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Abstract. The well-known analytical solution of Burgers' equation is extended to

curvilinear coordinate systems in three dimensions by a method that is much simpler

and more suitable to practical applications than that previously used [22]. The results

obtained are applied to incompressible flow with cylindrical symmetry, and also to

the decay of an initially linearly increasing wind.

1. Introduction. Burgers' equation is a well-known example of a nonlinear partial

differential equation whose solution can be constructed from a linear partial differen-

tial equation. It is, to the best of our knowledge, the only such example. Much of the

interest in this equation arises because it is a very simple form of the Navier-Stokes

equation in the one-dimensional, Cartesian, time-dependent, compressible, viscous

limit [17]. An early study derived two steady-state solutions [1], and then the equa-

tion was used in studying the decay of free turbulence [4, 5]. The importance of

the equation is due to the nonlinear term, uau/Ox, which allows the calculation of

the modification of the velocity due to the exchange of momentum between a vari-

ety of different length scales. Burgers' equation is the simplest type that shows the

complicated interplay between the nonlinear steepening and the diffusion of a wave.
The first full solution of the one-dimensional Burgers' equation was found inde-

pendently by both Cole [7] and Hopf [ 12]. Recently, the solution has been extended

to n dimensions by using group action on coset bundles [22]. The basic idea of this

approach is to determine coset spaces for a chosen group and for a chain of closed

subgroups, and then to construct a bundle out of these spaces. Next, the action of

the group on the bundle is prescribed and a class of tensor-valued functions called

invariants on the coset bundle is introduced. Because these group invariants take the

form of differential equations, the method has been used to obtain a tensor version

of the n-dimensional Burgers' equation and to show that its solutions can be con-

Received May 17, 1993.
1991 Mathematics Subject Class([ication. Primary 35K99.

63

©1996 Brown University

https://ntrs.nasa.gov/search.jsp?R=19970023042 2020-06-16T02:15:52+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42773691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


64 STEVEN NERNEY, EDWARD J. S('HMAHL. AND Z. E. MUSIELAK

structed from a linear tensor diffusion equation. It has also been demonstrated that

the procedure gives a nonlinear tensor equation for a generalized Burgers' equation
with a higher than second order derivative. In this paper, we examine extensions

of the basic class of solutions of the vector Burgers' equation, which we discovered

before we became aware of the work of Wolf et al., to more than one dimension and

to curvilinear coordinate systems. The main advantage of our approach is that it is

extremely simple from a mathematical point of view and that the results we obtain

have the potential to be used in a number of applications (see Section III for two

simple applications). It must be added, however, that the solutions obtained in this

paper represent a subclass of more general solutions to the tensor Burgers' equation
discussed by Wolf et al. [22]. In what follows, we recapitulate part of the historical

derivation presented first by Cole [7] and Hopf [12]. This derivation is central to our
results in Sections II and III.

The equation to be solved is

Ou Ou 02u
o---i+ u-D-_=" (1)

OX 2 '

where u is a physical constant (viscosity). A successful transformation uses

a¢
u - Ox' ¢ = ¢(x, t). (2)

Substituting into Eq. (1) and integrating term-by-term with respect to x,

o--7+ _ tax/ : VOx---_-' (3)

where the function of integration is omitted. Because Eq. (3) is invariant under the
transformation

x --, ax, (4a)
9

t _ a-t, (4b)

(a = constant), as is the diffusion equation, this suggests that there exists a solution
of the form

c_(x, t) = cb(O(x, t)), (5)

where 0 is a solution of the diffusion equation

O0 020
Ot - v (6)Ox 2"

Substitution into Eq. (3) while subtracting Eq. (6) gives

(Oqb'_2 2uO2q5 (7a)
\o0} 002 '

whose solution is

_b(0) = -2uln(0 - ci ) + c2, (7b)
so that, by choosing c_ = 0,

-2u O0
u(x, t)- 00x (8)
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Quite an interesting literature has developed around applications of the solutions
in pure mathematics [20], magnetohydrodynamics [9], astrophysics [14, 16], and

cosmology [10, 15]. Lighthill [18] extended the basic transformation to the case
where the x-coordinate is measured in the frame of reference moving in the same

direction as the wave at the undisturbed speed of sound. A valuable book on Burgers'

equation and related topics was recently published but is, unfortunately, already out

of print [11].
In the following, we formally present the derivation of the solutions to the vector

Burgers' equation by using a generalized Cole-Hopf transformation.

2. The vector extension of Burgers' equation. We begin with the vector equivalent

of Burgers' equation
OF
0-7 + F. VF = uV2 F. (9)

In order to evaluate the vector Laplacian we must use

T2F= V(V.F)- V x V x F, (10a)

and for the inertial term
2

U

F.VF= V-_- - Fx V x F. (10b)

Then Eq. (9) greatly simplifies as long as

FxVxF=uVxVxF- (10c)

This appears to be an equation that represents quite general flows, but the only
solutions are irrotational. This can be seen by taking the divergence of both sides of

Eq. (10c) and using

v. (#× = x #- #.v x (lOd)

In what follows we will assume that the flow field is irrotational since this is necessary

to simplify Eq. (9) and to derive the extension of the Cole-Hopf transformation. The

assumption is satisfied trivially for the one-dimensional Cartesian problem

V x 17= 0, (lla)

so that
17= V_b. (llb)

Eq. (11 b) is the extension of Eq. (2) to three dimensions and, together with Eqs. (10),

allows the simplification of Eq. (9) to

[0(_ (V(_)2 vV2_b] _--O. (12)v -b-7+ 2

The meaning of Eq. (12) is that the quantity enclosed by brackets must be a function

of time, only, because its gradient is zero in all space so that

O_b+ (V_b)2 uV24 = E(t). (13)
Ot 2
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The form of the unknown function E(t) is irrelevant for our discussion since it

cannot affect the velocity. We simply define a new potential

= fl) - .f E(t) dt,

where the gradients of _b and _l are identical.

Before introducing the Cole-Hopf assumption, it is useful to state the following
vector identity:

Oa
Va = _-_V0, (14a)

which is true for any orthogonal, curvilinear coordinate system. Taking the diver-

gence of both sides with a = _b and using Eq. (14a) again with a = o9 yieldsi) o

2 O_ ,

v2_ = _(v0) 2+ b-_v0.O0 (14b)

where the diffusion equation is

o0 . o (oe 
Ot - r Or \ Or/" (20)

We will also need the diffusion equation

__00 = VV20. (15)
Ot

Now we apply Eqs. (5), (14b), and (15) to Eq. (13) to generate Eq. (7a), again, so
that

2u
ff = --_V0. (16)

This clearly shows that the Cole-Hopf transformation goes through for quite general
coordinate systems. Cole [7] originally discussed the vector solution for the case of

Cartesian coordinates, and he indicated that it applied to some special solutions in
higher dimensions.

The usefulness of Eq. (16) can be shown by exploiting the simple symmetry of the
following example.

3. Cylindrical symmetry. Using only a radial velocity, Burgers' equation in cylin-
drical coordinates with axisymmetry may be written as

Ou Ou [10 {rOU'_ u]O---[+ U-o--_= u -_r \ Or/ - -_ " (17)

We initially noticed that (17) could be written as

0-7 + u -_-_ = t, -_-; (r u) . (18)

Equation (18) and the related integrals of (18) are what led us to believe that the

Cole-Hopf transformation was quite general in nature. The particular form of (16)
is

-2v O0

u- 0 Or (19)
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A simple example of the use of this method is to use the initial-value solution of

the diffusion equation (a Dirac delta at t = r = 0 )

1 r2
0 = --e -_ (21)

2ut

Then the solution of (17) is found from (19),

r (22)
U _ --°

t

This is the cylindrical version of Burgers' Cartesian solution [4], u = x/t, which is the

inviscid solution of (1) (solution 2.1, figure 5 in Benton [3]). Because (22) satisfies

(17) in the limit as u _ 0 (which is also the case of zero acceleration for fluid

particles), this solution is the inviscid limit of the solution of Burgers' equation in

cylindrical coordinates. Some solutions of (17), such as example A below, approach
the sawtooth limit as t --+ c¢ ; but this is not surprising since it has been noted [2,

13] that the sawtooth shape of dissipation layers is of fundamental importance in

Burgers' representation of turbulence.
It is extremely useful to derive solutions of the diffusion equation that are based

on physical boundary conditions on the velocity field. To this end, Eq. (19) may be

formally integrated to

('So' )O(r, t) = k(t)exp -Tu u(w, t)dw (23)

where
k(t) = 0(0, t). (24)

The velocity is to be initially specified over a given range so that the initial value of

0 is given by

( l fuo(w)dw ) (25)O(r, O) = Oo(r) = k0exp -_-_

for ro < r < R.
The general solution of the diffusion equation, (20), with azimuthal symmetry, is

[191

f0 f0 , , -,,k:, ,O(r, t) = Oo(r )Jo(kr )Jo(kr)e kr dk dr'. (26)

The integral over k can be done once and for all since it is a special case of Weber's

second exponential integral as discussed in Watson [21]:

oo 2-_1 .( r2 +r'2_7 } \_-t,](rr''_o exp(-utk2)J°(kr)J°(kr')kdk = exp I0 (27)

where the modified Bessel function of order zero may be written as

io(ar' ) " ,= Jo(tar ), (28)

which is a real function. Equation (26) may now be written as

( r2)fo_ , (r'2)(ir'r)l JO(r, t) = _ exp Oo(r ) exp r' dr'. (29)
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4. Two simple examples. We choose to work two relatively simple examples so

as not to obscure the simple nature of the transform. It is surprisingly easy to pose

apparently straight-forward problems that cannot be readily carried to completion
because of extremely difficult quadratures. We will treat the more difficult case of

the decay of an initially constant velocity wind in a future paper.

The reader may have noticed by now that Burgers' equation does not specify the

density distribution except in a few limits besides the trivial one of constant density
(as in the next example).

A. Incompressible flow. The first case is that of incompressible flow where we take

a source of water emanating from the origin of coordinates and spreading out in a

circularly symmetric pattern. The initial flow is assumed to exist from very close to

r = 0 out to R, which is assumed to be larger than any other length scales in the
problem. We then take the limit as R _ oo, in the same spirit as other studies of

this initial-value problem on infinite intervals [2]. The speed must decrease as r-l

to conserve mass in an initially steady flow. In sum,

= Uo_, ro < r < R, (30)u(r , O)

so that (25) integrates to

where

Oo=ko(rO]"
\r] '

where (_I-),,

Clearly, u0
is well defined.

of (27) as discussed in Watson [21], so that

a (4ut)-a/2_, _ --_'iO = kor oF 1-_ n=o

is Pochhammer notation,

(;)naa 1) a 2) a

and

(31)

a- uOrO

2v " (32)

may be large at the small value ro in such a way that the product Uoro

or more clearly as

_" ( ) -------v°°a n / r 2 \ n- I

u(r, t) = r ,---n=l,._,nln!/-'t-_T/ (36b)

t "

(;) =1. (35)
0

The full nonlinear solution can now be derived from (19) and expressed in terms
of the confluent hypergeometric function as

u(r, t) - a r M(a/2 + l, 2, -r2/(4vt)) (36a)
2 t M(a/2, 1, -r2/(4vt))

(33)

(34)

Equation (29) can now be integrated using Hankel's generalization
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t=0.125

I 2 3 4

radius r

FIG. I. The nonlinear evolution of a wind with an initial spatial

dependence of l/r. The isochrones show the decay of the wind,
and, especially, the diffusion at the leading edge where the wind was

turned off as this discontinuity propagated outward.

We see that the solution can be written as the product of the inviscid solution times

an infinite sum of powers of the similarity variable r2/(4vt) • We note the nonlinear

effect on higher powers of the similarity variable through the occurrence of the factor
n in the numerator. The transient nonlinearity steepens but diffusion dominates;

note that the transient is not by itself a solution of Burgers' equation since we do not

have the superposition theorem of linear theory.

Figure 1 was created by nondimensionalizing Eq. (17) in the usual fashion, i.e.,

r--, r/L, t _ vt/l 2, u --* u/U. Choosing U = u 0 and L = r0, then a is 0.5. This
ratio of series is initially divergent and required 100 terms in double precision on a

Sun SPARCstation. The solutions are presented as isochrones, showing the evolution

of the nonlinear solution towards a steady-state. The boundary where the wind was
turned off moves outward while diffusion smooths out the discontinuity. The wind

initially drops off as 1/r so that the peak in the profile approaches the starting radius
for the source as t _ 0. All curves approach the steady-state envelope of 1/r while

diffusion flattens the leading edge. Asymptotically the velocity is zero everywhere.

B. The decay of an initially linearly increasing wind. Example two is a wind em-

anating from the origin, again, but now the velocity linearly increases in magnitude



7O
STEVEN NERNEY, EDWARD J. SCHMAHL AND Z. E. MUSIELAK

out to some radius, r0, chosen to be larger than any other length scale in the prob-

lem. We had in mind the initial theoretical treatments of radiatively-driven winds [6]
from early-type stars, but our description is too simple to be applied to this problem.

This is because of our assumption of cylindrical rather than spherical symmetry, and

also because other effects are now known to be important in these winds [8].

The driving force is imagined to turn offat t = 0, and then we calculate the decay
of the flow. In sum

where

u(r'O)=U°fo- _o' 0<r<r°" t=0, (37a)

_ ro
to----

u0 (37b)

is half the time for the wind to flow from the source to the initial outer boundary.
Both r0 and u0 are large, but to is not necessarily big. Then

O0 = ko e-hr2 , (38)

b- u°
4Vro. (39)

Proceeding as before,

ko r 2 1 ]
0 - 1 + t/t o exp 4-vt 1 + -to/t.I ' (40)

r

u(r, t) - t + t o" (41)

We note that the solution approaches the Burgers' sawtooth shape as t ---, oe.

5. Conclusions. We have given a relatively simple proof that Burgers" equation

can be solved for curvilinear coordinate systems in three dimensions by assuming
irrotational flow and using Eq. (16) with 0 derived from solutions of the diffusion

equation. We solved two examples in cylindrical coordinates with circular symmetry
to show how to implement the generalized solution. Our goal has been to extend the

tools of workers who model the complicated interplay between nonlinear steepening
and viscous diffusion in waves.
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