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ABSTRACT

We compute the angular power spectrum C, from the BATSE 3B catalog of 1122 gamma-ray bursts
and find no evidence for clustering on any scale. These constraints bridge the entire range from small
scales (which probe source clustering and burst repetition) to the largest scales (which constrain possible
anisotropies from the Galactic halo or from nearby cosmological large-scale structures). We develop an
analysis technique that takes the angular position errors into account. For specific clustering or repeti-
tion models, strong upper limits can be obtained down to scales ! ~ 30, corresponding to a couple of
degrees on the sky.

The minimum-variance burst weighting that we employ is visualized graphically as an all-sky map in
which each burst is smeared out by an amount corresponding to its position uncertainty. We also
present separate bandpass-filtered sky maps for the quadrupole term and for the multipole ranges
I =3-10 and I = 11-30, so that the fluctuations on different angular scales can be inspected separately
for visual features such as localized “hot spots™ or structures aligned with the Galactic plane. These
filtered maps reveal no apparent deviations from isotropy.

L=
=
brought to you by .. CORE

provided by NASA Technical Reports Server

Subject headings: gamma rays: bursts — methods: statistical

1. INTRODUCTION

The BATSE experiment has now observed more than
1100 gamma-ray bursts. The observed angular distribution
is isotropic, while the brightness distribution of bursts
shows a reduced number of faint events. These observations
favor a cosmological burst origin. The “great debate” on
the distance scale of cosmic gamma-ray bursts (GRBs)
(Fishman 1995; Lamb 1995; Paczynski 1995) considered
two alternatives; cosmological bursts or events that occur
in an extended Galactic halo (EGH). The old pardigm of
nearby Galactic neutron stars with a Population I distribu-
tion perished due to the combined observations of an iso-
tropic angular distribution of GRBs along with reduced
source counts at the faint end of the apparent flux distribu-
tion (Meegan et al. 1992; Briggs et al. 1996). The absence of
even a weak “Milky Way ” band in the GRB distribution
has indeed made it hard to retain the hypothesis that local
neutron stars provide the underlying source population.
Some recent reviews of these and related issues are given by
Briggs (1995), Fishman & Meegan (1995), and Hartmann
(1995).

Although no dominant anisotropies on the sky were
found in the apparent sky distribution of gamma-ray bursts,
even small effects might contain valuable information about
the underlying sources. The detection of a small excess of
events in special directions, such as nearby stars or the
Andromeda galaxy, could be a unique signature of stellar or
Galactic halo models, respectively. For example, a small
asymmetry with respect to the Galactic plane might suggest
a local disk origin (Hartmann, Greiner, & Briggs 1995).
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Clustering of bursts beyond that expected from random
alignments might be evidence of actual clustering of the
sources or of repeated emission from some sources. Obser-
vation of repetition would seriously call into question the
viability of those cosmological burst models that invoke
unique events, such as mergers of neutron star binaries. On
the other hand, a detection of the small anisotropy induced
by the Earth motion relative to the cosmic microwave back-
ground (CMB) (Maoz 1994; Scharf, Jahoda, & Boldt 1995;
but see Brainerd 1996) would constitute a convincing proof
of the cosmological origin hypothesis. These various aniso-
tropies manifest themselves on different angular scales and
with different magnitudes. Galactic features would be
expected to cause large-scale distortions, while burst repeti-
tion would show its effects on the scale that is typical for
BATSE source localizations (in excess of 176 for the 3B
catalog). In addition, the instrument does not sample the
sky uniformly so that we expect some distortions due to the
nonuniform exposure map of BATSE.

How should we analyze the angular distribution of
GRBs? Since the basic null hypothesis of isotropy states
that burst directions are distributed randomly on the sky
(which is the impression derived from visual inspection of
GRB catalogs), we seek tests that can efficiently find
small deviations. First we search for excess of sources
toward some direction or a concentration toward some
plane in the sky, ie, we seek a dipole of quadrupole
moment. It is perhaps preferable to search for such large-
scale anisotropies in an unbiased way by not making refer-
ence to any particular coordinate frame (Hartmann &
Epstein 1989; Briggs 1993). On the other hand, such
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coordinate-free methods are not necessarily the most effi-
cient ones. If a particular anisotropy is expected, then the
tests should take this information into account to optimize
the search efficiency. Paczynski (1990) introduced studies of
the cos @ and sin? b statistics, where b is the Galactic lati-
tude of the GRB and 8 is the angle between the GRB direc-
tion and the vector pointing to the Galactic center. It is now
common practice to apply both the coordinate-free and the
Galactic methods to the GRB distribution (Briggs 1993;
Briggs et al. 1996). These dipole and quadrupole measures
were sufficient to characterize the large-scale angular
properties of GRBs when sample sizes were a few hundred
bursts or less. However, the BATSE experiment has now
observed so many bursts that an extension of these moment
methods to higher orders is now useful. In this work, we use
spherical harmonic analysis (SHA) to represent and inter-
pret the angular distribution of GRBs

It can be shown (Horack et al. 1993; Briggs et al. 1996)
that the statistical estimates of low-order multipoles are not
very sensitive to the angular smearing induced by statistical
and systematic localization uncertainties. This is not the
case for higher order multipoles, which probe the angular
density field on smaller scales. We shall address this ques-
tion very carefully in this work. Small angular scales may
reveal important information about the nature of the GRB
sources, and location accuracy is crucial. If associated with
galaxies, we expect clustering on very small scales
(Hartmann & Blumenthal 1989; Lamb & Quashnock 1993).
If bursts repeat, we expect clustering at § = 0 (Quashnock
& Lamb 1983a). Both effects are diluted by localization
uncertainties (the point-spread function), and apparent
power is transferred from small (or zero) angular scales to a
scale given by the detector response. A traditional tool for
the analysis of source clustering is the angular two-point
correlation function, which was applied first to GRBs by
Hartman & Blumenthal (1989). The severe reduction in
correlation strength by positional smearing was demon-
strated by Hartmann, Linder, & Blumenthal (1991). The
two-point correlation function is closely related to the
power spectrum (e.g., Peebles 1980) (in the ideal world with
no measurement errors or shot noise, one would be found
to be the spherical Fourier transform of the other).
However, the correlation function and the power spectrum
complement each other well, since they are affected by noise
in quite different ways. This makes it worthwhile to estimate
both from the data, just as has become the practice with
galaxy surveys. Another method relevant to the study of
clustering properties is the nearest neighbor (NN) method
(e.g., Scott & Tout 1989). This mehod, applied first to GRBs
by Quashnock & Lamb (1993a), probes only angles near the
scale defined by the mean angular pair separation, which
decreases with increasing sample size. We do not consider
NN methods in this work.

The remainder of this paper is organized as follows. In
§ 2, we generalize the standard techniques of power spec-
trum estimation to properly take into account the location
errors and the sky exposure of the BATSE catalog. In§ 3 we
apply this to the 3B data set, and in § 4 we discuss the
results.

2. METHOD

In this section, we derive the power spectrum estimation
technique that is employed in our analysis. The first sub-

section reviews the statistics of point processes on a sphere.
This is standard material and has been discussed frequently
in the literature in connection with the problem of estimat-
ing the angular power spectrum of point sources such as
galaxies or quasars (Peebles 1973; Hauser & Peebles 1973;
Peebles 1980); see Tegmark (1995) for a recent review. The
extra twist, which makes the analysis of the BATSE data
more challenging, is the presence of position errors. Since
some bursts are more accurately localized than others, the
question of how best to weigh the data is somewhat subtle;
this is the topic of the second subsection. After that, we
present the explicit expressions for computing the power
spectrum estimates from a data set, including a simple beam
function model.

2.1. Point Processes on a Sphere

We model the gamma ray burst distribution as a two-
dimensional stochastic point process n(f) = Y ; 8(F, 7;), which
is a Poisson process with intensity (average point density
per steradian) A(r). Here 8 denotes the Dirac delta function
on the surface of the unit sphere, and the unit vectors #;
correspond to the positions of the various bursts. If we had
detected a nearly infinite number of bursts, then the func-
tion A(#) would be known with great accuracy, and the only
source of errors when computing its power spectrum would
be cosmic variance. Since in practice we have only a finite
number of bursts (in our case 1122), our estimates of 2 itsell
will be inexact, leading to the additional complication
known as shot noise.

A Poisson process satisfies (see, e.g., Appendix A of
Feldman, Kaiser, & Peacock 1994)

{nP)y, = AP, (1)
<n(Pn(F)y, = MPMF) + O(F,FIAF) . (2

Here A is itself a random field, A(F) = n(F)[1 + A(F)], where
the underlying density fluctuations A are modeled as a
Gaussian random field. The function i1, which we will refer
to as the exposure function, is thus the number of bursts per
steradian expected a priori, not the number density actually
observed, In other words, n(#) ts proportional to the expo-
sure time in the sky direction £. As customary, we assume
that the expectation value (A(f)>, =0 and that the sta-
tistical properties of the field A are 1sotrop1c which means
that if we expand it in sphencal harmonics' as

AF) = Z Z A Yy 4
=0 m=—
then
<alm al‘m‘>g = 611‘ 5mm’ Cl > (5)

where the coefficients C,; are known as the angular power
spectrum. There are thus two separate random steps
involved in generating »: first the generation of the smooth
field A, then the Poissonian distribution of points. To make

! Since all our fields are real valued, we will find it convenient to use the
real-valued versions of the spherical harmonics throughout. These are iden-
tical to the conventional spherical harmonics Y, as defined in, for instance,
Abramowitz & Stegun (1965), except that the complex exponentials e™?
are replaced by 2'2 sin (mg), 1 and 2'/2 cos (me) for m <0, m =0 and
M > 0, respectively. With this convention, the standard identities involv-
ing spherical harmonics remain unchanged except that no complex conju-
gation is needed. For instance, the orthogonality relation becomes simply

-[ Vi Yp (FAQ = 6y 6 - 3
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this distinction clear, we use the notation (), for expecta-
tion values involving only the Poisson step (as in egs. [1]
and [2]) and write (), for expectation values involving only
the Gaussian field A (as in eq. [5]). When we write simply
{> without a subscript, we mean the expectation value
involving both steps. For instance, {n(f)) = {{n(f)>,>, =
AR, = 7(P).

Given the field n(f), we wish to estimate the coeflicients
a,,- We denote our estimates d,,, and for reasons that will
soon become clear, we define them as

mmEJKAAﬁ?

We now compute the statistical properties of these esti-
mates. By substituting equation (1) into equation (6), we
obtain

dQ — 81 6,50/ 47 . (6)

(i) = J. Vin(P)AQ — b19 0o /4 = 0, 7

i.e., the expectation values vanish. Since the expectation
values of the true coefficients a,,, vanish as well, this means
that our estimates are unbiased. Notice that we chose to
include the second term in equation (6) simply to cancel the
bias arising from the monopole term I = m = 0. Using the
expressions above, we find that the correlation between two
multipole estimates is

Ly By ) = ”- Yir#) Vi ()

x [(A(f)A(F’)) = ( ) o(F, F’)]dQ aqQ . (8)

Substituting equation (4) into this, and using the spherical
harmonic orthogonality relation (3) and equation (5), this
reduces to

Yim(F) Yo me(F)
A(F)

If r1 is merely a constant, i.e., if the exposure time is the same
for all parts of the sky, then the orthogonality relation will
reduce the second term to simply 8, ,,./71, and the various
estimates d,,, will all be uncorrelated. Since the true expo-
sure function 7 for the BATSE 3B data set varies somewhat
across the sky, a slight correlation will result.

Of course, we are also interested in estimating the angular
power spectrum C,;. Defining the quantities

Clm = alzm - blm » (10)

we find that they are unbiased power estimates (in the sense
that (C,,,> = C))if we choose our bias correction to be

b,mEJ‘Y_L.(r)dQ. (11)
n(F)
If i is constant, then the bias correction becomes simply
b, = 1/f, independent of | and m.

It should now be clear why we divided by # in equation
(6). If we had not divided by the exposure function, then our
power estimator C‘,,,, would not have measured only what
we wanted it to, ie, C,. Rather, (C,,> would also have
received contnbutlons from other multipoles C;., with [ # I'.
The quantities C,,, are thus good estimates of C, for each
m-value separately To reduce error bars, we estimate the

Oy Gy ) = Oy Oy Cp + J dQ . )
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power by averaging the C,,,:

!
&=t

20+ 1 12

im -
m=—1
Defining b to be the average of the bias corrections b,,,, we
find that b is in fact independent of I: by substituting the
spherical harmonic addition theorem (16) into equation (11)
and using the fact that P(1) = 1, we obtain

1 dQ
4n jﬁ(f-) ’ (13)

1., b is just the spherical average of 1/s. This means that the
coefficients b,,,, which would be slightly cumbersome to
compute numerically, need never be computed at all, since
the power estimate C, is simply the average of the squared
dp-coeflicients minus b.

1
=3rr7,L e

1

2.2. The Effect of Position Errors

The discussion in the previous section applies to any
population of point sources on the celestial sphere, not
merely gamma-ray bursts. However, analyzing the BATSE
catalog involves an extra complication that is absent in, for
instance, galaxy and quasar catalogs: position errors.

Let us study first the simple case in which the position
errors are the same for all bursts in the catalog. If the true
direction to a burst is #, then we model the apparent direc-
tion ¥ as a random variable whose probability distribution
depends only on the angle between # and #. Thus, we can
write the probability distribution as B(f - ¥) for some func-
tion B that we will refer to as the beam function.

Above, we characterized the distribution of the true burst
positions as a Poisson process with intensity A(f), where A
was in turn a Gaussian random field. From now on, we will
let the density n(f) = Y, 8(F,#) refer not to the true burst
positions but to the apparent positions. It is easy to show
that this n will also be a Poisson process, but with a different
intensity function A. Specifically, the apparent intensity is
the true one convolved with the beam function, i.e.,

AapplF) = (B * Ay )(F) = JB(F *P) A (F)Q . (14)

Thus, the effect of the position errors is to smooth out sharp
features in the expected burst density, which as we will see
limits our ability to measure fluctuations on scales below
the beamwidth. Let us expand the beam function in Leg-
endre polynomials as

BG-#)= 3 (21441;1

=0

>B¢ P{F-F). (15)

By using the spherical harmonic addition theorem,

2l
5, Hulf Vi) = ( :);@4% (16)

together with the orthogonality relation (3), we can thus
write the beam function as

© 1
F) = ;Z‘o ;_IBIY;M(;)Y;M(FI) . (17)

Applying the beam convolution to equation (4) and using
the orthogonality relation, we thus obtain the spherical
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version of the convolution theorem:

o0

1
BxAY)= ) Y amBY.(P). (18)

1=0 m=—1

In other words, convolution with B corresponds simply to
multiplying the multipole coefficient a,,, by B,.

Repeating the analysis of the previous section including
position errors (replacing A by B = A), the case in which i is
constant? thus yields the simple result

€y = BIC,. (19)

In practice, some sources are localized more accurately than
others, and we clearly want to make use of this fact to make
the most of the data. Suppose that the total population,
with number density #, consists of a number of sub-
populations with number densities 7; (so that ) 7; = #), and
that all bursts in the ith subpopulation are equally accu-
rately localized, as specified by a beam function B,. (Since
their shape depends only on the sky exposure, all the
functions #; are identical apart from their normalization, so
fi; oc n.) Estimating the power spectrum can now be split
into two steps:

1. Estimate a,, separately from each population, as
above, and call the results &, ;

2. Combine these estimates into one by some weighted
averaging,

alm = Z mia;m - (20)

Obviously we want the weights W, to be larger for those
populations i that are better localized. Let us now deter-
mine which weighting scheme is optimal. The gener-
alization of equation (19) to multiple populations is readily
found to be

2
<sz> = <512m> - hl = (Z By; "Vn> Cr s (21)

where the bias correction is

poll ¥

(22)

Xx:W

~ p.

How should we choose our weights W, ? First of all, to
make C,, an unbiased estimate of C,, clearly we want to
normalize the weights so that the expression in parentheses
in equation (21) equals unity, ie., so that Y, B, W, =1.
Second, we want the error bars on our estimate to be as
small as possible, i.e., we want to minimize the variance of

2 When # is not constant, the B * (7A) term in addition gives rise to a
weak mode coupling between the different multipoles. As discussed below,
the fi of the BATSE 3B data set is basically constant except for small dipole
and quadrupole corrections. This means that a,.,,,, will pick up small contri-
butions from g,,, where | — I| < 2, which is completely irrelevant for this
analysis. The reason is that it is merely a second-order effect: we are
investigating whether there is any signal at all apart from the shot noise,
and this coupling effect would only alter the relative level of the signal by a
few percent. Thus, the only instance in which the anisotropy of i must be
taken into account is when computing the noise bias with eq. (11), since an
error of a few percent in the (much larger) shot noise contribution could be
of the same order as the weak signal we are trying to detect.
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C,. In the approximation that d,, is Gaussian,> we have
simply V(C)) = 2¢a,>?, so that we minimize the variance by
minimizing the expectation value {a},> = C, + b,. Since C,
is independent of our weights, we thus wish to choose W), so
as to minimize the bias correction b,, given the above-
mentioned normalization constraint Y ; B, W; = 1. This
constrained optimization problem is solved readily by the
method of Lagrange multipliers, and the solution is

W, = bl n; Bu s (23)

where the minimal bias correction is

_ (z_ a,.B,Z,.)' . (24)

In summary, we have found our best multipole estimate to
be

5,m=Nb’ZB1,j (#) ﬂ((—”dg (25)

(For brevity, we omit the trivial monopole correction eq.
[7] here and below, since we are never interested in comput-
ing the monopole anyway.)

2.3. Power Spectrum Estimation in Practice

For any given data set, the density field #; is just a sum of
delta functions, one for each burst, so equation (25) reduces
to

Ylm(r )

Ni
alm - z li Z

where N, denotes the number of bursts in the ith sub-
population. We can simplify this expression further by a
mere change of notation. We let the index k refer to sums
over the entire burst sample (k = 1, ..., N), and from here
on, we simply let B, denote the beam factor corresponding
to the subpopulation that the kth burst belongs to. Then

(26)

Neff

_ZBH(-' >

(27)

=Y A B -
i

i
— .B% =
47’:2{:]\]1 li

where we have defined the effective number of bursts at a
given multipole as N§'" = Y ¥_| Bj;. With this same conven-
tion, replacing the double sum over subpopulations and
their members by a single sum over all bursts, equation (25)
simplifies to

)

Ay = Nerr Z (28)

Thus, we have eliminated the need to keep track of

3 The Gaussian approximation is good when the number of bursts is
large, by the central limit theorem. It should be emphasized that even
under circumstances in which this approximation is poor, our C, will be a
good estimate of the power spectrum: it will simply have sllghtly larger
error bars than it would with optimal weighting.
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subpopulations altogether,* and expressed our multipole
estimates directly in terms of the observed quantities.

Repeating the analysis for an arbitrary exposure function
i, equation (27) becomes generalized to

_N 1[4
PTONST 4n ) ap)

(29)

We estimate the C, by averaging over m-values as before,
ie.,

~ 1 ! 3
= az. | —b,. 30
G <21 1 m:Lll“tm) 1 (30)

In the above-mentioned Gaussian approximation, the C,,
of equation (10) are almost independent with variance
V(C,n) = V(at,) = 2(ak,)? since the b, are mere constants.
Hence, the 1 g error bar is

" 1 1 - 1/2 2 1/2
N ——— ~ C, +b).
AC 21+1|:m=2_,V(C"")] <21+1> (Ci+b)

(31)

Thus, as [ increases, the error bars will typically decrease
first due to the growing number of independent m-modes
and then gradually start increasing again around the scale
corresponding to the position errors as N§'' eventually
approaches zero, making b, explode.

2.4. The Beam Function

We model the BATSE beam function as a Fisher function
(Fisher, Lewis, & Embleton 1987):

o exp (o 2F - )
B(#-¥y=—F"7"""5 32
P F) 4ne} sinh (o, ?) (32
characterized by a location error o,. This is often con-
sidered by mathematicians to be the spherical version of the
Gaussian distribution, and it reduces to

1 62
B¥(cos 0) ~ exp (— > ?)/2naf , (33)
k

when o0, € 1 radian ~ 60°. The Fisher function has the
advantage that it is correctly normalized (its integral over
the sphere is unity) for arbitrarily large angles ,, which is
not the case for the plane Gaussian of equation (33). It
should be emphasized that although the BATSE location
error distribution has usually been modeled as a Gaussian
distribution, it is currently not well enough known that one
particular distribution is preferred over another, so the
choice is merely one of convenience.

* The Gaussian assumption that we used for computing error bars was
strictly valid only when N, > 1 for each subpopulation. However, since the
BATSE 3B distribution of position errors forms a smooth continuum, we
expect the error bars derived from the Gaussian approximation to remain
accurate anyway, as long as N{f » 1, and this is indeed confirmed numeri-
cally by Monte Carlo simulations. We generated 1000 mock BATSE 3B
catalogs with no clustering and analyzed them with the same software as
the real data, extracting the multipoles ! < 40. To within the Monte Carlo
errors (a relative error of order 1000~ /2 &~ 3%), the actual error bars were
identical to those expected analytically when making the Gaussian approx-
imation.
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In the limit g, < 1 (valid for all bursts in the sample as
shown in Fig. 2), we have to a good approximation that

Blk ~ e—(l/Z)aﬂI(H» 1) . (34)

The position uncertainties A@ quoted in the BATSE 3B
catalog are defined as the radius of the 1 ¢ circle, i.e., of the
circle that contains erf [27'/2] ~ 68% of the probability.
Thus, in the limit 6, < 1, the conversion between A8 and ¢

is
a 1 —1/2
i {—21n[1 —erf (ﬁ):l} ~0.66. (39

Note that the values of Af quoted in the BATSE 3B catalog
do not include the systematic error contribution of 196,
which is to be added to the quoted values in quadrature.
This yields the distribution shown in Figure 2.

3. RESULTS

We have used the improved BATSE positions of the 3B
catalog (Meegan et al. 1995b, 1995¢) to expand the angular
distribution of GRBs in terms of spherical harmonics. The
3B catalog contains 1122 bursts with known best-fit posi-
tions (shown in Fig. 1a) and their statistical uncertainties. In
addition to statistical shifts, we must also include (in
quadrature) a 176 systematic uncertainty. This value is sig-
nificantly lower than the 4° of earlier catalogs, and it allows
us to extend spherical harmonic analysis to [~ 50-60
before localization uncertainties completely wash out any
possible intrinsic angular power in the GRB sky map. The
distribution of the actual statistical errors is shown in
Figure 2.

Because the sky exposure of BATSE is not uniform
(Fishman et al. 1994; Meegan et al. 1995b), artificial
moments are induced (e.g., Briggs et al. 1996). The BATSE
experiment does not exclude any area of the sky, but due to
blocking by the Earth and detector gaps during passages of
the South Atlantic Anomaly (SAA), some positions on the
sky have a reduced probability for burst detection. The
associated exposure map is thus best described as a semi-
transparent mask. While the exposure corrections are not
as severe as those encountered in galaxy surveys, it should
and can be included in the analysis. We shall discuss the
effect of uneven sampling in the next section.

3.1. The Exposure Function

Because of problems due to the loss of the spacecraft tape
recorders, the absolute efficiency has not been determined
since the release of the 1B data set. However, the shape of
the exposure function 7 is essentially independent of time.
and since the shape is all that matters for the present
analysis, we employ the 1B estimate (Fishman et al. 1994).
This function 71 depends on declination only and is indepen-
dent of right ascension. This means that in equatorial coor-
dinates, the multipole coefficients 7, vanish except when
m = 0. The dominant deviation from uniformity is a quad-
rupole (fi,¢/flgo = 8.8%) depletion of bursts near the
equator due to the shadowing of the sky by the Earth. The
second largest anisotropy is a dipole moment (i1, /g0 &
4.5%) toward the Earth’s north pole, due to the South
Atlantic Anomaly, which requires disabling triggers. Com-
pared to the shot noise, the higher multipoles (I > 3) are
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FiG. 1.—The BATSE 3B data set and the smoothed burst map. The measured locations of the BATSE 3B sample of 1122 gamma-ray bursts are shown in
Hammer-Aitofl projection in galactic coordinates (top) and with each burst smeared out by an amount corresponding to the uncertainty in its position

(bottom).

negligible (q;o/a00 < 1%), but for completeness, they have
nonetheless been included in our analysis.

3.2. The Power Spectrum

The power spectrum C, extracted from the BATSE 3B
data set is shown in Figure 3, and as can be seen, there is no
evidence of deviations from isotropy on any angular scale.
What is plotted is, of course, the difference between two
positive quantities, the power in the data minus the bias
correction, according to equation (30), which is why some
(unphysical) negative estimates occur. Thus, if the gamma-
ray bursts are in fact completely uncorrelated, we would
expect the points in Figure 3 to be scattered symmetrically
around zero, with roughly equal numbers above and below
the horizontal axis, and about 68% within the shaded
region. Since all power is by definition positive, the presence
of any type of correlation would shift the distribution
upward, leading to a positive excess.

In Figure 3, we have divided the power spectrum by 4= to
make the interpretation of the numbers simpler. A mono-

pole C,/4n = 0.0001 would simply correspond to a fluctua-
tion of 0.0001'2 = 1% in the average burst density.
Likewise, (C,/4m)'/? can be interpreted as the density fluc-
tuation on the angular scale 8 =~ 60°/1.

Let us comment briefly on this factor of 60° and the
correspondence between / and 0. From equation (34), we see
that roughly speaking, a burst probes the multipole [ only if
the factor B, is of order unity, ie., if g,/ < 1. Here g, is
measured in radians, so since 1 radian is 180°/n ~ 57°, this
means that only bursters with a location error ¢ < 607/ are
sensitive to the multipole /.

3.3. The Error Bars

The size of the error bars (the height of the shaded region)
in Figure 3 is readily understood from equation (31). For
I =0, we have Nif = N = 1122, 50 apart from the factor of
212 the shot notse gives just the familiar Poisson variance
I/N. As | increases, the (2! + 1) denominator reduces the
error bars, since many independent modes are being aver-
aged. However, as ! increases beyond the scale correspond-
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F1G. 2.—A histogram of the position errors A8 is shown for the BATSE
3B sample of 1122 gamma-ray bursts. The 1°6 systematic errors are
included here, added to the statistical errors in quadrature.

ing to the typical location errors, the sharp drop in N§f
causes the error bars to increase dramatically. Thus, we
cannot place strong constraints for I > 60 simply because
there are no bursts that are localized to better than 1°6
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FiG. 3.—The shot-noise—corrected angular power spectrum. Filled
squares show the multipoles estimated from the BATSE 3B data set with
minimum-variance burst weighting and shot noise removed (this is why
unphysical negative values occur). The shaded region shows the 1 o shot
noise error bars, so if there is no clustering whatsoever, about 68% of the
squares would be expected to fall within this region, distributed symmetri-
cally abound zero. Any type of clustering would drive the points upward,
leading to more points above zero than below. The double-shaded region
shows that the error bars would be if there were no position errors.
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F1G. 4—The factor by which fluctuations are suppressed by the effect of
position errors, N§/N, is plotted as a function of multipole L. Our method
corrects for the smearing by dividing by this suppression factor, which is
the reason that the error bars in Fig. 3 explode for large /. The suppression
factor for the real data (shaded) is compared with the hypothetical situation
in which all bursts have the same position errors A8, taken to be 1°6 (solid
line), 4° (long-dashed line), and 10° (short-dashed line).

(I ~ 35), so I > 60 would be more than “2 ¢” out in the
Gaussian tail of B,, causing the shot noise to explode.’

This effect is the reason that the actual error bars become
so much larger than the “ideal world” error bars (double-
hatched) that would result if there were no position errors.
This is also illustrated in Figure 4, where N is plotted as a
function of . For I = 30, for instance, we are effectively only
making use of about 25% of all bursts, the remainder being
too poorly localized to contribute much information about
the power on this small a scale. Conversly, Figure 3 shows
also that for I < 5, the location errors have little impact on
the error bars, confirming the results of Horack et al. (1993)
and Briggs et al. (1996) for dipole and quadrupole moments.

Note that N5 in Figure 4 is far from being Gaussian: for
small /, it falls off roughly as a Gaussian with A8 = 10°, but
for larger I, the tail falls off much more slowly, since most of
the contribution is coming from the best localized bursts. It
should also be noted that since the C,-coefficients are rota-
tionally invariant quantities, Figure 3 would look identical

5 If the true location errors should turn out to be larger than those we
have assumed here, then the error bars would thus explode at lower I-
values. For instance, Graziani & Lamb (1995) analyzed the distribution of
3B locations in comparison to the positions derived from the IPN?
network and conclude that the systematic error of the 3B data should be
about 4° instead of the advertised 1°6. In addition, there may be corre-
lations in the data that suggest a brightness dependence for the systematic
error, instead of the constant value suggested by Meegan et al. (1995c). The
studies by Graziani & Lamb (1995) did not take systematic effects in the
IPN localization method into account and also do not incorporate the fact
that some IPN locations are based upon the earlier BATSE 2B locations
and thus may be biased against the 3B locations. Although we tend to
agree more with the error budget prescirbed by the BATSE Team, this is
an unsettled question, and it should be borne in mind that whereas our
multipole estimates for I € 15 (corresponding to 8 > 4°) are virtually inde-
pendent on this controversy, the estimates for ! > 30 should be taken with
a grain of salt if the reader favors a 4° systematic error.
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if Galactic rather than equatorial coordinates had been
used when generating it.

3.4. Isthe Exposure Function Correct?

If the estimate of i (Fishman et al. 1994) were incorrect,
this could introduce artificial signals into our power spec-
trum. Because of the azimuthal symmetry, this would affect
only those coefficients 4, that have m = 0. These are
plotted in Figure 5. Thus, if the bursts are uncorrelated and
the 7 estimate is correct, the points should scatter symmetri-
cally around zero with about 68% of them in the shaded
region, which appears to be the case. Figure 5 thus provides
reassuring evidence that i has been correctly modeled. To
indicate the sensitivity of this analysis, the figure shows also
the dipole and quadrupole that would be expected if we had
failed to correct for the above-mentioned Earth-shadow
quadrupole and the South Atlantic Anomaly. Since the
quadrupole correction was about 9%, this shows that
uncertainties in the modeling of the higher multipoles of 7,
which are typically at least an order of magnitude smaller,
will not be important compared to the (N§)~'/? errors
caused by shot noise.

3.5. The Minimum-V ariance-Weight Burst Map

Using equation (17) and the orthogonality relation (3),
whe can rewrite equation (28) as

. N o
Q= Neff j‘ Ylm(r)x(r)dQ ] (36)
3
where we have defined x, the smoothed burst map, as

N BYF - #y) 37)
y o A(F)

Thus, we see that the minimum-variance method we derived
above has a very simple interpretation: apart from the
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F1G. 5—The multopole coefficients with m = 0. The multipole coeffi-
cients aj, in equatorial coordinates, corresponding to fluctuations indepen-
dent of right ascension, are shown (filled squares) together with the 1 ¢
region expected from shot noise alone. For any isotropic fluctuations, the
distribution should be symmetric around zero. The triangle and the star
show the effect that the South Atlantic Anomaly and Earth shadowing
would have if they were not taken into account in #1.
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overall weighting factor N/N{", our optimal estimates of

the multipoles a,,, were just the spherical harmonic coeffi-
cients of a map in which each burst is smeared out by its own
beam function, and corrected for the uneven sky exposure.
This map is shown in Figure 1b and Figure 6 (Plate 1)
(upper left). A comparison of this map with that using
earlier BATSE data (Hartmann et al. 1994) shows the tre-
mendous improvements due to the reduction of systematic
position uncertainties from 4° to 1°6 and the increase in
sample size.

It is quite useful for inspecting the data set visually, since
in a sense it displays only the information that is really
present in the data and not more. It does not mislead the
eye by exaggerating the accuracy to which the burst loca-
tions are known, enabling those bursts that are well local-
ized to visually stand out against the background.

3.6. Bandpass-Filtered Maps

Although the angular power spectrum C,; provides a
useful measure of the amount of clustering on different
angular scales, it should be borne in mind that it does not
contain any information about the relative phases of the
different multipoles a,,. The same can be said about the
correlation function, a useful statistical quantity that has
been estimated elsewhere (Meegan et al. 1995b, 1995c;
Blumenthal 1995). The loss of phase information means
that although the power spectrum may tell us that there is
extra power on some scale, it does not tell us anything
about where in the sky this power is coming from; we may,
for instance, be interested in knowing if there are any signals
localized near the Large Magellanic Cloud or aligned with
the Galactic plane. Fortunately, this type of information
(which can be seen as complementary to that provided by
the power spectrum) is easy to extract with the formalism
developed above. We define x(F), the multipole map corre-
sponding to multipole /, as the sky map

i
x{f)= 3 laxml’:m(f) . (38)
where the estimated spherical harmonic coefficients 4, are
those defined by equation (28). Similarly, we define the
bandpass-filtered map corresponding to a multipole range
I, <1< 1, as the sum of the multipole maps for the different
I values in the range. Figure 6 shows the filtered maps
corresponding to [ =2 (the quadrupole), /= 3-10, and
I = 11-30, respectively, and the reader is encouraged to
scrutinize these images in search of any features that are
spatially localized or aligned with the Galactic plane, both
of which would provide evidence against isotropy. The
quadrupole, for instance, is neither aligned with the Galac-
tic plane nor with the equator of Earth, and as is seen in
Figure 3, its amplitude is of the order that is expected from

mere shot noise fluctuations.

Using the orthogonality relation, we see that apart from
the shot noise correction and a proportionality constant,
our multipole estimate C, is just the integral of the square of
the corresponding multipole map, f xi dQ. It is in this sense
that the filtered maps allow us to see where the power (the
fluctuations) is coming from. Also, apart from normal-
ization issues (for instance, the density modulation in 7 is
eliminated in the filtered maps), the smoothed burst map in
Figure 1b is just an average of all the multipole maps,
weighted by inverse noise level. Thus, we can think of the
filtered maps roughly as a decomposition of the smoothed
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burst map into its different frequency components, into its
contributions from different angular scales.

4. DISCUSSION

Much of the current debate on the origin of GRBs rests
upon a careful analysis of their angular and brightness dis-
tribution. Without established counterparts or other burst
properties that could be used to estimate distances, we do
not even know their distance scale, which in turn leaves
burst energetics undetermined. Building models is a chal-
lenge under such conditions. One of the most important
pieces of information that we can obtain is the angular
distribution of GRBs. Deviations from isotropy on some
angular scale for some or all bursts could provide crucial
hints to the distance scale. The lack of large anisotropies
makes it very hard to retain traditional models of neutron
stars in the Galactic disk. But even models that invoke a
very extended halo do predict small anisotropies that
should emerge eventually from the data. And while cosmo-
logical models generically result in isotropic distributions,
they too may have tell-tale deviations. We may consider the
small deviations due to the Earth’s motion with respect to
the CMB, or the granularity due to local superstructures in
the cosmic mass distribution. In addition, the well-known
angular correlations of many cosmological objects or clus-
tering that would result from burst recurrences would lead
to some deviations from isotropy. The distribution of burst
positions on the sky could be the primary source of infor-
mation leading to an understanding of the burster distance
scale, and perhaps their nature as well.

The crucial objective of our study is thus an advanced
analysis of GRB positions. There are two significant steps in
this field:

1. Providing accurate locations for all bursts;
2. Analyzing this position information with appropriate
statistical tools.

The BATSE Team has made great progress in the first area,
now providing location accuracies down to about 2° for
many bursts and about 5° for the average burst (Meegan et
al. 1995¢). The reduction of systematic uncertainties is
essential for studies of small-scale anisotropies, but it also
contributes to better estimates of more global patterns that
may be present in the data. The smearing of burst positions,
unavoidable from the instrumental point of view, must be
included in the data analysis. Additional features that must
be accounted for are temporal and angular gaps in the
observations. Here we do not consider possible structure in
burst arrival times, but we study exclusively their arrival
directions. The exposure function of BATSE must be and
has been included in this work.

The remaining question is about selecting appropriate
tools. This depends somewhat on the question we wish to
address. Global anisotropies present in many Galactic burst
models can be studied through low-order multipole expan-
sion, e.g., dipole-quadrupole statistics, while clustering is
generally approached with angular correlation functions or
nearest neighbor distributions. Because of the larger data-
base and the superior position accuracy of the 3B data
studied here, we are actually able to bridge these two dis-
tinct approaches by extending dipole and gquadrupole
analysis of the angular distribution of GRBs to higher order
multipoles. The technique is the well known spherical har-
monic analysis (SHA), i.e., expansion of the burst distribu-
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tion in terms of spherical harmonics, Y. As discussed
above, the angular scale probed by a given harmonic is
approximately 60°/I, so that the expansion must be carried
out to l-values in excess of 30 if we wish to reach the smear-
ing scale of the current BATSE configuration.

4.1. Limits on Repetition

If some fraction of the observed GRBs are repeat events,
the sky distribution should show angular concentrations on
small scales (roughly given by the beam smearing of the
instrument). Evidence for burst recurrence was found in the
1B data (Quashnock & Lamb 1993a), but subsequent 2B
data did not confirm this result (e.g., Meegan et al. 1995a).

The 3B data set is greatly improved over the 2B data in
its ability to test the repeater hypothesis for the following
reasons:

1. The systematic position uncertainty has been reduced
from4°to 126, and

2. In addition to the overall exposure time being
increased by about a year, the post-2B portion of the 3B
catalog has a greater fractional exposure (live time), which is
important for repeater models in which the bursting phase
of sources is less than the BATSE lifetime.

Burst recurrence is expected to generate excess correlations
at @ = 0, which corresponds to excess power at all multi-
poles.® Our study does show some modes with deviations
around the 2 ¢ level, but this is by no means a significant
excess of power because only about the expected number of
points deviate by about 2 ¢ and the points are generally
scattered with 1 ¢ of no power. The data are consistent with
the hypothesis of no recurrences. The althernative hypothe-
sis tested most frequently in the literature are repeater
models in which a fraction f of all observed bursts can be
labeled as repeaters that are observed to burst v times each.
Tegmark et al. (1996, hereafter T96) employed an SHA-
based technique to test this two-parameter family of models
against the BATSE 3B data, and they find that all models
with (v — 1) > 0.05 are ruled out at 99% confidence, as
compared to the best previous 99% limit (v — 1)/ > 0.27
(Meegan et al. 1995¢). Thus, even a cluster of six events from
a single source would have caused excess power above that
present in the 3B catalog. In other words, the multipole
information that our SHA extracts from the data, as plotted
in Figure 3, translates into sharp quantitative limits on
repetition.

It is conceivable that bursts repeat once or more often on
a timescale of months and become dormant afterward for a
much longer period. In that situation, accumulation of
bursts into a growing sample would dilute the repeater

5 From the additional theorem (16), one obtains the well-known result
that

E (2 +1
APAFY = ¥ (‘%)Pl(f"’:’)cl’ (39

=0

i.e.,, the Ci-values are basically the spherical Fourier coefficients of the
angular correlation function. Correlations only at zero anglular separation
(before position errors are added in) correspond to the correlation function
being a Dirac delta function. Just as the regular Fourier transform of §(x) is
a constant, the power spectrum corresponding to repeaters is C; constant,
independent of 1.
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signal. When the 3B set is divided into four sets of roughly
equal number of bursts (not equal time), the correlation
function shows some small-angle excess at the approx-
imately 1-2 ¢ level in all subsets (Meegan et al. 1995b;
Blumenthal 1995). Adding these correlation functions
together generates a noticeable, but still not highly signifi-
cant, excess of burst pairs near about 5°. Our corresponding
SHA analysis for the four subsets (Fig. 7) reveals this effect
also, but it is evident from this figure that the significance of
this increase is marginal at best. In other words, SHA yields
results that are consistent with those obtained by corre-
lation function analysis. This emphasizes the fact that the
SHA method now bridges the range of power estimators
previously employed in GRB studies.

4.2. Limits on Large-Scale Clustering

Angular power spectra also constrain burst models that
trace the large-scale structure of the untverse. If GRBs trace
the galaxy distribution (as neutron star binary mecrgers
would), we expect to find angular correlations similar to
those observed for galaxies or clusters of galaxies
(Hartmann & Blumenthal 1989; Lamb & Quashnock 1993).
However, if BATSE samples to a redshift of order unity
(assuming standard cosmology and standard candles for
bursts), the sparse sampling of the galaxy density (specific
rate of bursts inside or near galaxiesis ~ 107 ¢ yr~ ') and the
imperfect angular resolution reduces the expected strength
of the clustering signal. With increasing sample size, it will
be possible to apply brightness selections, while retaining
good angular resolution. So far, only the dipole and quad-
rupole term have been investigated as a function of appar-
ent source brightness and interpreted in the context of
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F1G. 7.—Angular power spectrum when grouping into quarters. Filled
squares in the bottom plot show the multipoles estimated as in Fig. 3,
except that the data have been split into four sequential quarters according
to when the burst occurred. Each square shows the average of the four
estimates that the muitipole, and the corresponding error bars are seen to
be twice as large as in Fig. 3, shown above for comparison. The slight
apparent excess of power in the bottom figure is consistent with the corre-
lation function analysis of Meegan et al. (1995b,, 1995¢), which finds weak
clustering when the data is time binned into four quarters.
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Galactic GRB models (Quashnock & Lamb 1993b; Gure-
vich et al. 1993, 1994) and cosmological GRB models
(Hartmann, Briggs, & Mannheim 1995).

Figure 3 shows that the BATSE 3B data are consistent
with the null hypothesis of no clustering at all. Translating
this multipole information into quantitative limits of course
requires a detailed specification of a clustering model. For
the above-mentioned repeater case, this was done by defin-
ing a two-parameter family of repeater models and placing
lower limits on the parameter values (T96). Although any
type of clustering would produce excess power on some
scale, addressing the issue of how high above the Poisson
noise this excess would be, and thus the issue of whether
such clustering is ruled out by BATSE or not, would require
detailed modeling of the clustering pattern in question.
Since SHA tightened the previous repeater limits by a factor
of 5, it appears quite promising to carry out such modeling
of other clustering scenarios as well.

If a model predicts clustering that is anisotropic (for
instance, an excess in the supergalactic plane), then it is
likely that even stronger constraints can be obtained by
making use of this spatial template information, since our
averaging over m-values can “dilute ™ an anisotropic power
contribution by up to a factor of (2! + 1). In other words, if
onc knows exactly what kind of clustering one is looking
for, one should adopt a data analysis technique that incorp-
orates this information. In constrast, since the angular
power spectrum involves no preferred directions in the sky,
SHA is a useful general-purpose diagnostic tool which will
detect clustering on any scale (if it is strong enough to stand
out over the Poisson noisc), without requiring any prior
knowledge as to what kind of clustering one is looking for.

4.3. Outlook

We conclude that multipole expansion of the projected
distribution of GRBs does not show evidence for clustering
on any angular scale. This argues against the recurrence of a
substantial fraction of burst sources (at 99% confidence, not
more than 5% of the BATSE 3B bursts can be duc to
repeating sources [T96]) and against any source population
with intrinsically strong anisotropies resulting from an
intrinsically special position of the observer. The remark-
able degree of isotropy of GRBs constrains severely any
burst model that invokes traditional geometric features of
the Milky Way (disk, bulge, or halo). If one wishes to retain
the Galactic origin hypothesis by introducing very extended
halo distributions, it seems that these populations cannot
contribute significantly to the dynamics of the Galaxy
(those that do are all known to be highly anisotropic) but
must constitutle a trace population. Whether high-velocity
neutron stars injected into the Galactic halo can indeed
provide the necessary isotropy remains to be determined,
and model builders should verify that the proposed spatial
distributions indeed generate essentially zero angular power
on all scales, as our analysis suggests. The currently fashion-
able paradigm of cosmological bursts now passes this test,
but eventually some deviations from isotropy are expected,
and spherical harmonic analysis is a tool well suited to
detect such deviations.
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