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ABSTRACT

The buffet response of the flexible twin-tail/delta wing configuration-a multidisciplinary problem

is solved using three sets of equations on a multi-block grid structure. The first set is the unsteady,

compressible, full Navier-Stokes equations which are used for obtaining the flow-filed vector and the

aerodynamic loads on the twin tails. The second set is the coupled aeroelastic equations which are

used for obtaining the bending and torsional deflections of the twin tails. The third set is the grid-

displacement equations which are used for updating the grid coordinates due to the tail deflections.

The computational model is similar to the one used by Washburn et. a3. which consists of a delta wing

of aspect ratio one and twin tails with taper ratios of 0.23. The vertex of the twin tails are located at

the wing trailing edge. The configuration is pitched at 30 ° angle of attack and the freestrearn Mach

-umber and Reynolds number are 0.3 and 1.25 million, respectively. With the twin tails fixed as rigid

surfaces, the problem is solved for the initial flow conditions. Next, the problem is solved for the twin

tail response for uncoupled bending and torsional vibrations due to the unsteady loads produced by

the vortex breakdown flow of the leading-edge vortex cores. The configuration is investigated for three

spanwise positions of the twin tails; inboard, midspan and outboard locations. The computational re-

sults are validated and are in very good agreement with the experimental data of Washburn, et. ai.

INTRODUCTION

The ability of modern fighter aircraft to fly and maneuver at high angles of attack and at high

loading conditions is of prime importance. This capability is achieved, for example in the F/A-18 fighter,

through the combination of the leading-edge extension (LEX) with a delta wing and the use of vertical

tails. The LEX maintains lift at high angles of attack by generating a pair of vortices that trail aft

over the top of the aircraft. The vortex entrains air over the vertical tails to maintain stability of the

aircraft. At some flight conditions, the vortices emanating from the highly-swept LEX of the delta wing

breakdown before reaching the vertical tails which get bathed in a wake of unsteady highly-turbulent,

swirling flow. The vortex-breakdown flow produces unsteady, unbalanced loads on the vertical tails

which in turn produce severe buffet on the tails and has led to their premature fatigue failure.

Experimental investigation of the vertical tail buffet of the F/A-18 models have been conducted

:,y several investigators such as Sellers, et al. (Ref 1), Erickson, et ai. (Ref 2), Wentz (Ref 3) and

Lee and Brown (Ref 4). These experiments showed that the vortex produced by the LEX of the wing

breaks down ahead of the vertical tails at angles of attack of 25 ° and higher and the breakdown flow

produced unsteady loads on the vertical tails. Cole, Moss and Doggett (Ref 5) tested a rigid, 1/6 size,

full-span model of an F-18 airplane that was fitted with flexible vertical tails of two different stiffness.
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VerticaJ-tail buffet response results were obtained over the range of angle of attack from -I0 ° to +40 °,

and over the range of Mach numbers from 0.3 to 0.95. Their results indicated that the buffet response

occurs in the first bending mode, increases with increasing dynamic pressure and is laxger at M - 0.3

than that at a higherMach number.

An extensivee±perimentalinvestigationhas been conducted to study vortex-tailinteractionon a

76° sharp-edgeddeltawing with verticaltwin-tailconfigurationby Washburn, Jenkinsand Ferman (Ref

6). The verticaltailswere placedat nine locationsbehind the wing. The experimentai data showed

that the aerodynamic loadsaxe more sensitiveto the chordwisetaillocationthan itsspanwise location.

As the tailswere moved laterallytoward the vortexcore,the buffetingresponse and excitationwere

reduced. Although the taillocationdid not aJTectthe vortexcoretrajectories,itaffectedthe locationof

vortex-corebreakdown. Moreover,the investigationshowed that the presenceofa flexibletailcan affect

the unsteady pressureson the rigidtailon the oppositesideof the model. In a recentstudy by Bean

and Lee (Ref 7) testswere performed on a rigid6% scaleF/A-18 i.na trisonicblowdown wind tunnel

,,vera range of angle of attackand Mach number. The flightdata was reduced to a non-dimensional

buffetexcitationparameter,foreach primary mode. Itwas found that buffetingin the torsionalmode

occurred at a lower angle of attackand at largerlevelscompared to the fundaanentaibending mode.

Kandil,Kandil and Massey (Ref8) presentedthe firstsuccessfulcomputational simulationof the

verticaltailbuffetusing a deltawing-singleflexibleverticaltailconfiguration.The tailwas allowedto

oscillatein bending modes. The flowconditionsand wing angleofattackhave been selectedtoproduce

an unsteady vortex-breakdown flow.Unsteady vortexbreakdown of leading-edgevortexcoreswas cap-

tured,and unsteady pressureforceswere obtained on the tail.These computational resultsare in full

qualitativeagreement with the experimentaldata of Washburn, Jenkins and Ferman (Ref6). The total

deflectionsand the frequenciesof deflectionsand loadsof the coupled bending-torsioncasewere found

to be one orderof magnitude higherthan those of the bending caseonly.Also,ithas been shown that

the tailoscillationschange the vortexbreakdown locationsand the unsteady aerodynamic loadson the

wing and tail.
J

Kandil,Massey and Sheta (Ref9) studiedthe effectsof couplingand uncoupling the bending mad

torsionalmodes fora long computationai time,and the flowReynolds number on the buffetresponse.

In thispaper,we considerthe buffetresponseofthe F-117 flexibletwin tailconfigurationsimilar

to the one used by Washburn, et. ai. (Ref 6). A multi-blockgridis used to solve the problem for

three spanwise locationsof the twin tails;inboard,midspan and outboard locations.The aeroelastic

equationsareused to solveforuncoupled bending-torsionresponses.The computationa2 resultsare com-

pared with theexperimentaldataofWashburn, et.al.They areinverygood agreement with thesedata.

HIGHLIGHTS OF THE FORMULATION AND COMPUTATIONAL SCHEMES

The formulationof the problem consistsof threesetsof governingequationsalong with certain

initialand boundary conditions.The firstsetisthe unsteady,compressible,fullNavier-Stokesequa-

tions.The second setconsistsof the aeroelasticequationsforbending and torsionalmodes. The third

setconsistsofequationsfordeforming the gridaccordingto the taildeflections.Detailsof the problem

formulationare given in (Ref 10) by the firsttwo authors. The firststepisto solveforthe fluidflow

problem using vortex-breakdown conditionsand keeping the twin tailsrigid.Navier-Stokese_ations

are solvedusing the implicit,flux-differencesplittingfinite-volumescheme. The gridspeed _ isset

equal to zeroin thisstep.This step providesthe flowfieldsolutionalong with the pressuredifference

acrossthe tails.The pressuredifferenceisused to generatethe normal forceand twistingmoment per

unit lengthof each tail.Next, the aeroelasticequationsaxe used to obtain the bending mad torsion

deflectionsof each tail,w_,j._and 8,,),k.The griddisplacementequationsaxe then used to compute the

new gridcoordinates.The metriccoefficientof the coordinateJacobian matrix are updated as wellas



the grid speed, aa--_--_.At each time step, the computational cycle consisting of the Navier-Stokes solver.
the aeroelastic equations solver, and the grid displacement solver is repeated.

COMPUTATIONAL APPLICATIONS AND DISCUSSION

Twin Tail-Delta Wing Configuration:

The twin tail-delta wing configuration consists of a 76°-swept back, sharp-edged delta wing

(aspect ratio of one) and dynamically scaled flexible twin tails similar to those used by W'ashburn. et.
al. (Ref 6). The vertical tails are oriented normal to the upper surface of the delta wing and have a

centerline sweep of 53.5 °. Each tail is made of a single Aluminum spar and Balsa wood covering. The

Aluminum spar has a taper ratio of 0.3 and a constant thickness of 0.001736. The chord length at the

root is 0.03889 and at the tip is 0.011667, with a span length of 0.2223. The Aluminum spar is con-
structed from 6061-T6 alloy with density, p, modulii of elasticity and rigidity, E and G of 2693 kg/rn 3,

6.896X101° N/rn 2 and 2.5925X101° N/rn2: respectively. The Balsa wood covering has a taper ratio of

0.23 and aspect ratio of 1.4. The chord length at the root is 0.2527 and at the tip is 0.058, with a span

length of 0.2223. The Balsa thickness decreases gradually from 0.0211 at the tall root to 0.0111 at the
tail midspan and then constant thickness of 0.0111 is maintained to the tail tip. The tail cross section

is a semi-diamond shape with bevel angle of 20 °. The Balsa density, modulii of elasticity and rigidity, E

and G. are 179.7 kg/rn 3, 6.896X10 s N/rn 2 and 2.5925X10 s N/rn2; respectively. The tails are assumed

to be magnetically suspended and the leading edge of the tail root is positioned at x/c = 1.0, measured

from the wing apex. The configuration is pitched at an angle of attack of 30 ° and the freestream Mach
number and Reynolds number are 0.3 and 1.25 x 106; respectively.

A multi-block grid consisting of 4 blocks is used for the solution of the problem. The first block is

a O-H grid for the wing and upstream region, with 101XS0X54 grid points in the wrap around, normal

and axial directions, respectively. The second block is a H-H grid for the inboard region of the twin tails,
with 23X50X13 grid points in the wrap around, normal and axial directions, respectively. The third

block is a H-H grid for the outboard region of the twin tails, with 79X50X13 grid points in the wrap

around, normal and axial directions, respectively. The fourth block is a O-H grid for the downstream

region of the twin tails, with 101X50X25 grid points in the wrap around, normal and axial directions,

respectively. Figure 1 shows the grid topology and a blow-up of the twin tail-delta wing configuration.

The configuration is investigated for three spanwise positions of the twin tails; the inboard loca-

tion, the midspan location and the outboard location corresponding to a separation distance between
the twin tails of 33%, 56% and 78% of the wing span; respectively.

Inboard Location of Twin Tails (33 _ wing span):

The spanwise distance between the two tails is 33 % of the wing span. Figure 2 shows three-

dimensional and front views for the initial conditions with the surface total pressure contours and the

streamlines of the vortex cores. The initial conditions are obtained after 10,000 time steps, At = 0.001,

with the twin tails kept rigid. It is observed that the vortex cores experience symmetric breakdown on

the wing at about the 75% chordstation. Downstream of the wing, they are totally outside of the space
between the twin tails. Smaller size vortex cores appear under the vortex breakdown flows and at the

lower edges of the twin tails. These results exactly match Washburn observations. Figure 3 shows the

results for the twin tails undergoing uncoupled bending-torsion responses after 9,600-time steps from

the initial conditions. It is observed that the breakdown shapes and locations are affected by the twin
tail oscillations. The vortex breakdown is now asymmetric, and the vortex breakdown flows are still

outside of the space between the twin tails. These results conclusively show the upstream as well as the
spanwise effects of the twin tail oscillations on the vortex breakdown flows.
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Figures 4-6, show the distribution of deflection sad load responses along the left and right tails

every 2000 time steps, the history of deflection and load responses versus time and the total structural

deflections and root bending moment for the left and right tails. It is observed that the bending and

torsion responses are in their first and second mode shapes. The frequencies of the bending deflections

are less than one-hah" those of the torsion deflections. The normal forces are out of phase of the

bending deflections While the torsion moments are in phase with the torsion deflections. The total'tail

responses are in first, second and third mode shapes. Periodic responses have not been reached within

the computational time covered (20,000 time steps - 10 dimensionless time units).

Midspan Location of Twin Tails (56% wing span):

The results of this case are presented in Figs. 7-10. Figure 7 shows that the tails cut through

the vortex breakdown of the leading-edge vortex cores, which are also asymmetric. Figure 8 shows
that the bending deflections are lower than those of the inboard case while the torsional deflections are

substantially lower than those of the inboard case. Moreover, the bending and torsion deflections have
a single sign for the left and right tails (all are positive or all are negative). Figure 9 shows that both

bending and torsion deflections are out of phase of the normal force and twisting moment loads. The

total deflections of Fig. 10 shows the same trend. The root bending moments of Fig. 10 are also lower
than those of the inboard case.

Outboard Location of Twin Tails (787_ wing span):

Figures 11-14 show the results of this case. Figure 11 shows that the space between the twin tails
include larger portion of the vortex breakdown flow of the leading-edge vortex cores, than that of the

midspan case. The vortex breakdown flow is also asymmetric. The vortical flow on the lower outside

surfaces of the twin tails is larger than any of the above two cases. Figures 12-14 show that the bending

and torsion deflections are lower than those of the midspan case. They also show that both bending and

torsion deflections are out of phase of the bending and torsional loads. The frequencies of the bending
deflections are still smaller than those of the torsion deflections. All these observations are in very good
agreement with those of Washburn, et. al. (Ref 6).

Table (1) shows a comparison of the mean root bending moment for flexible twin tails and the

lift coefficient with rigid twin tails of the computed results with those of Washburn, et. al. (Ref 6).

Parameter Position

Mean Root Bending
Moment

With Flexible Tails

Lift Coefficient

With Rigid Tails

Inboard

Midspan
Outboard

FTNS3D

5.62X10 -5

4.22X10 -_
3.62X10 -_

WASHBURN

7.43X10 -_

6.05X10 -_

5.?0X 10 -_

Inboard 1.0423 1.17

Midspan 1.0515 1.12
1.0674Outboard 1.17

Table (1) Validation of FTNS3D computational results with Washburn, et. al. experimental results.

CONCLUDING R.EMAKKS

The computational results of the FTNS3D code of the present paper and the experimental data

of Washburn, et. ai. are in very good agreement for the Washburn, et. ai. configuration at 30 ° angle
of attack and the three spanwise locations of the twin tails. It is concluded that the inboard location



of the twin tailsproduces the largestbending-torsionloads,deflections,frequenciesand root bending

moments when compared with the midspan and outboard locations.The outboard locationproduce the

leastoftheseresponses.When the twin tailscut through the vortexbreakdown flow,they produce less

responsesdue to the compensating damping effectproduced by the leftand rightparts of the vortex
breakdown flowon each tail.
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Figure 1: Three-dimensional grid topology and blow-up of the wing-twin tall configuration (Midspan
position).
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Figure 2: Three-dimensional and front views showing the total pressure on the surfaces, and the vortex-

core streamlines. Initial conditions (Inboard position).
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Figure 3: Three-dimensional and front views showing the total pressure on the surfaces, and the vortex-

core streamlines. Uncoupled case after it - 9,600 (Inboard position).
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Figure 4:

M_ =0.3. a=30 ° ,Re
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Distribution of the deflection and load responses for an uncoupled bending-torsion case.

= 1.25z106, (Inboard position).
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(a) Left tail

Figure 5: History of the deflection and load responses for an uncoupled bending-torsion case. Moo = 0.3,
o = 30 °, Re = 1.25x10 _, (Inboard position).
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Figure 6: Total structural deflections and root bending moment for an uncoupled bending-torsion case.

Mo_ = 0.3, c_ = 30 °, Re = 1.25z106, (Inboard position).
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Figure 7: Three-dimension_ and front views showing the total pressure on the surfaces, and the vortex-

core streamlines. Uncoupled case after it = 9,600 (Midspa_ position).
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Figure 8: Distribution of the deflection and load responses for an uncoupled bending-torsion case.
M_ = 0.3, _ = 30 °, R_ = 1.25x106, (Midspan position).
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Figure 9: History of the deflection and lord responses for an uncoupled bending-torsion case. M_o = 0.3,
o = 30% R_ = 1.25x106, (Midspan position).
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Figure 10: Total structural deflections and root bending moment for an uncoupled bending-torsion case.

Moo = 0.3. a = 30 °. Re = 1.25z106, (Midspan position).
f
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Figure 11: Three-dimensional and front views showing the total pressure on the surfaces, and the
vortex-core streamlines. Uncoupled case after it = 9,600 (Outboard position).
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Figure 12: Distribution of the deflection and load responses for an uncoupled bending-torsion case.
Moo = 0.3, _ = 30 °, R_ = 1.25z10 s, {Outboard position).
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Figure 13: History of the deflectionand load responses for an uncoupled bending-torsion case. Moo =

0.3. o = 30% Re = 1.25x106, (Outboard position).
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Figure 14: Total structural deflections and root bending moment for an uncoupled bending-torsion case.

Mo_ = 0.3, o = 30 °, Re = 1.25z106, (Outboard position).
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