
NASA Technical Memorandum 112198

Direct Adaptive Aircraft Control
Using Dynamic Cell Structure
Neural Networks
Charles C. Jorgensen, Ames Research Center, Moffett Field, California

May 1997

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

https://ntrs.nasa.gov/search.jsp?R=19970023679 2020-06-16T02:23:19+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42773596?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DIRECT ADAPTIVE AIRCRAFT CONTROL USING DYNAMIC CELL

STRUCTURE NEURAL NETWORKS

Charles C. Jorgensen

Computational Sciences Division
Ames Research Center

SUMMARY

A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing

networks (TRNs) of F- 15 aircraft aerodynamic stability and control derivatives. The network is

integrated into a direct adaptive tracking controller. The combination produces a robust adaptive

architecture capable of handling multiple accident and off-nominal flight scenarios. This paper
describes the DCS network and modifications to the parameter estimation procedure. The work

represents one step towards an integrated real-time reconfiguration control architecture for rapid

prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and

on-line nonlinear virtual reality simulation. Flight control was evaluated under scenarios including

differential stabilator lock, soft sensor failure, control and stability derivative variations, and air

turbulence.

BACKGROUND

In 1994, the NASA Advanced Programs Office began research on real-time neural adaptive flight

control of damaged aircraft. In a joint NASA/industry initiative, NASA Ames Research Center and

McDonnell Douglas Aircraft Corporation initiated a four-year program with a goal of flight

demonstrating a concept for identification of aircraft stability and control derivatives using neural

networks. The technology development was focused on optimization of aircraft performance under

nominal, off-nominal, and simulated accident scenarios, as well as speeding up of controller

software development for new designs.

In 1995, Leavenberg-Marquardt perceptrons (ref. 1) were trained on large aerodynamic data sets

covering the full flight envelope of an F-15. The neural networks were incorporated in the third flight

channel of a specially modified test aircraft (fig. 1). This was to provide the existing flight controller

with the best available estimates of aircraft aerodynamics across the flight envelope and at the same

time produce a dramatically more compact way to store the stability and control derivatives. The

second phase of this program, begun in 1996, emphasized real-time, on-line learning networks

capable of handling changes in aircraft flight properties as a result of off nominal conditions such as

the loss of a wing, ice accretion, mid-air collision, or actuator/control surface failure. Attainment of

this goal requires an integrated treatment of both system identification and control techniques. In this

paper we emphasize the control method.

Figure 1. F-15 ACTIVE aircraft.

In 1994,Kim andCalise(ref. 2) proposeda methodfor F-18flight controlwhereneuralnetworks
wereemployedto representthenonlinearinversetransformationsneededfor feedbacklinearization.
Totah(ref. 3) usedthisapproachtocontrolasimulatednonlinearF-15modeldeveloped.His model
representedamodifiedF-15aircraftstationedatNASA DrydenFlightResearchFacility calledthe
AdvancedControlTechnologyfor IntegratedVehicles(ACTIVE) aircraft.Thisaircrafthasspecially
addedcanardsandvectoredthrustcapabilityto permitsimulationof abnormalflight conditions,such
as,partial lossof wing surfaceor yawmomentscausedby sidepaneldamage.Theaircraftwasalso
changedto permit a third flight computerchannelin whichneuraladaptiveflight controllerscouldbe
embedded.

In 1996,ACTIVE demonstratedthecapabilityof aneuralnetworkto successfullylearnaircraft
aerodynamiccoefficientswith sufficientaccuracyto drivetheexistingrobustcontroller.However,
real-time,on-linelearningof dramaticchangestotheaircraftmodelor accidentsexceedingdesign
robustnesslimits requiredadditionaldevelopmentsin neurallearningalgorithms.Thispaper
discussesrecentresultsfor oneon-lineneuralnetworkcandidatethatappearsfast,compact,and
accurateenoughto servethatfunction.

Perfect Typology Preserving Networks (TPN)

A number of computer science and mathematics problems can be efficiently solved by reducing

descriptions to a geometric representation of clusters of points and their proximity neighborhood in a

geometric space. Examples are nearest neighbor or k-nearest neighbor searches, data interpolation,

generation of Euclidean minimum spanning trees, or the solution of finite element problems. The

general nature of proximity problems are discussed in greater detail in Preparata and Shamos (ref. 4)

and Knuth (ref. 5).

In 1994, Martinetz and Schulten (ref. 6) showed that a competitive Hebbian adaptation rule can be

used to learn a Voronoi diagram and its dual, the Delaunay triangulation. The DelaunayDtriangulation

is defined as the straight line dual of a Voronoi diagram cast in an embedding space 9_ of arbitrary

dimension D.

2

TheVoronoi diagramVsof a setS={Wl.... w,} of points,W i • 9_ D is produced by N,

D-dimensional polyhedra Vi composed the set of points v • _o closer to wi than to any other

point wj • S, j :g:i.

Specifically, a Voronoi region for point i is defined as:

Vi-- {v• _D I IIv-will _ IIv" will ¥ i,j = 1,... N }

where II ()II is the Euclidean norm.

In neural network literature V i is often referred to as the receptive field of neuron i where w i is

defined as a weight vector for the neuron. For all input vectors (i.e., patterns) v • Vi, neuron i is

defined as the best matching unit (bmu) of that field and serves as the encoding location to represent

that region of points.

In _z space, the Delaunay triangulation in turn is generated by connecting all pairs wi, wj • S for

which the corresponding Voronoi polygons Vi and Vj share an edge. The Delaunay triangulation Ds

of S={wj wn}, wi • 9_ D is defined as a graph whose vertices are the wi and an associated

adjacency matrix A whose elements are

Aij • { 0,1} ¥ i,j = 1,.. N such that Aij = 1 iff Vi _ Vj :/: O.

Two vertices w i , Wj are therefore connected by an edge if their Voronoi polyhedra V i , gj are

adjacent. A then represents the connectivity status of arbitrary nodes wi and wj.

Finding the Delaunay triangulation is important for neural networks, because it can be added to a

learning rule to provide an efficient representation for solving many of the above proximity

problems. Among possible triangulations of a point set, the Delaunay triangulation is special because

it has been shown to be optimal for function approximation (ref. 7).

Importantly, computation time can also be reduced. For example, time required to find a Euclidean

minimum spanning tree can be reduced from O(N log N) to O(N) because the edges of the tree are a

subset of the edges of the Delaunay triangulation. Nearest neighbor and k- nearest neighbor search

times, a major limiting factor of many SOM and radial basis neural network programs, can be

reduced from O(N) to O(log N) time (ref. 5). Martinetz refers to a network having this property as a

TPN.

Growing Networks

Demonstrating that learning a perfect TPN of a function facilitates recall accuracy, Fritzke (ref. 8)

proposed a modification to self-organizing maps (SOFM), (ref. 9) using typology preservation called

a Growing Cell Structure (GCS) Network. GCS, along with computationally related networks (e.g.,

incremental self-organizing networks (GSOM), (ref. 10), Growing Grid Nets (ref. 11) and Growing

Neural Gas Networks (ref. 12)), all share certain common characteristics (ref. 13) which can be

categorized by:

Network Architecture. Usually a graph (directed or otherwise) consisting of nodes (neurons), links

(connection strengths), and topology. A neuron is usually indexed (e.g., wi above) as a point in R D.

Point Movement. Where learning effects both the closest neuron relative to a training point and its

nearest neighbors in w space. A common method to change wi is:

A Wbm u = Cbmu("[- Wbmu) for the closest point, i.e., best matching unit

A wi = _other(X - Wi) (¥i _ Nw bmu)

where:

Nwbmu are the topological neighbors of Wbmu

are adaptation gains with _bmu >> ¢other

may also be a function f(x) = _ of some other variable x such as a time step index

Local error. Where EWbmu is a local error magnitude accumulated by winning nodes (Wbmu). Its value

depends upon the metric used. This is often the Euclidean norm

AEWbmu = II Wbmu - _11 2

where "_is an arbitrary member of a training set. Alternate metrics such as information, entropy, and

subjective value can also be used. In contrast to Backpropagation, differentiability of this error metric

is not required, permitting measures to be used at a researcher's discretion.

Network growth. New nodes are added based on the amount of reduction of accumulated error

within a topological region of Wbmu. The different variations deal differently with error reduction

during learning and temporal record keeping. Some variations discard error values after insertion,

others maintain a decaying history of error along the lines of temporal difference methods. In the

current paper we chose to discard error information prior to the immediate learning step.

Topological constraints. Constraints can be placed on neighborhood shapes to reduce combinatorial

load complexity as the dimension of problems increase. GCS for example, uses k-dimensional

hyper-tetrahedrons (e.g., lines, triangles, or tetrahedrons) as approximating regions. Growing Grids

use hyper-rectangles or k-dimensional hypercubes. In this paper shape is constrained by the local

connection rule.

Recall and estimation. When a topology has been learned for a function, a reconstruction rule is used

to estimate values for untrained points or to determine where new nodes are added. Nearest

neighbor, or radial basis approaches are often chosen. However, there is opportunity to exploit the

topology only if the network can be shown to produce an accurate topological representations. In the

SOFM a mapping is usually from Rn --* R 2. If R n _ R m a perfect topology preserving mapping is

usually not possible since R" ---) R m may be a non-orthogonal projection onto a two-dimensional
manifold. Hence, recall accuracy for new points suffers as the dimension mismatch increases.

Dynamic Cell Structures

Bruske and Sommer (ref. 14) developed a synergistic combination of the above principles they

called Dynamic Cell Structures. They used insertion of nodes based on accumulated error proposed

in (ref. 15) and Martinetz's use of competitive Hebbian learning to adjust connection strengths while

at the same time preserving topological mapping constraints.

Their network chose a radial basis function representation, a subset of Martinetz's TPR network, to

concurrently learn and use perfectly topology preserving feature maps. The network applied Hebbian

learning to adjust topological connections and a Kohonen-like learning rule to adjust node positions

during training. It was capable of both supervised and unsupervised learning.

Neighborhood topology is used to determine which nodes are activated during recall or new value
estimation. Activation levels are determined by radial basis proximity. The network grows, starting

with two nodes and adds new nodes sequentially in areas in which AEwbmu is maximum. Over time,

the effect is that error becomes homogeneously distributed over an entire point density. Training

continues until AEWbmu reaches a predetermined criteria. Formally, the DCS network is defined as

follows:

Given an input manifold I c 91" and output manifold O c 91 m n usually > m, a DCS network is a

collection of points:

n = (c,w,R,y) e I X O X [0,1] X 91 _>0where:

c the center of a point in 9l n

w a weight in I associated with the point

R a function weighting the influence of n as a function of distance

y an error value associated with the estimation value of n as a graph

G = (N,L, S) where:
N c I X O X [0,1] X 91_>0 is a set of nodes

L c { {a,b} I a,b e N and a _ b } are links between nodes

S : L _ 91 _>0is a lateral connection strength function of an adjacency

Matrix C, C e 91 Iy[xl Yl for which:

Cii=0¥i e {1 ...INI}
Cij = 0 ¥ i,j not connected

0 < Cij < 1 if i,j connected with strength Cij, and

A connection strength function S is defined using a Hebbian rule:

Oax(yi " yj, Co "Cij(t + l) = :

>ykoy, V(l<k,l<lNI)]

Co(t)<O V(l<-k,l<-lNI)[

: otherwise J

where c_, 0 < a < 1, is a forgetting constant

5

0, 0 < 0 < 1,is adeletionthresholdfor weaklateralconnections

II_-' II i.e.,for thispaper'snetworkYiis a normalizeddistanceto x
Y, =_

wi is the center of a neuron's receptive field and

't is a training pattern's coordinate location in I c 9_ "

DCS Modifications for F-15 Learning

In the present work, R in (ref. 15) was replaced with a context sensitive linear interpolation F

calculated between topological neighbors. F was found to be more accurate for the estimation of

F-15 aerodynamic coefficients (-62%). Point locality tests were needed to avoid excessive errors if

neighborhoods were incompletely learned under real-time constraints. If we let _ be the network's

output given x then:

if I -wbmull <ll -w2cdbmull >ll Wbmu-W2cdbmull
' -- UiJ(Wbrnu)

else ffZ= F(Wbmu, W2c d bmu) where F =_tl_I'J(Wbmu) + _/2_(W2cd bmu).

),, interpolated for each dimension of Wbmu and W2cd bmu. kid() is the output value associated with point

n at coordinates w. F(Wbmu.Wbmu) is an interpolation between _'() values associated with the neurons

in the topological neighborhood of'_ chosen based on the magnitude of their cumulative node errors

AEWbm u and AEw2c d bmu.

This operation is summarized as follows. Given a new input value '_ inputthe output f_ associated with

'17inputis estimated by finding the closest DCS node Wbmuand its nearest topological neighbor W2cdbmu

to '17input. If the distance between x inputand W2cdbmuis not less than the distance between Wt,mu and

W2_0b,,,u(the second closest node to x inputwithin the connected topological neighborhood of Wbmu) a

case is present in which the network does not have a connected neighbor on the "other side" of ": input.

This can occur during incomplete function learning or excessively high values of c_. Linear

interpolation (or nonlinear estimates such as B splines) using local topology would otherwise return

an artificially inflated estimate for f2. To avoid this situation, F ignores w 2_dbmuand defaults to a

nearest neighbor estimate.

Weight Change

Learning uses a standard Kohonen-like rule in which Wbmu and its topological neighbors are adjusted

according to:

AWbm u : Ebm u(X - Wbmu)

A WN{j) = EN(j)("l_ - Wn(j))

Where N(j) of unit j is defined as

N O)={il(Ci_#:O,l<I<N)}

Only thebestmatchingunit andonly its positivelyconnectedtopologicalneighborsareadjusted
duringeachlearningcycle.

Adding Nodes

Nodes are added incrementally to the network during training. They are selected from areas with

maximum estimation error. New nodes are placed between a node having the highest error and its

topological neighbor having the second highest error. The location of the center of the receptive field

for a new node Wnewis calculated according to a ratio of error values AEWbm u and AEWzcd bmu where

AEWbm u and AEw2c d bmu are the nodes with the highest and second highest error in the topological

neighborhood respectively. The AE of units Wbmu and W2cdbmuare redistributed among Wnew,

W2cdbmu and Wbmu. The equations defining this distribution are as follows:

define: nl = EWbm u

define: n2 = Ew2c d bmu then

7 = nl / (nl + n2)

Anl =.5 (1 - 7)nl

An2 =.5 yn2

Wnew = Wbmu + _ (W2cd bmu - Wbmu)

Ewnew = An1 + An2

EWbm u = EWbm u - An1

These equations redistribute error equally among the three nodes and reduce overall error level in the

region of maximum deviation from the tree function distribution. The connection strengths of A are

then adjusted. This is accomplished by setting:

C Wne w _ C W2c d bmu : 1

C Wne w --'> C Wbm u -- 1

C Wbm u-_ C W2c dbmu-- 0

where --->represents the connection between nodes.

Feedback Linearized Control

Feedback linearization is a method used to design stable, nonlinear control systems. It operates by

transforming a nonlinear plant in such a way that the transformed system exhibits linear dynamics

about an operating condition. After this is accomplished, controller design methods such as PID,

LQR, Eigen structure assignment, Mu synthesis, or Hoo can be used to create a robust controller for

the linearized system. The key to usability is being able to invert transformed controller outputs back

into the original coordinate reference system during execution. This is often difficult because

complete understanding of aircraft dynamics is needed to perform the inversion. Such information is

often not available, particularly if the operational environment causes sudden changes to aircraft

flight characteristics. This could occur due to unexpected events such as ice accretion or more drastic

effects caused by severe damage such as mid-air collision or explosion.

7

In thispaper,weareconcernedwith developinganefficientneuralnetworkmethodfor on-line
learningof aplantinversethatcouldbeusedincontrolaugmentationssuchasfeedbacklinearization.
Therearetwo main situationswhichonemightencounter.First,acontrolparadigmmaybeso
robustthatevenwith changesin physicalcharacteristicsof theplane,theoutputcommandsarestill
within astablecontrolenvelope.In thiscase,on-linelearningwouldnotbenecessary.In the
second,extremechangessuchaslossof awingwouldcompletelyinvalidateanapriori plant model.

In this case, an entirely new model would have to be learned on-line in real-time. The latter case will

be addressed in greater detail in a follow-on to this paper where the focus is system identification.

In the first case, although the plant model after an accident might not correspond well to a pretrained
model, the robustness of neural network methods are still sufficient to deal with some severe

accident scenarios. Indeed, it has been shown that incorporating a neural plant model into a feedback

linearization design is very effective for stabilizing and controlling aircraft. Sanner and Slotine

(ref. 16) proposed a method for direct adaptive control using Gaussian Networks. They showed that

with some assumptions about nonlinearities, Lyapunov methods could be used to prove convergent

tracking errors for the neural weight adjustment algorithm.

Calvet (ref. 17) and Kim (ref. 18) proposed a method by which MLP neural networks can be

integrated into a direct adaptive tracking controller using feedback linearization. Their controller

approach, and the one used in this work, is composed of a command augmentation system (CAS)

with two parts, an inner loop responsible for airframe stabilization given commanded rates, and an

outer loop that tracks pilot commands. A multi-layer perceptron is used to perform the model

inversion needed by the CAS. Kim demonstrated that a stability augmentation system based on

feedback linearization could be developed for the equations of motion of an AH-64 Helicopter and a

6DOF model of the F/A- 18. He also showed a neural network can be used to perform inverse

transforms required to calculate the control signals, and a second on-line neural network can be used

to correct for inversion errors in the first network resulting from a non exact inversion of the

coordinate transformation matrix.

Our lab extended this work in the following ways. In 1995, Eshaghi demonstrated that for a full

nonlinear 6DOF F-15 aircraft simulation, neural learning accuracy could be markedly improved for

the off-line model by using a Leavenberg-Marquardt perceptron (ref. 1) to achieve lower RMS error

rates for the aircraft derivatives. Totah (ref. 3) showed in 1996 that the Calise/Kim method could

maintain F-15 system stability for a 6DOF nonlinear model under demonstrated failures of
differential canard lock and soft sensor failures.

The drawback of Leavenberg-Marquardt (LM) learning was the speed and memory requirements

required since off-line LM training, although accurate, proved to be very resource intensive due to

the data matrix inversions required. The F-15 ACTIVE onboard flight processor (OFP) is actually

very limited in memory, thus compactness becomes vital for real world flight test demonstration.

This was attained by LM methods in 1995, but on-line learning required too many resources to use
that method on-line.

We realized early on that the on-line part of the program would probably require some form of basis

function learning technique to be fast enough. In 1996, Jorgensen, Kim, and Fuji (internal white

paper) began development of a modified DCS network to take advantage of the perfect topology

representation properties and increased compactness of the DCS network. With the addition of an

improved output estimation method, this network showed extremely fast learning with a markedly

more compact data structure than CMAC architectures tested earlier. Under conditions of heavy

turbulence introduced into the training data, a combined DCS/Feedback Linearized controller

exhibited impressive stability. We now discuss the network's performance in more detail.

EXPERIMENTS

Duffing Equation

The modified DCS network was tested on a set of benchmarks to verify learning performance prior

to training on the F-15 data sets. Several functions were evaluated to check the response of the

network to conditions which might be encountered in control system learning. To test chaotic

sequences, the Duffing equation, representative of many control problems was used. We trained a

particularly messy parameterization (fig. 2) defined as:

y = x" +bx' +k_x + k2x 3 = acos(cot)

where

k I = 0

k2 = 1

b = 0.05

a = 7.5

09=1

chosen to induce chaotic behavior in the phase trajectory.

4 R
2

0 -2

-4 4

.4 IS

:12 1 0)4

O" -:e

-1 -a -4

•4 "4

2(a). Duffing Equation 5% RMS Error, 200 Nodes. 2(b). Duffing

Equation 1% RMS Error, 400 Nodes.

Figure 2. Phase plot of DCS learned Duffing equation.

The net was allowed to grow to 200 points (equivalent to about 2.5 seconds of aircraft sensor

recording time at 80 Hz). This resulted in about 5% normalized RMS learning error. Point estimation
for new untrained values used the F function and are shown as dots in figure 2(a). As can be seen in

figure 2(b) using 400 points, the complex manifold is being captured by the DCS network. The

9

greatest error shows up in the most recent (outer) portions of the phase trajectory. This is because

there were less Kohonen training iterations on the average for the most recent points as the stopping
criteria was reached.

CMU Two Spirals Benchmark

The CMU two spirals benchmark tested by Bruske and Sommer (fig. 3) was trained using 1000 of

1200 normalized values. We did not find their suggested rate equation (o_ = '1"q0 where n is the

number of training samples) effective because it resulted in insufficient severing of extraneous

connections between units. We were able to replicate results using fixed parameter values at:

=.7

0=.8

Ebmu =.99

aN(u) =.006.

Bruske, et. al., did not detail their error measure for the two spirals benchmark. We used mean point

error as a percentage of range. We achieved values close to zero, i.e.,<.0001 generalization error for

the randomly chosen test set of 200 untrained spiral points. The results appear comparable to their

paper.

Table 1. DCS parameters for two spirals benchmark.

DCS Rule Bmu constant # nodes for error <.0001

Bruske o_ = n q0 196

Ames o_ 0.1 213

Ames _ 0.99 276

Spirals:50 Nodes 1

/ 4 _ IN

i i r . " v

Spirals: 100 Nodes

• L-; }_ k" * " '

Spirals at 213 Nodes

)
-_ -4 -z 0 z 4

Figure 3. Two spirals benchmark.

10

Matlab Peaks Equation

The Matlab peaks equation (figure 4)

z = 3(1 - x) 2e -_2-(y÷_)"- 10(x / 5 - x 3 - y5)e-_2-; ,2 _ 1/ 3e -(x+_)2-:''

was trained to 3% error as a two input one output (MISO) mapping test. This equation was chosen to

evaluate recall with both multiple minima and exponential functions. Results were satisfactory with

613 nodes required to achieve 3% (our required learning level) with an original training set size of

900 nodes. The task also illustrated a nice property of the DCS net, that is the ability to pre-select

accuracy levels.

DCS Net Learning at 3% Error LevelPeaks Distribution

0 I

Y _

L J' m

...,,:-_t_ _ "-

_ ..4

Figure 4. DCS peaks learning.

F-15 ACTIVE Stability and Control Coefficients

Single Maneuver Tests. To test generalization of this result to aircraft data, the DCS net was trained

on 32 F-15 ACTIVE stability and control derivatives for a single 30 second full power banked turn

maneuver from Mach .6 to Mach 1.1 and 9,000 to 11,000 ft. altitude (fig. 3). As can be seen from

the graph showing effects of the change in angle of attack or, the network was able to effectively

learn the Cm a values using only 34 nodes. The same network predicted the other 31 derivatives

equally well. A full test of the network required demonstration of coefficient learning across the

entire flight envelope. In addition, real world conditions needed to include sensor noise as well as

atmospheric turbulence during periods of on-line learning. In our current implementation, the DCS

network receives on-line training data through the intermediary of a ring buffer set to filter redundant

sensor information from the training data set. This is required to avoid a stability plasticity dilemma

of over training during periods of slow parametric changes.

Full Flight Envelope Tests. The single maneuver performance above demonstrated adequate multi-

input single output learning. The full F- 15 ACTIVE flight test envelope composed of 2752 points

(i.e., altitude and Mach vs. 32 aerodynamic coefficients (ref. 3) was trained to demonstrate multi-

input multi-output behavior. Three percent accuracy had been previously determined off-line to be

sufficiently accuracy for stable ACTIVE control using the feedback linearized control architecture.

11

Thetrainingenveloperangedfrom Mach .3to Mach2.0with altitudefrom sealevel to 50,000ft.
Thenetworkachieved3%errorusing63 nodes,179secondsonaSGIndy work stationandtheF
recallmetric.In contrast,85nodesand268secondswererequiredto achievethesamelevelof
accuracyusinganearestneighborrecallruleduringDCStraining.Theresultsdemonstratedaclear
advantagein bothcompactnessandspeedutilizing F. It isanticipatedthatgivenminimum
computationalpenalties,ab-splineor higherordernonlinearinterpolationschememayprovidestill
betterresults.

Overallnetworkcontrolperformanceis shownin figures5(a)-5(d) for the30secondpowerbanked
turnusingthefull envelopetrainednetwork.In figure5(a),themaneuverisplottedin termsof lateral
andlongitudinalstick movementin inchesoveratime intervalof 30seconds.From 1to 9 seconds,
.5inchesof lateralstickareappliedresultingin arightbankata roll rateof about10degrees/second
with speedacceleratingfrom Mach .6to aboutMach .8.At 10seconds2.1 inchesof positive
longitudinalstickareappliedfor 20secondsresultingin anacceleratingdescendingturn withaltitude
droppingto 9.2thousandfeetandincreasedlift resultingin recoverybackto 9.8thousandfeet.The
maneuverpullsapproximatelypositive4 Gs.Thelowergraphshowsthebehaviorof theDCS
networkversusa perfectplantmodelof theaircraft.As canbeseen,theDCSandplantoverlapfor
Cmc_.Similar accuracieswereobtainedfor theother31derivatives.

Me=0.6, ho=10,O00 feet

_-0.5,

co O!
0 10 20

1.5

0.5
0 10

20,

"-2001 1'0

20 30

1.2

°i!
t-t

20

0.05
Time (sec)

_o
30

.

Ox 104 10 20
1.1 _ i

o
3O

30
.._2

.=_>

0.1 _ 00

0

I._o

-50 10

10 20 30

20 30

10 20 30
Time (sec)

Figure 5(a). Learning a maneuver.

In figure 5(b) the model of the aircraft is abruptly changed by 20% uniformly across all 32

derivatives. The DCS network is permitted to learn on-line using as a basis the trained network of

figure 5(a). The result is seen on the Cma time plot. After initial convergence, the DCS net rapidly

damps and within .05 seconds tracks the new changed plant model exactly. This perturbation

corresponds to an extreme change in the aircraft model as would have occurred in a significant

accident.

12

Mo=0.6, ho=10,000 feet
-_.0.5

011 I
0 10 20 3O

• 2'0 30

J

20 30

i

10

_20
o

• -____%a_ 0

C;I.
t

"200 10

I't __.

1.3[_ /
1.20 0.()5

Time (sec)
0.1

L
-_0 --

0x 104
1.1

10 20 30

1'0 2'0 30

10 20 30

10 20 30
Time (sec)

Figure 5(b). Learning parameter changes.

Figure 5(c) repeats the experiment except heavy turbulence as defined by the Dryden turbulence
model is added to the training data. The model quickly damps and again converges within .5

seconds. Line jitter reflects system turbulence not learning error of the DCS controller.

Mo=0.6, ho=10,000 feet

0 20 30 20 30

t-
O

%-

1.5

t
0.5 o 1'o a'0 30

o

" -20
0 10 20 30

-- i _-"_
>_1.3 l __,,'--4--

_ .
a 0 0.05 0.1

Time (sec)

_2

"x 104. 10
1.1

0'90 1b 2b 30

-51 : ;
10 20 300

$
a 0 10 20 30

Time (sec)

Figure 5(c). Learning with turbulence.

13

Figure 5(d) illustrates tracking behavior more clearly by an extreme blow up of a half second time

interval. As can be seen DCS again tracks well.

0.45

i
04

i A

II ' ,_ " |

,t_: i : A " _]

A: '

2510225.10425,1062512_!1 2S! !_425161 25i18 ;

Tm_ (sec)

Figure 5(d). Enlarged DCS learning.

VR Simulation

Adequate numeric performance does not guarantee adequate pilot feel for an on-line controller. To

facilitate pilot testing prior to flight tests, the Ames Neuro Engineering Lab designed a virtual reality

simulator (fig. 6). Neural networks coded in C++ were integrated with aircraft plant models, a

physical environment including turbulence and dynamic graphics rendered on a SG Reality Engine II

workstation. This mixture permits comparative evaluation of controller performance, as well as a

platform to test new visualization tools. In the near future, the DCS simulation will be incorporated

into a VME-based Neuro controller board designed for hypersonic flight control. This will allow

additional speed trade-off studies between software and hardware network implementations.

Figure 6. Ames virtual reality simulator.

14

CONCLUSIONS

This paper has demonstrated some advantages of combining dynamic cell structure networks with

real-time flight controllers. A modified DCS network was incorporated into a feedback linearized

control augmentation system and demonstrated using a piloted VR F-15 simulation. Gains from

perfect topology preserving networks were shown and the network performance was tested through

a full flight envelope. The network appears promising and will be further evaluated through flight

tests on a modified F15 at Dryden Flight Research Center in 1997. A combination of typology

preserving networks and nonlinear control system architectures appears to be a productive direction

for development of stable, rapidly adapting nonlinear controllers. Future work will continue to

develop feedback linearization as well as generalized predictive control and adaptive critic

architectures.

REFERENCES

1. N0rgaard, M.; Jorgensen, C.; and Ross, J.: "Neural Network Prediction of New Aircraft Design

Coefficients." NASA TM-112197, May 1997.

2. Kim, B.S.; and Calise, A.J.: "Nonlinear Flight Control Using Neural Networks," AIAA Paper

94-3646-CP, 1994.

3. Totah, J.: "Simulation of a Neural Based Flight Controller," AIAA Paper, AIAA-96-3503, 1996.

4. Preparata, F.P.; and Shamos M.I.: Computational Geometry: An Introduction, New York:

Springer-Verlag, 1988.

5. Knuth, D.E.: The art of computer programming. Volume III Sorting and Searching, Addison-

Wesley, 1993.

6. Martinetz, M.; and Schulten, K.: "Topology Representing Networks," Neural Networks, Vol. 7.

No. 3, pp. 507-522, 1994.

7. Omohundro, S.M.: "The Delaunay triangulation and function learning," TR-90-001, International

Computer Science Institute, Berkeley, 1990.

8. Fritzke, B.: "Growing cell structures-a self-organizing network for unsupervised and supervised

learning," Neural Networks, 7(9): 1441-1460, 1994.

9. Kohonen, T.: "Self-organized formation of topologically correct feature maps," Biological

Cybernetics, 43:59-69, 1982.

10. Bauer, H.U.; and Villman, Th.: "Growing a hypercubical output space in a self-organizing

feature map," TR-95-030, International Computer Science Institute, Berkeley, 1995.

15

11.Fritzke,B.: "Growing grid-a self-organizingnetworkwithconstantneighborhoodrangeand
adaptationstrength,"NeuralProcessingLetters,2(5):9-13,1995.

12.Fritzke,B.: "Let it grow-self-organizingfeaturemapswith problemdependentcell structure."
Artificial Neural Networks, pp 403-408. North-Holland, 1991.

13. Fritzke, B.: "Growing Self-organizing Networks - Why?" In M. Verleysen, ed. ESANN96, D-

Facto Publishers, Brussels, pp. 61-72, 1995.

14. Bruske, J;. and Sommer, G.: "Dynamic Cell Structures," NIPS, 1996, p. 497-504.

15. Martinetz, T.M.: "Competitive Hebbian learning rule forms perfectly topology preserving

maps," ICANN93, pp. 427-434, Amsterdam, 1993. Springer.

16. Sanner, R.M.; and Slotine, J.J.E.: "Gaussian Networks for Direct Adaptive Control

Transactions on Neural Networks," IEEE Vol. E, No. 6, 1992, pp. 837-863.

17. Calvet, J.P.: "A Differential Geometric Approach for the Nominal and Robust Control of

Nonlinear Chemical Processes." Ph.D. Thesis, Georgia Institute of Technology, Atlanta,

GA, 1989.

18. Kim, B.S.: "Nonlinear Flight Control Using Neural Networks," Ph.D. Thesis, Georgia Institute

of Technology, School of Aerospace Engineering, 1993

16

Form Approved

REPORT DOCUMENTATION PAGE OMBNo.ozo4-olse

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources.

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for inlormation Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204. Arlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

May 1997 Technical Memorandum
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Direct Adaptive Aircraft Control Using Dynamic Cell Structure

Neural Networks

6. AUTHOR(S)

Charles C. Jorgensen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Ames Research Center, Moffett Field, CA 94035-1000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

519-30-12

8. PERFORMING ORGANIZATION
REPORT NUMBER

A-976719A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM-112198

11. SUPPLEMENTARY NOTES

Point of Contact: Charles C. Jorgensen, Ames Research Center, MS 269-1, Moffett Field, CA

94035-1000 (415) 604-6725

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category-01, 03

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNs)
of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking
controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off-

nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation proce-
dure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid

prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear
Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor
failure, control and stability derivative variations, and air turbulence.

14. SUBJECT TERMS

Aerodynamic stability, On-line learning, Neural networks, Linearization

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

Unclassified Unclassified
i

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

20
16. PRICE CODE

A03
20. LIMITATION OF ABSTRACl

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std Z39-18
298-102

