overdetermined system, than to include additional lags based on more terms in a

larger closed system.
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case. '



CHAPTER V
CONCLUSIONS

Motivation

This research was motivated by the need to improve the performance of au-
tocorrelation based spectral moment estimators. In general, the performance of
autocorrelation based spectral moment estimators is limited by the quality of the
autocorrelation function estimate. The current suite of autocorrelation based spec-
tral moment estimators is derived using an assumed model of the autocorrelation
function, the characteristic function defined in probability theory, and the Fourier
transform relationship between the autocorrelation function and the power spec-
trum. Autocorrelation based spectral moment estimators are important because
for certain moments such as the mean and variance, they are shown to exhibit bet-
ter performance at narrow spectral widths and low signal-to-noise ratios as compared
to Fourier based methods. Also, autocorrelation based spectral moment estimators
provide a means for reducing the computational load over that of the Fourier based
techniques which require an application of the discrete Fourier transform and discrete
centroiding techniques.

Passarelli has defined a series expansion of the general complex autocorrelation
function which relates central moments of the power spectrum to coefficients in the
series expansion. A truncation of Passarelli’s series expansion results in a closed
system of equations that can be solved for the moment or moments of interest. A
comparison of this closed system of equations to the Yule-Walker equations defined
in autoregressive spectral estimation is made. Autoregressive spectral estimation is
based on the spectral factorization property which states that the power spectrum
associated with a random process can be represented as the output of a linear sys-

tem driven by white noise. The autoregressive model represents the case where the
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linear system is assumed to be modeled as an all pole filter. The Yule-Walker equa-
tions are obtained from the AR model by computing the second order statistics (the
autocorrelation) of the system. The Yule-Walker equations result in a set of linear
equations relating the coefficients of the linear system to lags of the autocorrelation
function. In an effort to improve the spectral estimate for a given model order, the
overdetermined Yule-Walker equations [4] have been defined. The overdetermined
Yule-Walker equations are an attempt to extract additional information from the
autocorrelation function estimate at higher order lags.

This research focuses on adapting techniques developed in the field of mod-
ern power spectral estimation for use in the field of autocorrelation based spectral
moment estimation to improve estimator performance. In particular, an overdeter-
mined system in terms of a truncation of Passarelli’s series expansion of the complex
autocorrelation function can be defined for improving estimator performance similar
to that in modern spectral estimation for the Yule Walker equations. Some initial
attempts have been made at using estimates of the autocorrelation function at higher
order lags to improve autocorrelation based spectral moment estimator performance,
but, other than the poly-pulse-pair mean estimator which is used to reduce estima-
tor variance, no rigorous work has been published on the relationship between use

of additional lags and estimator performance in an overdetermined system.

Summary of Results and Contributions

This dissertation has defined a framework in which to incorporate additional
estimates of the autocorrelation function at higher order lags into autocorrelation
based spectral moment estimators in order to improve estimator performance. In
particular, this work defines the structure in terms of an overdetermined system
applied to a truncation of Passarelli’s series expansion for the general complex auto-

correlation function.
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This work starts by relating the overdetermined system techniques found in
the field of modern spectral estimation to the field of autocorrelation based spec-
tral moment estimation in order to improve spectral moment estimator performance.
Chapter II is a review of modern spectral estimation techniques. In Chapter I, the
overdetermined Yule-Walker equations are defined, and the use of additional auto-
correlation lags to improve the power spectrum estimate is presented. In Chapter
I1I, the current suite of autocorrelation based moment estimators is defined includ-
ing Passarelli’s series expansion. The performance of autocorrelation based spectral
moment estimators presented in Chapter III is a function of the quality of the auto-
correlation function estimate.

An overdetermined system, defined in terms of Passarelli’s series expansion, has
no solution, but solutions yielding minimum norms can be defined. It is shown
here that the overdetermined system defined by a truncated version of Passarelli’s
expansion yields a matrix having full column rank. This implies that the system
of equations can be solved using pseudo-inverse techniques which yields the least
squares solution.

The overdetermined system defined in this work is shown to improve autocor-
relation based spectral moment estimator performance. There are theoretically an
infinite number of moments that could be assessed under this overdetermined frame-
work. However, in fielded systems the spectral moments of primary interest are the
zeroth moment (the power), the first moment (the mean), and the second central
moment (the variance). The spectral variance estimator is chosen in this analysis
because it is particularly vulnerable to bias and large standard deviations over a
range of spectral widths in the presence of low SNR’s and where a limited number
of observations are available. The variance estimate or its square root (the width
estimate) is typically used in meteorological processing as a measure of turbulence.
The premise here is to show that an overdetermined system can be used to improve

the performance of autocorrelation based spectral estimators over estimators derived
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from the traditional closed system approach. However, it is not intended here to
exhaustively.assess all the possibilities.

Even though various power spectral shapes might be considered, an exhaustive
assessment is not presented. In this work, the Gaussian shaped power spectrum is
chosen for assessing overdetermined variance estimators ability to improve estimator
performance. The Gaussian shaped spectrum is found to model Doppler weather
radar returns [9].

For the overdetermined variance estimator, it is shown that the narrowband case
offers the most opportunity for additional information extraction since the informa-
tion is spread of over a larger number of autocorrelation lags. This is explained by
the Fourier uncertainty principle. The narrowband case is also important as noted
by Zrnic in reducing the bias in moment estimates. Based on his analysis, Zrnic
has proposed that any fielded system should employ autocorrelation based spectral
moment estimators only when the normalized spectral widths are constrained to be
less than 0.257.

The overdetermined variance estimators evaluated in this work are defined by a
a truncation of Passarelli’s series expansion using different numbers of terms in the
expansion. The performance of the estimators is assessed in terms of the overdeter-
mined systems ability to reduce the bias and standard deviation in the estimate over
that of the estimator defined by the closed system. This work defines performance
bounds for the normalized bias in the variance estimate when overdetermined vari-
ance estimators are applied to the case of Gaussian shaped spectra. The slope and
separation of the performance curves, as a function of both the number of equations
used in the overdetermined system and the spectral width, are relevant in charac-
terizing the behavior of the estimator. In order to assess the performance of the
overdetermined variance estimators, simulated Doppler weather radar returns were

generated at different spectral widths and signal-to-noise ratios.
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Especially at the narrow and wide spectral widths, the bias in the closed sys-
tenr variance- estimators is shown by Passarelli to be a function of quality of the
estimate of the autocorrelation function. Here it is shown that the overdetermined
systems could be used to reduce the bias in the variance estimate by incorporating
additional estimates of the autocorrelation function at higher order lags. The per-
formance of the overdetermined variance estimators applied to the simulated weather
radar returns is shown to be bound by the performance curves derived from perfect
knowledge of the autocorrelation function. The slope of the performance curves is
an indicator of how quickly the truncated series expansion degrades in modeling the
true autocorrelation function. Therefore, the slope is an indicator of how quickly
the overdetermined system must extract information before the model fails to repre-
sent the autocorrelation function, and the bias increases beyond some unacceptable
level. The separation between performance curves in a given spectral width region
is an indicator of the variation in the number of equations needed in the overde-
termined system to reduce the bias in the estimate. This is relevant in defining
a single overdetermined variance estimator to operate over an extended region of
spectral widths.

It has been shown that the OVefdetermined variance estimators could be used to
reduce the bias in the narrow band spectral width region. The number of terms to
use in the series expansion and the number of equations needed in the overdetermined
system is a function of the spectral widfhs and degradation of the autocorrelation
estimate. However, it is shown that a single variance estimator can be made more
robust by applying additional lags in an overdetermined system. As noted by Pas-
sarelli and as observed in this work, the use of larger closed systems incorporating
additional estimates of the autocorrelation function at higher order lags only con-
tributes to increase the bias in the estimate. The overdetermined system actually
uses the higher order lags by applying a least squares fit to the data in a manner that

allows one to extract additional information. It was also shown that the standard
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deviation in -the variance estimates could be reduced by incorporating additional
autocorrelation function estimates at the higher order lags.

Using the estimator bias and standard deviation as a measure of performance,
this work showed that an overdetermined system using only a few terms in the series
expansion could be used to increase the region of spectral widths over which a given
variance estimator might perform. In an application, the overdetermined variance
estimator might be applied over the region of narrowband spectral widths in order
to obtain an estimate of the region in which one is operating. An overdetermined
or closed system variance estimator might then be applied in a more defined region
to improve estimator performance.

This work has shown that an overdetermined system in terms of Passarelli’s
series expansion can be used to define spectral moment estimators which are able
to use the available autocorrelation function estimates in a manner that extracts
more of the available information. The overdetermined system is not limited to
a particular moment or shape of the autocorrelation function. Potential areas for

continued work using this framework are discussed in the following section.

Future Work

Future work in this area would involve the application of the overdetermined
system to other central moments of interest and to other power spectrum shapes.
One example would be the application of the overdetermined system to the mean
estimator. As noted previously, the poly-pulse-pair mean estimator was shown to
exhibit a reduction in the variance of the estimate by averaging over successive lags
of the phase of the autocorrelation function. However, the overdetermined system

using one term in the series expansion, yields the

- TroP kg(k)
M, = T (175)

estimator which is a different estimator than poly-pulse-pair estimator in Equation

143 and yields the least squares estimate and not just a weighted average. The



98

overdetermined system could also be applied to the estimation of spectral skewness
which is limited due to the fact that one is trying to measure the third derivative
of the phase function at zero from discrete estimates of the autocorrelation func-
tion. However, since this information is embedded in the autocorrelation function
at each lag as noted by Passarelli’s series expansion, the overdetermined system may
allow one to extract the desired information by incorporating the higher order lags.
In addition, the investigation of adaptive techniques for determining the optimum
number of equations might be applied. Techniques found in robust linear regression

analysis may lend some insight into developing adaptive techniques.
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Appendix A

Probability Theory and Random Processes

Introduction
This chapter includes a review of probability theory and random processes. The
autocorrelation function and its Fourier transform, the power spectrum, are defined.
Also, basic probability measures such as moments and characteristic functions which
will be used to relate the autocorrelation and spectral domains are defined. In

addition, estimator performance issues are addressed.

Probability Theory

Probability Assignment

Probability theory is the branch of mathematics used to described random events
in some meaningful way. A random event is the outcome, a, of some experiment
whose possible outcomes can be defined, but the knowledge of which outcome will
result on a given experiment is unknown until the experiment has been performed.
Probability theory attempts to characterize the likelihood of an event or events at
the outcome of a given experiment. A common example is the roll of a dice where
the possible set of outcomes on a single roll of the dice is the set {1,2,3,4,5,6} and
the likelihood of a particular result is 1/6. The collection of all possible outcomes
is called a probability space, 2. A grouping of possible experimental outcomes is
termed an event, A, or a subset of the space.

The partitioning and grouping of subsets in the probability space can be de-
scribed in terms of set theory. Set theory provides for the partitioning of the prob-
ability space into subsets where the event A is a subset of the probability space
denoted as A C Q. A special subset of all probability spaces is the null set or
empty set denoted {¢}. Subsets of the probability space can be related through the

union and intersection operators which are both commutative and associative. The
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Figure A-1. Venn diagram representing the intersection of two sets.

union operator, U, combines two subsets into a single set. For example, given the

two subsets A and B of a probability space, then
C=AUB (A-1)

forms a new subset, C, containing the elements of A and B. The intersection operator,
N, selects only the elements common to two sets and forms a new set from the overlap.
This is best visualized through the use of a Venn diagram as shown in Figure A-1
where the hatched area is the new set containing the intersection of the sets A and

B. Two sets which have as their intersection the null set
AN B = {¢} (A-2)

are said to be mutually exclusive or having no common elements.
In a probability space, each event, A, in the probability space, €2, is assigned a

real number between 0 and 1 as an indicator of its likelihood of occurrence. This
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probability assignment is denoted P(A) where

P(A)>0 (A-3)
P(Q)=1 (A-4)

and
if (ANB)={¢} then P(AUB)=P(A)+ P(B) . (A-5)

In the general case, the probability of the union of two events can be written as
P(AuB)=P(A)+P(B)-P(ANB) . (A-6)

Besides the probability assignment given to unions and intersections, probabili-
ties can be defined in terms of an event A conditioned on an event B. The conditional
probability, P(A | B) is defined as

P(ANB)

P(AIB)= —Fr5

(A-7)

Two important theorems result from the conditional probability. The first theorem
is the total probability theorem which states that if the probability space, €2, can be
partitioned into a set of mutually exclusive sets {A,, A, ..., A,}, then any event B

in  can be written as
P(B) = P(B| A))P(A)) + P(B| A;)P(A2) + ...+ P(B | A,)P(A,) (A-8)

using Equation A-7. The second important theorem is Bayes theorem which states

that
P(B|A)P(A)
P(B) '

The probability P(A) is often termed the a priori probability which indicates that

P(A|B) = (A-9)

this value is known before the experiment, and P(A | B) is termed the a posteriori
probability which indicates that the value is only known after the experiment. In

the case where two events are independent of each other, then

P(AN B) = P(A)P(B) . (A-10)
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The independence of two events results in Equation A-7 being written as

P(A|B) = = P(A) . (A-11)

Random Variables

A random variable is a mapping, X (), of all possible outcomes, a, of an exper-
iment which are contained in {2 to the real number line. If the mapping is from a
countable number of outcomes, then the random variable will take on only discrete
values along the real number line. Events or subsets of the probability space can

be defined as intervals on the real number line where
{X <z} (A-12)

is an event or subset of the samples containing the possible outcomes mapped to the
real line in the region less than some value z. The random variable is any function

satisfying the following two conditions
1. {X < z} is an event for all z.

2. P(X =00)=0and P(X =-00)=0.

For future reference, a complex random variable is defined as
Z=X+j3Y (A-13)

where j = /-1 and X and Y are real random variables.
The probability assignments given to the events associated with 2 are now
defined as a mapping from the real line (defining the events) to the output of a

cumulative distribution function (CDF), Fx(z), where
Fx(z)=P({X <z}) . (A-14)

A statement listing all the properties of the CDF would be of considerable length;
however, a few of the more general ones a.re_worth listing. Properties of a CDF

include:
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1. Fx(+o)=1and F(-o00)=0.

2. Fx(z) is a non-decreasing function.
3. P(z, < X < z3) = Fx(z2) — Fx(z1) -
4. P(X =1) = Fx(z) — Fx(z7) .

The derivate of the cumulative distribution function

fala) = X (A-15)

is termed a probability density function (PDF) for the random variable X and has

the following properties:
L. fx(z) 20

2. %, fx(z)dz =1

3. Fx(z2) = Fx(z1) = [ fx(z) dz
A PDF may be a continuous or discrete function depending on the type of random
variable. There are many probability density functions defined in the literature
which model random events. One of the most commonly applied PDF is the Gaus-

sian PDF. The Gaussian PDF is continuous function

2
z “)>for—oo_<_:c$oo (A-16)

@)= e (S

and is defined by two parameters, 4 and o.

Expectation

Often, one would like to characterize a random variable by the value it is most
likely to take on. This value is often termed the “expected” value or mean, p, of
the random variable. The expected value of a random variable is computed as the

first moment of its probability density function, where
oQ
p=E{X}= / z fx(z) dz . (A-17)
—00
Higher order moments can also be defined as

M, = E{X"} = f_ 2 fxla) dz . (A-18)
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Another important moment used to characterize a random variable is the second
moment about the mean which is often termed the variance, o2, of the random

variable. The variance is defined as

o* = B{(X - p)?} = B{z%} - 4. (A-19)

Characteristic Function

The Fourier transform of a probability density function is defined as the char-
acteristic function. The characteristic function offers some useful properties and
completely characterizes the random variable without any loss of information. This
is due to the Fourier transform pair relationship. The characteristic function is
defined as

2w = [ fx(@) exp(juz) dz (A-20)

and the inverse relationship as

fxlz) = — 7 #(w) exp(~jus) dx (A-21)

=27I' —00

The characteristic function offers a method for calculating moments using deriva-

tives. Taking the first derivate of Equation A-20 with respect to w yields

d®(w) > . .
—= = [ iz fx(c) expljuc) do (A-22)
and evaluating at w = 0 yields
d®(w) [ iy
=2 lomo= [ iz fx(a) dz = ju (A-23)

which equates the mean of the random variable to the derivative of the characteristic
function evaluated at zero. In general, higher order moments are related to the

characteristic equation through

Mo = (- T, (A-24)
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Joint Random Variables

In many cases, an experiment will result in an outcome consisting of two or
more random variables. An example is the blind selection of objects from a bag
containing plastic objects varying in shape (e.g. square, round, triangular, etc.)
and also varying in color (e.g. red, blue, green, etc.). The experiment outcome
will consists of two random variables X and Y representing the shape and color of
the objects, respectively. Probability theory defines the joint occurrence of the two
random variables in terms of joint PDF’s and CDF’s. The probability associated
with two random variables is defined as the probability that the condition on X and

the condition on Y will be jointly satisfied or in other words
P{X<zandY <y}=P{X<z,Y <y}. (A-25)
This joint probability is defined in terms of a joint CDF as
Fxy(z,y)=P{X <z,Y <y} (A-26)
and the corresponding joint PDF is

fxr(zy) = d—F%@ . (A-27)

The joint CDF and PDF can be extended to N random variables { X, Xs,..., Xy}
where the joint CDF is defined as

Ir(Xth,...,XN)(Ihx% o 1zﬂ) = P(Xl S I, X2 S Ty, .. "XN S :I:N) (A'28)

and the joint PDF is defined as

dFX1 Xa,... Xn(zh Za,y... ,xn)
. = e . A-29
f(xl,Xg,...,Xn)(xth’ 11:11) dxl dIQ . dz,. ( )

Moments are also defined for joint random variables. For the two dimensional

case, the expected value of two random variables, X and Y, is defined as

rxy = E{XY} = //a:y fxy(z,y)dzdy (A-30)
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which is termed the correlation between X and Y. This can be easily be extended
to N random variables. Another important moment in the two random variable

case is the covariance which is defined as

exy = E{(X = u)(Y = 1)} . (A-31)

An important property of random variables is that of statistical independence.
Statistical independence implies that the probability associated with one random

variable does not depend on the probability associated with another random variable

or

P{X<z,Y<y}=P{X<z}P{Y <y} (A-32)

or in other words the two events occur independent of one another. Statistical

independence is expressed in terms of the CDF and PDF as
Fxy(z,y) = Fx(z) Fy(y) (A-33)

and

fxv(z,y) = fx(z) fr(v) (A-34)

respectively. Another property associated with joint random variables is the notion
of correlation as defined in Equations A-30 and A-31. Two random variables are

said to be uncorrelated if the covariance defined in Equation A-31 is
cxy =0. (A-35)

It can be shown that statistically independence implies uncorrelated; however, the

converse is not necessarily true.
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Functions of Random Variables

Functions of One Random Variable
As is often the case, the random variable under observation is a function of
another random variable with known PDF. The problem becomes one of defining
the PDF for the observed random variable. The mapping between the two random
variables is defined as
y = g(z) (A-36)
where X has a known PDF, fx(z), and known CDF, Fx(z). The function g() is
also restricted to be monotonically increasing or decreasing. The probability that

{Y < y} is related to X through the inverse transformation where

P(Y <y)=P(X <g7'(v)) (A-37)
or
P(Y<y) = Fyr(y) (A-38)
= P(X<g'() (A-39)
= Fx(g7'(y)). (A-40)

The probability density function for Y can be obtained through the definition of the
PDF and the chain rule

frly) = dF:‘i’;y) (A-41)
_ dFx(z) dzx
= ;_xb-l(y) & (A-42)
= I W)| 7| (A-43)

Finding g(z)
Often one is interested in transforming a random variable with known PDF to
another random variable with known PDF. An example is the generation of real-

izations of a random variable on a computer. Uniformly distributed samples are
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easily obtained from simple algorithms on a computer. However, one is usually in-
terested in obtaining samples which have some other distribution such as Gaussian,
Rayleigh, exponential, etc.. With two known PDF’s, the question becomes what

transformation to use. This can be obtained by equating

P(Y <y)=P(X < 1) (A-44)
or
[ tx@)da=[ | fv(e) da (A-45)
and solving for
y = Fy'(Fx(z)) = g(2) . (A-46)

Functions of two random variables
Functions of two random variables are also common in physical systems. In

general, the mapping is defined as
z=yg(z,y) . (A-47)
The CDF for Z can be obtained from the joint PDF of X and Y where
F. = ,y)dzd A-48
2= [ [ . frr(ey)dedy (A-48)

and D, is the set of all points {z,y} for which {Z < z}. A very common situation
is the case where the signal, X, is a random variable with additive noise, Y. The
resultant random variableis Z = X + Y. If the signal and noise are assumed to be

statistically independent, then their joint PDF is

Ixy(z,y) = fx(z) fr(y) . (A-49)

The CDF of Z is then obtained by

Fa@)= [ [ fely) dyfx(a) do. (A-50)
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Computing the integral on dy yields

0

Fy(z) = / [Fy(z = z) - Fy(—00)] fx(z) dz . (A-51)

- 00

Now, differentiating Fz(z) to obtain the PDF yields

f22) = [ frlz=2) fx(a) dadz (A-52)

This states that the resultant PDF is a convolution of the individual PDF’s if the

random variables are statistically independent.

The Central Limit Theorem

The PDF for a sum of N statistically independent and identically distributed
(ii.d.) random variables can be shown to approach a Gaussian distribution in the
limit that N — oco. More precisely, the Central Limit Theorem [17] states that if

the z; are i.i.d. and Sy = N, z;, then Sy is distributed such that

=1

IN

. Sy — Nu _[ 1 -a?
h}l_x}go P(TN—U— 8) = /_w 5 exp(—2—) da . (A-53)

which is a Gaussian distribution with mean zero and variance one.

Estimation Theory

Parameter Estimation

There are a large number of density functions which can be used to model ran-
dom events found in the physical world. Each density function has an associated
parameter or parameters which define the density. The allowable ranges for the
parameters associated with a particular density function form a family of density
functions. In order to characterize a set of observations {z,,z,,...,z,} obtained
by sampling a random event with a known form of the density function (i.e., Gaus-
sian, uniform, Rayleigh, etc.), an estimate of the density function parameters must
be obtained from the observed sample data. The density function, fx(z), and its

parameter, 6, or parameters is often expressed as

fx(z,0) = fx(z) . (A-54)
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The parameter estimate is a function of the observed sample data which consists of
independent and identically distributed random variables {X1,X2,...,Xn}. This

parameter is therefore a function of random variables

-~

9=g(X1,X2,...,XN) (A-55)

and is termed a statistic.

Estimator Bias

Since @ is a function of random variables, it is also a random variable. To what
degree this random variable is able to estimate the parameter is best measured in
terms of properties of random variables. One of the most important properties of
an estimator is that its expected value equal the true value of the parameter being
estimated. The degree to which the expected value of the estimator approaches the

true value is measured in termed of a bias
Bias = E{6} - 9 (A-56)
where @ is thé true value, and an estimator is said to be unbiased if
E{#}=6. (A-57)
An estimator may also be defined as asy,mptotically unbiased when
Jim E{fy} =0 (A-58)

where N is the number of samples used in computing the estimate.

Estimator Variance

In comparing unbiased estimators, one wants to consider the variation in the
estimator about its mean or expected value. A “good” estimator is one which has

a small variance. However, in comparing two unbiased estimators, one estimator
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can be declared more efficient than another by comparing the variance of the two

estimators. For example, if él and 92 are two unbiased estimators and
Var(8;) < Var(6,)

then 6; is more efficient than #,. The Cramer-Rao lower bound (CRB) puts a limit

on the minimum variance obtainable for an estimator. The Cramer-Rao bound is

Var() 2 |N / (3‘”””)) fx(z‘;9)d$}_l (A-59)
; _NE{@&%;@)) I (a0

A derivation of the Cramer-Rao lower bound can be found in Larsen [17]. In the

case of equality in Equation A-59, the estimator is termed an efficient estimator.
An seen in Equation A-59, the variance associated with the CRB decreases

as a function of the number of samples used in the estimate. The variance of an

estimator therefore should converge to zero as N tends to infinity
lim Var{fy} = lim E {|o -E {éN}|2} =0 (A-61)
N-oo N N-oo N ’

For use in defining an ergodic process in later sections, mean square consistency
will be defined here. An estimator is said to be mean square consistent if the mean

square error tends to zero in the limit

lim E {[éN - 0|2} =0. (A-62)

N=oc

Methods for Obtaining Estimators

There are three commonly used methods for developing parameter estimators.
The three methods are: Bayesian estimators, maximum likelihood estimators, and
estimators based on the method of moments. A brief discussion of each will follow

in order to fully develop this section on parameter estimation.
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Bayesian estimation assumes that the parameter to be estimated is no longer a
constant but a random variable with a known density function, fo(8). This allows
for the use of a priori information. The parameter estimate is then the expected

value of the parameter given the observed values where

; ©  Ix1,X2,..Xx(T1, T2y .., ZTN|0)
b= E{821,72,...,2n) = [ §IX0KamaXs (A
{ ’xl 72 :I:N} /;co le,Xz,...,XN (.'171,.7:2,.. . ’IN) fa(a) o (A 63)

A maximum likelihood estimator is based on finding the value of the parameter

that maximizes the likelihood function which is defined as

fxi %2, x5 (T1, T2y -, TN 0) = fxy (2150) fx, (22;0) - . . fxy (2N, 0) . (A-64)

Since the logarithm is a monotonic function, the value of @ that maximizes the
likelihood function also maximizes the log of the likelihood function. Therefore, the

log-likelihood function is often used in practice where the maximum is obtained by

6 ln[fxl,Xz,...,XNg;ly Z2,...,IN; 0)] =0 (A-65)

and solving for §. It can be shown that if the maximum likelihood estimator can
be found, then maximum likelihood estimator variance will equal the CRB [14].
The method of moments is based on equating the theoretical moments to the
sample moments and solving the system of equations for the unknown parameters.
The sample moments are defined as
1N
me = ; ¥ (A-66)
where k indicates the k-th sample moment. The system of equations to be solved

is expressed as

1 k_ ™ .k i _ )
=) ;= T fx(z;61,02,...,00))dz fork=1... M. (A-67)
N&" ™ o

=
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Random Processes

Random Processes Defined

In order to characterize the outcome of an experiment over time, random pro-
cesses have been defined which describe each outcome as a new random variable
indexed by time. Given the direction of this dissertation, only discrete-time ran-
dom processes will be discussed; however, the concepts given here can easily be
extended to continuous-time random processes. A discrete-time random process is
denoted by a set of random variables, X, which are indexed by the time sample index,
n, or {X(n): n € Integers} . Each random variable, X (n), has a corresponding

CDF

Fxn) = P{X(n) < z} (A-68)
and corresponding PDF
dFxm)(z
fxmy = ————X;x) (=) : (A-69)

In order to characterize the total process, the joint CDF is required

Fxq),x@),.xk)(Z1,T2,...,2x) = P(X (1) < 2, X (2) < z3,..., X (k) < z¢)
(A-70)

and the corresponding joint PDF

dFx(1),X(@),...X(&)(Z1, 2, - - -, Tk) (A-71)

fx.x@),...xk) (L1, T2y ..., Tk) = dz1dzs ... dor

The possible set of output waveforms of a random process form a family or ensemble

of waveforms.

Expectations

Since each time indexed output represents a random variable, the moments

defined in Section A can be applied to yield

Mn(n) = E{X™(n)} . (A-72)
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With Equation A-72, one is able to calculate the mean and variance for each ran-
dom variable associated with the random process. Besides calculating moments for
individual random variables comprising the process, joint moments between ran-
dom variables may also be defined. Two commonly used moments defined for joint

random processes are the autocorrelation defined as
rxx(k,1) = E{X(k)X*(1)} (A-73)
and the autocovariance defined as
exx(k, 1) = E{[X(k) — u(k)][X (1) - u(D]"} (A-74)

which should be noted are functions of the time-indices. When comparing two ran-

dom processes, X(n) and Y (n), similar moments can be defined where
rxy(k,l) = E{X(k)Y"(1)} (A-75)
is termed the cross-correlation and
cxy(k,1) = E{[X (k) — p(R)][Y () — ()]"} (A-76)
is termed the cross-covariance. Two random processes are said to be uncorrelated
if »
cxy(k,l)=0 forallk and 1. (A-TT)

This property shows that if two random processes, X (n) and Y (n), are uncorrelated,

then the sum of the two random process
Z(n) = X(n)+Y(n) (A-78)

yields an autocorrelation function that is the sum of the individual correlation func-
tions

rzz(k, 1) = rxx(k,l) + ryy(k,1) . (A-79)
This is a useful property when dealing with additive noise that is uncorrelated with

the random process under observation.
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Stationarity
“Random processes can be divided into classes based on the form of the under-
lying joint densities. For the case of discrete-time random processes, if the PDF’s

of the random variables comprising the random process all have the same PDF

fX(n)(xn) = fX(x) (A‘SO)

then the process is termed a first-order stationary process. In this case, all first
order statistics, (i.e., mean, variance, etc.), will be equivalent for each time-indexed
random variable. For the case of a joint PDF consisting of two random variables, if

the joint PDF is independent of absolute time

Fx(n+k),x(n) (Tns Tk) = Fx(m+k),x(m)(Tm, Tx) for all m,n, and k (A-81)

and just depends on the separation in time between the two random variables, then
the process is termed a second-order stationary process. Therefore, the second order
statistics are independent of absolute time and just depend on the difference between

the time-indexes. An example is the autocorrelation function where
rxx(k,1) =rxx(k —1,0) (A-82)

or for easier notation

’I'xx(k, l) = Txx(k - l) . (A-83)

A random process having constant mean and an autocorrelation function that de-
pends only on the distance between random variables is termed a wide sense station-
ary (WSS) random process. This is an important type of random process because
the autocorrelation function is commonly used in process analysis. Other forms of

stationarity exist, but will not be discussed here.
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Ergodicity

" Up to this point, the moments and correlations have been defined in terms
of ensemble averages. However, seldom does one have more than one realization
of a random process, and the ensemble averages are not known a priori. There
are, however, random processes which exhibit a relationship between the ensemble
averages and the sample averages that is of interest. Ergodic random processes are
stationary processes for which the sample averages converge to the ensemble averages
in the mean square sense. A random process may be ergodic in one moment and not
another. Therefore, different types of ergodicity have been defined. Two commonly
used types of ergodicity are ergodic random processes in the mean (mean ergodic)
and ergodic random processes in the autocorrelation (autocorrelation ergodic). A

WSS random process is mean ergodic if
Jim E {juy '} =0 (A-84)

where
1 N
= — i A-85
S (9

and u is the ensemble mean. A WSS random process is autocorrelation ergodic if

Jim B {|ry(k) - r(k)]"} =0 (A-86)
where
1 N
rn(k) = N YTz, (A-87)
i=l1

and r(k) is the ensemble autocorrelation.

Gaussian Random Processes

A very common random process is the Gaussian random process whose joint

PDF is defined as

1@ = Grgraer (F @-m 7 @-m)) (a8
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where the mean vector, m_, is defined as
m, = [E{X1}, E{Xa},..., E{Xn}]" (A-89)
and the covariance matrix, C, has elements cy; defined by
e = E{(zx — mu)(z1 — my)} = c(k,1) . (A-90)
In the case of a WSS Gaussian random process, the mean vector reduces to
m, = E{X}[1,1,1,.. ]F (A-91)
and the covariance matrix elements are defined as

Ckl = C(k - l) . (A-92)

Autocorrelation Matrices

The covariance and autocorrelation matrices are used in many areas of process
analysis and are worthy of a discussion, especially in the case of a WSS random

process. The autocorrelation matrix for a WSS random process is defined as

1‘"(?) r;z(é) cen ‘r;jéN)l
Bagy=| 0 0 TN
rzz(N) 7z(N-1) ... T22(0)

where H represents conjugate transpose. The covariance matrix is related to the
autocorrelation matrix by

C=R-m,m". (A-94)

There are several useful properties of the autocorrelation matrix when the process
is assumed to be wide sense stationary. It is easily shown that the autocorrelation

matrix is conjugate symmetric (Hermitian) since

rzz(k) = E{.’L',,_,_k -”L':,} (A-95)
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and

rez(—k) = E{zn Tn14} (A-96)

then

rez(k) = 12.(—k) . (A-97)
Also, since the values along the diagonal are all equal, the autocorrelation matrix is
also defined to be Toeplitz. Another useful property of the autocorrelation matrix
is that it is nonnegative definite (or positive semi-definite). A nonnegative definite

matrix is one for which

b¥Rb >0 (A-98)
for any vector b. A simple proof is
b"Rb = bE{zz"}b (A-99)
= E{bzz"b} - (A-100)
= E{|t"a[} (A-101)

and since IQH z/|? is greater than or equal to zero for any b then b” Rb > 0.

Power Spectrum

The Power Spectral Density

For a wide sense stationary random process, the second-order moments, (i.e., the
autocorrelation function), have been defined as a function of time (or delay)‘. Since
the autocorrelation function is a deterministic quantity, one can apply Fourier anal-
ysis to the function in order to gain insight into the spectral content of the random
process. The power spectrum or power spectral density (PSD) for a discrete-time
random process is defined as

Px(w) = i rxx (k) exp(—jwk) (A-102)

k=—00



120

and the corresponding Fourier inverse is

rxx(k) = % [ Px(w) exp(jk)do. (A-103)

_In terms of system analysis, the z-transform of the autocorrelation function is defined

as
0

Px(2) = 3 rxx(k)z7*, (A-104)

k=-o00
Note that Equation A-102 is the z-transform of the autocorrelation function evalu-

ated along the unit circle.

Linear System Analysis

In many cases, a random process is observed at the output of a linear system.
One can characterize the output in terms of a known or assumed input and the system
response. Let x(n) represent a realization of a WSS random process as input to a
linear system with impulse response h(n). The output of the system, y(n), is defined

through the convolution sum where

o0

yn)= 3 z(k)h(n—k) . (A-105)

k=—o00

Taking the expectation of both sides yields

Eym} = Y. E{a(B)}h(n—F). (A-106)

k=-00

Therefore, the expected value of the output is the mean of process weighted by the

total energy of the system impulse response

By} =ux Y hin—F). (A-107)

k=—00

The expected value of the output does little to describe the information content
of the random process over time. The time dependence is observed in the auto-
correlation function. The second order statistics associated with the output are

expressed as

E{y(n+k)y*(n)} = i E{y(n+k)z*(D}r*(n-1). (A-108)

l=-0c0
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Equation A-108 can be expressed in terms of a correlation function where

rer(B) = 3 ryx(n4k—Dht(n—1). (A-109)

k=—00

Now, let m =1 —n and change the index of summation such that

’r'yy(k) = i ’I‘yx(k - m)h’(—m) (A-llO)
or
rey (k) = rxy(K) * h*(=k) . (A-111)
Now, computing ry x (k) yields
E{yn+K)z' (W)} = 3 Efz(n+k - )z*(n)}hQ) (A-112)
k=—00
and therefore
rex(]) = 3 rex(k=DhQ) (A-113)
k=—00
= rxx(k)*h(k). (A-114)

Therefore, the second order input-output relationship of a random process passing

through a linear system is expressed as
Tyy(k) = ’I‘xx(k) * h(k) * h'(—k) . (A-115)

Note, that the z-transform of h*(—k) is expressed in terms of the z-transform of A(k),

H(z), such that
1

Z{K(-R)} = H'() (A-116)

A simple proof follows. Let the z-transforms of A*(—k) be defined as
Hi(2) =Y h*(-k)z7*. (A-117)
k
Now, conjugating both sides yields

H;(2) = 3" h(=k) 2*9 (A-118)
k
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Let m = —k, and summing over m
Hi(z) = Y h(m) A (A-119)
1 =m)
= Y h(m) = (A-120)
Conjugating both sides yields
1 ™" 1

Using this relationship and Equation A-115, the second-order input-output z-transform

relationship is written as
1
Py(2) = Pu(z)H(z)H‘(z—‘) . (A-122)

When the transfer function is evaluated along the unit circle, z = exp(jw), Equation

A-122 becomes
Pyy(w) = Pez(w) [HW)I" . (A-123)

This equation defines the power spectral density of the output as the product of

the power spectral density of the input times the magnitude squared of the transfer

function frequency response.

Positivity

A power spectrum describes the distribution of power over frequency and since
power is defined to be a positive quantity, the power spectrum must be positive for
all w. Now the power spectrum is defined as the discrete-time Fourier transform
of the autocorrelation function. Therefore, using the discrete-time Fourier inverse

relationship, the average power in a realization of a random process, y(n), can be

written as
rer(©) = E{ymP} = o [ Prv(w)do (A-124)
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The magnitude squared of y(n) constrains ryy > 0. Now, assume that the real-
ization y(n) is the output of a linear time-invariant system with input z(n). Then,

ryy(0) can be written as

rrr(0) = B{ym)P} = 5= [ IH@) Pex(w) do. (A-125)

The filter can be defined as an ideal bandpass filter where

Hw) = 1 forw; <w < wp (A-126)

1

0 for |wy| and |wy] < 0. (A-127)
Therefore, Equation A-125 can be written as
2 1 o
rev(0) = E{y(m)} = — [ Prx(w)dw (A-128)
wy

Since ryy(0) is defined to be
| rvy(0) > 0 (A-129)
Pyx x (w) must be

Pxx(w) >0 (A-130)

for v < w < wp and [H(w)|* = 1. Now, Pxx(w) and |H(w)|? are constrained to
be positive or equal to zero for w; < w < wp. Therefore, given Equation A-123,

Pyy(w) is constrained such that
Pyy(w) 20 (A-131)

for w; €< w < wys. Now the bandwidth of the filter is allowed to take on any value

between —7 and w, therefore the condition
Pyy(w) 20 (A-132)

must hold for all w. This says that the power spectral density is a positive semi-
definite function provided it is the discrete-time Fourier transform of a true autocor-

relation function.
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Spectral Factorization

" Spectral factorization is a property of the power spectrum which allows any
power spectrum to be represented as the output of a causal and stable filter driven

by white noise. The power spectrum was defined as

e}

Pxx(w) = Y rxx(k)exp(—jwk) (A-133)

k=—00
which is a real-valued positive function that is periodic in 2. The z-transform can

be obtained by replacing exp(jw) with 2z
o0
Pxx(z) = Y rxx(k)z™* (A-134)
k=—-00
where Px x(z) is analytic in the annulus p < |z| < }, which includes the unit circle.
Taking the logarithm of Pxx(z), In[Pxx(z)], yields another analytic [6] function in

the annulus. This function can be expressed in terms of a Laurent series expansion

[30] about zero where

In[Pxx(2)] = i ap 27 . (A-135)

k=-o00

The coefficients of the Laurent series, ax, can be obtained by evaluating the series

at z = exp(Jw)

In[Px x(w)] = f: ax exp(—jwk) (A-136)

k=—00

and observing that this is the Fourier series representation of the periodic function

In[Pxx(z)]. The coefficients are defined by

ar = %r- /_: In[Px x (w)] exp(jwk) dw . (A-137)

Since the power spectrum is real, the coefficients are conjugate symmetric, a; = a*,

and aq is defined as

4y = % i : In[Px x (w)) dw . (A-138)

The power spectrum can now be written in terms of the expansion as

Prex(2) = exp(ao) exp(3axz™) exp( 3 axs™). (A-139)

: k=1 k=—00
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Now, let
H(z) =exp()_arz7¥) (A-140)

k=1

which is analytic in the region |2| > p. H(z) may now be expanded in a power
series such that
H(z)=1+h(1)z7' +h(2)272+. .. (A-141)
where
h(0) = lim,,oH(2) =1 (A-142)

given the definition of H(z). Since the region of convergence includes the unit circle,
H(z) is stable filter. Also, H(2) is causal given that ¢(k) = 0 for k < 0. Using the
conjugate symmetry of the Laurent series coefficients, Equation A-139 can be written

as

1
Pxx(2) = o* H(z) H'(=) (A-143)
where 02 = exp(ag). Evaluating Pxx(z) on the unit circle yields
Pxx(w) = o? |H(w)|? (A-144)

which is the frequency response obtained from the output of linear system driven by

white noise.

Power Spectrum Estimation

Autocorrelation Sequence Estimation

The definition of a power spectral density for a random process is conditioned
on the assumption of WSS. However, in physical systems, the random process under
observation is usually only locally WSS stationary. Locally WSS being defined as
only slight variations in r,.{k] with respect to the time index n in Equation A-
81 over a finite observation of the random process. Such physical systems include
human speech, atmospheric returns from radar, and oceanographic returns from

sonar. In addition to the WSS requirement, the autocorrelation lags of the process
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are not known a priori and must be estimated from a finite number, N, of samples
of a realization. In order to estimate the autocorrelation lags, the assumption of
ergodicity must be exercised. With only N observations, one can at best obtain
estimates of the autocorrelation function for lags between —N < k < N. Assuming
an autocorrelation ergodic process and an estimate of the autocorrelation function,

7xx(k), the PSD estimate is defined as

N —
Pul)= 3 fulblexp(-jonfk) S

1
<f<s. (A-145)
k=-N 2

There are two commonly used estimators for the autocorrelation function. The

first one is an unbiased estimator of autocorrelation function defined as

Fxx(k) = lekgz(ni-k)x‘(n) for —-(N-1)<k<N-1. (A-146)

Taking the expectation of both sides yields

N-k

N — k ’I'xx(k) = Txx(k) (A-147)

E{ixx(k)} =

which is a statement of unbiasness. The variance of the estimator is approximately
[29]
N &
Var{ixx(k)} ~ BT L > ("icx(l) +rxx(l+k)rxx(l - k)) (A-148)

l=-00

for a real Gaussian random process and N >> k. Another commonly used autocor-

relation estimator is

Fxx (k) = %Nz—:k:c(n +k)z*(n) for —(N-1)<k<N-1 (A-149)

n=0
which is a biased estimator where

Brxx(R)} = = Erx(h) (A-150)

However, the autocorrelation estimator in Equation A-149 is asymptotically unbiased

where

rxx(k) = rxx(k) . (A-151)

. . . N-%
J%E{Txx(k)} = lim

N—-oo
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"The variance of the estimator in Equation A-149 is approximately [29]

1 o0

Var{fxx(k)} = N,-Z (rax () +rxx( + B)rxx(l k) . (A-152)

In most physical environments and especially at the higher order lags, Marple [29]

states that the sum of the variance and the squared bias is larger for the unbiased

estimator in Equation A-146 than for the biased estimator in Equation A-149.
Another problem is that the estimator in Equation A-146 may yield invalid

autocorrelation sequences. For a WSS random, it can be shown that
Txx(O) > ITxx(k)l for all k . (A-153)

A simple proof follows from the positivity constraint and the definition of the power

spectrum. From the definition, let
1 = .
rxx(k) = ﬁ/;x Px(w) exp(jwk) dw . (A-154)

Using the Schwartz inequality and the positivity constraint, it follows that

rec®l < oo 1 IPx) lewGuk) do (A159
= % [ Pr(w)do (A-156)

Noting that Equation A-156 is the definition for rxx(0), then
ITxx(k)l < Txx(O) for all k. (A-157)

If the condition in Equation A-153 is not met, the autocorrelation sequence
is invalid. It can be shown that this condition will always be met by the biased
estimator given in Equation A-149. Let z represent a vector containing N samples

of a realization from an ergodic random process where

= [.'L']_, z2,... 7.zN]T y (A-158)
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Also, define a shift operator S* which shifts a vector k samples up or down and fills

the:empty elements after the shift with zeros. For example S'{z} yields
Sz} =[0,21,2,...,zn-1]7 . (A-159)

The biased autocorrelation sequence estimate in Equation A-149 can be written in

terms of the shift operator as
1
Fxx (k) = NS"{;(n)}Tg‘(n) for —(N-1)<k<N-1. (A-160)

Let y, = S*{z} for any &, then the biased autocorrelation estimate can be written

as

Frx (k) = %Qfg‘(n) for —(N=1)<k<N-1. (A-161)
Applying the Schwartz inequality yields
Fxx(®ll < Nl for —(N-1)<k<N-1.  (A162)
The norm operator ||z|| is defined as
lzll=z"z (A-163)

Now, the norm of y, is less than or equal to the norm of z since y, contains a subset
of the elements of z and all other elements have been set to zero.

Therefore, for the case when k = 0,

. 1
fxx(0) = ﬁfz (A-164)
and for k #0
) 1
Fxx (k) = Ngf z. (A-165)

Now, since the ||z|| > [|y|| then

’fxx(O) Z fxx(k) for all k. (A-166)
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This condition does not hold for all estimates of the autocorrelation function
using the unbiased estimator in Equation A-146. This can be shown by a simple

example. Let £ = [1.11.05 1.07]7, then the unbiased autocorrelation estimate is

fxx(0) = 1.15 (A-167)
Fxx(1) = 1.14 (A-168)
Fxx(2) = 1.18. (A-169)

Note that lag two in the autocorrelation estimate is greater than the zeroth lag.
Therefore, the autocorrelation estimate is not a valid one based on the property
given in Equation A-153. Since the unbiased autocorrelation estimate may lead to
an invalid autocorrelation sequence, and since the biased estimator is asymptotically
unbiased and its variance tends to zero in the limit, this dissertation will hence
forth use the term “autocorrelation estimator (or estimate)” to refer to the biased
estimator of the autocorrelation sequence. If the unbiased estimator is used, it will

be stated explicitly.

Power Spectrum Estimation Techniques

Spectral estimation techniques can be divided into traditional and modern tech-
niques. The traditional spectral estimation techniques focus on the use of the dis-
crete Fourier transform (DFT) and an estimate of the ACF. These techniques include
the periodogram method and the Blackman-Tukey method for spectral estihation.
The Blackman-Tukey method applies window functions to the estimated autocorre-
lation function to reduce the variance in the spectral estimates. It can be shown
that the Blackman-Tukey method reduces to the periodogram method when using
a rectangular window. The modern spectral estimation techniques are based on an
assumed model for generating the random process. These techniques include au-
toregressive moving average modeling (ARMA) which seeks to model the random

process as the ontput of a linear system driven by white noise and Prony’s method
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which seeks to apply a deterministic exponential model to the data. Chapter 3

develops in some detail the ARMA modeling process.

Periodogram Method
The periodogram estimate of the power spectral density is computed as the
magnitude squared Fourier transform of a finite length realization of the random

process. The periodogram estimate is

N-1 2

3" z(n) exp(—jwn)

n=0

Pxx(w) = = (A-170)

This is an unbiased estimator of the power spectral density. This can be shown by

changing the summation index such that
2

. 1 M .
Pxx(w) = M T 1 nEM z(n) exp(—jwn)| . (A-171)
Now, let M — oo and taking the expectation of both sides yields,
. 1 M . il :
dm B} = g 3 ames(—jon) 3 2 (m) exp(jum)A-172)

1 M M .
2M +1 HE_:M m:‘;M rxx(n — m)exp(—jw(n — m)) . (A-173)

Letting k = n — m yields

Jm EPex(@) = gty 3 (@M +1 Hyrax(H xpl-o(BIA1TY)
= LS M 41— K)rx(k) exp(—ju(k)A175)
M1, 2,
and in the limit,
Jim E {Pxx(w)} = Pxx(w) (A-176)

which states that the periodogram is an unbiased estimator. However, it can be
shown that the variance of the estimator does not approach zero as the number
of samples increases. Kay [14] has shown that the variance of the periodogram is

approximately,

Var[Pxx(w)] = Pix(w). (A-177)



131

However, an averaging of periodograms generated from M non-overlapping, indepen-
dent, and identically distributed finite realizations of the random process can be used
to reduce the variance in the estimate. The averaged periodogram can be expressed

as

PXX w)avg = = Z PXX (A-178)

The variance of the average periodogram estimator is reduce by a factor of M over the
periodogram estimator given in Equation A-170. Since several realizations of the
random process are seldom available in practice, a single realization is partitioned
into M non-overlapping sequences of length N. The variance of the periodogram
estimate is, however, no longer reduced by M, but by a factor slightly less than M

[14].

Blackman-Tukey Method
The Blackman-Tukey method for spectral estimation is an attempt to reduce
the variance of the estimate through data windowing. The Blackman-Tukey power

spectral density estimator is defined as
-~ . N—l
PRW= X xx(k) w(k)exp(—jwk) (A-179)
k==(N-1)
where w(k) is a time-domain weighting function. The weighting function is applied
to reduce the variation in the latter lags of the estimated autocorrelation sequence.
Since the latter lags are estimated using fewer and fewer samples, the weighting
has the effect of reducing the variance of Blackman-Tukey estimator. Kay [14] has
shown the variance to be approximately
. P2 N
Var[PE(w)] = Pix(@) > wik). (A-180)
N k=-N
However, an additional bias is imposed due to the corresponding convolution oper-

ation occurring in the frequency domain due to the windowing operation. Further

discussion of Fourier based estimators can be found in [14].



132

Appendix B

Generation of Gaussian Shaped Spectra

Zrnic [39] has developed a method for generating in-phase and quadrature data
based on a specified shape for the power spectrum. This technique has been used in
weather echo analysis where the Doppler return is often Gaussian shaped [9]. This
appendix contains the simulation algorithm proposed by Zrnic.

The complex return from weather plus white noise can be modeled as
I(m) = s(m)cos[¢(m)] + n(m)cos[y(m)| (B-1)

and

Q(m) = s(m)sin[¢(m)] + n(m)sinfy(m))] (B-2)
where I(m) and Q(m) are the in-phase and quadrature returns, respectively. The
signal and noise return envelopes s(m) and n(m) are Rayleigh distributed and the
signal and noise phase terms ¢(m) and ¥(m) are uniformly distributed between 0
and 27. This signal can be written in terms of its power per frequency bin through

the discrete Fourier transform where
p p/? 27
I(m) +jQ(m Z exp(j6k) exp(—j Nmk) (B-3)

The power P; per frequency bin can be shown [9] to be exponentially distributed
and the phase 6 is uniformly distributed between 0 and 27. The density function

for P, can be written as

exp( —F ) (B-4)

F(Pk) = S+ W

1
S+ W
where S; is the signal power per frequency bin and W is the white noise power per
frequency bin. Samples from a uniform density function are easily generated on

most computers. A transformation from a uniformly distributed random variable

to an exponentially distributed random variable as given in Equation B-4 is needed
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in order to generate samples of P;. The transformation is obtained by equating

probabilities over the domains of the two density functions. This is expressed as

Py 1
o Sp+W

—Pk Xk
exp ( 5 W) dP, = /0 Xy . (B-5)

Computing the integrals and solving for P, yields
Py =~(Seg+ N)In(1 - Xj) . (B-6)

The shape of the signal spectrum, Sy, is arbitrary and for the purposes of this
dissertation is chosen to be Gaussian shaped. The signal and noise powers can be

combined to form the signal-to-noise ratio (SNR)

N-1 Sk
SNR = ﬁ— : (B-7)
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Appendix C
The Averaged Normalized Error
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Figure C-1.  The averaged normalized error in the variance estimate for the 10 dB
SNR case using the [0 1] estimator in an overdetermined system.
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Figure C-2.  The averaged normalized error in the variance estimate for the 10 dB
SNR case using the [1 2] estimator in an overdetermined system.
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Figure C-3. The averaged normalized error in the variance estimate for the 10 dB
SNR case using the [0 1 2| estimator in an overdetermined system.
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Figure C-4. The averaged normalized error in the variance estimate for the 10 dB
SNR case using the [1 2 3] estimator in an overdetermined system.



137

-t

-

i i
§ 0.8 § 0.8
R .
B o.e g o.e
S 0.4 : 0.4}

- 0.2} S 0.2}
g, SR g

5 10 15 20 25 -3 10 15 20 25
number of equations number of equations

§ 1 z 1
E o.8r §
E 0.8} §
é 0.4} S 4t
- 0.2} s 0.2
s o . N X g’ o i N N M N
5 10 18 20 25 5 10 15 20 2s
number of equations number of equations

Figure C-5.  The averaged normalized error in the variance estimate for the 10 dB
SNR case using the [0 1 2 3] estimator in an overdetermined system.
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Figure C-6.  The averaged normalized error in the variance estimate for the 10 dB
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Figure C-7. The averaged normalized error in the variance estimate for the 5 dB
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Figure C-11. The averaged normalized error in the variance estimate for the 5 dB
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Figure C-13.  The averaged normalized error in the variance estimate for the 0 dB
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Figure C-14. The averaged normalized error in the variance estimate for the 0 dB
SNR case using the [1 2] estimator in an overdetermined system.



-

avg. HOM. &fTor in var. est.
o 0 0 ©

o N b O

5 10 15 20
number of equations

25

-

ki
g’ 0.8
§ 0.8
: 0.4}
o 5 10 1.5 2-0 25
number of equations
Figure C-15.

-h

142

B

§' 0.8
E 0.8

S‘ 0.4

= 0.2}

g

5 10 15 20 25
number of equations

Q 1
E 0.8}
; 0.8}
é .4}

- 0.2}
s o

-3 10 15 20
number of equations

SNR case using the [0 1 2] estimator in an overdetermined system.

--

§' 0.8
g 0.8}
: 0.4
8,2}
g Q N M N
3 10 15 20 28
number of equations
1
3
§ 0_8 -
g o.e}-
é 0.4}
- 0.2
g o : : : : H
(] 10 18 20 25
number of equations
Figure C-16.

25

The averaged normalized error in the variance estimate for the 0 dB

'ﬁ 1
;f 0.8}
E 0.8}
: 0.4}
g o . N . i N
S 10 18 20 25
number of equations
'§ 1
g’ 0.8
g o.e
: 0.4
§O.2
® o

number of equations

SNR case using the [1 2 3] estimator in an overdetermined system.

5 10 18 20 28

The averaged normalized error in the variance estimate for the 0 dB



avg. hom. ermor in var. est
o 0 O ©

owN b O O

5 10 15 20 25
number of equations

est

avg. nom. e

-3 10 15 20 23
number of equations

143

5 10 15 20 25
Nnumber of equations

s 10 15 20 25
number of equations
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Appendix D

The Standard Deviation in the Variance Estimate
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Figure D-3. The standard deviation in the variance estimate for the 10 dB SNR
case using the [0 1 2] estimator in an overdetermined system.
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Figure D-4.  The standard deviation in the variance estimate for the 10 dB SNR
case using the [1 2 3] estimator in an overdetermined system.
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Figure D-9. The standard deviation in the variance estimate for the 5 dB SNR
case using the [0 1 2] estimator in an overdetermined system.
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Figure D-10. The standard deviation in the variance estimate for the 5 dB SNR
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Figure D-11.  The standard deviation in the variance estimate for the 5 dB SNR
case using the [0 1 2 3] estimator in an overdetermined system.
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Figure D-15.  The standard deviation in the variance estimate for the 0 dB SNR
case using the [0 1 2] estimator in an overdetermined system.
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Figure D-17.  The standard deviation in the variance estimate for the 0 dB SNR
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Figure D-18. The standard deviation in the variance estimate for the 0 dB SNR
case using the [1 2 3 4] estimator in an overdetermined system.
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