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EXACT SOLUTIONS FOR SOUND RADIATION

FROM A CIRCULAR DUCT*

Y. C. Cho and K. Uno Ingardt

Ames Research Center

SUMMARY

This paper presents a method of evaluation of Wiener-Hopf technique solutions for sound

radiation from an unflanged circular duct with infinitely thin duct wall, including mean flows.

1. INTRODUCTION

Sound radiation from circular ducts is a classical acoustics problem. Exact solutions were

previously reported: the Wiener-Hopf technique was used for radiation of propagating modes from

a circular duct with negligibly thin duct wall (refs. 1-3), and the hyperboloidal wave function was

defined and employed for radiation from duct with various types of termination, including a plane

flange and horns (ref. 4). Exact solutions undoubtedly help one to gain physical insight into the

problem and can often be used in practical designs. In this electronic computation age, another

significant role of exact solutions is defined as means of cross examination of results of numerical

techniques. These techniques, embraced as computational aeroacoustics, are just starting to attract

widespread attention as a potential tool in attacking important aeroacoustic problems for which

quantitative solutions are not available.

Despite the elegance of the closed form solutions with the Wiener-Hopf technique, numerical

presentations have been limited to mere demonstrations of its capability. As a matter of fact, no

computer program is publicly available for its numerical evaluation. Numerical evaluation of the

Wiener-Hopf solution is not straightforward; it requires the exercise of extreme care and, often,

sophisticated mathematical tricks. This paper attempts to provide a comprehensive mathematical

procedure for evaluation of Wiener-Hopf solutions.

In section 2, acoustic waves will be briefly reviewed for in-duct propagation and radiation. In

section 3, the Wiener-Hopf technique is applied to obtain solutions, and section 4 is devoted to the

evaluation of integrals involved in the solutions.

*Partly based on two consulting reports submitted to Pratt and Whitney Aircraft, May 25, 1976, and December 17, 1976.
tMassachusetts Institute of Technology, Cambridge, Massachusetts.



2. REVIEW OF DUCT ACOUSTICS

Duct acoustics will be briefly reviewed here for aspects relevant to the present problem. This

review is also intended for clarification of terminology and nomenclature used in this paper.

The wave equation for the acoustic pressure, p, in flow is

I 12V2p_ 1 °3 +IP-V 0
757 P= (1)

Here c is speed of sound, and *2 the mean flow velocity which is assumed to have only the axial

component. The analysis is confined to a steady wave with the harmonic time dependence e -i cot,

and axial angle dependence e i m¢, where m is an integer called the circumferential mode number.

Equation (1) is then written for circular cylindrical coordinates (r, ¢, x) as

(1 3 c92p +iM-_x P 7rO'r r +O--TT+ k - p=O
(2)

where k = co / c and M = V / c.

The sound radiation from an unflanged circular duct is schematically displayed in figure 1. With

reference to this figure, the entire region is divided into two: region 1 for r < a, and region 2 for

r > a, where a is the duct radius. The subscripts 1 and 2 will be used from now on to indicate,

respectively, regions 1 and 2, unless specified otherwise. The mean flow velocities are assumed to

be uniform in each region and are denoted by V1 and V2. For V1¢ V2, there will be the mean flow

mismatch at r -- a, for x > 0. The sound speed can differ for the two regions for reasons such as

differences in mean density and temperature. The respective sound speeds, wave constants, air

densities, and Mach numbers are denoted by c1 and c2 , k1 and k2, Pl and P2, and M 1 and M 2,

where k1 =co / c 1, k2 =co / c2, MI = VI / c1, and M 2 = V2 / c2.

In a hard-wall circular duct, the general solution to equation (2) is obtained as

p(r,x)= Z Jm Amne tkranX +Bmn e ikmnx

n=l

(3)

Here Jm is the Bessel function of order m, titan the nth zero of Jm (x), and Amn and Bran constant

coefficients. The wave constants k+n and kmn correspond to the mode propagations, respectively, in

the positive (to the right) and the negative (to the left) directions, and are given by
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(4)

The integer n here is called the radial mode number, and the pair (re,n) is used to represent a single
duct mode.

Consider the incident wave of a single mode, say (m, g),

(_-_-1 'l%ex
Pinc = Jm e i m _oe " + (5)

This wave is incident from x=--oo and propagating toward duct termination, as shown in figure 1.

Upon arriving at the duct termination, it will be partly reflected back into the duct and partly radiated

out of the duct. In general, the reflected wave contains many radial modes, including propagating

and attenuating modes, and is represented by

Prefl = e imq R m i kmn xZ g,nJm e

n=l

(6)

Here R_,,n is the conversion coefficient for the (m, g)mode incident and the (m,n) mode reflected.
The reflection problem is completely solved by determining this coefficient for all values of n. The

Wiener-Hopf technique yields radiation solutions in terms of the far field, which is represented by

e i A(k 2, M2, R)
Prad =eimO fmg(O)" k2 R

(7)

Here R is the radial distance from the center of the duct termination and 0 the polar angle measured

from the x-axis (duct axis), as shown in figure 1. (R, 0, q_) are spherical coordinates. The complex

factor fme (0) is called the amplitude gain function, which provides the far field directivity of

radiation. The phase A(k 2, M 2, R) of the far field depends on M 2 as well as on k 2 and R. The

radiation problem is completely solved by determining fmt(O) and A(k 2, M 2, R).

This analysis with a single mode incident can be extended to accommodate incident waves

composed of many modes in a straightforward manner.

3. WIENER-HOPF FORMULATION

The Wiener-Hopf technique involves extensive mathematical manipulation in the Fourier

transform space. The Fourier transform ofp(r, x) is given by
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q_(r,a) = _ I2 p(r,x)eiaXdx (8)

and p(r, x) is restored by the inverse transform

1

p(r,x)= _ I2 q)(r'a)e-iaXda (9)

In the process of the Wiener-Hopf formulation, various parameters and functions are defined and
derived as follows:

+_kj for j=l, 2 (10)

Wl(a)= Im(_gla) I m being l-Bessel function of order m (11)
?'1a Im(?l a) '

W2 (a)= Km(_g2a) , K m being K-Bessel function oforderm (12)
_Y2a Km(T2 a)

1 I PlC_M? P2c_M_

K(a)=T--_I[PlC21 (kl+aMl)2W1 (a)-p2 c2 (k2+aM2)2W2 (a) l

In deriving K(a), we have used the condition of the continuity of the acoustic pressure and

acoustic displacement at the mean flow mismatch at r = a, for x > 0. K(a) is factorized into

two: one is analytic in the upper half plane (+) and the other in the lower half plane (-) as

K(a)= K+(a). K_(a). These factors will be included in the final solutions with arguments

representing physical quantities. For the present problem, the factorization is obtained not in

closed forms but in integral representations as follows:

1 1 LogK(a) daLogK+(y+)= 27ri C+ a-y+

-1 I LogK(a) daLogK_(y_)= 2rci C_ o:-y_

(13)

Here the integral path is from -_o to +oo near the real axis, and the argument y+ (y_) is located

above (below) the respective integral path, as illustrated in figure 2.

(14)

(15)

(16)
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Forgoing details of the formulation (ref. 5), the final results are presented here. The conversion

coefficient for the reflection is obtained as

i Pl Cl2 Jm(llmg )
R m =

e,n aTM I__M12 jm(l.lmn )

2 -1 -1//2

(1-_mnl I(k+mg+ kl l'(-kmg+ kl 111-MI) _. I+M1 )J

(kl_M1 kmn) 2 K (-k+e)K+(-kmn) -1

(kn+g_kmn)(klMl+(l_M12)kmn) [ - ]

(17)

The symmetry between the radial mode numbers g and n is salient, implying that the result satisfies

the reciprocity principle (ref. 6), which can be used to infer the conversion coefficients of a

nonpropagating mode.

For the radiation, the phase is obtained as

k2
A (k2,M2,R)= (18)

and the amplitude gain function is

fme(O) =
(_i)m+l jm(_trnt)P2c2k2(l_M2cosO,) 2 I (1)'(k2a sin0'_]-I

I+M l

-1

(19)

where

/7(0) = k2(c°s0'- M2 )
I_M2

Here the modified coordinates R' and 0' are defined as

i x2R'= r24 1_M2 ,
tan0"=_-M22 tan0

(20)

(21)
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(1)tx)H_ _ is the Hankel function of the first kind, and H(m1) (x) is its derivative with respect
to x.

Comments are made on the expression of fm_e(0) for two limiting cases. First, as can be

shown readily, when 0 becomes zero, the quantity in the first square bracket will be infinite except

for the case of m = 0. In other words, the radiated field is zero for 0 = 0 except for the radiation of

axisymmetric modes. Second, as will be seen later, when its argument approaches -k+mn, K+ in the

second square bracket varies as [km+e- 77(0)] -1 . It follows that the radiated field will be zero for the

angle satisfying

rl(O)=k+mn or cos0'= M 2+ (1-M_I k+n
/-'_-'2 ' for n;e£ (22)

However, for the angle corresponding to the incident propagation constant k+me, the radiated field

is nonzero, because the term adjacent to K+ becomes zero in this limit. In fact, the radiated field

reaches the maximum in this limit. These findings are all familiar for cases of no mean flows. We

will also see later that if its argument approaches -k I/(1 + M l), then K+ varies in such a way as to

compensate the term involving the square root in the same square bracket to maintain the amplitude

gain finite.

A remark should be made on the constant TM . As M 1 and M 2 both become zero, this constant

becomes zero, but the expressions for the conversion coefficients and the radiation directivity remain
correct, and finite when evaluated as a limit.

4. NUMERICAL EVALUATION

The integrals in equations (15) and (16) cannot be carried out analytically, and thus we will

employ a semi-numerical method. To this end, all the variables are made dimensionless by multi-

plying or dividing with the duct radius a. For notation simplification, the sub- or superscript m will

often be dropped.

K(a) satisfies all the conditions required for its factorization by the integration. Nevertheless,

the integrand possesses singular points in the vicinity of the integral paths. These singular points

arise as branch points, simple poles, and zeroes of K(a). It should be emphasized that there are no

other singularities near the integral paths. The branch points are located at a = q_. We adopt a rule

for determining phase around these branch points, as illustrated in figure 3. For example, consider

(a-q'-£). Its phase is 180 degrees for its real part less than zero, and changes clockwise to zero as

the real part becomes positive. On the other hand, the phase of (a-q_) is -180 degrees for the real

part less than zero, and changes counterclockwise to zero as the real part becomes positive. This rule

should be strictly observed for the integrations.

The simple poles of K(a) occur at zeroes of Im (_1 a), which is included through W 1(a) as in

equations (I 1) and (14). Theses zeroes correspond to the wave constants of duct modes, and one can
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showthatthesimplepolesof K(a) are located at a=v + =- _kmn.-T- Note that v n+(=---kmn) is above

the respective integral path, and vn (--k+n) is below the respective integral path, as shown in

figure 2. K(a) can also possess zeroes near the integral path if q_- > q_'. The zeroes are located

between a = q_- and a = q_-, and above the integral path. The number of zeroes equals that of

simple poles between a=q_ and a=q'{, or can be less by one. The zeroes are denoted by Zn, for

n = 1, 2 .... n o, with no being the number of zeroes. These zeroes are ordered such that zl is the

smallest and Zno the largest.

The imaginary parts of all the singular points are related to .J_n (k). As the latter tends to zero, all

the singular points approach the real axis, and the integral paths are then indented, as shown in

figure 2(b).

Consider the integral

I =[_ LogK(a) da (23)
JC; _ a-y

This integral is divided, for convenience, as

I=R__+R+ +B_+B+ +S_+S++Z+ Y+N (24)

R's are the contribution from the integration over larger arguments as

R..= _f- L°gK(a) da (25)
a-y

= [oo LogK(a) da (26)
sZ+ a-y

where Z__.> qj.

B's are the contribution from the integration over small intervals containing the branch points:

B_ = __2 Log K(a) da, with b I- < ql < b2-
a-y

(27)

B+= fbbf LogK(a)a_y da, with bl+ < q_-< b_

S's are the contribution from the integration over small intervals containing the simple poles:

(28)

/"/C

s+_--ZsS,,
n=l

n c being the largest propagating radial mode number (29)



S_ = -/s_2 Log K(a) da, with Sn-"1 < Vn < Sn-2

"Snl a- y

+ + ++ fsn+2 LogK(a) da with Snl < v n < Sn2S_ "- +
JSnl Ot- y

Z's are the contribution from the integration over small intervals containing the zeroes of K(a):

no

(30)

(31)

n=l

= [zn2 LogK(a) da, with Znl < Zn < Zn2 (33)
Zn "lZnl a- y

Y is the contribution from the interval containing the pole at a =y:

y+ = _'2 Log K(a) da, with Yl < Y < Y2 (34)
- l o_-y

where the plus (negative) sign indicates that the pole is above (below) the integral path. This integral

needs to be evaluated only if K(a) is free of singularity and zeroes within the integral limit. Other-

wise, it should belong to one of B, S, and Z because there are no singular points other than those

involved in B, S, or Z.

Finally N is the integral over all the remaining intervals. There is no singularity at all in these

intervals, and thus the integration can be carried out numerically.

K(a) approaches unity as [a[ becomes large; that is, Lim K(a) = 1, and thus K(a) can be

expanded for a large a, as a____o.

A1 A2

K(a) = 1 + --_ + _- (35)

where the expansion coefficients A 1 and A 2 can be readily obtained. With this substitution to

equations (25) and (26), one obtains

I +d lIl+d ) (Z+-Yl]R+ = A 1 _ T- Log (36)
- YZ+_. yk. Y) Z++. J

Z- _._ Z n (32)



where

d = A2 A1
A 1 2

Error limits and the expansion coefficients are used to determine the integral limits Z_+-

where

The integral near the branch points can be replaced by

+

B+ = I L°gQ+(a) da-l[ L°g(-a-qF) da
- a-y 2 J a-y

Q+(a) = K(a). _la-qf

Q+_(a) are free of singularity and zeroes within the respective chosen integral limits.

The simple poles of K(a) are separated as follows:

Log(a-v + )
S+= I Log/-__(a)da - Ida

a-y a-y

where

L+_(a)=K(a). (a - v_)

L__(a) are free of singularity and zeroes within the respective integral limits.

The zeroes of K(a) are similarly separated as

Zn = I L°gU(a) da + I L°g(a-zn) da
a-y a-y

where

K(a)
u(a) =

t_-Zn

U(a) is free of singularity and zeroes within the respective integral limit.

(37)

(38)

(39)

(40)

(41)

(42)

(43)



Now consider the integral

LogG(a) da
H(y)=I: a-y

Here G (a) is free of singularity and zeroes within the integral limit, and thus represents Q+_.(a) in

equation (38),/___(a) in equation (40), U(a) in equation (42), or K(a) in equation (34) if K(a) is

free of singularity in that region. This integral can be written as

(44)

dot

Log[G(ot)/G(y)] dot + LogG(y) f: a-yH(y) =_: ot-Y

As a approaches y, one readily obtains

Log[ G(ot) / G(y)] _ G'(y)

ot- y G(y)

(45)

(46)

Thus, the first integral in equation (45) does not involve any singularity, and can be easily evaluated

whether y is within the integral limit or not. The integral contained in the second term yields

y+ <a or y+.> b_: d.__ =Log(b-Y+ 1, for
a-y+ \a-y+_j

=Log(b-Y+-.1-T-iz, for a<y+_<b
\ y+_-a j

where (+) signs are used to indicate that the simple pole is above (+) or below (-) the integral path,

which is indented around the pole like L) for (+) and n for (-).

eb Log(ot
£2- =1 dot

Ja a-y_

£2+ =_: Log(a-__) dot
ot-y+

£2+ =I: Log(ot-fi._+) dot
- a-y_

+ cb Log(a-_._+)

£2; =,aI __--_+ da

Consider the integrals

(47)

(48)

(49)

(5O)

(51)
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Here, the singular point at a= 4 is within the integral limit, that is, a < _+ < b. The subscript on

and y is used to indicate that the pole is above (+) or below (-) the integral path. The indented

integral paths are shown in figure 4. The second integral in each of equations (38), (40), and (42) is

identified with one of the integrals in equations (48)-(51). These integrals are evaluated as follows:

For y__< a,

£2_ = _T.ier Log(._.+ _-.YY_+1_ _2+ __+_. l[(Log(b-y+))2+(Log(_+-y+))2]
- \ a-y+ I 3 2 - - -

- l ay+l'+I y+;l-Log(_+_-y+_).Log(a-y+_)+_,j=lTLke_+.-=_. j ',,b-y+_

(52)

and for y+_> b,

+ zcz ]£2+_-'= -T-in:Log _ + "3 2

+ Log(y_+- 4+_)" Log(y_-b)- j=127[_ Y'+--=--_--+ \ y__ -a

where the upper (lower) sign of i_ corresponds to _ (4-).

Fora < y+_< b,

£2+-_= + ittLog(y_-a) + iTr[- Log(y_ -___.) _ Log(y_ -___.)]

_l[(Log(b____ .))2 +(Log(y__a))2] + Log(b -__+)-Log(b- y_)

.- l[iy (y+--- _ --_- +
2 j=lJ b-_+_) yf--a

£2+ = + itcLog(y+-a) + Dr[ Log(y+ -__+) -T-Log(y+ -_+_)]

1 [(Log(b_ _+_))2 +(Log(y+-a))2 ] + Log(b -4_+)" Log(b- y+)2

_2 __lI(y_.ff._.__+_]J (y+_,.x+]J]
+___ . + .....

2 j=l J C\ - _--- y y+ - a

(53)

(54)

(55)
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All the integralsinvolving singularpointsareanalyticallyevaluatedaccordingto equations(47)
and(52)-(55). For largeargumentsextendingto the infinite, the integralis evaluatedaccordingto
equation(36).Therestinvolvesfinite integralswith well-behavedintegrands,andthuscanbe
numericallyevaluatedwithoutanydifficulty.

A remarkwill bemadeontheresultsin equations(54)and(55),particularlyon thesecondterm
on theright. This termvanishesify and_ areon thesameside(aboveor below)with respectto
the integralpath.However,if y and _ are separated by the integral path, the second term equals

+2zr/Log(y_ -_;.) and diverges as y approaches _. Of the K-factors contained in the results in

equations (17) and (19), only K+(-rl(O)) can have y and _ separated by the integral path. Its

argument is above the integral path according to equation (15). As 0 varies, the argument can

approach a singular point located below the integral path. For this case, the second term above is

given by 2x/Log(-r/(0)- __), where __ is v n or q_-. Inspecting equations (15), (23), (24), (38),

and (55), one obtains, for -r/(0) close to ql,

1

K+(-rl(O)) o¢ _-rl(Oi-ql
(56)

Similarly, from equations (15), (23), (24), (40), and (55), one obtains, for -r/(0) close to v n ,

(57)

It follows that, as 77(0) approaches k+mn, then fret(O) given in equation (19) tends to be zero for

n:/:£ and will reach the maximum for n=g. Also, one can see that frog(O) will remain finite asr/(0)

approaches k I/(1 + M 1), as discussed earlier.

CONCLUDING REMARKS

An analysis for evaluation of the Wiener-Hopf solution was presented for sound radiation from

an unflanged circular duct with mean flows. This analysis was initially developed for radiation of

spinning modes in conjunction with aircraft inlet noise control studies. We have a well-working

computer code available for such radiation. However, while generating numerical results for the

benchmark problems, we learned that the code needed to be refined for radiation of the

axisymmetric modes.
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